CONVERSIONS & FORMULAS

1. **Area Formulas**
 a. 1 square ft. = 144 square inches
 b. 1 square yd. = 9 square ft.
 c. 1 cubic yd. = 27 cubic ft.

 Square or Rectangle Area =
 d. Length x Width = ft² (square feet)
 e. Length x width x height = ft³ (cubic feet)

 Cubic Area =
 f. 0.785 x Diameter² or
 3.14 x Radius² (π x R²) (π = 3.14)

2. **Horsepower (hp) Formulas**
 a. horsepower = 550 foot-pounds/second
 = 33,000 foot-pounds/minute
 = 1,980,000 foot-pounds/hour
 b. Brake Horsepower = Water Horsepower
 Pump Efficiency
 c. Efficiency:
 % Efficiency = \[\frac{\text{out power}}{\text{input power}} \]
 d. Kilowatts (kW) = 0.746 x Motor Horsepower
 e. Motor Horsepower = Brake Horsepower
 Motor Efficiency
 f. Water Horsepower = \(Q \times \text{flow gal/min.} \times H \times \text{Head in ft.} \)
 3960
 g. Wire to Water Efficiency:
 Overall Efficiency = \(\frac{\text{Water Horsepower} \times 100}{\text{Electrical Horsepower}} \)

3. **Treatment Formulas**
 a. Filtration Rate (gpm/ft²) = \(\frac{\text{Flow (gal/min)}}{\text{Surface Area (ft²)}} \)
 b. Percent Strength by Weight = \(\frac{\text{Weight of Solute} \times 100}{\text{Weight of Solution}} \)
 c. Specific Capacity = \(\frac{\text{Flow (gallons per minute)}}{\text{Well Drawdown (feet)}} \)
 d. Surface Loading, GPD/ sq. ft. = \(\frac{\text{Flow (gal/day)}}{\text{Surface Area (sq ft)}} \)
 e. Surface Overflow Rate = \(\frac{\text{gal/day}}{\text{ft²}} \)

4. **Other Formulas**
 a. Chemical Dosage:
 These formulas require to be divided by % of strength.
 Flow—Chemical by weight:
 a. lbs/ day = MGD x mg/L x 8.34
 b. lbs/ day = gal/min x mg/L x 0.012
 b. Circumference:
 a. 3.14 X Diameter (π x Diameter)
 c. 3.14 X Diameter² or
 3.14 X Radius² (π x R²) (π = 3.14)
 c. Concentration:
 d. 1 part per million (ppm) = 1 milligram per liter
 = 0.0584 grains per gallon
 = 8.34 Pounds per MG
 e. 1 pound of weight per million pounds
 f. 1 part per billion = 1 ug/L (microgram/Liter)
 g. 1 part per million = 1 mg/L (milligram/Liter)
 d. Water Horsepower:
 Q (flow gal/min.) x H (Head in ft.)
 3960
 e. CT = Chlorine Concentration (mg/L) x Time (min)
 f. Detention time = \(\frac{\text{Tank Volume (gallons)}}{\text{Flow (gpm or gpd or gph)}} \)
 g. Flows:
 g. 1 gallons per minute = 1,440 gallons/day
 h. 1 cubic foot per second (cfs) = 646,272 gallons/day
 = 448.8 gallons per minute
 i. 1 million gallons per day = 1.55 cubic ft/sec. =
 694.4 gallons per minute
 j. Flow Rate =
 \(Q \times \text{flow ft³/sec.)} \times V \times \text{velocity ft/sec.} \times A \times \text{area ft²} \)
 k. Force = Pressure (psi) x Area (inches²)
 l. Hydraulics:
 2.31 Head Feet = 1 Psi
 0.433 PSI = 1.0 Feet of Head
 m. Per Capita Water Use =
 Water used (gal/day)/ total number of people
 n. Percent = \(\frac{\text{Part}}{\text{Whole}} \times 100 \)
 o. Specific Gravity =
 Solution weight (lbs/gal)
 Weight of Water (8.34 lbs/gal)
5. Common Conversions

Volume and Capacity:

- **a.** 1 cubic ft. = 7.48 gallons
- **b.** 1 cubic yd. = 27 cubic ft.
- **c.** 1 quart = 2 pints = 32 fluid ounces
- **d.** 1 liter = 1000 milliliters = 1.06 quarts = 1000 cubic centimeters
- **e.** 1 gallon (gal) = 8 pints = 231 cubic inches = 3.785 liters = 3,785 milliliters
- **f.** 1 acre foot (ac. ft.) = 43,560 cubic feet = 325,851 gallons

Lengths:

- **m.** 1 foot = 12 inches
- **n.** 1 yd. = 3 ft. = 36 inches
- **o.** 1 mile = 5,280 ft.

Time:

- **h.** 1 minute = 60 seconds
- **i.** 1 hour = 60 minutes = 3600 seconds
- **j.** 1 day = 24 hours = 1,440 minutes = 86,400 seconds
- **k.** 1 week = 7 days
- **l.** 1 yr. = 12 months = 52 weeks = 365 days

Temperature:

- **p.** Degree Fahrenheit = Degree C x 9/5 + 32
- **q.** Degree Centigrade = (Degree F - 32) x 5/9

Weight:

- **r.** 1 pound = 16 ounces = 7000 grains = 453.6 grams = .454 kilograms
- **s.** 1 kilogram = 1,000 gm = 2.205 pounds
- **t.** 1 ton = 2,000 pounds
- **u.** 1 gallon of water = 8.34 pounds
- **v.** 1 cubic ft. of water = 62.4 pounds
- **w.** 1 liter of water = 1 kilogram = 1000 grams
- **x.** 1 milliliter of water = 1 gram
- **y.** Density of water = 1gm/ml or 1gm/cc
- **z.** Specific gravity of water = 1.00
- **aa.** Weight of Solution = Weight of Solute + Weight of Solvent

PIE WHEELS

- To find the quantity above the horizontal line: multiply the pie wedges below the line together.
- To solve for one of the pie wedges below the horizontal line: cover that pie wedge, then divide the remaining pie wedge(s) into the quantity above the horizontal line.