Advanced Math

Rural Water Association of Utah
Pre-certification Training

Formulas

- 1. Dosage: mg/L x MGD x $8.34=1$ bs. per day
- 2. Square Area $=$ Length x Width
- 3. $\mathrm{CT}=$ Chlorine in $\mathrm{mg} / \mathrm{L} x$ time in minutes.
- 4. Circular Area $=$ pi or 3.14 x radius 2 or diameter ${ }^{2}$ x .785
- 5. Circumference $=3.14 \mathrm{x}$ diameter
- 6. Cylinder Volume = Area x Height

Formulas

- 11. Force $=$ Pressure (psi) \mathbf{x} Area $\left(\right.$ in $\left.^{2}\right)$
- 12. Detention Time: Tank Volume (gallons)

Flow (gpm or gpd or gpd)

- 13. Filtration rate $\left(\mathbf{g p m} / \mathbf{f t}^{2}\right)=\underline{\text { Flow }(\mathbf{g p m})}$ Surface Area ($\mathbf{f t}^{2}$)
- 14. Surface Overflow = gpd (flow)

Tank surface area (ft^{2})

Formulas

- 15. Specific Capacity $=$ Flow (gpm)

Drawdown (ft)

- $16 . \%$ strength by weight $=$ weight of solute $\times 100$
weight of solution
- 17. HP = feet of head x flow (gpm)

3960

MGD Conversion

- To convert MGD into Cubic Feet per Second (cfs) multiply by 1.55 . To convert Gallons per Minute (gpm) multiply by 694.4.
- Multiply 120 MGD by 1.55 and you will get with 186 cfs.
- Multiply 120 MGD by 694.4 and you will get $\mathbf{8 3 , 3 2 8} \mathbf{g p m}$.
- To check yourself, the cfs or gpm will always be higher than the MGD.

Gallon per Minute (gpm) to Cubic Feet per Second (cfs) Conversion

- $7.48 \mathrm{gal} / \mathrm{ft}^{3} \times 60 \mathrm{sec} . / \mathrm{min}=448.8 \frac{\mathrm{gpm}}{c f s}$
- So, $448.8 \frac{g p m}{c f s}$ is the conversion factor
- Example: 2,500 gpm divided by $448.8=$ 5.6 cfs
- $5.6 \mathrm{cfs} \underline{\text { multiplied }}$ by $448.8 \frac{\mathrm{gpm}}{c f s}=2,500 \mathrm{gpm}$

PSI to Feet Conversion

- $\frac{2.31 \text { feet of head }}{1 \mathrm{psi}}$ is the conversion factor
- psi x $2.31=$ feet of head
- Feet of head/2.31 = psi
- psi needs to be a little less than half of the feet of head. Example: If you have a reservoir that has 30 feet of water in it, how much pressure is reading on the pressure gauge?
- $30 \mathrm{ft} / 2.31=12.99 \mathrm{psi}$

Problem Solving Rules

- Work from left to right
- Do all the multiplication and division above the line (in the numerator) and below the line (in the denominator); then do the addition and subtraction below the line.
- Perform the division (divide the numerator by the denominator)
- If problem has parentheses, do all the arithmetic inside the parentheses. Use the same order as above sentences.

1. This year your maintenance crew has been given a work order to paint the $\mathbf{2 . 5}$ million gallon reservoir. You need to figure how much paint it will require to paint the reservoir inside and out. The reservoir is $\mathbf{1 4 6} \mathrm{ft}$ in diameter and 20 ft high. A gallon of paint will cover 150 square feet $\left(\mathbf{f t}^{2}\right)$.

- Formula: Paint required= total area in square feet divided by coverage, in ft^{2} per gallon.
- Top \& bottom: $\mathbf{1 4 6}^{\prime} \times 146^{\prime} \times 0.785 \times 3$ sides $=$
- Top \& bottom: $\mathbf{5 0 , 1 9 9} \mathbf{f t}^{\mathbf{2}}$
- Sides $=$ pi (π) or $3.14 \times 146^{\prime}$ dia. $\times 20^{\prime} \times 2$ sides
- Sides $=18,338 \mathbf{f t}^{2}$
- $\mathbf{5 0 , 1 9 9} \mathrm{ft}^{\mathbf{2}}+\mathbf{1 8 , 3 3 8} \mathrm{ft}^{\mathbf{2}}=\mathbf{6 8 , 5 3 7} \mathrm{ft}^{2}$
- $\frac{68,537 \mathrm{ft}^{2}}{150 \mathrm{gal} / \mathrm{ft}^{2}}=457$ gallons of paint

2. How much force in tons is on an $8^{\prime \prime}$ valve with 75 psi on one side?

- $8^{\prime \prime} \times 8^{\prime \prime} \times 0.785=50.24$ in 2
- 50.24 in 2 x $75 \mathrm{psi}=\mathbf{3 , 7 6 8}$ lbs.
- $\frac{3,768 \mathrm{lbs}}{2.000 \mathrm{lbs} / \mathrm{ton}}=1.88 \mathrm{tons}$

3. What is $\mathbf{7 0}^{\circ}$ Fahrenheit converted to Celsius?

- Formula:
- Add 40
- Multiply by $5 / 9$
- Subtract $40=C^{\circ}$
- $\mathbf{7 0}+\mathbf{4 0}=110$
- $110 \times 5 / 9=61$
- $61-40=21^{\circ} \mathrm{C}$

3b. What is 21° Celcius converted to Fahrenheit?

- Formula:
- Add 40
- Multiply by $9 / 5$
- Subtract $40=$ deg. F
- $21+40=61$
- $61 \times 9 / 5=110$
- $110-40=70$ deg. F.

4. What is the GPM flow of a 2^{\prime} by 3^{\prime} open channel with a velocity of $1 \mathbf{f p s}$?

- $\mathbf{Q}(\mathbf{c f s})=\mathbf{V}(\mathbf{f p s}) \times \mathbf{A}\left(\mathbf{f t}^{2}\right)$
- $\mathrm{A}=2^{\prime} \times 3^{\prime}$
- $\mathrm{Q}=\mathbf{6} \mathrm{ft}^{2} \times 1 \mathrm{ft} / \mathrm{sec}=\mathbf{6} \mathrm{ft}^{3} / \mathrm{sec}$
- $6 \mathrm{ft}^{3} / \mathrm{sec} \times 448.8 \mathrm{gal} / \mathrm{min} / \mathrm{ft}^{3}=2,693 \mathrm{GPM}$

7. A pump station is located at an elevation of 4,678 feet. The pump is pumping into a 2 MG tank that is 40 feet high. The tank is located at a base elevation of 4,813 feet at a flow of 3.8 cfs ,
how much will it cost for electricity to run the pump for 18
hours a day for 6 months if power costs $\$ 0.47$ per kilowatt hour? Assume 100% efficiency of the pump \& motor.

- Water $\mathrm{Hp}=\frac{\mathrm{O}(\mathrm{gpm}) \times \mathrm{Head} \mathrm{ft} .}{3960}=$
- $\frac{(\mathbf{4 8 1 3 - 4 6 7 8}+\mathbf{4 0})(\mathbf{3 . 8 \times 4 4 8 . 8})}{3960}=\frac{\mathbf{2 9 8 4 5 2}}{\mathbf{3 9 6 0}}=\mathbf{7 5 . 4} \mathrm{hp} \quad 2 \mathrm{MG}$
- $75.4 \times 0.746=56 \mathrm{~kW}$
- $56 \mathrm{~kW} \times 182.5 \times 18=183,960 \mathrm{~kW}$ hours
- $183,960 \times \$ 0.47=$
- \$86,461.20

8. If two $\mathbf{1 , 5 0 0} \mathrm{gpm}$ pumps are pumping with a discharge pressure gauge indicating 115 psi and the elevation difference between the pumps and the water in the tank is 310 feet, what is the head loss due to friction in psi?

- $\underline{310}{ }^{\prime}=134$ psi 2.31
- 153 psi - 134 psi =
- 19 psi Head Loss
$1,500 \mathrm{gpm}$ each

10. What is the GPM flow rate of a 18 " pipe with a velocity of 3.6 fps ?

- $\mathrm{Q}=\mathrm{Ax} \mathrm{V} \quad \mathrm{V}=3.6 \mathrm{fps} \mathrm{A}=18$ inch pipe $\mathrm{Q}=$?
- $A=\frac{18 "}{12 "}=1.5^{\prime}$
- $1.5 \times 1.5 \times .785=1.766 \mathrm{ft}^{2}$
- $1.766 \mathrm{ft}^{2} \times 3.6 \mathrm{fps}=6.36 \mathrm{cfs}$
- 6.36 cfs x 448.8 gal/cfs = 2854 GPM
$16 "$
pipe
pipe

11. What is the velocity of the water in fps of an 18 inch pipe flowing at 4.2 MGD?

- $\mathrm{V}=\underline{\mathrm{Q}} \mathrm{Q}=4.2 \mathrm{MGD} \mathrm{A}=18$ inch pipe
- $4,200,000 \mathrm{gal} / \mathrm{day}=2917 \mathrm{gal} / \mathrm{min}=6.5 \mathrm{cfs}$
$1440 \mathrm{~min} /$ day $\quad 448.8 \mathrm{gal} / \mathrm{cfs}$
- or $\frac{4.2 \mathrm{MGD}=6.5 \mathrm{cfs}}{6 \mathrm{c}}$

$$
.64627
$$

- $\underline{18}=1.5 \times 1.5 \times 0.785=1.8 \mathrm{ft}^{2}$

12

- $6.5 \mathrm{ft}^{3} / \mathrm{sec}=$
$1.8 \mathrm{ft}^{2}$
- 3.6 fps velocity

18 " pipe

Velocity = ? feet per second
12. What is the percent of "unaccounted for" water in a system if the pump delivers 450,000 gallons in a month and the customer meter reads
$53,680 \mathrm{ft}^{3}$?

- 450,000 gal $=\mathbf{6 0 , 1 6 0} \mathrm{ft}^{3}$ $7.48 \mathrm{gal} / \mathrm{ft}^{3}$
- $\underline{53,680} \mathrm{ft}^{3}=.89$ $\mathbf{6 0 , 1 6 0} \mathrm{ft}^{3}$
- $1.00-.89=11 \%$

13. If a pumping station produces $4,200 \mathrm{gpm}$ with 520 ft . of head and has efficiencies of 87% on the motor and 79% on the pump, what would be the average monthly power cost if the pump ran 10 hours per day and power costs $\$ 0.19$ per kilowatt hour?

- Water $\mathbf{H p}=\underline{\mathbf{Q}(\mathrm{gpm}) \times \text { Head ft. }=}$
- $\underline{4,200 \mathrm{gpm} \times 520} \mathbf{~ h d . f t . ~}=552 \mathrm{Whp}$
- Bhp $=\frac{\text { Water Horsepower }}{\text { Pur efficiency }}$ Pump efficiency
- $552 / 0.79=699$ Bhp
- $\mathbf{M h p}=\underline{\text { Brake Horsepower }}$ Motor efficiency
- $699 / 0.87=803$ Mhp
- $\mathbf{k W}=\mathbf{0 . 7 4 6} \mathbf{x}$ Motor horsepower
- 803 Mhp x $0.746=599 \mathrm{~kW}$
- $\mathbf{1 0}$ hours/day $\mathbf{x} 30$ days $=\mathbf{3 0 0}$ hours
- $599 \mathrm{~kW} \mathbf{x} 300$ hours $=\mathbf{1 7 9 , 7 0 0} \mathbf{k W}$ hours $\mathbf{x} \$ \mathbf{0 . 1 9}=\quad 4,200 \mathrm{gpm}$
- $\$ 34,143$

14. What would be the maximum pumping rate in cfs of a 30 hp pump with $\mathbf{1 4 5}^{\prime}$ of head?

- 145 ft of head x ? gpm $=30 \mathrm{hp}$
- $\mathrm{gpm}=\frac{3960 \times \mathrm{hp}}{\text { feet of head }}$
- $3960 \times 30 \mathrm{hp}=\frac{118,800}{145}=819.3 \mathrm{gpm}$ 145 ft of head 145 ft of head
- $\underline{819.3}=$ 448.8
- 1.8 cfs

30
$h p$
16. What would be the gpm flow of an 8 inch water pipe to achieve a velocity of 2.5 fps ?

- $\mathrm{Q}=\mathrm{AxV} \quad \mathrm{V}=2.5 \mathrm{fps} \mathrm{A}=\mathbf{8}$ inch pipe $\mathrm{Q}=$?
- $\mathrm{A}=\underline{8^{\prime \prime}}=0.67^{\prime}$
- $0.67 \times 0.67 \times 0.785=0.35 \mathrm{ft}^{2}$
- $2.5 \mathrm{fps} \times 0.35 \mathrm{ft}^{2}=0.88 \mathrm{cfs}$
- $0.88 \mathrm{cfs} \mathbf{x} 448.8=$
- 395 gpm 2.5 fps

Flow on gpm = ?
\qquad
18. If a 2 MG tank is dosed at $200 \mathrm{mg} / \mathrm{L}$ chlorine at the bottom 1 foot of the tank and is then filled to the 38 ft . overflow, what would be the resulting mg / L dosage in the full tank?

- $\mathbf{2 , 0 0 0 , 0 0 0}=\mathbf{5 2 , 6 3 2}$ gal per foot 38 ft .
- $\underline{52,632}=$. 052632 MG 1,000,000
- ? lbs. $\mathrm{Cl}_{2}=200 \mathrm{mg} / \mathrm{L} \times 0.052632 \mathrm{MG} \times 8.3$

2 MG

- $87.8 \mathrm{lbs} . \mathrm{Cl}_{2}$
- $87.8 \mathrm{lbs} . \mathrm{Cl}_{2}=$ 2 MG x 8.34

1 foot

- $5.3 \mathrm{mg} / \mathrm{L}$

21. If a tank has a radius of $\mathbf{3 5}$ feet and is $\mathbf{3 2}$ feet high and needs to be disinfected at $5 \mathrm{mg} / \mathrm{L}$ with 5% sodium hypochlorite, how many gallons of the hypochlorite is needed?

- $35 \times 35 \times 3.14=3846.5 \mathbf{f t}^{2}$
- $3846.5 \times 32=123,088 \mathrm{ft}^{3}$
- $123,088 \times 7.48=920,698$ gallons
- $\frac{920,698 \text { gal. }}{10}=0.92 \mathrm{MG} \times 5 \mathrm{mg} / \mathrm{x} 8.34=38.36 \mathrm{lbs}$. $1, \mathbf{0 0 0 , 0 0 0}$
- $\frac{38.36 \mathrm{lbs}=}{\mathbf{~}} \mathbf{4 . 6 \mathrm { gal }}$ $8.34 \mathrm{lbs} / \mathrm{gal}$
- $\frac{4.6 \mathrm{gal}}{05}=$

92 gal.

22. Determine the specific capacity of a well if it yields 560 gpm with a drawdown of 42 ft .

- $560 \mathrm{gpm}=$ 42 ft .
- 13.33 gpm/ft

23. What additional pressure in feet of head will you need to be added to water from a pipeline with 65 psi to fill a 40^{\prime} high tank located at an elevation of 367 feet above the pipeline?

- $40^{\prime}+367^{\prime}=407^{\prime}$
- $\frac{407 \mathrm{ft}}{231 \mathrm{ft}}=176 \mathrm{psi}$
$2.31 \mathrm{ft} / \mathrm{psi}$
- $\mathbf{1 7 6}-\mathbf{6 5}=$
- 111 additional psi

20. If a pump is delivering a flow of $\mathbf{3 4 0} \mathbf{~ g p m}$ and using 45 kW , with a wire to water efficiency of 70%, what is the total head it is pumping against?

- $\mathbf{W H p}=\underline{\text { flow }(\mathrm{gpm}) \times \text { height }}=$
- $\mathrm{H}=\underline{3960 \times .70 \%}=$ 340 gpm
- $\mathrm{kW}=0.746 \times$ Motor Hp
? feet
- 8.15 feet $\mathbf{x} 45 \mathrm{~kW}=$

0.746
- 492 feet $\quad \square .55 \mathrm{~kW}$
70% overall efficiency

24. How much $\mathbf{6 5 \%}$ HTH would be needed to close a 90 ft diameter clearwell that is $\mathbf{1 5} \mathbf{f t}$ deep with a dose of 75 ppm ?

- $90 \mathrm{ft} \times 90 \mathrm{ft} \mathrm{x} 0.785=6,358.5 \mathrm{ft}^{\mathbf{2}}$
- $6,358.5 \mathrm{ft}^{2} \times 15 \mathrm{ft}=95,377.5 \mathrm{ft}^{3}$
- $95,377.5 \mathrm{ft}^{3} \times 7.48 \mathrm{gal} / \mathrm{ft}^{3}=\mathbf{7 1 3}, 424$ gal. \quad Diameter $=90 \mathrm{ft}$
- \quad 713, 424 gallons $=0.71 \mathrm{MG}$ $1,000,000$
- 0.71 MG x $75 \mathrm{mg} / \mathrm{l} \times 8.34=444.1 \mathrm{lbs}$.
- $\frac{444.1 \mathrm{lbs} .}{0.65}=$
0.65
- 683 lbs .

26. City spends $\$ 166,000$ per year and sells
750 MG, what is cost per $\mathbf{1 , 0 0 0}$ gallons?

- $750 \mathrm{MG} \times 1,000,000=750,000,000$ gallons
- 750,000,000 $=750,000$ gallons

1,000

- $\$ 166,000=$

750,000

- 0.22 cents per 1,000 gallons

28. How many gallons of water in an 18 ' pipe that is 5,500 ' long?
$\cdot \frac{18^{\prime \prime}}{12^{\prime \prime}}=1.5^{\prime} \times 1.5^{\prime} \times 0.785=1.766 \mathrm{ft}^{2}$

- $\mathbf{1 . 7 6 6} \mathbf{f t 2} \mathbf{x} \mathbf{5 , 5 0 0}=\mathbf{9 , 7 1 4} \mathrm{ft}^{3}$
- $9,714 \mathrm{ft}^{3} \times 7.48 \mathrm{gal} / \mathrm{ft}^{3}=$
- 72,663 gal

30. How many hours would it take to fill a

90 ' dia. tank 40 feet high pumping $2,400 \mathrm{gpm}$?

- 90' $\times 90^{\prime} \times 0.785=6,358.5 \mathrm{ft}^{2}$
- 6,358.5 $\mathrm{ft}^{2} \times 40$ ' $=254,340 \mathrm{ft}^{3}$
- 254,340 $\mathrm{ft}^{3} \times 7.48 \mathrm{gal} / \mathrm{ft}^{3}=1,902,460 \mathrm{gal}$.
- $\frac{1,902,460 \text { gal. }}{2,400} 792.7 \mathrm{~min} . ~ 792.7 \mathrm{~min} .=$ $2,400 \mathrm{gal} / \mathrm{min} \quad \mathbf{6 0 ~ m i n} . / \mathrm{hr}$.
- $\mathbf{1 3 . 2 1} \mathrm{hrs} .0 .21 \mathrm{~min} \times 60 \mathrm{~min}=12.6 \mathrm{~min}$.
- 13 hrs . and 13 min .

31. How many lbs. of $\mathbf{6 5 \%}$ HTH would be

 needed to dose 300,000 gal. at $250 \mathrm{mg} / \mathbf{l}$?- 300,000 gal. $=\mathbf{0 . 3} \mathbf{~ M G}$ 1,000,000
- $0.3 \times 250 \mathrm{mg} / \mathrm{l} \times 8.34=$
- 625.5 lbs .
- 625.5 lbs. $=$ 65\%
- 962 lbs.

? lbs. to chlorinate at $250 \mathrm{mg} / \mathrm{L}$

32. What would be the cost per day to chlorinate 4 MGD at $1.5 \mathrm{mg} / \mathrm{l}$ if chlorine costs 20 cents per pound?

- 4 MGD x $1.5 \mathrm{mg} / \mathrm{l} \times 8.34$ = 50.04 lbs
- 50.04 lbs. x $\$ 0.20$ per lbs. =

34. What is the pumping rate in gpm if the pump drains 2' out of a $25^{\prime} \times 35$ ' basin in 1 hr .?

- $2^{\prime} \times 25^{\prime} \times 35$ ' $=1,750 \mathrm{ft}^{3}$
- $1,750 \mathrm{ft} 3 \times 7.48 \mathrm{gal} / \mathrm{ft}^{3}=13,090 \mathrm{gal}$.
- 13,090 gal.= 60 min . $/ \mathrm{hr}$
- 218 gpm

36. How many gallons will a 40' high tank with a circumference of 283 ' hold when it is full?

- $\underline{283 \mathrm{ft}}=\mathbf{9 0} \mathrm{ft} \times 90 \mathrm{ft} \times 0.785=6,358.5 \mathrm{ft}^{\mathbf{2}}$ 3.14
- $6,358.5 \mathrm{ft}^{2} \times 40 \mathrm{ft}=\mathbf{2 5 4 , 3 4 0} \mathrm{ft}^{3}$
- $254,340 \mathrm{ft}^{3} \times 7.48 \mathrm{gal} / \mathrm{ft}^{3}=$
- 1,902,463 gallons

37. What is the per capita production in gallons per day of a plant that produces 5.75 cfs to a system with a population of $\mathbf{2 , 4 5 0}$?

- $5.75 \mathrm{cfs} \times 448.8 \mathrm{gpm} / \mathrm{cf}=2580.6 \mathrm{gpm}$ $2580.6 \times 1440 \mathrm{~min} /$ day $=$ gpd
- 3,716,064 gpd $=$ 2,450 people
- 1517 gpd per capita

2,450 people
39. What is the total head loss in feet of $\mathbf{5 , 7 0 0} \mathbf{f t}$. of 16 in . pipe with a flow of $2,400 \mathrm{gpm}$ if the head loss is calculated at 0.31 ft . per 100 ft .?

- 5,700 ft. $=57 \times 0.31 \mathrm{ft} .=$ 100 ft .
- $\mathbf{1 7 . 6 7} \mathbf{f t} \times \mathbf{0 . 4 3 3}=$
- 7.6 psi

? psi total head loss

38. What is the detention time in minutes of a 20 ft . diameter, 12 ft . deep tank with a flow of 1.5 MGD?

- $1,000,000 / 1440 \mathrm{~min}$. per day $=694 \mathrm{gpm}$
- 1.5 MGD x 694 gpm per MGD = 1,041 gpm
- $20 \mathrm{ft} \times 20 \mathrm{ft} \times 0.785=314 \mathrm{ft}^{2}$
- $314 \mathrm{ft}^{2} \times 12 \mathrm{ft}=\mathbf{3 , 7 6 8} \mathrm{ft}^{3}$
- $3,768 \mathrm{ft}^{3} \times 7.48 \mathrm{gal} / \mathrm{t}^{3}=\mathbf{2 8}, 185$ gallons
- 28,185 gallons $=27$ minutes

41. If the cut stake for a fire hydrant is marked AC-4.25@ and the hydrant is 7 ft .6 in . tall, how high will the top be above the finished grade?

- $\underline{6^{\prime \prime}}=0.5 \mathrm{ft}$
$12 \mathrm{in} / \mathrm{ft}$
- $7.5 \mathrm{ft} .-4.25 \mathrm{ft}$. $=$
- 3.25 ft .

42. How many gal. of $\mathbf{5 \%}$ sodium hypochlorite will be needed to disinfect a 12 in . diameter well that is $\mathbf{2 8 0} \mathbf{f t}$. deep with a static water level of 130 ft. to a dosage of $\mathbf{5 0} \mathbf{~ m g} /$?

42. CONTINUED

How many gal. of 5\% sodium hypochlorite will be needed to disinfect a 12 in . well that is 280 ft . deep with a static water level of $\mathbf{1 3 0} \mathbf{f t}$. to a dosage of $50 \mathrm{mg} / \mathrm{l}$?

- 280 ft. - 130 ft. = 150 ft.
- $\underline{12^{\prime \prime}}=1 \mathrm{ft} . \times 1 \mathrm{ft} . \times 0.785=0.785 \mathrm{ft}^{2}$ 12"
- $0.785 \mathrm{ft}^{2} \times 150 \mathrm{ft} .=117.75 \mathrm{ft}^{3}$
- $117.75 \mathrm{ft}^{3} \times 7.48 \mathrm{gal} / \mathrm{ft}^{3}=881 \mathrm{gal}$.
- 881 gal. $=0.001 \times 50 \mathrm{mg} / \mathrm{l} \mathrm{x} \mathrm{8.34}=1,000,000$ gal/MGD
$0.417 \mathrm{lbs} .=$
0.0
- 8.34 lbs. or 1 gallon

43. How many pounds of gas chlorine would be needed to dose $1.5 \mathrm{mg} / \mathrm{l}$ to a 4.25 mile section of 24 in. pipeline flowing at 2.1 cfs?

- $2.1 \mathrm{cfs}=1.35 \mathrm{MGD}$ $1.55 \mathrm{cfs} / \mathrm{MGD}$
- $1.35 \mathrm{MGD} \times 1.5 \mathrm{mg} / \mathrm{l} \times 8.34=$
- 16.9 lbs .

? Ibs. of chlorine

Grade Rules

- Grade is usually expressed as a decimal number or percent, as these are easily converted from one to another:
- Decimal number $=$ Percent
- 0.4 grade $=40 \%$ grade
- 0.1 grade $=10 \%$ grade
- 0.06 grade $=6 \%$ grade
- 0.002 grade $=.2 \%$ grade
- 0.0007 grade $=.07 \%$ grade

Grade Formula

- Grade $=\quad$ Drop in feet Distance in feet

45. A sewer line of $2000 \mathbf{f t}$ is laid such that the downstream end of the sewer line is 8 ft lower than the upstream end. What is the sewer grade?

- Formula: Grade $=$ Drop in ft. Distance in ft .
- $8 \mathrm{ft} .=$

2000 ft .

- 0.004 or 0.4% grade

46. A 10 inch diameter pipe is designed for optimum flow velocity at a grade of .0028 . If the 2500 ft . of pipe are to be laid, how much lower will the downstream end of the pipe be than the upstream end of the pipe?

- $2500 \mathrm{ft} \times .0028=$
- 7 ft lower than the upstream end

47. You are told that a pipe will be laid at a 0.1% grade. If 3000 ft of pipe is to be laid, the upstream end will be how much higher than the downstream end of the pipe?

- Convert 0.1% grade to grade $=0.001$
- $0.001 \times 3000 \mathrm{ft}=$
- Upstream end is 3 ft higher

49. Disinfecting the Reservoir

- After painting the reservoir you need to disinfect it per AWWA standards.
- Rules say to use AWWA standard C652-92
- One method states you must maintain $50 \mathrm{mg} / \mathrm{L}$ residual for 6 hours
- You are using HTH calcium hypochlorite at 65\% strength

50. A chlorinator is set to feed 12 lbs . per day to a flow of 300 GPM. What is the dose in mg / L ?

- Dose mg/L = Ibs. per day (MGD)(8.34)
- $300 \mathrm{gpm} \times 60 \mathrm{~min} . \times 24 \mathrm{hr}=432,000 \mathrm{GPD}$
- $\underline{432,000 ~ G P D}=\mathbf{0 . 4 3 2} \mathbf{~ M G D}$ 1,000,000 MGD
- $\frac{12 \mathrm{lbs} . \text { per day }}{(0.432)(8.34)}=\frac{12 \mathrm{lbs} .}{3.6}=$

- Formula: lbs. per day= MGD x $8.34 \times \mathrm{ppm}$
- Known $50 \mathrm{mg} / \mathrm{L}$ and 2.5 MGD
- $2.5 \mathrm{MGD} \times 8.34 \mathrm{lbs} . / \mathrm{gal} \times 50 \mathrm{mg} / \mathrm{L}=$
- 1043 lbs .
- $1043 \mathrm{lbs} . / .65 \%=$
- 1605 lbs . of HTH

48. Two pumps are running with an output of $\mathbf{2 5 0 0} \mathbf{g p m}$.

The pressure gauges read 89 psi on the discharge pipe and the distance between the gauges and the water level in the tank is $\mathbf{1 4 4} \mathrm{ft}$. What is the head loss due to friction?

- GPM has nothing to do with figuring the answer.
- Convert 144 ft to $\mathbf{p s i} 144 \times 0.433=62.35 \mathbf{p s i}$
- 89 psi - 62.35 psi =
- 26.65 psi of head loss $\xrightarrow{ }$ $\stackrel{\square}{-}$

51. What is the volume of a cone with a diameter of $\mathbf{1 0}$ feet with a depth of $\mathbf{5}$ feet?

- $.785 \times 10 \times 10 \times 5=$
- $130.83 \mathrm{ft}^{3}$

