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Abstract Many metropolitan areas in Intermountain West are located in deep valleys 

that, during periods of sustained high atmospheric stability in winter, can develop 

Persistent Cold Air Pool (PCAP) events. During these events concentrations of trace 

gases and fine particulate matter can reach levels that exceed the National Ambient Air 

Quality Standards (NAAQS).  In an effort to understand the relationships between CO2 

and NAAQS criteria pollutants, the Utah Atmospheric Trace gas and Air Quality lab at 

the University of Utah (U-ATAQ), in conjunction with the Utah Division of Air Quality, 

took part in an intensive air quality measurement campaign during the winter of 2015 – 

2016.  Multiple criteria pollutants were measured in-situ, along with high precision 

carbon dioxide (CO2) measurements.  This period spanned several PCAP events, during 

which significantly elevated concentrations of pollutants were observed. The excess 

urban contributions of CO2 (CO2exc) and other species were isolated by calculating 

background mole fractions using a simple but robust mathematical method. A 

comparison between our mathematical and a differing method that utilizes a 

“background” measurement site removed from urban influences revealed a highly similar 

background CO2 mole fraction constraint during normal atmospheric conditions, but 

differing concentrations during Persistent Cold Air Pool (PCAP) events. CO2exc and 

excess air quality measurements were paired at two different urban locations within the 

Salt Lake Valley to demonstrate the utility of CO2exc as a tracer for criteria pollutants, 

both in and out of PCAPs, where strong correlations were observed.  On-road mobile CO 

and CO2 measurements were made throughout the Salt Lake Valley over the duration of 

the sample period providing insight into spatial differences in CO:CO2 tracer correlations. 

Mobile data reveled a wide range of relationships likely driven by the presence of near 



field emissions, with higher CO:CO2 ratios on major freeways and lower ratios in 

residential areas.  Finally, we examined the county wide modeled CO:CO2 emission 

signature from the most recent version of Hestia, a high-resolution multi-species emission 

inventory available for Salt Lake City.  We found a near systematic overestimation of 

CO:CO2 emissions from Hestia by a factor of 2.8, the majority of which results from 

Hestia’s estimation of night time fluxes.  

 

1. Introduction 

The Wasatch Front, as well as many other deep basin valleys in the intermountain 

west, is impacted by Persistent Cold Air Pool (PCAP) events in the winter time, locally 

known as inversions (Gillies, 2010; Gorski et al., 2015; Malek 2006].  PCAP events are 

multi day episodes of high atmospheric stability driven by synoptic scale high-pressure 

ridges, and reduced temperatures and insolation associated with wintertime solar angles 

and surface albedo [Lareau et al., 2014; Silcox et al., 2012; Whiteman et al., 2014].  This 

persistent atmospheric stability allows for a temperature inversion to develop, which 

suppresses vertical mixing and allows pollutants to accumulate [Whiteman et al., 2014].  

The relationship between PCAP events and elevated pollutant concentrations is well 

documented [e.g., Whiteman et al., 2010; Whiteman et al., 2014; Longa et al., 2013; 

Malek et al., 2006].  During PCAP events concentrations of gaseous precursors and fine 

particulate matter can reach dangerously high levels, well beyond levels set by the 

National Ambient Air Quality Standards, significantly increasing exposure to PM for the 

entire population of the impacted valley.   

Exposure to fine particulate matter and other air quality pollutants accounts for 

6.5 to 7 million global premature deaths annually [IEA 2016; WHO 2014].  One in eight 

premature deaths world-wide is attributed to air pollution, making it the fourth deadliest 

threat to human health.  Air pollution exposure has been linked to cardiovascular diseases 

[Brugge et al., 2007] including stroke and heart disease, respiratory illness like infections 

[Kelly and Fussell, 2011], chronic obstructive pulmonary disease [Andersen et al, 2011] 

and asthma [Guarnieri and Balmes, 2014], as well as childhood development 

impairments [Heinrich, 2007].  The majority of exposure to outdoor air pollution comes 

from the incomplete combustion of fuels used for energy production. This is particularly 



true in urban areas that concentrate people and energy usage, resulting in hot spots of air 

pollution exposure.  

The International Energy Agency calls for the implementation of “A Clean Air 

Scenario” which is a tailored alternative to current air pollution strategies [2016].  They 

outline a three part program of setting ambitious long-term air quality goals, 

implementing clean air policies for energy production sectors, and air quality monitoring, 

enforcement and evaluation of these policies in order to reduce fatalities and illness 

associated with air quality pollution. 

Despite the scale of air quality impacts and the new called attention to mitigation 

and monitoring programs, air pollution measurements are generally limited.  For instance, 

the Salt Lake Valley, which has an area of approximately 1,300 km2 and a population of 

1.03 million residents in 2010, has only one federally regulated NAAQS measurement 

site that recorded all of the required criteria pollutants (PM2.5, PM10, CO, O3, SO2, NOx, 

Pb).  Thus the exposure rate for the entire population is represented by a single location 

that does not properly represent the larger geographic extent of the residents. Highly 

spatially resolved criteria pollutant data are rare, due to the fact that air quality 

measurements are difficult to make at a high level of precision and accuracy, requiring 

expensive equipment and highly trained technicians to maintain said equipment.   

Carbon dioxide (CO2) is a long-lived, chemically stable byproduct of fossil fuel 

combustion co-emitted with various other criteria pollutants including, but not limited to: 

carbon monoxide (CO), nitrogen oxide (NO), nitrogen dioxide (NO2), and particulate 

matter (PM) [Kolb et al., 2004; Watson et al., 1990; Wallington et al., 2008].  Like 

NAAQS gases, measuring CO2 to a high degree of accuracy and precision requires a high 

degree of expensive equipment as well as attention and knowledge.  However, CO2’s 

primary role in anthropogenic climate forcing has resulted in relatively long-lived and 

spatially diverse measurement networks.  There has been growing interest to measure 

CO2 in urban areas [McKain et al., 2012; Mitchell et al., n.d.: Pataki, 2006] due to their 

significant contributions to global CO2 emissions.  If the relationships between current 

urban CO2 trace gas measurements and air pollutants can be well understood, the existing 

networks of instrumentation can be leveraged as a tool for studying and monitoring air 

pollution exposure.   



One such network is the Utah Urban Carbon Dioxide Network (UUCON), 

maintained by the Utah Atmospheric Trace Gas and Air Quality lab (U-ATAQ) at the 

University of Utah. UUCON has six measurement sites distributed throughout the Salt 

Lake Valley and several additional sites in surrounding valleys, with measurement 

locations in an array of land uses types [Mitchell et al., n.d. (B)].  Additionally, UUCON 

measurements began as far back as 2001, offering one of the longest continuous urban 

CO2 records available [Mitchell et al., n.d.(A&B)], which provides an unprecedented 

opportunity to explore CO2 and air quality relationships.  Details regarding sites, 

measurement methods and historic data can be found in Mitchell et al., [n.d. (B)] and 

Bares et al., in preparation.  

With the population of the Salt Lake Valley expected to double from 2.9 million 

to 5.4 million residents by 2050 [Harbeke, et al., 2015], accurately predicting the spatial 

distribution and emission signatures of the associated population growth will be vital in 

understanding future air pollution exposure rates.  Bottom-up emission inventories, which 

are estimates of the total emissions of greenhouse gases or pollutants for a specific time 

period and geographic region based on energy consumption, utility and infrastructure 

data [Gurney et al., 2009; United States Environmental Protection Agency, 2013], will 

play an important role in predicting the patterns and signatures of future emissions. In 

order to estimate concentrations and associated exposures, emissions must be transported 

using a dispersion model [Kuik et al., 2016]. However, emission inventories can serve as 

a base estimate for predictive mathematical models, the ratios of which can be compared 

to observed ratios of species.  

In this study we looked at the modeled fluxes of CO and CO2 from Hestia.  Hestia 

is a model with building level spatial resolution capable of estimating fossil fuel 

emissions based on individual fuel sector (residential, commercial, industrial, on-road) 

based on available emission inventories [Gurney et al., 2012; Patarasuk et al., 2016]. The 

current version of Hestia we use for this study has several enhancements including 

improved building activity and emissions profiles and the addition of three criteria air 

pollutants: carbon monoxide (CO), nitrogen oxides (NOx), and fine particulate matter 

(PM2.5) [Mendoza et al., n.d.]. The ratio of CO2 emitted with each additional pollutant is 

unique to individual emission sources [refs], and thus emission signatures vary greatly.  



While CO2 estimates from emission inventories are generally well constrained, with 

uncertainty ranging from 3% to 40% depending on spatial scale and assimilation methods 

[Boden et al., 2009; Gurney et al., 2009; Peylin et al., 2009], the unique emission 

signatures from each source can lead to very high uncertainty when estimating other trace 

gasses and pollutants. For example, Turnbull et al. [2011] compared the ratio of 

measured fossil fuel-derived CO2 and other co-measured trace gasses (CO) against 

available emission inventories and found differences ranging from 200 – 500%. 

By understanding the relationships between CO2 and co-emitted pollutants we can 

leverage existing CO2 monitoring infrastructure to expand our spatial and temporal 

understanding of pollutants.  Additionally, we can use the observed relationships, or 

emission signatures, to compare, validate, and improve existing emission inventories.  

 

The key questions addressed in this study are as follows: 

1) Is the presence of CO2exc a good proxy for the presence of NAAQS criteria 

pollutants CO, NOx and PM2.5? 

2) Are the relationships between CO2exc and criteria pollutants different during 

PCAP conditions? 

3) Are the relations between CO2exc and criteria pollutants consistent across 

spatial gradients? 

4) Are the county wide CO:CO2 emissions predicted by Hestia comparable to 

those observed?  If not what are the likely sources contributing to the error?  

 

2. Methods 

2.1 Site Location and Measurement Methods 

2.1.1 The Utah Atmospheric Trace gas & Air Quality lab (U-ATAQ) on the 

University of Utah campus  

 The U-ATAQ lab is located on the top floor of the eight-story William Browning 

Building (WBB) on the University of Utah campus, which is situated on the northeastern 

bench of the Salt Lake Valley, ~150 meters above the valley floor (Figure 1). The inlets 

for all of the instrumentation in the lab are located on the roof of WBB at 33 meters 

above ground level. The height of the building, combined with its location above the 



valley floor, makes it ideal for measuring atmospheric conditions and tracer 

concentrations that are more representative of the entire Salt Lake Valley.  

 The U-ATAQ lab at WBB served as the locus for a larger study aimed at 

understanding the complex chemistry and atmospheric conditions that lead to the 

secondary production of particulate matter in the Salt Lake Valley during winter time 

PCAP events [Baasandorj et al., n.d.]. Measurements began in December of 2015 and 

ran continuously through the end of February of 2016.  Observed species included 

Carbon Dioxide (CO2), Carbon Monoxide, (CO), Methane (CH4), Ozone (O3), Nitrogen 

Oxide (NO), Nitrogen Dioxide (NO2), Nitrogen Trioxide (NO3), Dinitrogen pentoxide 

(N2O5) Particulate Matter (PM2.5), particle size distributions, particulate chemical 

analysis, d13C and d18O of CO2, as well as ???? Meteorological measurements were 

provided by MesoWest (mesowest.utah.edu) [Horel et al., 2002].  Details regarding each 

of these analyses can be found in Baasandorj et al., in preparation, Kelly and Martin, in 

preparation.  In this study we choose to limit our analysis to CO2 and NAAQS criteria 

pollutants: CO, NOx, and PM2.5.  Other species and measurements will be addressed in 

Bassandorj et al. [in preparation] and Kelly & Martin [in preparation]. 

 CO2 measurements were performed using a Los Gatos Research Off-Axis ICOS 

(Model 907-0011, Los Gatos Research Inc, San Jose, Ca). Calibration gases were 

introduced to the analyzer every two hours using three whole-air, high-pressure cylinders 

with known CO2 concentrations (tertiary to World Meteorological Organization 

CO2 mole fraction scale primaries). Concentrations of standards span the expected range 

of atmospheric concentrations.  Measurements were recorded at 10-sec 

frequency.  Details regarding the calibration materials and post processing of the data can 

be found in Bares et al., [in preparation]. 

 CO was measured using a Teledyne Advanced Pollution Instrumentation (API) 

gas filter correlation CO analyzer (Model 300 E, Teledyne API, San Diego, Ca).  NO and 

NO2 was measured using an API NOx analyzer (Model T200U).  PM2.5 mass was 

measured using an 8500 filter dynamics measurement system (FDMS) – TEOM 1400ab 

ambient particulate monitor.   Details regarding the calibration and data structure of these 

measurements can be found in Bassandorj et al., [in preparation].  

2.1.2 Hawthorne and Sugarhouse 



 The Utah Department of Environmental Quality maintains the only fully equipped 

US Environmental Protection Agency (EPA) certified air quality monitoring station in 

the Salt Lake Valley located at Hawthorne Elementary School (HAW).  All EPA 

regulated criteria pollutants are measured on site in accordance with their specified 

techniques and calibration protocol, including: CO, NOx, PM2.5, and O3.  The site is 

located in a predominantly residential neighborhood, but in close proximity to a busy on-

road emission source.  

 The Sugarhouse (SUG) UUCON CO2 site is located in the same residential 

neighborhood as HAW, only 1.3 km to the north east and with a minimal difference in 

elevation (~20 m).   The close proximity to one-another, the similar land use surrounding 

the sites and the use of hourly averaged data results in strikingly similar measurement 

profiles between the two locations with diurnal patterns, timing of individual events, and 

the range of concentrations appearing to be in unison (Figure 3).  This data will be 

referred to as HAW for the remainder of this paper.  

 Criteria pollutants measured at HAW with the exception of CO were paired with 

the CO2 measurements from SUG.  During the study period the CO analyzer at HAW 

experienced numerous problems, including large data gaps during the most intense PCAP 

event.  We chose to exclude CO since the measurements were deemed unreliable, and the 

lack of data during PCAP events could unintentionally bias results.  

2.2 Background and Excess Calculations 

 All data were averaged from its native frequency into hourly averages. To isolate 

the urban emissions from the background concentrations, a 24-hour running average was 

calculated around each hourly data point.  The lowest first percentile was calculated for 

each 24-hour window.  This lowest first percentile was chosen to represent the 

background level for each species, and was subsequently subtracted from the measured 

mole fraction of each gas to determine the excess concentrations due to urban emissions 

(Figure 2).   

 To validate the accuracy of our background estimates, we compared our 

calculated background constraints against those calculated using methods developed by 

Mitchell et al., [in preparation (A)], in which CO2 mole fraction measurements from 

Hidden Peak (HDP) site were used to represent background constraints. HDP is part of 



the Regional Atmospheric Continuous CO2 Network in the Rocky Mountains 

(RACCOON) [Stephens et al., 2011] located at 3,351 meters at the top of the Snow Bird 

ski area. Since this study CO2 measurements at the site have become the responsibility of 

U-ATAQ.   

Mitchell et al. used CO2 measurements from HDP that were taken from two inlets 

and filtered out data that had a difference greater than 0.5 ppm and used observations 

recorded during the hours of 0000-0500 Local Standard Time (LST) to avoid any 

potential local fluxes of CO2.  The remaining data was smoothed following the 

methodology described in Thoning et al., [1989].  This smoothed product was selected as 

the background constraint. 

We found a high degree of agreement between the two methods during times 

outside of PCAP conditions, but a decoupling of the two methods occurred during PCAP 

events.  Since HDP is removed from the urban component, when PCAP conditions set in 

and the residence time of emissions increases, urban background significantly rise above 

that measured at HDP.   

 Additionally, HDP is limited to measurements of CO2, and thus can not provide 

background constraints for the additional criteria pollutants measured in this study.  The 

decoupling between the two sites and the lack of multiple measured species suggests that 

our calculations are a good way of estimating background conditions in the absence of 

more intensive methods like those outlined in [Turnbull et al., 2014], which requires 

timely and expensive collections of flasks for 14C analysis and can also be species 

limited.  

2.3 Valley Heat Deficit  

 The Valley Heat Deficit (VHD) is a quantitative, thermodynamic measure of 

atmospheric stability [Whiteman et al., 2014].  VHD is the amount of heat needed to 

warm an atmospheric column to a specified height (h) with a 1-m2 base to the potential 

temperature of h, bringing the underlying atmosphere to dry adiabatic lapse rate. 

Measurements are made using twice a day radinsonde launches at the Salt Lake 

International Airport (KSLC). Using this method, Whiteman et al. [2014] discovered a 

threshold of 4 MJ m-2 (h=2200 meters a.g.l.) heat deficit at which PM2.5 concentrations 



begin to rise steadily.  The relationship between a VHD greater than 4 MJ m-2 thus serves 

as an excellent quantitative indicator of PCAP events. 

Since VHD is only measured twice a day from the radiosondes (00 and 12 UTC), 

values between the launches were linearly interpolated to maintain the hourly data 

frequency of the trace gas and air pollutant data during PCAP events.   Periods when  

VHD exceeded 4 MJ m-2 were isolated from the larger study period and were used to 

compare observed relationships in and out of PCAP conditions.  

2.4 Linear Regressions 

 To look at relationships between CO2 and criteria pollutants at individual sites and 

for inter-site comparison, liner regression analysis was conducted on all species at both 

locations.  Slope of each relationship provides a metric for comparison between locations.  

All linear regressions were performed using linear model II major axis (MA) regression, 

which reduces variance in both the X and Y axis, as described by Legendre & Legendre 

[1998] and Sokal & Rohlf [1995]. 

2.5 Mobile sampling 

 Through the duration of the sample period mobile measurements were performed 

across the Salt Lake Valley using U-ATAQ’s mobile laboratory.  Mobile laboratory 

measurements include CO2, CO, CH4, O3, and NOx, meteorological measurements, GPS 

coordinates, as well as ambient air flask collections for laboratory analysis.  Details 

regarding the design of the vehicle can be found in Bush et al., [2012].  

For this campaign, CO2 measurements were made using an LGR UP-GGA, the 

same model as used for WBB CO2 measurements.  A calibration gas was introduced to 

the analyzer at the start and end of each transect to account for instrument drift during the 

drive.  CO measurements were conducted using a Picarro G1302 (PICARRO Inc., Santa 

Clara, CA, USA). The ring-down time on the Picarro during this campaign was 

substantially degraded, resulting in decreased sample frequency, precision and accuracy.  

However, the general trends can still lend insight into differences in emission signatures 

by spatial region when the number of observations (N) per zone is large enough for signal 

to overcome noise.  

 A total of 23 independent transects were driven over 11 different days, with the 

aim of capturing spatial gradients of trace gasses and near surface pseudo-vertical profiles 



both in and out of PCAP events (Figure 6).  Seven distinct spatial zones of interest were 

isolated using a complex polygon clip of the underlying trace gas data.  These zones 

include: Interstate 15 ("I15", N = 19,884), Interstate 80 ("I80", N = 2,673), Interstate 215 

("I215", N = 10,408), a residential zone with a large elevational gradient in the 

Cottonwood Heights neighborhood ("Cottonwood", N = 7,534), a historic residential area 

near the Salt Lake City downtown known as The Avenues ("Aves", N = 7,589), and a 

sparsely developed residential zone with a very large elevational gradient known as the 

Point of the Mountain ("POM", N = 17,296).  Linear regression analysis as described in 

section 2.4 was carried out on each spatial zone to identify an approximate CO:CO2 

emission signature.  

2.6 Hestia 

The Hestia emissions product for Salt Lake City [Patarasuk et al., 2016] accounts 

for direct on-site CO2 emissions from all anthropogenic sectors including on-road, 

residential, commercial, industrial point, electricity generation, mobile off-road, and 

commercial point. County emission totals are spatially disaggregated using local data 

from the department of transportation and federal highway administration, parcel data 

from the tax assessor data, and population growth and construction activity data. Each 

sector’s emissions were computed independently using temporal traffic profiles and 

building activity data, and aggregated to produce a total hourly emissions flux for CO2 

and CO. The updated version of the emissions product has three important modifications 

from the original Hestia. The first modification includes a more realistic heating, 

ventilation, and air conditioning activity profile for buildings which reflect accepted 

temperature setpoints during occupied and unoccupied time periods [Mendoza et. al, 

n.d.]. The second modification, also affecting building emissions, is that year-specific 

meteorology is used to drive the hourly energy consumption patterns as opposed to long-

term averaged data used in previous studies [Mendoza et. al, n.d.]. The third modification 

is the inclusion of criteria pollutants, carbon monoxide (CO), nitrogen oxides (NOx), and 

fine particulate matter (PM2.5) [Mendoza et al., n.d.]. 

 To examine the temporal structure of CO:CO2 relationship estimated by Hestia, 

values were binned hourly then linear regression analysis as outlined in section 2.4 was 

performed on each bin, resulting in hourly slopes of predicted emission signatures.  These 



slopes are plotted as a time series, resulting in a diel plot of Hestia predicted CO:CO2 

emissions (Figure 7).  

 

3 Results 

3.1 CO2 as a proxy for Air pollutants 

3.1.1 U-ATAQ at William Browning Building 

 Strong relationships were observed between CO2exc and all other measured co-

emitted pollutants at WBB, both in and out of PCAP events (Table 1, Figure 4).  

COexc:CO2exc linear regression revealed a high degree of correlations, with an r^2 of 

0.74 during the entire study period and a slightly lower r^2 of 0.66 during PCAP events 

(Figure 4, Table 1).  Additionally, the slope of the relationship was near consistent in and 

out of PCAP conditions, with a slope of 7.40 [ppb/ppm] for the entire sample period and 

7.64 during PCAP events.  The consistent slope of observed COexc:CO2exc during 

significantly different meteorological conditions shouldn’t be surprising given the 

relative stability of both gases.  

 An even stronger correlation was observed between NOxexc and CO2exc.  With 

an r^2 of 0.84 and 0.76 and a slope of 0.88 and 0.90 out and in PCAP conditions 

respectively (Figure 4, Table 1). The difference in the slopes between PCAP events and 

the full sample period are likely attributed to the higher degree of reactivity of NOx 

compared to CO2, with NOx being on the order of 43,000 times more reactive than CO2.  

During PCAP events, the increased residence time of NOx allows for a greater amount of 

secondary reactions to occur, so the observed concentrations will differ.  

 The observed relationship between CO2 and PM2.5 is somewhat more complex 

than the two other discussed co-emitted gaseous pollutants.  Particulate matter in urban 

environments is often the result of secondary reactions of gas phase pollutants suspended 

in the atmosphere.  Thus the relationship between PM and a stable tracer like CO2 is not 

necessarily derived from co-emission, but rather from longer-term trends like stable 

meteorological conditions that allow for the accumulation of pollutants. For instance, 

multiple studies have identified ammonium nitrate (NH4NO3) as a common or dominant 

component of PM2.5 during PCAP events in Northern Utah [Malek et al., 2006, Silva et 

al., 2007].  Ammonium nitrate is the byproduct of the acid reaction of gas phase nitric 



acid (HNO3), which is formed from NO2 reacting with O3 or an OH radical, and gas 

phase ammonia (NH3).  Thus a series of reactions of emitted gas phase pollutants results 

in the presence of PM, and not just the direct emission of the particle.  Since the 

concentration of PM during PCAP events is largely impacted by secondary reactions and 

not just point source emissions, PM concentrations are more homogenous across spatial 

gradients.  

Thus the correlation coefficient (r^2) of PM2.5exc:CO2exc is exceptionally low 

when compared to the other species, at 0.17 for the entire sample period..  However 

during PCAP events, the persistently favorable conditions for secondary cause the 

relationship to diminish (r^2 0.20), as PM is produced in the atmosphere while CO2 

emissions still only occur as a primary emission (Figure 4).    

 Since the residence time of pollutants and the secondary production of PM play 

an important role in the relationship of PM2.5 to CO2, when the background level of the 

pollutants is not removed, thus the total mole fraction (CO2) and mass concentration 

(PM2.5) are compared, correlation coefficient is substantially improved to 0.55 for the 

entire sample period since the background concentrations track well.  Thus a potentially 

useful metric is comparing backgrounds.  This relationship results in an r^2 coefficient of 

0.87.  

3.1.2 Hawthorne 

For all gaseous species, the maximum concentrations measured throughout the 

study and during individual PCAP events were higher at HAW than at WBB. The 

concentrations of PM2.5 have strikingly similar concentrations throughout the study 

period suggesting local emissions play less of a role than in the gaseous emissions.  

Interestingly, the background concentrations in all measured species at both WBB and 

HAW are highly similar regardless of PCAP strength.  

 NOxexc:CO2exc relationships reveals a r^2 of 0.50 and 0.49 with a slope of 0.64 

and 0.59 out and in PCAP conditions respectively (Figure 5, Table 1). When compared to 

WBB, the slope and correlation coefficients are very similar for the full sample period; 

however during PCAP conditions the relationships are slightly different with the slope 

decreasing at HAW and increasing at WBB during PCAPs.  



 PM2.5exc:CO2exc  relationships also show a decrease in the measured slope 

during PCAP events, going from 0.05 during the full sample period down to -0.001 

(Figure 5, Table 1).   The correlation coefficients are significant lower at HAW with 

statistically insignificant r^2 values of .07 and .00 in and out of PCAP events 

respectively.  The substantially weaker correlation seen at HAW than at WBB is likely a 

result of pairing of data from two different locations.  As outlined above, PM is often the 

result of complex secondary reactions occurring at a larger regional scale.  Thus tracer 

measurements located away from the PM measurements are less likely to be similar than 

those of gaseous species. Like WBB, the strongest relationship observed between PM2.5 

and CO2 is in the background signal (Table 1).   

3.2 Mobile Analysis 

 Slopes of CO:CO2 collected during mobile on-road sampling identified a clear 

distinction between highway (I15, I215 and I80) and non-highway (Cottonwood, POM, 

Aves, Foothill) emission signatures (Figure 6).  The average slope of highway spatial 

zones is 30 while the non-highway average is 21.1. The nature of on-road mobile 

measurements results in sampling close proximity emission sources, meaning the 

emission signatures are in part representative of the efficiency of the vehicles near the 

mobile lab as it travels down a road.   When vehicles maintain highway speeds they 

consume significantly more fuel than while idling at minimum conditions, increasing the 

relationship between CO and CO2. Additionally, since the mobile lab is moving while 

sampling is possible that the air mass being sampled could be a localized plume of higher 

gaseous concentrations associated with emissions in front of the vehicle.  

3.3 Hestia CO:CO2  

 By comparing the slopes of the measured (WBB) COexc:CO2exc to the modeled 

(Hestia) CO:CO2 fluxes we can see how well Hestia is doing at estimating the emission 

signatures in the Salt Lake Valley.  Hestia produced a slope of 21.79 for the entire sample 

period (Figure 7) while the measured slope was 7.4.  This indicates that Hestia is over 

estimating CO emissions by a factor of 2.82.   The temporal distribution of CO:CO2 

slopes indicate that the majority of this overestimation occurs while estimating nocturnal 

emissions (Figure 7).  This nocturnal overestimation is likely a result of wood burning for 

home heating.  Since Hestia only accounts for fossil fuel burning when estimating CO2 it 



would fail to incorporate wood burning while the emission inventory derived CO product 

would.  Further work is needed to validate this hypothesis.  

 

4 Conclusions 

 Excess carbon dioxide appears to be a good indicator of co-emitted primary 

criteria pollutants. CO2exc shows strong and consistent relationships across multiple 

locations with other emitted trace gasses (CO and NOx). The lack of reliable CO data 

from HAW during this study is unfortunate, but given the strength of the observed 

CO2exc:NOxexc and the similarity to that observed at WBB, it is not unreasonable to 

expect a similarly strong result.  

 As seen at WBB, CO2 mole fraction does a reasonable job at indicating the 

presence of PM2.5. However this relationship breaks down as PCAP conditions facilitate 

secondary atmospheric reactions that result in the formation of PM.  Additionally, 

concentrations of gaseous species appear to be more influenced by local emissions while 

PM is more spatially homogenous.  This is evident by the higher concentrations in 

gaseous species measured at HAW than at WBB, while the PM measurements are highly 

similar.   This can also account for CO2exc failure to capture a similar PM2.5 relationship 

in the HAW data set since the CO2 measurements are not co-located.  

 The choice of background constraint is highly important when making these kinds 

of comparisons.  Our mathematical constraint shows strength in several ways.  It found a 

high degree of agreement with background measurement sites when similar atmospheric 

conditions persist.   It is able to account for the decoupling of backgrounds when PCAP 

events drive elevated backgrounds in urban settings.  It is applicable to multiple species 

and different data frequencies.  And finally, it does not require additional expensive and 

time intensive measurements. 

 While the absolute values of the CO measurements from the mobile van used in 

this analysis are not highly reliable, the number of observations per spatial zone allows us 

to compare relative relationships. Our mobile measurements indicate large differences in 

the emission signatures of freeway and non-freeway areas, with freeway zones 

consistently producing slopes 50% higher than non-freeway zones.  



 When compared to our in-situ measurements we find that Hestia is currently 

overestimating the emission of CO to CO2 by a factor of close to 3.  As demonstrated in 

figure 7, this appears to be largely driven by overestimations of CO:CO2 fluxes during 

night time, indicating that Hestia’s failure to account for wood burning by the home 

heating sector may be a significantly contribution to the error.  

 While excess carbon dioxide does a good job at indicating the presence of 

gaseous pollutants, and in some cases fine particulate matter, these relationships will be 

spatially dependent as a result of significant variations in emission sources within an 

urban domain.  In order to best leverage existing trace gas infrastructure more work is 

needed to understand and quantify these relationships at each measurement location.   

Mobile data and high resolution emission inventories like Hestia can help inform these 

relationships, but both of these products have certain uncertainties that limit their 

effectiveness.  Thus, high quality, co-located measurements, both in and out of PCAP 

conditions, would be best to capture these relationships and begin to utilize the long term 

and spatially diverse CO2 infrastructure that currently exists along the Wasatch Front. 

 
 
References Cited 
Andersen, Z. J., Hvidberg, M., Jensen, S. S., Ketzel, M., Loft, S., Sørensen, M., … Raaschou-Nielsen, O. 

(2011). Chronic obstructive pulmonary disease and long-term exposure to traffic-related air pollution: 
A cohort study. American Journal of Respiratory and Critical Care Medicine, 183(4), 455–461. 

Baasandorj et al., (n.d.) 
Bares, R.B., Fasoli, N., Lin., L.C., Bowling, D., Ehleringer, J.R., Catharine, D., Eng, B., Garcia, M. (n.d.). 

University of Utah’s improvements to the Utah urban carbon dioxide network: Instrumentation, 
sample design and stability.  

Brugge, D., Durant, J. L., & Rioux, C. (2007). Near-highway pollutants in motor vehicle exhaust: A review 
of epidemiologic evidence of cardiac and pulmonary health risks. Environmental Health, 6(1), 1–12. 
http://doi.org/10.1186/1476-069X-6-23 

Boden, T. A., Marland, G., and Andres, R. J.: Global, regional and national fossil-fuel CO2 emissions, 
Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of 
Energy, Oak Ridge, Tenn., USA, 2009 

Brugge, D., Durant, J. L., & Rioux, C. (2007). Near-highway pollutants in motor vehicle exhaust: A review 
of epidemiologic evidence of cardiac and pulmonary health risks. Environmental Health, 6(1), 1–12. 
http://doi.org/10.1186/1476-069X-6-23 

Bush, S.E., Hopkins, F.M., Randerson, T.J., Ehleringer, J. R. (2012). Design and application of a mobile 
ground-based observatory for continuous measurements of atmospheric trace gas and criteria 
pollutant species S. Atmospheric Measurement Techniques, 28, 63–86. 
http://doi.org/10.1016/j.cognition.2008.05.007 

Gillies, R. R., Wang, S.-Y., & Booth, M. R. (2010). Atmospheric Scale Interaction on Wintertime 
Intermountain West Low-Level Inversions. Weather and Forecasting, 25(4), 1196–1210. 
http://doi.org/10.1175/2010WAF2222380.1 

Gorski, G., Strong, C., Good, S. P., Bares, R., Ehleringer, J. R., & Bowen, G. J. (2015). Vapor hydrogen 
and oxygen isotopes reflect water of combustion in the urban atmosphere. Proceedings of the 



National Academy of Sciences of the United States of America, 112(11). 
http://doi.org/10.1073/pnas.1424728112 

Guarnieri, M., & Balmes, J. R. (2014). Outdoor air pollution and asthma. The Lancet, 383(9928), 1581–
1592. http://doi.org/10.1016/S0140-6736(14)60617-6 

Gurney, K. R., Mendoza, D. L., Zhou, Y., Fischer, M. L., Miller, C. C., Geethakumar, S., and de la Rue du 
Can, S.: High resolution fossil fuel combustionCO2 emission fluxes for the United States, Environ. 
Sci. Technol., 43, 5535–5541, doi:10.1021/es900806c, 2009. 

Gurney, K. R., Zhou, Y., Mendoza, D., Chandrasekaran, V., Geethakumar, S., Razlivanov, I., … Godbole, 
a. (2011). Vulcan and Hestia: High resolution quantification of fossil fuel CO 2 emissions. MODSIM 
2011 - 19th International Congress on Modelling and Simulation - Sustaining Our Future: 
Understanding and Living with Uncertainty, (December), 1781–1787. 

Harbeke, D. T., Garbett, B., Chairman, V., Matsumori, D., Kroes, S. J. H., & City, S. L. (2014). A Snapshot 
of 2050, (720). 

Heinrich, J., & Slama, R. (2007). Fine particles, a major threat to children. International Journal of 
Hygiene and Environmental Health, 210(5), 617–622. http://doi.org/10.1016/j.ijheh.2007.07.012 

Horel, J., M. Splitt, L. Dunn, J. Pechmann, B. White, C. Ciliberti, S. Lazarus, J. Slemmer, D. Zaff, and J. 
Burks (2002), Mesowest: cooperative mesonets in the western United States, Bull. Am. Meteorol. 
Soc., 83, 211–225. 

International Energy Agency. (2016). Energy and Air Pollution. World Energy Outlook - Special Report, 
266. http://doi.org/10.1021/ac00256a010 

Kelly, F. J., & Fussell, J. C. (2011). Air pollution and airway disease. Clinical and Experimental Allergy, 
41(8), 1059–1071. http://doi.org/10.1111/j.1365-2222.2011.03776.x 

Kelly, K., Martin, R. (n.d) 
Kolb, C. E., S. C. Herndon, J. B. McManus, J. H. Shorter, M. S. Zahniser, D. D. Nelson, J. T. Jayne, M. R. 

Canagaratna, and D. R. Worsnop (2004), Mobile Laboratory with Rapid Response Instruments for 
Real-Time Measurements of Urban and Regional Trace Gas and Particulate Distributions and 
Emission Source Characteristics, Environ. Sci. Technol., 38, 5694–5703. 

Lareau, N. P., Crosman, E., Whiteman, C. D., Horel, J. D., Hoch, S. W., Brown, W. O. J., & Horst, T. W. 
(2013). The persistent cold-air pool study. Bulletin of the American Meteorological Society, 94(1), 
51–63. http://doi.org/10.1175/BAMS-D-11-00255.1 

Legendre, P., & GALLAGHER, E. l. Legendre. 1998. Numerical ecology.Second English Edition. Elsevier, 
New York. 

Longa, R.W., Eatough, N.L., Mangelson, N.F., Thompson, W., Fiet, K., Smith, S., Smith, R., Eatough, 
D.J., Pope, C.A., Wilson, W.E., 2003. The measurement of PM2.5, including semi-volatile 
components, in the EMPACT program: results from the Salt Lake City Study. Atmos. Env. 37 (31), 
4407e4417. 

Malek, E., Davis, T., Martin, R. S., & Silva, P. J. (2006). Meteorological and environmental aspects of one 
of the worst national air pollution episodes (January, 2004) in Logan, Cache Valley, Utah, USA. 
Atmospheric Research, 79(2), 108–122. http://doi.org/10.1016/j.atmosres.2005.05.003 

McKain, K., S. C. Wofsy, T. Nehrkorn, J. Eluszkiewicz, and J. Ehleringer (2012), Assessment of ground-
based atmospheric observations for verification of greenhouse gas emissions from an urban region, 
Proc. Natl. Acad. Sci., 109(22), 8423–8428. 

Mitchell, L. E. et al. A (n.d.), Long-term urban carbon dioxide observations reveal spatial and temporal 
dynamics related to urban form and growth, Proc. Natl. Acad. Sci. 

Mitchell, L.E., et al. B (n.d.), The Salt Lake City, USA Urban Carbon Dioxide Monitoring Network 
Pataki, D. (2006), Urban ecosystems and the North American Carbon Cycle, Glob. Chang. Biol., 12, 2092–

2101. 
Peylin, P., Houweling, S., Krol, M. C., Karstens, U., R¨ odenbeck, C., Geels, C.,Vermeulen, A., Badawy, 

B., Aulagnier, C., Pregger, T., Delage, F., Pieterse, G., Ciais, P., and Heimann, M.: Importance of 
fossil fuel emission uncertainties over Europe for CO2 mod- eling: model intercomparison, Atmos. 
Chem. Phys. Discuss., 9, 7457–7503, doi:10.5194/acpd-9-7457-2009, 2009. 

Silcox, G. D., Kelly, K. E., Crosman, E. T., Whiteman, C. D., & Allen, B. L. (2012). Wintertime PM2.5 
concentrations during persistent, multi-day cold-air pools in a mountain valley. Atmospheric 
Environment, 46, 17–24. http://doi.org/10.1016/j.atmosenv.2011.10.041 



Silva, P. J., Vawdrey, E. L., Corbett, M., & Erupe, M. (2007). Fine particle concentrations and composition 
during wintertime inversions in Logan, Utah, USA. Atmospheric Environment, 41(26), 5410–5422. 
http://doi.org/10.1016/j.atmosenv.2007.02.016 

Sokal, R. R., & Rohlf, F. J. (1995). Assumptions of analysis of variance.Biometry: The principles and 
practice of statistics in biological research, 392-450. 

Stephens, B. B., Miles, N. L., Richardson, S. J., Watt, A. S., & Davis, K. J. (2011). Atmospheric CO 2 
monitoring with single-cell NDIR-based analyzers. Atmospheric Measurement Techniques, 4(12), 
2737–2748. http://doi.org/10.5194/amt-4-2737-2011 

Turnbull, J. C., Karion, A., Fischer, M. L., Faloona, I., Guilderson, T., Lehman, S. J., … Tans, P. P. (2011). 
Assessment of fossil fuel carbon dioxide and other anthropogenic trace gas emissions from airborne 
measurements over Sacramento, California in spring 2009. Atmospheric Chemistry and Physics, 
11(2), 705–721. http://doi.org/10.5194/acp-11-705-2011 

Thoning, K. W., P. P. Tans, and W. D. Komhyr (1989), Atmospheric carbon dioxide at Mauna Loa 
Observatory: 2. Analysis of the NOAA GMCC data, 1974–1985, J. Geophys. Res. Atmospheres, 
94(D6), 8549–8565, doi:10.1029/JD094iD06p08549. 

United States Environmental Protection Agency (2013). ANNEX 2 Methodology and Data for Estimating 
CO2 Emissions from Fossil Fuel Combustion, 29–125. 

Wallington, T. J., Sullivan, J. L., & Hurley, M. D. (2008). Emissions of CO2, CO, NOx, HC, PM, HFC-
134a, N2O and CH4 from the global light duty vehicle fleet. Meteorologische Zeitschrift, 17(2), 109–
116. http://doi.org/10.1127/0941-2948/2008/0275 

Watson, R. T., Rodhe, H., Oeschger, H., & Siegenthaler, U. (1990). Greenhouse gases and aerosols. 
Climate Change: The IPCC Scientific Assessment, 1–40. Retrieved from 
http://www.scopus.com/inward/record.url?eid=2-s2.0-
0025587274&partnerID=40&md5=5d3e969d5d655f48f55e679627df52ab 

Whiteman, C.D., Hoch, S.W., Lehiner, M. (2010). Nocturnal cold-air intrusions into a closed basin: 
Observational evidence and conceptual model. Journal of applied meterology and climatology, 49, 
1894-1905. 

Whiteman, C. D., Hoch, S. W., Horel, J. D., & Charland, A. (2014). Relationship between particulate air 
pollution and meteorological variables in Utah’s Salt Lake Valley. Atmospheric Environment, 94, 
742–753. http://doi.org/10.1016/j.atmosenv.2014.06.012 

WHO. (2014). WHO ’ s Ambient Air Pollution database - Update 2014 Data summary of the AAP 
database, 2–7. Retrieved from http://www.who.int/phe/health_topics/outdoorair/databases/cities/en/ 

 
 

 

 

 

 

 

 

 

 

 

 

 

 



Figures 

 

	
Figure	1	Map	showing	the	locations	of	measurement	sites	
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Figure	2	Time	series	of	measurements	from	WBB	with	CO2	in	red,	CO	in	blue,	NO	in	light	green,	NO2	in	
dark	green	in	the	same	field,	PM2.5	in	purple	and	the	VHD	in	gray	with	black	dots	in	the	bottom	field.		
Black	lines	are	our	mathematically	derived	background	constraint.		Gray	line	in	the	CO2	field	is	the	
Mitchell	et	al.,	background	product	derived	from	measurements	at	HDP.			
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Figure	3	Time	series	of	measurements	from	HAW	with	CO2	in	red,	CO	in	blue,	NO	in	light	green,	NO2	in	
dark	green	in	the	same	field,	PM2.5	in	purple	and	the	VHD	in	gray	with	black	dots	in	the	bottom	field.		
Black	lines	are	our	mathematically	derived	background	constraint.	
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Figure	4	WBB	linear	relationships.		Black	dots	represent	the	full	sample	period	where	blue	are	periods	
during	PCAP	conditions.	 
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Figure	5	HAW	linear	relationships.		Black	dots	represent	the	full	sample	period	where	blue	are	periods	
during	PCAP	conditions.		 
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Table1: Slopes and correlation coefficients 

 WBB Slope WBB r^2 HAW Slope HAW r^2 Hestia Slope Hestia r^2 

COexc:CO2exc 

 
7.40 0.743   21.79* 0.701 

PCAP 

COexc:CO2exc 
7.64 0.665     

NOxexc:CO2exc 

 
.0.883 0.844 0.642 0.504   

PCAP 

NOxexc:CO2exc 
0.899 0.769 0.585 0.493   

PM2.5exc:CO2exc  

 
0.175 0.174 0.049 0.077   

PCAP 

PM2.5exc:CO2exc 
0.089 0.028 -0.001 0.00   

PM2.5:CO2   

Mole Fraction 
0.476 0.201 0.113 0.145   

PCAP 

PM2.5:CO2   

Mole Fraction 

0.627 0.201 -0.05 0.038   

PM2.5:CO2 

Background 
0.598 0.868 0.288 0.319   

 

* Flux estimate 

 

 

 



 
 
Figure	6	Map	of	mobile	CO	ppb	measurements	throughout	campaign	after	sub-setting	for	spatial	zones	of	
interest.		You	can	see	distinctively	higher	CO	ppb	on	freeways	compared	to	non-freeway	areas.		

	



	
Figure	7	Hestia	predicted	(black)	and	WBB	observed	(blue)	CO:CO2	slopes	as	binned	by	hour.		The	
nocturnal	overestimation	of	CO	is	very	apparent.		
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