

Energy Fuels Resources (USA) Inc 225 Union Blvd Suite 600 Lakewood, CO, US, 80228 303 974 2140 www energyfuels com

December 5, 2012

VIA EMAIL AND OVERNIGHT DELIVERY

Mr Rusty Lundberg Director of the Utah Division of Radiation Control State of Utah Department of Environmental Quality 195 North 1950 West P O Box 144850 Salt Lake City, UT 84116-4850

Re: State of Utah Radioactive Material License No. UT 1900479 April 27, 2011 Amendment Request to Process an Alternate Feed Material from Dawn Mining Company Transmittal of Supplementary Information

Dear Mr Lundberg

This letter is a follow-up to Utah Division of Radiation Control's ("DRC's") meeting with Energy Fuels Resources (USA) Inc ("EFRI") on November 8, 2012 regarding our April 27, 2011 Amendment Request for a proposed alternate feed from dewatering of Water Treatment Plant ("WTP") solids from Dawn Mining Company's Midnite Mine As we discussed at that meeting, since the submittal of the Amendment Request, Dawn Mining Company evaluated the use of a filter press as an alternative to the centrifuge presently in use for dewatering the WTP solids

EFRI is providing a copy of the Filter Press Pilot Testing Report, Midnite Mine (the "Testing Report") prepared by Advanced Environmental Sciences, Inc. for Dawn Mining Company

Basis of Amendment Request

As discussed at the November 8, 2012 meeting, EFRI uses highly conservative assumptions when assessing the impacts of the constituents of any alternate feed on the Mill process, the tailings system or the environment. The April 27, 2012 Amendment Request performed all calculations of concentrations, and all estimates of quantities for approval, on a dry weight basis, that is, based on 100 percent solids

Results of the Dewatering Pilot Test

As discussed in the Amendment Request, the solids are currently dewatered via a centrifuge and have averaged approximately 15 percent solids. It was anticipated by Dawn Mining, and discussed in Section 2.2 of the Amendment Request, that use of the filter press could possibly reduce the volume to be shipped by increasing the solids content to a value between approximately 25 and 45 percent solids. The four samples from six tests runs produced filtered solid product ranging from 59.3 to 65.4 percent moisture (40.7 to 34.6 percent solids) The Testing Report has concluded that 35 percent solids content is, in fact, achievable with the proposed equipment

Letter to R Lundberg Dawn Mining Amendment Request Supplemental Information December 5, 2012 Page 2

Quantity to Be Shipped to the Mill

The primary effect of the proposed use of a filter press in lieu of the current centrifuge will be to reduce the volume of water in the material to be shipped to the Mill. However, the quantity of material for which EFRI sought approval in Section 2.3 of the Amendment Request was not based on a volume, but was expressed as a mass in dry tons of solids Since the dry tons of solids will not change, regardless of how much bound water is or is not shipped with the solids, the quantity requested for approval has not changed.

Chemical Analysis of Filter Press Cake

As we explained during the November 8, 2012 meeting, the filter press pilot test is a physical process that added no chemical constituents, and would be expected to change the WTP material only in water content Results of laboratory analyses on the filter press solids are provided in Appendix A of the attached report As were the results reported and used in the Amendment request, the results from the post-pilot test analyses were reported on a dry weight basis The results indicated that:

- Consistent with the data reported in the Amendment request, all RCRA metals analyzed for TCLP remained non-detectable at a detection limit an order of magnitude below their respective TCLP standards
- The uranium content, on a dry weight basis, was within the levels reported and used in the Amendment Request
- The contents of all other radionuclides, on a dry weight basis, were within the levels reported and used in the Amendment Request

RCRA Assessment, Process Safety, Environmental and Tailings Impact Assessment

The Amendment Request used analytical data reported on a dry weight basis, as did the attachments to the Testing Report. As mentioned above, all analyzed constituents reported in the Testing Report were within the ranges reported and used in the RCRA Assessment (Attachment 4), and the Process Safety, Environmental, and Tailings Impact Assessment (Attachment 5) of the April 27, 2011 Amendment Request.

Conclusions

The additional analyses support the conclusions in the amendment request that

- The uranium material does not possess a RCRA characteristic
- The uranium material is not and does not contain RCRA listed waste
- The radiological composition of the uranium material falls within the ranges of other alternate feed materials and ores previously handled and processed at the Mill
- The chemical composition of the uranium material falls within the ranges of other alternate feed materials and ores previously handled and processed at the Mill
- The assumptions and basis of the Amendment request was sufficiently conservative to be unaffected by the findings of the Testing Report

Letter to R Lundberg Dawn Mining Amendment Request Supplemental Information December 5, 2012 Page 3

A hard copy of the report 1s attached

If you have any questions, please contact me at (303) 389-4132

4

Yours very truly,

alun Lischlen

ENERGY FUELS RESOURCES (USA) INC. Jo Ann Tischler Director, Compliance

1

cc Robert Baird, URS David C Frydenlund Dan Hillsten Lou Miller, Miller Geotechnical Consultants Harold R Roberts David E Turk Kathy Weinel Filter Press Pilot Testing Report

Midnite Mine

Revision 0

November 1, 2011

Prepared for

Dawn Mining Company P O Box 250 Ford, Washington 99013

Prepared By

Advanced Environmental Sciences, Inc 383 West 37 Street Suite 104 Loveland, CO 80538

Table of Contents

1.0	INTR	ODUCTION	1
2.0	EXIS	TING AND PROPOSED SLUDGE HANDLING FACILITIES	2
	21	Current Centrifuge System	2
	22	Proposed Filter Press and Bench-Scale Testing	2
3.0	PILO	T-SCALE FILTER PRESS TESTING	3
	31	Pılot Test #1	5
	32	Pılot Test #2	6
	33	Pılot Test #3 .	6
	34	Pilot Test #4 .	6
	35	Pılot Test #5 .	7
	36	Pılot Test #6	7
4.0	LABO	DRATORY ANALYSES	9
5.0	SUM	MARY AND CONCLUSIONS	10
6.0	REFE	RENCES	11

List of Pictures

Picture 1	Filter Press
Picture 2	Filter Press
Picture 3	Seiko Moisture Analyzer
Picture 4	Sludge Comparison

List of Tables

- Table 1
 Historic Water Treatment Rates and Sludge Production
- Table 2
 Pilot Testing Operational Parameters
- Table 3Pilot Testing Analytical Results

List of Appendices

Appendix A Laboratory Analysis

1.0 INTRODUCTION

Pilot-scale filter press testing was performed from September 16 through September 23, 2011, at the Midnite Mine water treatment plant (WTP) The purpose of the filter press testing was to determine the filter cake percent solids, sludge volume reduction, polymer addition, press cycle time, and ease of press cleaning In addition, laboratory analyses (Energy Laboratories) were run on the filter cake for total uranium (dry weight), total radium-226/228, Thorium 230, density, and Toxicity Characteristic Leaching Procedure (TCLP) RCRA 8 metals A description of the testing and the results are presented in the following sections

2.0 EXISTING AND PROPOSED SLUDGE HANDLING FACILITIES

The WTP produces a semi-solid sludge that is disposed offsite The sludge is currently trucked to Dawn Mining Company's (DMC) Ford millsite for disposal in a lined tailing pond (TDA-4) in accordance with the Residual Management Plan (Miller Geotechnical Consultants, Inc, 2011)

In the future, the disposal location may change from TDA-4 which will require trucking of the sludge over greater distances to non-DMC owed disposal facilities In order to reduce trucking and disposal costs, technologies to reduce the sludge volume are being investigated by DMC

2.1 Current Centrifuge System

Currently, sludge from clarifier #1 is fed to a steady head tank and then pumped to a centrifuge for dewatering Historically, sludge from the centrifuges has had a laboratory analyzed percent solids of between 14 percent and 16 percent

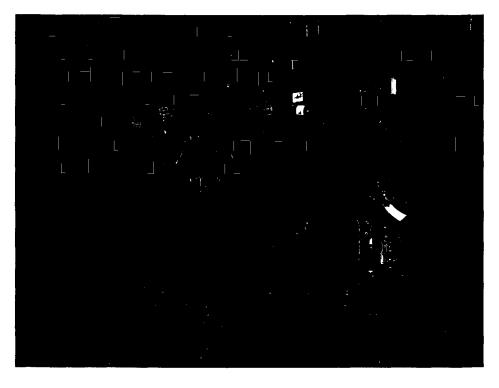
Based on DMC reported sludge volumes from 2001 through 2009, the WTP produced a total of approximately 252,000 cubic feet of sludge from the centrifuges Using the historic WTP operating schedule of 4 days per week, 4 weeks per month, and 5 months per year, this equates to approximately 350 cubic feet of sludge produced per operating day A summary of the historic WTP treatment rates and sludge production is contained in Table 1 0

2.2 Proposed Filter Press and Bench-Scale Testing

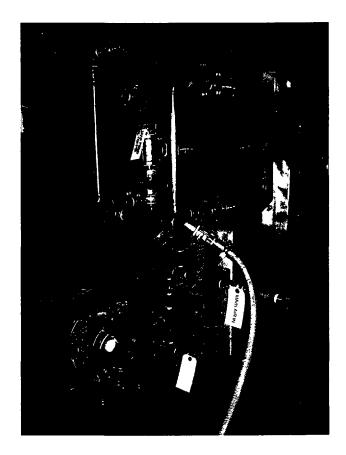
Dawn Mining Company has proposed to install a filter press (Advanced Environmental Sciences, Inc, 2010) to reduce the sludge volume that must be trucked and disposed The proposed filter press system is a plate and frame system, incorporates a membrane squeeze, and is sized for 50 cubic feet per cycle

In June 2010, a dewatering test was performed on the WTP sludge using a bench-scale plate and frame filter press The bench-scale filter press consisted of a center feed plate with a filter cloth and outer plate on each side of the center plate The sludge slurry was fed to the center plate at approximately 80 psi and the filtrate exited through the outer plates The test indicated that the sludge dewatered well and released from the filter cloth easily Laboratory analyses of the sludge indicated percent solids of approximately 19 percent

Based on the bench-scale testing, previous experience with lime treatment sludge, and information from the filter press manufacturer it was estimated that a full-scale filter press with a membrane squeeze would produce sludge with percent solids content in excess of 30 percent


Questions were raised by the Environmental Protection Agency (EPA) on the accuracy of the percent solids estimate, sizing of the sludge steady head tank, and number of press cycles per day (EPA, 2010 and 2011) In order to provide additional information to EPA, a pilot-scale filter press was leased and operated and the resulting filter cake analyzed, as described in the following sections

3.0 PILOT-SCALE FILTER PRESS TESTING


Pilot testing was performed from September 16 through September 23, 2011 The pilot system was setup inside the WTP, near the sand filters For the first three days the press was setup and plumbed and the last day the press was decontaminated and packed for shipping Actual testing occurred from September 19 through September 22, 2011

A model 470mm pilot press was leased from Micronics, Inc Pictures 1 and 2 show the press setup The pilot press consisted of three molded polypropylene membrane plates and head and tail plates The two chambers between the three membrane plates were utilized to produce the filter cake for testing The pilot press consisted of the following

- Each plate chamber was approximately 342 square inches with an approximate filled depth of 1.3 inches (prior to membrane squeeze)
- Finely woven synthetic blend filter cloth between plates
- Polyethylene sludge steady head tank with a low angle cone bottom on a metal stand The tank diameter was 42 inches
- Air diaphragm pump used for sludge feed to the press Maximum pump output of 100 pounds per square inch (psi)
- Air driven piston pump for bladder pressurization using water Regulated pump output of 210 psi
- 4500 psi hydraulic closing pressure using a manual hydraulic pump
- Air blow system regulated at 40 psi

Picture 1. Filter Press

Picture 2 Filter Press

The typical sequence of pilot operation consisted of closing the press, filling the press, pressurization of the membrane squeeze, and then blow down of the press. The pilot press was operated in batch modes and the filling, membrane squeeze, and air blow durations were varied during testing. Initial testing indicated that additional flocculant, beyond that used in the treatment process, was not required and none was added during pilot testing. For all tests, the filter cake released easily and cleanly from the filter cloth. In addition, for all tests that used the membrane squeeze, no free water was observed and the cake was extremely competent, in some cases requiring a screwdriver to break up.

In addition to laboratory analyses, field determination of percent dry solids was performed using a Seiko Moisture Analyzer, model DSH-50-10 The solids were heated to approximately 105 degrees Celsius and the heat was maintained until no further weight loss was automatically determined by the analyzer The unit gave a read-out of dried weight, percent dry solids, and percent moisture loss The analyzer was used as general screening instrument for onsite dry solids determination and the results were higher than the laboratory analyses The difference in analyses between the Seiko analyzer and the laboratory results is due to the much longer drying time specified by the laboratory analytical method The Seiko analyzer is shown on Picture 3

Picture 3 Seiko Moisture Analyzer

The following sections describe the pilot tests performed The sludge steady head tank was filled one time for tests #1-#5, in order to maintain the same feed solids consistency During these first five tests, the sludge was kept suspended through mixing The feed solids had average solids of 14 percent (field measured) For Test #6, the steady head tank was filled with fresh feed solids, which had average solids of 11 5 percent (field measured) Table 2 presents a summary of the operational parameters for all six tests

3.1 Pilot Test #1

Pilot Test #1 was performed on September 16, 2011 For this test, the press was filled fairly quickly to the maximum 100 psi pump stall pressure The pressure dropped to 80 psi over approximately 5 minutes The membrane squeeze was then initiated and the pressure brought up to 200 psi over approximately 7 minutes and held at 200 psi for 20 additional minutes The air blow down was operated at 40 psi for 10 minutes

Field solids determination showed variation between approximately 43 and 49 percent, depending on where the sample was obtained from the filter cake Near the edges of the filter cake, the solids varied from 460 to 488 percent Two samples from the middle of the filter cake had a range of 443 to 434 percent dry solids No samples from this test were submitted for laboratory analyses

3.2 Pilot Test #2

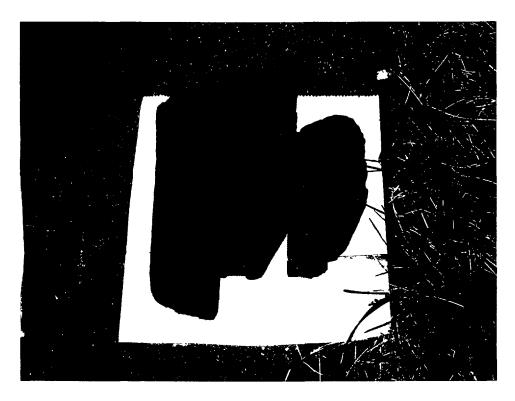
For Test #2, the press was filled slowly over 35 minutes until the pump stalled at 100 psi After press filling, the membrane squeeze was slowly brought up to 210 psi over 65 minutes and then left at that pressure for an additional 40 minutes After the membrane squeeze, the air blow down was run at 40 psi for 10 minutes

Two samples were field analyzed and one sample was submitted for laboratory analyses The field analyses indicated percent solids of 53 6 and 52 1 percent The laboratory analysis reported percent solids of 36 5 Table 3 summarizes the field and laboratory analyses

3.3 Pilot Test #3

This test was operated in a similar manner to Test #1 in that the press was filled fairly quickly (15minutes) to the 100 psi pump stall and the membrane squeeze was brought to 210 psi over a relatively short time frame of 15 minutes. Similar to Test #1, the air blow down was operated at 40 psi for 10 minutes. The major difference between this test and Test #1 is that the membrane squeeze was left pressurized for 40 minutes during this test and for only 20 minutes during Test #1

Two samples from this test were field analyzed and one sample was submitted for laboratory analyses. The field analyses indicated percent dry solids of 54 4 and 51 4 percent. For this test, the laboratory analysis had the solids at 34 6 percent. Table 3 summarizes the field and laboratory analyses.


3.4 Pilot Test #4

Test #4 did not utilize the membrane squeeze operation of the pilot press This test was performed to allow a comparison of the filter cake dewatering, with and without the membrane squeeze function

This test was operated by filling the press over 45 minutes and allowing the pump to essentially dead head for an additional 15 minutes During this test, the air blow down was run at 40 psi for 10 minutes

Field analyses of two samples indicated percent solids of 33 0 and 30 5 percent Do to the lower percentage of solids for this test, a sample was not submitted for laboratory analyses

Picture 4 shows filter cake from Test #3 (right) and Test #4 As can be seen in the figure and as field analyzed, the cake from Test #3 is drier and has approximately one-half the volume of the filter cake from Test #4 For Test #3, the filter cake had a measured thickness of 1 3/8 inches while the cake for Test #4 was almost twice as thick at 2 5/8 inches

Picture 4. Sludge Comparison

3.5 Pilot Test #5

For Test #5, the press was filled slowly over 45 minutes until the pump stalled at 100 psi After press filling, the membrane squeeze was slowly brought up to 210 psi over 60 minutes and then left at that pressure for an additional 60 minutes The air blow down was run at 40 psi for 20 minutes

Two samples were field analyzed and one sample was submitted for laboratory analyses The field analyses indicated percent solids of 54 0 and 55 1 percent The laboratory analyzed sample had a percent solids of 40 7 Table 3 summarizes the field and laboratory analyses

3.6 Pilot Test #6

Test #6 was run using similar operational parameters to Test #2, except that fresh feed solids were used The feed solids used for this test were field measured at approximately 2.5 percent less than for Test #2

For this test, the press was filled slowly over 30-35 minutes until the pump stalled at 100 psi The membrane squeeze was slowly brought up to 210 psi over approximately 65 minutes and then left at 210 psi for an additional 40 minutes After the membrane squeeze, the air blow down was run at 40 psi for 10 minutes

Field analysis of two samples resulted in percent solids of 47 3 and 48 2 percent One sample was submitted for laboratory analyses The laboratory analyses determined a percent solids of 35 9 for this sample Table 3 summarizes the field and laboratory analyses

The dry solids percentage from this test was slightly lower than for Test #2, even though both tests were operated in a similar manner The lower percentage of solids from this test may be due to the lower percentage of feed solids or there may have been some solids thickening/consolidation in the steady head tank for Test #2

4.0 LABORATORY ANALYSES

Four test samples were submitted to Energy Laboratories for analyses of percent moisture, density, TCLP RCRA 8 metals, total uranium (dry weight), and total radionuclides consisting of radium-226/228, Thorium 230 As shown on Table 3 0, the moisture content of the samples ranged from 59 3 percent to 65 4 percent Density of the samples ranged from a low of 1 16 grams per cubic centimeter (g/cc) to a high of 1 34 g/cc

TCLP results showed that all the RCRA 8 metals were not detected at an order of magnitude below their respective standards The total dry weight uranium concentrations ranged from 8210 to 9980 milligrams per kilogram Radium 228 was <0.2 picocuries per gram (pCi/g) (dry) and radium 226 ranged from 0.07 to 0.2 pCi/g (dry) Thorium 230 had elevated detection limits due to matrix interferences and for three of the samples was not detected at less than <3.2 pCi/g (dry) One sample had thorium detected at 2.7 pCi/g (dry)

5.0 SUMMARY AND CONCLUSIONS

A total of six filter-press pilot tests were performed from September 19 through 22, 2011 Operational parameters including the fill cycle, membrane squeeze cycle, and blow down cycles were varied during the tests Flocculant addition was not added or needed during pilot testing For all tests, the filter cake released easily and cleanly from the press filter cloth

Four of the six tests were laboratory analyzed for percent moisture and all six tests were analyzed for percent moisture in the field using the Seiko analyzer Test #1 had the lowest fill pressure and shortest duration membrane squeeze resulting in the lowest field measured percent solids of the tests in which the membrane cycle was used Test #4 had the lowest field measured percent solids due to the membrane squeeze cycle not be used The laboratory analyzed percentage solids for Tests #2, 3, 5, and 6 were similar with Test #5 having the driest cake (40 7 percent solids) Test #5 had the longest fill and membrane cycle resulting in the driest cake

Based on the filter press pilot test results, greater than 35 percent dry solids is achievable using a plate and frame filter press with a membrane squeeze component Forty percent or higher dry solids may be achievable depending on the duration of the filling and membrane squeeze cycles

6.0 **REFERENCES**

Advanced Environmental Sciences, Inc, 2010 Conceptual Filter Press Design Prepared for Dawn Mining Company and Newmont USA Limited December 6

Miller Geotechnical Consultants, Inc, 2011 *Residual Management Plan for the Midnite Mine Water Treatment Plant* Revision 7 Prepared for Dawn Mining Company and Newmont USA Limited August 8

United States Environmental Protection Agency, 2010 RE *Conceptual Filter Press Design* (dated December 6, 2010), for Water Treatment Plant at the Midnite Mine Superfund Site December 17

United States Environmental Protection Agency, 2011 RE *Filter Press 90% Design* (submitted January 31, 2011), for Water Treatment Plant at the Midnite Mine Superfund Site March 7

Tables

Plant Discharge (gals)	Sludge Productio n (lbs)	Sludge Rate (lbs/1000 gal)	Sludge Production (cu ft)	Monthly Sludge Production (5 Mon/Yr)	Weekly Sludge Production (4 wks/mon)	Daily Sludge Production (4 Days/Wk)
56,382,268	1,927,571	35	28,044	5,609	1402	351

Table 1.0 Historic Water Treatment Rates and Sludge Production – 2001-2009 Yearly Average

Table 2.0 Pilot Testing Operational Parameters

Test #	st # Fill Cycle			Membrane C	Blow Down Cycle		
	Pressure	Time	Pressure	Time to Pressurize	Time Pressurized	Pressure	Time
1	80	approx 15	200	7	20	40	10
2	100	35	210	65	40	40	10
3	100	15	210	15	40	40	10
4	100	60	NA	NA	NA	40	10
5	100	45	210	60	60	40	20
6	100	30	210	60	40	40	10

Test	Units	Test #2 S200911-1400	Test #3 S210911-1445	Test #5 S220911-0700	Test #6 S220911-1315	
Metals, TCLP Extractable						
Arsenic	mg/l	<0 5	<0 5	<0 5	<0 5	
Barium	mg/l	<10	<10	<10	<10	
Cadmium	mg/l	<0 1	<0 1	<0 1	<0 1	
Chromium	mg/l	<0 5	<0 5	<0 5	<0 5	
Lead	mg/l	<0 5	<0 5	<0 5	<0 5	
Mercury	mg/l	<0 02	<0 02	<0 02	<0 02	
Selenium	mg/l	<0 1	<0 1	<0 1	<0 1	
Silver	mg/l	<0 5	<0 5	<0 5	<0 5	
	Metals, total					
Uranıum, Total	mg/kg dry	8210	9420	9980	9290	
Uranium, Activity	pC1/g dry	5560	6380	6760	6290	
3		Radionuclic	les, total			
Radium 226	pC1/g dry	0 2	01	01	0 07	
Radium 228	pC1/g dry	<0 2	<0 2	<0 2	<0 2	
Thorium 230	pCı/g dry	<3 2	<3 4	27	<2 7	
Physical Parameters						
Solids - Field (Avg)	%	52 9	52 9	54 6	47 8	
Moisture - Lab	%	63 5	65 4	59 3	64 1	
Solids - Calculated (Lab)	%	36 5	34 6	40 7	35 9	
Density	g/cc	1 23	1 16	1 34	1 16	

Table 3.0 Pilot Testing Analytical Results

Appendix A Laboratory Analyses

Helena, MT 877-472-0711 • Billings, MT 800-735-4489 • Casper, WY 888-235-0515 Gillette, WY 866-586-7175 • Rapid City, SD 888-672-1225 • College Station, TX 888-690-2218

ANALYTICAL SUMMARY REPORT

October 27, 2011

Advanced Environmental Sciences Inc 383 W 37th St Ste 104 Loveland, CO 80538 Workorder No C11090941 Quote ID C3649

Project Name Dawn Press

Quote ID C3649 - Midnite Mine Sludge

Energy Laboratories, Inc Casper WY received the following 4 samples for Advanced Environmental Sciences Inc on 9/23/2011 for analysis

Sample ID	Client Sample ID	Collect Date	Receive Date	Matrix	Test
C11090941-001	S 200911-1400	09/20/11 14	00 09/23/11	Solid	Metals by ICP/ICPMS, Total Metals, TCLP Extractable E1109 Density Filterability Percent Moisture Digestion, Total Metals Digestion, Total Metals for Core Samples Radium 226 Radium 228 Thorium, Isotopic Mercury by CVAA, TCLP TCLP Extraction, Non-volatiles
C11090941-002	S 210911-1445	09/21/11 14	45 09/23/11	Solid	Same As Above
C11090941-003	S 220911-0700	09/22/11 7 0	0 09/23/11	Solid	Same As Above
C11090941-004	S 220911-1315	09/22/11 13	15 09/23/11	Solid	Same As Above

The analyses presented in this report were performed at Energy Laboratories, Inc , 2393 Salt Creek Hwy , Casper, WY 82601, unless otherwise noted Any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative

The results as reported relate only to the item(s) submitted for testing All samples are reported on an as received basis unless otherwise indicated

If you have any questions regarding these test results, please call

Report Approved By

	www.energylab.com Analytical Excellance Since 1852	Helena, MT 677-472-0711 • Billings, MT 600-735-4469 • Casper, WY 888-235-0515 Gillette, WY 866-566-7175 • Rapid City, SD 888-672-1225 • College Station, TX 888-690-2218
CLIENT.	Advanced Environmental Sciences Inc	Report Date. 10/27/11
Project	Dawn Press	
Sample Delive	ry Group C11090941	CASE NARRATIVE

TH230 ANALYSIS

USNRC Regulatory Guide 4 14 provides guidance on Minimum Detectable Concentrations (MDC) that should be achieved in samples for this radionuclide The sample-specific MDC for this sample could not be achieved due to significant matrix interferences, restricting the volume of sample to be used in the analysis Please consult with your local regulatory agency prior to using these results for compliance purposes

Prepared by Casper, WY Branch

Client:	Advanced Environmental Sciences Inc
Project:	Dawn Press
Lab ID [.]	C11090941-001
Client Sample ID:	S 200911-1400

 Report Date:
 10/27/11

 Collection Date
 09/20/11 14 00

 DateReceived
 09/23/11

 Matrix:
 Solid

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS							
Filterable	No					SW1311	09/27/11 12 08 / dcj
Moisture	63 5	%		0 1		D2974	09/28/11 10 03 / lbb
PHYSICAL PROPERTIES							
Density	1 23	g/cc		0 010		E1109	10/04/11 11 51 / jes
METALS - TOTAL							
Uranium	8210	mg/kg-dry		05		SW6020	10/05/11 20 08 / smi
Uranium, Activity	5560	pCi/g-dry		03		SW6020	10/05/11 20 08 / sml
METALS - TCLP EXTRACTABLE							
Arsenic	ND	mg/L		05	5	SW6010B	09/29/11 17 03 / cp
Banum	ND	mg/L		10	100	SW6010B	09/29/11 17 03 / cp
Cadmium	ND	mg/L		01	1	SW6010B	09/29/11 17 03 / cp
Chromium	ND	mg/L		05	5	SW6010B	09/29/11 17 03 / cp
Lead	ND	mg/L		05	5	SW6010B	09/29/11 17 03 / cp
Mercury	ND	mg/L		0 02	02	SW7470A	09/28/11 09 23 / rdw
Selenium	ND	mg/L		01	1	SW6010B	09/29/11 17 03 / cp
Silver	ND	mg/L		05	5	SW6010B	09/29/11 17 03 / cp
RADIONUCLIDES - TOTAL							
Radium 226	02	pCı/g-dry				E903 0	10/26/11 17 35 / js
Radium 226 precision (±)	0 03	pCi/g-dry				E903 0	10/26/11 17 35 / js
Radium 226 MDC	0 02	pCi/g-dry				E903 0	10/26/11 17 35 / js
Radium 228	0 03	pCı/g-dry	U			RA-05	10/21/11 16 46 / plj
Radium 228 precision (±)	01	pCi/g-dry				RA-05	10/21/11 16 46 / plj
Radium 228 MDC	02	pCı/g-dry				RA-05	10/21/11 16 46 / plj
Thorium 230	11	pCı/g-dry	U			E908 0	10/24/11 08 41 / dmf
Thorium 230 precision (±)	18	pCi/g-dry				E908 0	10/24/11 08 41 / dmf
Thorium 230 MDC	32	pCi/g-dry				E908 0	10/24/11 08 41 / dmf
- See Case Narrative recording Th230 analysis							

- See Case Narrative regarding Th230 analysis

Report Definitions RL - Analyte reporting limit QCL - Quality control limit MDC - Minimum detectable concentration MCL - Maximum contaminant level

ND - Not detected at the reporting limit

U - Not detected at minimum detectable concentration

Prepared by Casper, WY Branch

Client:	Advanced Environmental Sciences Inc
Project:	Dawn Press
Lab ID.	C11090941-002
Client Sample ID:	S 210911-1445

 Report Date
 10/27/11

 Collection Date
 09/21/11 14 45

 DateReceived
 09/23/11

 Matrix:
 Solid

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS							
Filterable	No					SW1311	09/27/11 12 08 / dcj
Moisture	65 4	%		01		D2974	09/28/11 10 04 / lbb
PHYSICAL PROPERTIES							
Density	1 16	g/cc		0 010		E1109	10/04/11 11 51 / jes
METALS - TOTAL							
Uranium	9420	mg/kg-dry	D	400		SW6010B	10/10/11 19 13 / cp
Uranium, Activity	6380	pCi/g-dry	D	300		SW6010B	10/10/11 19 13 / cp
METALS - TCLP EXTRACTABLE							
Arsenic	ND	mg/L		05	5	SW6010B	09/29/11 17 13 / cp
Barium	ND	mg/L		10	100	SW6010B	09/29/11 17 13 / cp
Cadmium	NÐ	mg/L		01	1	SW6010B	09/29/11 17 13 / cp
Chromium	ND	mg/L		05	5	SW6010B	09/29/11 17 13 / cp
Lead	ND	mg/L		05	5	SW6010B	09/29/11 17 13 / cp
Mercury	ND	mg/L		0 02	02	SW7470A	09/28/11 09 25 / rdw
Selenium	ND	mg/L		01	1	SW6010B	09/29/11 17 13 / cp
Silver	ND	mg/L		05	5	SW6010B	09/29/11 17 13 / cp
RADIONUCLIDES - TOTAL							
Radium 226	01	pCi/g-dry				E903 0	10/26/11 17 35 / js
Radium 226 precision (±)	0 03	pCi/g-dry				E903 0	10/26/11 17 35 / js
Radium 226 MDC	0 02	pCi/g-dry				E903 0	10/26/11 17 35 / js
Radium 228	0 01	pCi/g-dry	U			RA-05	10/21/11 16 46 / plj
Radium 228 precision (±)	01	pCi/g-dry				RA-05	10/21/11 16 46 / plj
Radium 228 MDC	02	pCi/g-dry				RA-05	10/21/11 16 46 / plj
Thorium 230	15	pCi/g-dry	U			E908 0	10/24/11 08 41 / dmf
Thorium 230 precision (±)	20	pCi/g-dry				E908 0	10/24/11 08 41 / dmf
Thorium 230 MDC	34	pCı/g-dry				E908 0	10/24/11 08 41 / dmf
 See Case Narrative regarding Th230 analysis 							

- See Case Narrative regarding Th230 analysis

Report Definitions RL - Analyte reporting limit QCL - Quality control limit MDC - Minimum detectable concentration U - Not detected at minimum detectable concentration MCL - Maximum contaminant level

ND - Not detected at the reporting limit

D - RL increased due to sample matrix

Prepared by Casper, WY Branch

Client:	Advanced Environmental Sciences Inc
Project	Dawn Press
Lab ID	C11090941-003
Client Sample ID:	S 220911-0700

 Report Date
 10/27/11

 Collection Date
 09/22/11 07 00

 DateReceived
 09/23/11

 Matrix:
 Solid

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS							
Filterable	No					SW1311	09/27/11 12 08 / dcj
Moisture	59 3	%		01		D2974	09/28/11 10 04 / lbb
PHYSICAL PROPERTIES							
Density	1 34	g/cc		0 010		E1109	10/04/11 11 51 / jes
METALS - TOTAL							
Uranium	9980	mg/kg-dry	D	400		SW6010B	10/10/11 19 17 / cp
Uranium, Activity	6760	pCi/g-dry	D	300		SW6010B	10/10/11 19 17 / cp
METALS - TCLP EXTRACTABLE							
Arsenic	ND	mg/L		05	5	SW6010B	09/29/11 17 21 / cp
Barium	ND	mg/L		10	100	SW6010B	09/29/11 17 21 / cp
Cadmium	ND	mg/L		01	1	SW6010B	09/29/11 17 21 / cp
Chromium	ND	mg/L		05	5	SW6010B	09/29/11 17 21 / cp
Lead	ND	mg/L		05	5	SW6010B	09/29/11 17 21 / cp
Mercury	ND	mg/L		0 02	02	SW7470A	09/28/11 09 28 / rdw
Selenium	ND	mg/L		01	1	SW6010B	09/29/11 17 21 / cp
Silver	ND	mg/L		05	5	SW6010B	09/29/11 17 21 / cp
RADIONUCLIDES - TOTAL							
Radium 226	01	pCı/g-dry				E903 0	10/26/11 17 35 / js
Radium 226 precision (±)	0 02	pCi/g-dry				E903 0	10/26/11 17 35 / js
Radium 226 MDC	0 02	pCi/g-dry				E903 0	10/26/11 17 35 / js
Radium 228	-0 1	pCı/g-dry	U	1		RA-05	10/21/11 16 46 / plj
Radium 228 precision (±)	0 09	pCı/g-dry				RA-05	10/21/11 16 46 / płj
Radium 228 MDC	02	pCi/g-dry				RA-05	10/21/11 16 46 / plj
Thorium 230	27	pCı/g-dry				E908 0	10/24/11 08 41 / dmf
Thorium 230 precision (±)	22	pCi/g-dry				E908 0	10/24/11 08 41 / dmf
Thorium 230 MDC	24	pCi/g-dry				E908 0	10/24/11 08 41 / dmf
- See Case Narrative regarding Th230 analysis							

- See Case Narrative regarding Th230 analysis

 Report
 RL - Analyte reporting limit

 Definitions
 QCL - Quality control limit

 MDC - Minimum detectable

QCL - Quality control limit MDC - Minimum detectable concentration U - Not detected at minimum detectable concentration MCL - Maximum contaminant level

ND - Not detected at the reporting limit

D - RL increased due to sample matrix

Prepared by Casper, WY Branch

Client.	Advanced Environmental Sciences Inc
Project	Dawn Press
Lab ID [.]	C11090941-004
Client Sample ID:	S 220911-1315

 Report Date
 10/27/11

 Collection Date
 09/22/11 13 15

 DateReceived.
 09/23/11

 Matrix.
 Solid

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS							
Filterable	No					SW1311	09/27/11 12 08 / dcj
Moisture	64 1	%		0 1		D2974	09/28/11 10 05 / lbb
PHYSICAL PROPERTIES							
Density	1 16	g/cc		0 010		E1109	10/04/11 11 51 / jes
METALS - TOTAL							
Uranium	9290	mg/kg-dry	D	400		SW6010B	10/10/11 19 21 / cp
Uranium, Activity	6290	pCi/g-dry	D	300		SW6010B	10/10/11 19 21 / cp
METALS - TCLP EXTRACTABLE							
Arsenic	ND	mg/L		05	5	SW6010B	09/29/11 17 30 / cp
Barium	ND	mg/L		10	100	SW6010B	09/29/11 17 30 / cp
Cadmium	ND	mg/L		01	1	SW6010B	09/29/11 17 30 / cp
Chromium	ND	mg/L		05	5	SW6010B	09/29/11 17 30 / cp
Lead	ND	mg/L		05	5	SW6010B	09/29/11 17 30 / cp
Mercury	ND	mg/L		0 02	02	SW7470A	09/28/11 09 31 / rdw
Selenium	ND	mg/L		01	1	SW6010B	09/29/11 17 30 / cp
Silver	ND	mg/L		05	5	SW6010B	09/29/11 17 30 / cp
RADIONUCLIDES - TOTAL							
Radium 226	0 07	pCi/g-dry				E903 0	10/26/11 17 35 / js
Radium 226 precision (±)	0 02	pCi/g-dry				E903 0	10/26/11 17 35 / js
Radium 226 MDC	0 02	pCi/g-dry				E903 0	10/26/11 17 35 / js
Radium 228	0 07	pCi/g-dry	U			RA-05	10/21/11 16 46 / plj
Radium 228 precision (±)	01	pCi/g-dry				RA-05	10/21/11 16 46 / plj
Radium 228 MDC	02	pCı/g-dry				RA-05	10/21/11 16 46 / plj
Thorium 230	07	pCi/g-dry	U			E908 0	10/24/11 08 41 / dmf
Thorium 230 precision (±)	15	pCi/g-dry				E908 0	10/24/11 08 41 / dmf
Thorium 230 MDC	27	pCi/g-dry				E908 0	10/24/11 08 41 / dmf
- See Case Narrative regarding Th230 analysis							

- See Case Narrative regarding Th230 analysis

Report Definitions RL - Analyte reporting limit QCL - Quality control limit MDC - Minimum detectable concentration U - Not detected at minimum detectable concentration MCL - Maximum contaminant level

ND - Not detected at the reporting limit

D - RL increased due to sample matrix

Helena, MT 877-472-0711 • Billings, MT 800-735-4489 • Casper, WY 888-235-0515 Gillette, WY 866-686-7175 • Rapid City, SD 888-672-1225 • College Station, TX 888-690-2218

QA/QC Summary Report

Prepared by Casper, WY Branch

Client: Advanced Environmental Sciences Inc

Project: Dawn Press

Report Date 10/27/11 Work Order: C11090941

Analyte	Count	Result	Units	RL	%REC	Low Lin	nıt	High Limit	RPD	RPDLimit	Qual
Method E903 0										Bat	ch 31433
Sample ID C11091140-002AMS	Sa	mple Matrix	Spike			Run BE	RTH	IOLD 770-1_	111014A	10/26/	11 14 21
Radium 226		24	pCı/g-dry		108	-	70	130			
Sample ID C11091140-002AMSE) Sa	mple Matrix	Spike Duplicate			Run BE	ERTH	IOLD 770-1_	_111014A	10/26/	/11 1 4 21
Radium 226		23	pCı/g-dry		100	-	70	130	42	26 4	
Sample ID LCS-31433	La	boratory Co	ntrol Sample			Run BE	ERTH	IOLD 770-1_	_111014A	10/26/	/11 17 35
Radium 226		0 33	pCı/g-dry		111	-	70	130			
Sample ID MB-31433	3 Me	ethod Blank				Run BE	ERTH	HOLD 770-1	_111014A	10/26/	/11 17 35
Radium 226		1E-05	pCı/g-dry								U
Radium 226 precision (±)		0 0002	pCı/g-dry								
Radium 226 MDC		0 0003	pCı/g-dry								

Helena, MT 877-472-0711 • Billings, MT 800-735-4489 • Casper, WY 888-235-0515 Gillette, WY 866-566-7175 • Rapid City, SD 888-672-1225 • College Station, TX 888-690-2218

QA/QC Summary Report

Prepared by Casper, WY Branch

Client: Advanced Environmental Sciences Inc

Project: Dawn Press

Report Date: 10/27/11 Work Order C11090941

Analyte	Count	Result	Units	RL	%REC	Low	Limıt	High Limit	RPD	RPDLimit	Qual
Method E908 0										Bate	ch 3143
Sample ID C11090913-067AMS	Sa	mple Matro	< Spike			Run	EGG-	ORTEC_111021A	۱.	10/24/	11 08 41
Thorium 230		12 5	pCı/g-dry		106		70	130			
Sample ID C11090913-067AMSD) Sa	mple Matro	Spike Duplicate			Run	EGG-	ORTEC_111021A	\	10/24/	11 08 41
Thorium 230		14 0	pCi/g-dry		112		70	130	12	45 4	
Sample ID LCS-31433	La	boratory Co	ontrol Sample			Run	EGG-	ORTEC_111021A	ι	10/24/	11 13 41
Thorium 230		1 08	pCi/g-dry		89		70	130			
Sample ID MB-31433	3 Me	thod Blank				Run	EGG-	ORTEC_111021A		10/24/	/11 13 41
Thorium 230		0 0010	pCi/g-dry								U
Thorium 230 precision (±)		0 0008	pCı/g-dry								
Thorium 230 MDC		0 001	pCi/g-dry								

Helena, MT 677-472-0711 • Billings, MT 800-735-4489 • Casper, WY 888-235-0515 Gillette, WY 866-686-7175 • Rapid City, SD 888-672-1225 • College Station, TX 888-690-2218

QA/QC Summary Report

Prepared by Casper, WY Branch

Client	Advanced Environmental Sciences Inc	
--------	-------------------------------------	--

Project: Dawn Press

 Report Date
 10/27/11

 Work Order
 C11090941

•										
Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method RA-05									Bat	ch 31433
Sample ID MB-31433	3 Me	thod Blank				Run G542	M_111014A		10/21/	11 16 46
Radium 228		-0 001	pCı/g-dry							U
Radium 228 precision (±)		0 002	pCı/g-dry							
Radium 228 MDC		0 003	pCi/g-dry							
Sample ID C11090941-002AMS	Sa	mple Matro	< Spike			Run G542	M_111014A		10/21/	11 16 46
Radium 228		17	pCi/g-dry		116	70	130			
Sample ID C11090941-002AMSI) Sa	mple Matro	c Spike Duplicate			Run G542	V_111014A		10/21/	11 16 46
Radium 228		17	pCi/g-dry		115	70	130	10	36 5	
Sample ID LCS-31433	Lat	poratory Co	ontrol Sample			Run G542	M_111014A		10/21/	11 16 46
Radium 228		0 28	pCi/g-dry		99	70	130			

Project: Dawn Press

Helena, MT 877-472-0711 • Billings, MT 800-735-4469 • Casper, WY 888-235-0515 Gillette, WY 866-666-7175 • Rapid City, SD 888-672-1225 • College Station, TX 888-690-2218

QA/QC Summary Report

Prepared by Casper, WY Branch

Client Advanced Environmental Sciences Inc

Report Date 10/27/11 **Work Order** C11090941

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD RPDLimit	Quai
Method	SW6010B								Ba	tch 31340
Sample ID	MB-31340	7 Me	thod Blank				Run ICP2-	C_110928A	09/29	/11 16 14
Arsenic			ND	mg/L	0 007					
Barium			0 04	mg/L	0 001					
Cadmium			ND	mg/L	0 0005					
Chromium			ND	mg/L	0 006					
Lead			ND	mg/L	0 003					
Selenium			0 03	mg/L	0 02					
Silver			ND	mg/L	0 002					
Sample ID	LCS3-31340	7 Lat	poratory Co	ntrol Sample			Run ICP2-	C_110928A	09/29	9/11 16 18
Arsenic			0 49	mg/L	0 50	97	85	115		
Barium			0 55	mg/L	10	103	85	115		
Cadmium			0 25	mg/L	0 10	100	85	115		
Chromium			0 49	mg/L	0 50	98	85	115		
Lead			0 50	mg/L	0 50	100	85	115		
Selenium			0 49	mg/L	0 10	93	85	115		
Silver			0 047	mg/L	0 50	93	85	115		
Sample ID	C11090941-001AMS3	7 Sa	mple Matrix	Snike			Run ICP2-	C_110928A	09/29	9/11 17 07
Arsenic			0 46	mg/L	0 50	91	75	125		
Barium			0 60	mg/L	10	95	75	125		
Cadmium			0 23	mg/L	0 10	91	75	125		
Chromium			0 43	mg/L	0 50	87	75	125		
Lead			0 45	mg/L	0 50	91	75	125		
Selenium			0 45	mg/L	0 10	87	75	125		
Silver			0 044	mg/L	0 50	89	75	125		
Sample (D	C11090941-002AMS3	3 7 Sa	mple Matrix	Spike			Run ICP2-	C_110928A	09/29	9/11 17 17
Arsenic			0 46	mg/L	0 50	92	75	125		
Barium			0 62	mg/L	10	99	75	125		
Cadmium			0 24	mg/L	0 10	94	75	125		
Chromium			0 45	mg/L	0 50	89	75	125		
Lead			0 47	mg/L	0 50	93	75	125		
Selenium			0 47	mg/L	0 10	90	75	125		
Silver			0 046	mg/L	0 50	92		125		
Sample ID	C11090941-003AMS3	3 7 Sa	mple Matrix	Spike			Run ICP2-	C_110928A	09/29	9/11 17 25
Arsenic			0 45	mg/L	0 50	90	75	125		
Banum			0 60	mg/L	10	99	75	125		
Cadmium			0 23	mg/L	0 10	92		125		
Chromium			0 44	mg/L	0 50	88	75	125		
Lead			0 46	mg/L	0 50	91	75	125		
Selenium			0 46	mg/L	0 10	92		125		
Silver			0 045	mg/L	0 50	91	75	125		
Sample ID	C11090941-004AMS3	3 7 Sa	mple Matrix	Spike			Run ICP2-	C_110928A	09/2	9/11 17 34
		Ja	mpie matrix	opino	0 50	95		125	50/E	

Qualifiers:

RL - Analyte reporting limit

MDC - Minimum detectable concentration

ND - Not detected at the reporting limit

Helena, MT 877-472-0711 • Billings, MT 800-735-4489 • Casper, WY 888-235-0515 Gillette, WY 866-666-7175 • Rapid City, SD 888-672-1225 • College Station, TX 888-690-2218

QA/QC Summary Report

Prepared by Casper, WY Branch

Client: Advanced Environmental Sciences Inc

Project Dawn Press

Report Date: 10/27/11 **Work Order** C11090941

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method	SW6010B									Bat	ch 31340
Sample ID	C11090941-004AMS3	3 7 Sa	mple Matri	k Spike			Run ICP2-	C_110928A		09/29/	/11 17 34
Barium			0 63	mg/L	10	102	75	125			
Cadmium			0 24	mg/L	0 10	96	75	125			
Chromium			0 46	mg/L	0 50	93	75	125			
Lead			0 48	mg/L	0 50	95	75	125			
Selenium			0 49	mg/L	0 10	93	75	125			
Silver			0 047	mg/L	0 50	93	75	125			
Method	SW6010B						· · · · · · · · · · · · · · · · · · ·			Bat	ch 31377
Sample ID	MB-31377	Me	thod Blank				Run ICP2-	C_111010A		10/10	/11 18 25
Uranium			ND	mg/kg-dry	40						
Sample ID	LCS3-31377	La	boratory Co	ontrol Sample			Run ICP2-	C_111010A		10/10	/11 18 29
Uranium			89 8	mg/kg-dry	86	90	58 2	177			
Sample ID	C11090941-004AMS	3 Sa	mple Matri	x Spike			Run ICP2-	C_111010A		10/10	/11 19 25
Uranium			10100	mg/kg-dry	410		75	125			Α
Sample ID	C11090941-004AMSI	D Sa	mple Matri	x Spike Duplicate			Run ICP2-	C_111010A		10/10	/11 19 29
Uranium			10100	mg/kg-dry	410		75	125	03	20	Α

Qualifiers:

RL - Analyte reporting limit

ND - Not detected at the reporting limit

A - The analyte level was greater than four times the spike level in accordance with the method % recovery is not calculated MDC - Minimum detectable concentration

Helena, MT 877-472-0711 • Billings, MT 800-735-4489 • Casper, WY 888-235-0515 Gillette, WY 866-686-7175 • Rapid City, SD 888-672-1225 • College Station, TX 888-690-2218

QA/QC Summary Report

Prepared by Casper, WY Branch

Advanced Environmental Sciences Inc Report Date: 10/27/11 **Client:** Project: Dawn Press Work Order C11090941 Analyte Count Result RL %REC Low Limit High Limit RPD RPDLimit Qual Units Batch 31377 Method SW6020 Sample ID MB-31377 Method Blank Run ICPMS4-C_111005A 10/05/11 19 00 Uranium ND mg/kg-dry 0 001 Sample ID LCS3-31377 Laboratory Control Sample Run ICPMS4-C_111005A 10/05/11 19 05 Uranium 97.5 mg/kg-dry 0 50 98 58 2 177 Sample ID C11090941-004AMS3 Sample Matrix Spike Run ICPMS4-C_111005A 10/05/11 20 27 Uranium 10300 mg/kg-dry 0 50 75 125 Α Sample ID C11090941-004AMSD Run ICPMS4-C_111005A 10/05/11 20 32 Sample Matrix Spike Duplicate Uranium 20 9480 mg/kg-dry 0 50 75 125 78 Α

RL - Analyte reporting limit

ND - Not detected at the reporting limit

QA/QC Summary Report

Prepared by Casper, WY Branch

Client Advanced Environmental Sciences Inc

Project Dawn Press

Report Date 10/27/11 Work Order: C11090941

•											
Analyte		Count	Result	Units	RL	%REC	Low Limi	t High Limit	RPD	RPDLimit	Qual
Method	SW7470A									Bat	ch 3129
Sample ID	MB-31292	Me	thod Blank				Run CVA	A_C203_110928A	۱	09/28	/11 09 10
Mercury			ND	mg/L	1E-06						
Sample ID	LCS-31292	Lat	boratory Col	ntrol Sample			Run CVA	A_C203_110928A	ι	09/28	/11 09 11
Mercury			0 0051	mg/L	0 020	102	85	5 115			
Sample ID	C11090941-001AMS	Sa	mple Matrix	Spike			Run CVA	A_C203_1109284	۱	09/28	/11 09 24
Mercury			0 0052	mg/L	0 020	103	85	5 115			
Sample ID	C11090941-002AMS	Sa	mple Matrix	Spike			Run CVA	A_C203_1109284	۱	09/28	/11 09 27
Mercury			0 0052	mg/L	0 020	103	85	5 115			
Sample ID	C11090941-003AMS	Sa	mple Matrix	Spike			Run CVA	A_C203_110928A		09/28	/11 09 29
Mercury			0 0052	mg/L	0 020	103	85	5 115			
Sample ID	C11090941-004AMS	Sa	mple Matrix	Spike			Run CVA	A_C203_110928	ι	09/28	/11 09 32
Mercury			0 0053	mg/L	0 020	105	85	5 115			

١

Helena, MT 877-472-0711 • Billings, MT 800-735-4489 • Casper, WY 888-235-0515 Gillette, WY 866-686-7175 • Rapid City, SD 888-672-1225 • College Station, TX 898-690-2218

Workorder Receipt Checklist

Advanced Environmental Sciences Inc

C11090941

Login completed by	Edith McPike		Date F	Received 9/23/2011
Reviewed by	BL2000\cwagner		Rec	eived by kg
Reviewed Date	9/28/2011			Carrier FedEx name
Shipping container/cooler in	good condition?	Yes 🗹	No 🔲	Not Present
Custody seals intact on ship	ping container/cooler?	Yes 🗹	No 🗌	Not Present
Custody seals intact on sam	ple bottles?	Yes	No 📋	Not Present 🗹
Chain of custody present?		Yes 🗹	No 🗌	
Chain of custody signed whe	en relinquished and received?	Yes 🗹	No 🗌	
Chain of custody agrees with	n sample labels?	Yes 🗸	No 🔲	
Samples in proper container	/bottle?	Yes 🗹	No 🗌	
Sample containers intact?		Yes 🗹	No 📋	
Sufficient sample volume for	indicated test?	Yes 🗹	No 🗌	
All samples received within h (Exclude analyses that are c such as pH, DO, Res CI, Su	onsidered field parameters	Yes 🗹	No 🗌	
Container/Temp Blank temp	erature	98°C On Ice		
Water - VOA wals have zero	headspace?	Yes 🗌	No 📋	No VOA vials submitted
Water - pH acceptable upon	receipt?	Yes	No 🗌	Not Applicable

Contact and Corrective Action Comments

None

	ENERGY		Chain c	of Cust	ody and	d Analy	Chain of Custody and Analytical Request Record	est Re	0 U U	rd		Page	/ of	
					PLEASE PI	PLEASE PRINT (Provide a	(Provide as much information as possible.)	rmation as	s pos	sible.)		þ		
	Company Name	e	,		Project Name	, PWS, Permit	, Etc			Sample Orgin		EPA/Stat	EPA/State Compliance	_
	ADVANC	ADVANCED ENVIRONMENTAL SCI	NMENTAL	Sci	DAV	DAWN PRESS				State		Yes 🛛	No 🕅	
	Report Mail Address 383 WE51	port Mail Address 383 WEST 37th STREET, # 1 AVE: AND CD & AF28	REET, # 1 20528		Contact Name TIM BUNNELLS		Phone/Fax F 970-667-4275 B. 970-421-4054	-4275		Email TIM@aesciscom		Sampler Dou 6	Sampler (Please Print) Dou & HAGEN	
	Invoice Address	500			Invoice Contact & Phone	act & Phone				Purchase Order		Quote/Bc	Quote/Bottle Order	1
		9			1/M UUNBELLS	DELLO	C101-111					b	レイト	
	Special Rep	Special Report/Formats			MC	-	analysis requested	<u>I</u> O		Contact	Contact ELI prior to RUSH sample submittal		Shipped by	
					V Of Uer N Of Uer N B O I N B O I		 	Q	(TA	R for char	for charges and scheduling – See		Cooler (D(s)	
			EDD/EDT(Electronic Data)	sctronic Data)	stro) t / 2 W A / S W A /S/slo2 1 /S/slo2 1 /S/slo2 1 /S/slo3 t /S/slo3 t /S			ACHE	L) puno	U Comments	Instruction Page Comments		O 14 / Receipt Temp G O o O	
	Other		J LEVEL IV		Type Wate Wate Mate			′ ⊥ ⊥∨	iewn_				on ice	
					Nur Sample ≜r Mar Mar Mar			/ 33S	T bisbri	<u>د</u>		0	Custody Seal On Botte X N On Cooler Y N	
	SAMPLE II (Name, Loca	SAMPLE IDENTIFICATION (Name, Location, Interval, etc.)	Collection Date	Collection Time	MATRIX				e12	I		<u> </u>		
	5 20091	200911-1400	11 02 60	0041	s			×						
	321091	1	09 21 11	1445	S							7N	700	
			09 22 11	0200	Ś							92	0	
	-1160262	1-1315	09 32 11	1315	λ			→				ISA		
	2													
	9												50	
	~												01-0	
-	æ													
	6												GR	_
Pag	10												1/169.04/1	_
je 15	Custody		Date/Time		LAR 242	D Wasan	Received by (print)	(õ	Date/Time		Signature		
5 of 1	MLIST be	Relinquished by (print).		1			Received by (print)	÷	Da	Date/Time		Signature		1
5	Signed	Sample Disposal	Return to Client		Lab Disposal	X	Received by Laboratory	oratory	5	9/33/11 9.	9.50	Signature Kr S	6:55 c	
			s. samoles subr	mitted to Energ		Inc may be sul	aboratories. Inc. may be subcontracted to other certified laboratories in order to complete the analysis requested	ertified labor	atones	, in order to con	nolete the a	inalvais red	uested	

Ĺ This serves as notice of this possibility All sub-contract data will be clearly notated on your analytical report Visit our web site at <u>www energylab.com</u> for additional information, downloadable fee schedule, forms, and links