

How many feet of head would

 create a pressure of 130 psi?- Formula: psi $\mathbf{x} 2.31=$ feet of head
- 130 psi x 2.31 ft/psi =
- 300.3 ft

How much would 150 gallons of

 water weigh?- Formula: gal. X 8.34 = lbs. of water
- $\mathbf{1 5 0}$ gal $\times 8.34$ lbs./ gal =
- 1,251 lbs.

Pump runs 18 hours and pumps 120,000 gallons what is gpm pumping rate?

- $\mathbf{1 8}$ hours $\mathbf{x} 60$ min = 1080 minutes
- 120,000 gallons $=$ 1080 min
- 111 gpm

After 18 hrs. registers

What is detention time in minutes of 20 ft diameter tank 16 ft deep with flow of 1.5 MGD?

- $20 \mathrm{ft} \times 20 \mathrm{ft} \times 0.785=314 \mathrm{ft}^{2}$
- $314 \mathrm{ft}^{2} \times 16 \mathrm{ft}=5,024 \mathrm{ft}^{3}$
- 5,024 ft ${ }^{3} \times 7.48 \mathrm{gal} / \mathrm{ft}^{3}=37,579.5 \mathrm{gal}$
$\cdot 37,580 \mathrm{gal}=.025$ days $\times 1440 \mathrm{~min}=$ 1,500,000gal/day

How much force on 6" blind flange with 65 psi?

- 6" x 6" x $0.785=28.26$ in 2
- 28.26 in $^{2} \times 65$ psi =
- 1,836.9 pounds

City spends $\$ 166,000$. per year and sells 750 MG, what is cost per $\mathbf{1 , 0 0 0}$ gallons?

- 750 MG $\times \mathbf{1 , 0 0 0}, 000=750,000,000$ gallons
- 750,000,000 $=750,000$ gallons

1,000

- $\$ 166,000=$

750,000

- 0.22 cents per 1,000 gallons

How many gallons of water in an 18 inch pipe that is $\mathbf{5 , 5 0 0} \mathrm{ft}$ long?

- 18 in $=1.5 \mathrm{ft} \times 1.5 \mathrm{ft} \times 0.785=1.766 \mathrm{ft}^{2}$ 12 in
- $1.766 \mathrm{ft}^{2} \times 5,500 \mathrm{ft}=9,714 \mathrm{ft}^{3}$
- 9,714 ft ${ }^{3} \times 7.48 \mathrm{gal} / \mathrm{ft}^{3}=$
- 72,663 gallons

What would be the maximum pumping rate of a 30 hp pump with 100 ft of head?

- 100 ft of head x ? gpm = 30 hp 3960
- gpm $=3960 \times \mathrm{hp}$ feet of head
- $3960 \times 30 \mathrm{hp}=118,800=$ 100 feet of head 100 feet of head
- 1188 gpm

How many gallons in an 80 ft diameter tank filled 20 ft?

- 80 ft x 80 ft $\times 0.785=5,024 \mathrm{ft}^{2}$
- 5,024 $\mathrm{ft}^{2} \times 20 \mathrm{ft}=100,480 \mathrm{ft}^{\mathbf{3}}$
- $100,480 \mathrm{ft}^{3} \times 7.48 \mathrm{gal} / \mathrm{ft}^{3}=$
- 751,590 gallons

How long will a 10,000 gallon tank flow at $\mathbf{2 5 0}$ gpm?

- $10,000 \mathrm{gal}=$ 250 gal/min
- 40 min

How many gallons in a rectangular tank $5 \mathrm{ft} \times 8 \mathrm{ft} \times 5 \mathrm{ft}$?

- 5 ft $\times 8 \mathrm{ft} \times 5 \mathrm{ft}=\mathbf{2 0 0} \mathrm{ft}^{\mathbf{3}}$
- $200 \mathrm{ft}^{3} \times 7.48 \mathrm{gal} / \mathrm{ft}^{3}=$
- 1,496 gallons

How many hours would it take to fill a 90 ft dia. tank 40 feet high pumping 2,400 gpm?

- $90 \mathrm{ft} \times 90 \mathrm{ft} \times 0.785=6,358.5 \mathrm{ft}^{2}$
- $6,358.5 \mathrm{ft}^{2} \times 40 \mathrm{ft}=\mathbf{2 5 4 , 3 4 0} \mathrm{ft} 3$
- 254,340 $\mathrm{ft}^{3} \times 7.48 \mathrm{gal} / \mathrm{ft}^{3}=1,902,460 \mathrm{gal}$.
- $1,902,460$ gal. $=792.7 \mathrm{~min} .792 .7 \mathrm{~min} .=$
$2,400 \mathrm{gal} / \mathrm{min}$
60 min . $/ \mathrm{hr}$.
- $13.21 \mathrm{hrs} .0 .21 \mathrm{~min} \times 60 \mathrm{~min}=\mathbf{1 2 . 6} \mathbf{~ m i n}$.
- 13 hrs . and 13 min .

How many 18 ft long sections of ductile iron pipe will be needed for 150 ft of line?

- $150 \mathrm{ft}=8.33$ pieces $18 \mathrm{ft} /$ piece
- 9 pieces

How many pounds of 65% HTH would be needed to dose 300,000 gal. at $\mathbf{2 5 0} \mathbf{~ m g / L ?}$

- $300,000 \mathrm{gal}_{\mathbf{~}}=0.3 \mathrm{MG}$ 1,000,000
- $0.3 \times 250 \mathrm{mg} / \mathrm{L} \times 8.34$ =625.5 lbs.
- 625.5 lbs. $=$ 65\%
- 962 lbs.

? Ibs. of to chlorinate at $250 \mathrm{mg} / \mathrm{L}$

What would be the cost per day to chlorinate 4 MG at $1.5 \mathrm{mg} / \mathrm{L}$ if chlorine cost 20 cents per pound?

- 4 MGD $\times 1.5 \mathrm{mg} / \mathrm{L} \times 8.34=50.04 \mathrm{lbs}$
- $\mathbf{5 0 . 0 4}$ lbs. x $\mathbf{\$ 0 . 2 0}$ per lbs. =

What would the psi at an outlet at elevation of 4,195 ft if the water level in the tank above is 4,332 ft?

- 4,332 ft - 4,195 ft = 137 ft
- $137 \mathrm{ft}=$ 2.31 ft/psi.
- 59 psi.

4,332 ft elevation

What would be the gpm average of the following 4 wells that flow at a rate of 250 gpm, 130 gpm, 320 gpm and 165 gpm?

- $\mathbf{2 5 0}$ gpm + 130 gpm + $\mathbf{3 2 0}$ gpm + 165 gpm =
- 865 gpm
- $865 \mathrm{gpm}=$ 4 wells
- 216.25 gpm

A leak of 1 pint every 1.5 min. would leak how many gallons in $\mathbf{3 0}$ days?

- 1 pint $=.667$ pints/minute 1.5 minutes
- . 667 pints/min $\times 1440 \mathrm{~min} /$ day $=960.48$ pints/day
- 30 days $\mathbf{x} 960.48$ pints/day $=28814.4$ pints
- 28814.4 pints $=$ 8 pints/gallon
- 3,602 gallons

How many lbs. of 65\% HTH would be needed to disinfect 50,000 gal. at 10 mg / L ?

- 50,000 gal. $=0.05 \mathrm{MG} \times 10 \mathrm{mg} / \mathrm{L} \times 8.34=4.17 \mathrm{lbs}$. 1,000,000
- 4.17 lbs. $=$ 0.65
- 6.4 lbs.

What is the gpm flow of the following meter readings taken three days apart?
First reading 59,364,810 gal. Three days later 59,598,590 gal.

- 59,598,590 gal. $-59,364,810$ gal $=\underline{233,780}$ gal
- 233,780 gal $=233,780 \mathrm{gal} .=$ $1,440 \mathrm{~min} /$ day $\times 3$ days $4,320 \mathrm{~min}$.
- 54.1 gpm

How many gallons will a 40' high tank with a circumference of 283' hold when it is full?

- $\underline{283 \mathrm{ft}}=\mathbf{9 0} \mathrm{ft}$ dia.
3.14
- $90 \mathrm{ft} \times 90 \mathrm{ft} \times 0.785=6,358.5 \mathrm{ft}^{2}$
- $6,358.5 \mathrm{ft}^{2} \times 40 \mathrm{ft}=\mathbf{2 5 4 , 3 4 0} \mathrm{ft}^{3}$
- $254,340 \mathrm{ft}^{3} \times 7.48 \mathrm{gal} / \mathrm{ft}^{3}=\quad$ Circumference 283 tt
- 1,902,463 gallons

What is the maximum gpm pumping rate of a 400 HP pump with 450 ft of head?

- $H P=\mathrm{ft}$ of head $x \mathrm{gpm}$

3,960

- $400 \mathrm{HP}=\underline{450 \mathrm{ft} \times} \mathbf{~ ? ~ g p m}$ 3,960
- $400 \mathrm{HP} \times 3,960=$ 450 ft of head
- 3,520 gpm

If a pump runs for 24 hours and delivers 180,000 gallons, what is the gpm flow rate?

- 24 hours $=1,440$ minutes
- 180,000 gallons $=$ 1,440 minutes
- 125 gpm

What is the per capita production in gallons per day for a system that produces $\mathbf{3 , 0 0 0} \mathbf{~ g p m}$ for a population of 22,000?

- 3,000 gpm x 1,440 min/day = 4,320,000 gpd
- 4,320,000 gpd $=$? gallons per day 22,000 people
- 196 gpd per capita

22,000 people

What would be the chlorine dosage if $\mathbf{1 0 0} \mathbf{~ l b s}$. of $\mathbf{6 5 \%}$ HTH was put in a 283 ft circumference tank that had 32 ft of water?

- $\frac{283 \mathrm{ft}}{3.14}=90 \mathrm{ft} \times 90 \mathrm{ft} \times 0.785=6,358.5 \mathrm{ft}^{2}$
- $6,358.5 \mathrm{ft}^{2} \times 32 \mathrm{ft}=203,472 \mathrm{ft}^{3}$
- 203,472 $\mathrm{ft}^{3} \times 7.48 \mathrm{gal} / \mathrm{ft}^{3}=\mathbf{1 , 5 2 2 , 0 0 0}$ gal. \quad Circumference $=283$
- $1,522,000$ gallons $=1.52 \mathrm{MG}$

1,000,000

- 1.52 MGx ? mg/ x $8.34=100 \mathrm{lbs}$.
- $? \mathrm{mg} / \mathrm{l}=\frac{100 \mathrm{lbs} .}{1.52 \mathrm{MG} \times 8.34}=\frac{100 \mathrm{lbs} .}{12.68}=$
- $7.89 \mathrm{mg} / \mathrm{l} \times 0.65=$
- $5.13 \mathrm{mg} / \mathrm{l}$

What is the total head loss in feet of 5,700 ft. of 16 in. pipe with a flow of $2,400 \mathrm{gpm}$ if the head loss is calculated at $\mathbf{0 . 3 1}$ psi per 100 ft .?

- $5,700 \mathrm{ft}=.57 \times 0.31 \mathrm{psi}=$ 100 ft .
- 17.67 ft x $.433=$
- 7.6 psi

If a chlorine residual is 1.2 at the chlorinator and 0.5 in the distribution system, what is the chlorine demand?

- $1.2 \mathrm{mg} / \mathrm{I}$ - $0.5 \mathrm{mg} / \mathrm{I}=$
- $0.7 \mathrm{mg} / \mathrm{l}$ chlorine demand

What is the velocity of the water in fps of an 8 inch pipeline with a flow of 520 gpm?

- $Q=A \times V \quad Q=520$ gpm $A=8$ inch pipe
- $520 \mathrm{gpm}=1.16 \mathrm{cfs}$ 448.8 gpm/cfs
- 8 in $=0.67 \times 0.67 \times 0.785=0.352 \mathrm{ft}^{2}$ 12 in
- $1.16 \mathrm{ft}^{3} / \mathrm{sec}=$ $0.352 \mathrm{ft}^{2}$
- 3.3 fps velocity

8" pipe

If the cut stake for a fire hydrant is marked AC-4.25@ and the hydrant is 7 ft . 6 in. tall, how high will the top be above the finished grade?

- $6^{\prime \prime}=0.5 \mathrm{ft}$

12 in/ft

- 7.5 ft . $4.25 \mathrm{ft} .=$
- 3.25 ft .

How many gal. of 5% sodium hypochlorite will be needed to disinfect a 12 in . diameter well that is 280 ft . deep with a static water level of 130 ft . to a dosage of $\mathbf{5 0 ~ \mathbf { m g } / \mathrm { l }}$?

NEXT SLIDE

CONTINUED

How many gal. of 5\% sodium hypochlorite will be needed to disinfect a 12 in. well that is 280 ft. deep with a static water level of 130 ft to a dosage of $50 \mathrm{mg} / \mathrm{l}$?

- 280 ft - $130 \mathrm{ft} .=150 \mathrm{ft}$.
- $\frac{12^{\prime \prime}}{12^{\prime \prime}}=1 \mathrm{ft} . \times 1 \mathrm{ft} . \times 0.785=0.785 \mathrm{ft}^{2}$
- $0.785 \mathrm{ft}^{2} \times 150 \mathrm{ft} .=117.75 \mathrm{ft}^{3}$
- $117.75 \mathrm{ft}^{3} \times 7.48 \mathrm{gal} / \mathrm{ft}^{3}=881 \mathrm{gal}$.
- 881 gal. 1,000,000 gal/MGD
- $\frac{0.417 \text { lbs. }}{0.05}=$
0.05
- 8.34 lbs. or 1 gallon

What depth of water would create a force of 105 psi.?

- 105 psi. $\mathbf{x} 2.31$ ft/psi =
- 242.5 feet

What is the pumping rate of a 400 HP pump with $\mathbf{6 0 0}$ feet of head?

- HP = ft of head $x \mathrm{gpm}$

3,960

- $400 \mathrm{HP}=\underline{600 \mathrm{ft} x}$? $\mathbf{~ g p m}$

3,960

- $400 \mathrm{HP} \times 3,960=$ 600 ft of head
- 2,640 gpm

How many pounds of gas chlorine would be needed to dose $1.5 \mathrm{mg} / \mathrm{I}$ to a 4.25 mile section of 24 in. pipeline flowing at 2.1 cfs?

- $2.1 \mathrm{cfs}=1.35 \mathrm{MGD}$ 1.55 cfs/MGD
- 1.35 MGD x 1.5 mg/I x 8.34 =
- 16.9 lbs.

24 inch pipe 2.1 cfs

What is the contact time for a 10 hour period of a basin being dosed at $0.2 \mathrm{mg} / \mathrm{L}$?

- CT = Chlorine concentration x Time in min.
- $\mathbf{1 0} \mathbf{~ h r}$. x 60 min . $=600 \mathrm{~min}$.
- $0.2 \mathrm{mg} / \mathrm{L} \times 600 \mathrm{~min} .=$
- 120 CT units

This year your maintenance crew has been given a work order to paint the $\mathbf{2 . 5}$ million gallon reservoir. You need to figure how much paint it will require to paint the reservoir inside and out. The reservoir is 146^{\prime} in diameter and 20 ' high. A gallon of paint will cover $\mathbf{1 5 0}$ square feet.

Two pumps are running with an output of $\mathbf{2 5 0 0} \mathbf{~ g p m}$. The pressure gauges read 89 psi on the discharge pipe and the distance between the gauges and the water level in the tank is 144 ft . What is the head loss due to friction?

- GPM has nothing to do with figuring the answer.
- Convert 144 ft to psi $144 \times .433=62.35$ psi
- 89 psi - 62.35 psi =
- 26.65 psi of head loss

- Formula: Paint required= total area in square feet divided by coverage, sq. ft. per gallon.
- Top \& bottom: 146 ' $\times 146^{\prime} \times .785 \times 3$ sides $=$
- Top \& bottom: 50,199 ft²
- Sides $=$ pi (π) or 3.14×146 dia. $\times 20^{\prime} \times 2$ sides
- Sides $=18,338 \mathrm{ft}^{2}$
- $50,199 \mathrm{ft}^{2}+18,338 \mathrm{ft}^{2}=68,537 \mathrm{ft}^{2}$
- $68,537 \mathrm{ft}^{2}=$ 150 gal./ ft ${ }^{2}$
- 457 gallons of paint

Disinfecting the Reservoir

- After painting the reservoir you need to disinfect it per AWWA standards.
- Rules say to use AWWA standard C652-92
- One method states you must maintain 50 mg / L residual for 6 hours
- You are using HTH calcium hypochlorite at 65\% strength

- Formula: lbs. per day= MGD x $8.34 \times \mathrm{ppm}$
- Known $50 \mathrm{mg} / \mathrm{L}$ and 2.5 MGD
- 2.5 MGD x $8.34 \mathrm{lbs} . / \mathrm{gal} \times 50 \mathrm{mg} / \mathrm{L}=$
- 1043 lbs .
- 1043 lbs./.65\% =
- 1605 lbs. of HTH

