UTAH DEPARTMENT OF ENVIRONMENTAL QUALITY

JUN 19 2018

DIVISION OF AIR QUALITY

HEXCEL

June 19, 2018

HAND DELIVERED

DAQ-2018-006823

Mr. Bryce Bird Executive Secretary State of Utah Department of Environmental Quality Division of Air Quality 1950 West North Temple Salt Lake City, Utah 84116-4820

Re: Serious Nonattainment Area SIP Control Strategy Requirements

Dear Mr. Bird:

Please find attached the PM_{2.5} BACT/BACM Analysis, Revision 2 for Hexcel Corporations (Hexcel) carbon fiber and fabric pre-impregnation (pre-preg) manufacturing plant located in West Valley City, Utah. For this revision, Hexcel has included more detail in the description of the quantification of the emissions and controls. It also evaluates cost/benefit of implementing controls over time out to 2024.

If you have any questions concerning this report or require additional information, please contact me at (801) 209-2427 or the address listed below.

Sincerely,

Bryan Wheeler Sr. Environmental Engineer

Attachment

PM_{2.5} BACT/BACM Analysis – Revision 2 Hexcel Corporation, West Valley City, UT

Prepared For: Bryan Wheeler, PE; Hexcel Corporation

Prepared By: Miriam Hacker, PE; Aspen Outlook, LLC <u>miriamhacker@aspenoutlook.com</u>

Revision 2 - May, 2018

Executive Summary

Hexcel owns and operates a carbon fiber and fabric pre-impregnation (pre-preg) manufacturing plant (Hexcel West Valley City Plant) located at 6800 West 5400 South, West Valley City, Salt Lake County, Utah. The Hexcel West Valley City Plant currently operates under UDAQ's Approval Order (AO) No. DAQE- AN113860031-18. As of the date of this report, Hexcel has contracts for sold carbon fiber product through 2021.

Based on information confirmed in a meeting with Nando Meli and John Black of Utah Department of Environmental Quality – Division of Air Quality (UDAQ) on March 14, 2018, Hexcel respectfully submits an additional revision to the PM_{2.5} Best Available Control Technology (BACT)/Best Available Control Measures (BACM) Analysis for all affected sources at the Hexcel West Valley City Plant to meet the following additional requirements:

- 1. Incorporate additional control options that are currently being evaluated by Hexcel for:
 - PM control Filter Boxes
 - NO_x control NO_x water
- 2. Re-evaluate cost/benefit of incorporating low NO_x burners/ultra-low-NO_x burners on the older lines.
- 3. Review and incorporate any additional controls that have not been addressed in the previously submitted assessment.
- 4. Look at cost/benefit of implementing controls over time. Specifically, determining the costs per year if considering the benefit over 10 years or out to 2024. Apply a \$20,000 cost/ton threshold to determine the economic feasibility for installation of technically feasible controls.
- 5. Review the potential benefit of increased production with potential modifications.

In addition, Hexcel received a letter from UDAQ on April 9, 2018 regarding the Serious PM_{2.5} Nonattainment Area (NAA) State Implementation Plan (SIP) Control Strategy – Ammonia BACT Requirement. In this letter, UDAQ requests that all ammonia (NH₃) emission sources at the site be listed and that a BACT assessment be completed for the NH₃ sources. In the previously submitted version of the PM_{2.5} BACT/BACM Analysis, a BACT analysis was conducted for NH₃ sources at the Hexcel facility. This analysis has been reviewed and updated according to the letter request for this revised submission.

All assumptions and procedures followed in the previous $PM_{2.5}$ BACT/BACM Analysis submittal have been maintained for this submittal. The BACT analysis was completed consistent with the guidance provided by UDAQ to Hexcel, as well as available guidance from the U.S.

Environmental Protection Agency (U.S. EPA).^{1,2} Based on guidance provided by UDAQ, the Hexcel PM_{2.5} BACT analysis includes the following components for the primary pollutant (PM_{2.5}) and its precursors.

- Potential Control Technology Identification
- Potential Control Technology Emission Impact Evaluation
- Cost/Benefit Analysis for Potential Control Technologies
- Evaluation of Potential Emission Limits and Monitoring Requirements, and
- An Implementation Calendar

Tables 1 and 2 provide summaries of each BACT determination for PM_{2.5} and its precursors for the main Fiber Line processes, and other miscellaneous processes present at the facility, respectively.

Details of the BACT analysis for each pollutant from each of these sources are provided in the following sections.

¹ Meeting at UDAQ offices with Nando Meli and Martin Grey of UDAQ, Bryan Wheeler (Hexcel) and Miriam Hacker (Aspen Outlook, LLC), February 28, 2017.

² Fine Particulate Matter National Ambient Air Quality Standards: State Implementation Plan Requirements. Federal Register 58010, Vol. 81, No. 164, August 24, 2016.

U.S. EPA Fact Sheet: Final Rule: Fine Particulate Matter National Ambient Air Quality Standards: State Implementation Plan Requirements.

U.S. EPA Webinar for State, Tribal and Local Air Agencies, August 16, 2016. Final Rule: Fine Particulate Matter National Ambient Air Quality Standards: State Implementation Plan Requirements.

U.S. EPA, Office of Air Quality Planning and Standards, Memorandum. Draft PM_{2.5} Precursor Demonstration Guidance. November 17, 2016.

Process	Pollutants	Proposed BACT	
Oxidation Ovens;	voc	Good Combustion Practices	
Incinerators;		Natural Gas Combustion Only	
Low-Temperature Furnaces;		Incinerators (Lines 2-7, 8, 10, 11 and 12)	
High Temperature Furnaces;		Dual Chambered Regenerative Thermal	
Surface Treatment Equipment; and		Oxidizer (RTO) for newer lines (Lines 13, 14, 15 and 16)	
Ammonium Bicarbonate/RO	PM _{2.5}	Good Combustion Practices	
Water Mix Rooms		Natural Gas Combustion Only	
		Baghouse/Filter Box for newer lines (Lines 13, 14, 15 and 16)	
	NOx	Good Combustion Practices	
		Natural Gas Combustion Only	
		Low-NO _x burners (LNB) for newer lines (Lines 13, 14, 15 and 16)	
	SO ₂	Natural Gas Combustion Only	
	NH ₃	Good Operating Practices	

Table 1. Summary of PM_{2.5} and Its Precursors BACT Analysis for Fiber Line Emissions

Table 2. Summary of PM_{2.5} and Its Precursors BACT Analysis for Miscellaneous Processes

Process	Pollutants	Proposed BACT
Pilot Furnaces and Ovens	NO _X , SO ₂ , PM _{2.5} , VOC, NH ₃	Natural Gas Combustion Only
		Good Operation and Combustion Practices
		Incinerator
Matrix Incinerators	NO _x , SO ₂ , PM _{2.5} , VOC	Natural Gas Combustion Only
		Good Operation and Combustion Practices
		Incinerator or RTO with LNB
HVAC systems	NO _x , SO ₂ , PM _{2.5} , VOC	Natural Gas Combustion Only
		Good Operation and Combustion Practices
Emergency Generators	NO _x , SO ₂ , PM _{2.5} , VOC	Annual Hours of Operation
		Restrictions and Use of Low Sulfur Fuel
		Engines compliant with NSPS IIII and JJJJ and NESHAP ZZZZ

Table of Contents

Background	1
Non-Attainment Area BACT Review	2
Alaska	.3
Arizona	.3
California	.4
Oregon	.5
Pennsylvania	.5
Tennessee	.6
BACT Methodology	6
Step 1 - Potential Control Technology Identification	.8
Step 2 – Evaluation of Technical Feasibility	.8
Step 3 – Ranking of Control Technologies	.8
Step 4 – Evaluation of most effective controls	.8
Potential Control Technology Emission Impact Evaluation	.8
Cost/Benefit Analysis for Potential Control Technologies	.9
Environmental Impact Analysis for Potential Control Technologies	.9
Step 5 – Select BACT	.9
BACT Analysis for Fiber Line Emissions	. 9
Fiber Line Process Description	.9
BACT Analysis for PM _{2.5} Emissions	10
Condensable Particulate Matter	10
Identify All Control Technologies for PM2.5	11
Eliminate Technically Infeasible Options1	13
Rank Technically Feasible Control Technologies	13
Evaluation of Most Effective Controls	14
Select BACT for Filterable PM _{2.5} 1	15
BACT Analysis for SO ₂ Emissions1	15
Identify All Control Technologies for SO2	15
Eliminate Technically Infeasible Options1	16
Rank Technically Feasible Control Technologies	16
Evaluation of Most Effective Controls1	16

Select BACT for SO217
BACT Analysis for NO _x Emissions17
Identify All Control Technologies17
Eliminate Technically Infeasible Options21
Rank Technically Feasible Control Technologies22
Evaluation of Most Effective Controls23
Select BACT for NO _x 23
BACT Analysis for VOC Emissions26
Identify All Control Technologies26
Eliminate Technically Infeasible Options
Rank Technically Feasible Control Technologies
Evaluation of Most Effective Controls29
Select BACT for VOC
BACT Analysis for Ammonia Emissions
Identify All Control Technologies
Eliminate Technically Infeasible Options
Rank Technically Feasible Control Technologies
Evaluation of Most Effective Controls
Select BACT for Ammonia
BACT Analysis for Miscellaneous Operations Associated with the Fiber Lines
Startup/Shutdown Emissions Controls for BACT Listed Equipment
Recommended Emission Limits and Monitoring Requirements
Hexcel's Efforts Above and Beyond - ISO 14001 Environmental Management System
Procedures
BACT Implementation Calendar
Potential Modification Benefit Review

Table of Tables

Table 1: Summary of PM _{2.5} and Its Precursors BACT Analysis for Fiber Line Emissionsiii
Table 2: Summary of PM _{2.5} and Its Precursors BACT Analysis for Miscellaneous Processesiii
Table 3: PCAQCD Facility Control Technology Determinations
Table 4: South Coast AQMD BACT Determinations 4
Table 5: TN PM2.5 Nonattainment Area Facility Control Technology Determinations

Attachments

Attachment A – PM_{2.5} BACT Calculation Summaries

Attachment B – Cost and Emission Calculations

Attachment C – RBLC Tables

Attachment D – May 19, 2015 Letter to UDAQ RE: Supplemental Responses – BACT for Oxidation Ovens of Proposed New Carbon Fiberlines 15 and 16 Modification of AO DAQE-AN113860023-15 to Add Carbon Fiber Lines 15 and 16

Attachment E – April 30, 2014 Letter to UDAQ RE: PM2.5 SIP RACT-Responses to Request for Additional Information

Background

Hexcel received a letter dated January 23, 2017 from UDAQ indicating that the division has begun work on a serious area attainment control plan as required by 40 CFR 51 Subpart Z. This rule requires that UDAQ implement BACM for major sources of particulate matter with diameter less than 2.5 microns (PM_{2.5}) and PM_{2.5} precursors within the nonattainment area. As a source permitted to emit 70 tons per year of PM_{2.5} and/or its precursors within the nonattainment area, the Hexcel West Valley City Plant falls within this category.

In January 2012, Hexcel submitted a PM_{2.5} Reasonably Available Control Technology (RACT) assessment to UDAQ for the Hexcel West Valley City Plant at the request of UDAQ. An addendum to this assessment was submitted to UDAQ in August 2013, in response to adjustments in calculations, as well as UDAQ comments and questions. Additional requested information on start-up and shutdown emission controls and RACT implementation dates was submitted to UDAQ on April 30, 2014. On June 28, 2017, Hexcel submitted a Revised PM_{2.5} BACT/BACM Analysis for all affected sources at the Hexcel West Valley City Plant to UDAQ in response to the January 23, 2017 letter, and additional requests from UDAQ.

On October 2, 2017 Hexcel received a letter dated September 21, 2017 from Bryce Bird, Director of UDAQ regarding Serious NAA SIP Control Strategy Requirements. Hexcel sent a response to the letter in an email October 23, 2017, indicating that Hexcel believed they had met the requirements in the letter in the previous BACT submittals, but did not receive a response. Through several telephone calls and meetings with Nando Meli of UDAQ, Hexcel understands that an additional revision to the PM_{2.5} BACT/BACM Analysis for all affected sources at the Hexcel West Valley City Plant must be submitted to meet the following additional requirements:

- 1. Incorporate additional control options that are currently being evaluated by Hexcel for:
 - PM control Filter Boxes
 - NO_x control NO_x water
- 2. Re-evaluate cost/benefit of incorporating low NO_x burners/ultra-low-NO_x burners on the older lines.
- 3. Review and incorporate any additional controls that have not been addressed in the previously submitted assessment.
- 4. Look at cost/benefit of implementing controls over time. Specifically, determining the costs per year if considering the benefit over 10 years or out to 2024. Apply a \$20,000 cost/ton threshold to determine the economic feasibility for installation of technically feasible controls.
- 5. Review the potential benefit of increased production with potential modifications.

This analysis has also been reviewed and updated according to the April 9, 2018 letter request regarding the Serious PM_{2.5} NAA SIP Control Strategy – Ammonia BACT Requirement for this revised submission.

Reaching attainment under the Serious SIP requires that all applicable control technologies and techniques be identified and evaluated (or re-evaluated) to determine their applicability. The evaluation must include a detailed written justification of each available control technology or technique, accounting for technological and economic feasibility, and including documentation to justify eliminating any potential controls.

Subpart Z requires that UDAQ identify all potential control technologies or methods that will reduce emissions of PM_{2.5} and its precursors, which include:

- Nitrogen oxides (NO_x),
- Sulfur oxides (SO_x),
- Volatile organic compounds (VOC), and
- Ammonia (NH₃)

As a part of BACT analysis for direct $PM_{2.5}$, condensable particulate matter (CPM) emissions were also considered in the analysis.

Non-Attainment Area BACT Review

In addition to a review of the RACT/BACT/LAER Clearinghouse (RBLC) database, Hexcel reviewed control strategies proposed in other PM_{2.5} nonattainment areas. Based on the 2006 Hourly PM_{2.5} NAAQS area designations³, the following areas were designated as being in serious nonattainment for PM_{2.5}:

- Los Angeles South Coast Air Basin, CA
- San Joaquin Valley, CA

The following areas were designated as being in moderate nonattainment for PM2.5:

- Fairbanks, AK
- Nogales, AZ
- West Central Pinal, AZ
- Chico, CA
- Imperial Co, CA
- Sacramento, CA
- San Francisco Bay Area, CA
- Klamath Falls, OR
- Oakridge, OR
- Knoxville-Sevierville-La Follette, TN
- Liberty-Clairton, PA
- Logan, UT-ID
- Provo, UT
- Salt Lake City, UT

³ Nonattainment areas for hourly PM_{2.5} NAAQS obtained from the following website: https://www3.epa.gov/airquality/greenbook/rnc.html

Provided below is a list of proposed control strategies and BACT determinations for other facilities with similar processes and equipment, located in PM_{2.5} nonattainment areas.

Alaska

According to the Fairbanks, AK SIP Plan (last amended December 2016), solid fuel-burning devices are the largest contributors to the nonattainment status for PM_{2.5}. As such, many of the proposed control strategies are aimed at reducing the use of wood and coal as a fuel and improving the fuel-burning devices.⁴ As Hexcel uses natural gas as a fuel for their fiber line and miscellaneous processes, there are no control technologies or strategies proposed in AK pertinent to Hexcel.

Arizona

There are currently 20 major sources permitted under Pinal County Air Quality Control District (PCAQCD) which oversees the West Central Pinal nonattainment area. Table 3 provides details of facilities that have processes and equipment similar to that of Hexcel and their respective control technologies and methods.⁵

Facility	Equipment	Control Technology
Frito-Lay, Inc.	Boiler Dryer Ovens	Use of natural gas
Mesa Fully Formed, LLC	Thermal Form Oven	Baghouse with 99% control efficiency
Prowall Building Products, Inc.	Boilers Bed Dryer	Use of natural gas

As Hexcel already uses natural gas and baghouse control on newer ovens and other combustion sources, there are no new control technologies or strategies proposed in AZ applicable to the West Valley City Plant. Baghouse technology will be evaluated for the currently uncontrolled ovens and other combustion sources at the Plant.

Nogales, AZ is considered nonattainment for PM_{2.5} primarily due to emissions resulting from traffic at the U.S./Mexico border. Currently there are no major sources for PM_{2.5} located in Nogales county.⁶

⁴ Information found on pages III.D.5.7-1-11 and obtained from the following website: http://dec.alaska.gov/air/anpms/comm/docs/fbxSIPpm2-5/III.D.5-PM2.5_SIP_Sections-Adopted_09.07.16.pdf

 ⁵ Facilities and permits obtained from the following website:

http://www.pinalcountyaz.gov/AirQuality/Pages/TitleVPermitsIssued.aspx and accessed on March 28, 2017. ⁶ Information found on pages 17-18 of "Technical Support Document for Recommendation that Nogales, Arizona

Area Be Designated as a PM_{2.5}Nonattainment Area" and obtained from the following website: https://www3.epa.gov/pmdesignations/2006standards/rec/letters/09_AZ_rec_a2.pdf (footnote continued)

California

California Air Resources Board (CARB) provides a statewide BACT clearinghouse. The database was developed by staff from various air pollution control and air quality management districts located in California.⁷ Search results provided BACT determinations for dryers and ovens emitting PM_{2.5} and its precursors. Low NOx burners were determined to be BACT for these processes in CA. Table 4 provides a full list of determinations for dryers and ovens from the BACT clearinghouse. All facilities are located within the South Coast Air Quality Control District (AQMD).

Plant Name	Pollutant	BACT Determination
Dart Container Corporation of California	NOx, CO, PM	Emission limits
Color America Textile Processing, Inc.	NOx	Low NOx burner
Aramark Uniform Services	NOx	Low NOx burner
Fletcher Coating	NOx, VOC	Low NOx burner
Newell Rubbermaid	NOx	Low NOx burner
Sargent Fletcher	NOx, CO	Eclipse Combustion-Nozzle-Mix Low-NOx burner
BMCA Insulation Products	NOx, CO	Low NOx burner

Table 4 – South Coast AQMD BACT Determinations

As Hexcel already uses low NO_x burner control technology on newer ovens and other combustion units, there are no new control technologies or strategies proposed in CA for these sources applicable to the West Valley City Plant. Low NO_x burner technology will be evaluated for the currently uncontrolled combustion sources at the Plant.

In addition, BACT was determined for a fiber impregnation facility located in CA. Cytec Fiberite, Inc. (Cytec) is a fiber impregnation facility located in the South Coast AQMD PM_{2.5} serious nonattainment area in Orange County. Based on information obtained from the CARB BACT clearinghouse, Cytec operates under the following very stringent BACT conditions⁸:

- Hood designed for at least 95% collection efficiency;
- Baghouse guaranteed to meet 99.999% collection efficiency for 1 micron particles;
- HEPA filter downstream of baghouse guaranteed to meet 99.97% collection efficiency for 0.3; micron particles;
- Use of some zero-VOC materials purchased from Proviron Fine Chemicals.

Hexcel currently employs baghouse control technology on the newer fiber lines (Fiber Lines 13, 14, 15 and 16). Baghouse control technology will be evaluated for the currently uncontrolled

⁷ BACT Clearinghouse obtained from the following website: https://www.arb.ca.gov/bact/bact.htm

^a BACT determination for Cytec obtained from the following website:

https://www.arb.ca.gov/bact/bactnew/determination.php?var=820 and accessed on March 16, 2017.

fiber lines (Fiber Lines 2 - 7, 8, 10, 11 and 12). A required collection efficiency for the routing/ducting of the Fiber Line pollutant stream to the baghouse has not been established. However, it is understood that the ducting is designed to maintain persistent air flow and temperature to the baghouse, and will be inherently efficient for collection of the pollutant stream.

Oregon

As a part of their Klamath Falls PM_{2.5} Attainment Plan, Oregon Department of Environmental Quality (ODEQ) has implemented a number of emission reduction actions. One action included identifying RACT strategies for major sources located in Klamath Falls.⁹ The four major sources identified are Columbia Forest Products, Jeld-Wen, Collins Products, and Klamath Cogeneration. It was determined that complying with existing state regulations and use of low-NOx burners is considered RACT for Klamath Cogeneration. For Jeld-Wen and Collins Products, complying with MACT rules for Plywood and Composite Wood Products is considered sufficient control. Columbia Forest Products will be required to meet new RACT standards imposed for wood combustion.¹⁰ As Hexcel already uses low NO_x burner control technology on newer ovens and other combustion units, there are no new control technologies or strategies proposed in OR for these sources applicable to the West Valley City Plant. Low NO_x burner technology will be evaluated for the currently uncontrolled combustion sources at the Plant.

No additional BACT determinations were made for major sources located in Oakridge, OR, as industrial sources of PM_{2.5} only account for less than 1% of the base emission inventory.¹¹

Pennsylvania

According to the Allegheny County Health Department PM_{2.5} SIP, there are two major stationary sources located in the Liberty-Clairton nonattainment area: U.S. Steel Clairton Plant and Koppers Industries. U.S. Steel was required to perform a BACT analysis for their Clairton Plant, however the BACT determinations are not pertinent to Hexcel due to the differing steel processes and equipment. Koppers Industries is chemical processing plant that operate a number of process heaters and a dryer. No additional controls were determined as BACT for the process heaters as both flares and catalytic oxidation were considered too costly. Use of a pulse-jet baghouse was determined as BACT for the dryer.¹² Hexcel currently employs baghouse control technology on

⁹ Information from page 3 of Klamath Falls PM_{2.5} Attainment Plan obtained from the following website: http://www.deg.state.or.us/ag/planning/docs/kfalls/KFallsAttPlan2012.pdf

¹⁰ Information found in Appendix 15-1 of Klamath Falls PM_{2.5} Attainment Plan obtained from the following website: http://www.deq.state.or.us/aq/planning/docs/kfalls/A-15-1Combined.pdf

¹¹ Information found on page 32 of Oakridge PM_{2.5} Attainment Plant obtained from the following website: http://www.lrapa.org/DocumentCenter/View/1848

¹² Information from pages 58-59 of "Revision to the Allegheny County Portion of the Pennsylvania State Implementation Plan - Attainment Demonstration for the Liberty-Clairton PM2.5 Nonattainment Area" obtained from the following website: http://www.achd.net/airqual/Liberty-Clairton_PM2.5_SIP-Apr2011.pdf (footnote continued)

6

the newer fiber lines (Fiber Lines 13, 14, 15 and 16). Baghouse control technology will be evaluated for the currently uncontrolled fiber lines (Fiber Lines 2 - 7, 8, 10, 11 and 12).

Tennessee

Steam Plant*

There are few major sources operating within the Tennessee PM2.5 nonattainment area. No similar processes or equipment were found however information on boilers has been included. Provided below is Table 5, detailing control technologies and strategies used for boilers within or near the nonattainment area.13

Facility	Location	Equipment	Control Technology	
Johnson Matthey, Inc.	Sevierville , TN	Boiler	Use of natural gas Low NO _x burner	
University of Tennessee	Knoxville,	Boilers	Use of natural gas	

Table 5 – TN PM_{2.5} Nonattainment Area Facility Control Technology Determinations

TN a - Information obtained from application. Title V permit has not yet been issued.

As Hexcel already uses low NO_x burner control technology on newer ovens and other recently replaced combustion units, there are no new control technologies or strategies proposed in TN for these sources applicable to the West Valley City Plant. Low NOx burner technology will be evaluated for the currently uncontrolled combustion sources at the Plant.

BACT Methodology

Per 40 CFR § 52.21(b)(12) and UDAQ R307-401-2(1), BACT is defined as follows:

Best available control technology means an emissions limitation (including a visible emission standard) based on the maximum degree of reduction for each pollutant subject to regulation under Act which would be emitted from any proposed major stationary source or major modification which the Administrator, on a case-by-case basis, taking into account energy, environmental, and economic impacts and other costs, determines is achievable for such source or modification through application of production processes or available methods, systems, and techniques, including fuel cleaning or treatment or innovative fuel combustion techniques for control of such pollutant. In no event shall application of best available control technology result in emissions of any pollutant which would exceed the emissions allowed by any applicable standard under 40 CFR Parts 60 and 61. If the Administrator determines that technological or economic limitations on the application of measurement methodology to a particular emissions unit would make the imposition of an emissions standard

¹³ Facilities and permits obtained from the following website: <u>http://environment-</u> online.tn.gov:8080/pls/enf_reports/f?p=19031:34001:::NO::: and accessed on March 31, 2017.

infeasible, a design, equipment, work practice, operational standard, or combination thereof, may be prescribed instead to satisfy the requirement for the application of best available control technology. Such standard shall, to the degree possible, set forth the emissions reduction achievable by implementation of such design, equipment, work practice or operation, and shall provide for compliance by means which achieve equivalent results.

The United States Environmental Protection Agency (U.S. EPA) prepared a guidance document in October 1990 entitled the "New Source Review Workshop Manual."¹⁴ In it, the U.S. EPA recommends the use of a standardized "top-down" process for BACT determinations. The top-down process requires that available control technologies be ranked in descending order of control effectiveness. Under the top-down methodology, the most stringent or top alternative is represented as BACT unless it can be determined, and the permitting authority agrees, that technical considerations or energy, environmental, or economic impacts justify that the most stringent technology is not achievable for the specified source. If it is determined that the top alternative is not achievable, then the next most stringent alternative is considered, until a BACT control option is selected. The five basic steps of a top-down BACT review as identified by the U.S. EPA are identified below.

- Step 1 Identify all available control technologies
- Step 2 Eliminate technically infeasible options
- Step 3 Rank remaining control technologies according to control efficiency
- Step 4 Evaluate the most effective controls according to energy, environmental and economic impact.
- Step 5 Select BACT

The UDAQ NOI Guide also details the requirement to achieve BACT as required in the State of Utah permitting process. The proposed BACT must be based on the most effective engineering techniques and control equipment to minimize emission of air contaminants into the outside environment from its process. Hexcel has ensured that this BACT analysis is in compliance with the UDAQ BACT requirements, which are similar to the U.S. EPA top down requirements.

Based on guidance provided by UDAQ and in accordance with BACT top-down procedures, the following methodologies were used to complete each component of the analysis¹⁵.

(footnote continued)

¹⁴ U.S. EPA, New Source Review Workshop Manual: Prevention of Significant Deterioration and Nonattainment Area Permitting (Draft) (Oct. 1990) [hereinafter "NSR Manual"].

¹⁵ Meeting at UDAQ offices with Nando Meli and Martin Grey of UDAQ, Bryan Wheeler (Hexcel) and Miriam Hacker (Aspen Outlook, LLC), February 28, 2017.

Step 1 - Potential Control Technology Identification

Available control technologies were identified for each emission unit. The following methods were used to identify potential control technologies for all Hexcel sources of PM_{2.5} and its precursors:

- Researching the RACT/ BACT/Lowest Achievable Emission Rate (LAER) Clearinghouse (RBLC) database¹⁶. For this revision, the RBLC search has been updated to include activity through April 23, 2018.
- Reviewing BACT implemented by other regulatory agencies and PM_{2.5} and Ozone non-attainment areas,
- Applying previous engineering experience,
- Reviewing and discussions with air pollution control equipment vendors, and/or
- Reviewing available literature.

Step 2 – Evaluation of Technical Feasibility

Each identified potential control technology was evaluated to determine its technical feasibility in relation to incorporation with sources at the Hexcel site. Only options determined to be technically feasible were further evaluated.

Step 3 – Ranking of Control Technologies

All technically feasible options were ranked based on their control effectiveness. If there was only one remaining option or if all of the remaining technologies could achieve equivalent control efficiencies, ranking based on control efficiency is not required.

Step 4 – Evaluation of most effective controls

Beginning with the most efficient control option in the ranking, detailed economic, energy, and environmental impact evaluations were performed. If the most effective control was shown to be economically feasible, without negative energy or environmental impacts, no further evaluation of controls is necessary.

Potential Control Technology Emission Impact Evaluation

As part of the BACT assessment, emissions associated with existing and potential control technologies for Hexcel sources of PM_{2.5} and its precursors were evaluated based on the following tasks:

- 1. Provide a summary of existing emissions for each source of PM2.5 and PM2.5 precursors.
- 2. Calculate emissions reductions for technically feasible options.

¹⁶ U.S. EPA Technology Transfer Network Clean Air Technology Center - RACT/BACT/LAER Clearinghouse, https://cfpub.epa.gov/rblc/index.cfm?action=Search.BasicSearch&lang=en

In this revised submittal, emission calculations have been revised to more accurately represent the filterable portion of the particulate emissions and the subsequent control of these emissions using baghouse and filter box technology.

Cost/Benefit Analysis for Potential Control Technologies

The economic feasibility evaluated the cost effectiveness of each control option. Costs of installing and operating control technologies were estimated and annualized following the methodologies outlined in the U.S. EPA's Office of Air Quality Planning and Standards (OAQPS) *Air Pollution Control Cost Manual* (CCM) and other industry resources¹⁷. Additional resources obtained from Hexcel engineering specifications and control technology vendor estimates were also used to determine costs for implementation of the control technologies.

UDAQ has requested that the cost/benefit of implementing controls over 10 years or out to 2024 be reviewed. To do this, Hexcel has calculated annualized costs for proposed control technologies, assuming a cost recovery factor for a 20-year system life and a 7% annual interest rate for all technologies, with the exception of the RTOs which have been shown to have a maximum 15-year system life.

UDAQ has established a value of \$20,000 per ton of pollutant reduced as the cost effectiveness threshold for this BACT analysis.

Environmental Impact Analysis for Potential Control Technologies

Impacts of waste disposal and additional energy requirements were evaluated for each control option.

Step 5 – Select BACT

In the final step, one pollutant-specific control option has been proposed as BACT for each emission unit under review, for PM_{2.5} and its precursors based on evaluations from the previous step.

BACT Analysis for Fiber Line Emissions

Fiber Line Process Description

Because Hexcel's process is complex, an understanding of it is important for determining technical and economic feasibility of various control options. The first step in converting polyacrylonitrile (PAN) fiber into carbon fiber is the stabilization of the PAN fibers in an air oxidation process. The intent of this step is to prepare the PAN fibers for the high temperature processing of carbonization.

¹⁷ Office of Air Quality Planning and Standards (OAQPS), *EPA Air Pollution Control Cost Manual*, Sixth Edition, EPA 452-02-001 (http://www.epa.gov/ttn/catc/products.html#cccinfo), Daniel C. Mussatti & William M. Vatavuk, January 2002.

Completion of the oxidation process occurs with the operation of oxidizer ovens. The ovens are set at specified temperatures in order to achieve the required amount of oxidation reaction for the fiber stabilization process. The ovens employed in the process are either electrical or natural gas heated. Fiber Lines 2, 3 and 4 have been established with electrically heated ovens, which emit no combustion emissions. Fiber Lines 5, 6, 7, 8, 10, 11, 12, 13, 14, 15 and 16 have been established with natural gas heated ovens. Natural gas combustion related emissions are minimal, with NO_x being the primary emission from these sources. (There are no Fiber Lines 1 or 9.)

Process emissions are also generated during the oxidizing process within the ovens. They are not combined with the natural gas combustion emissions in the existing configuration of Fiber Lines 5 – 7, but are combined with the combustion emissions in the configuration of Fiber Lines 8, 10, 11, 12, 13, 14, 15 and 16. Emissions associated with the stabilization process occurring in the oxidation ovens are primarily hydrogen cyanide (HCN), VOCs, NH₃, CO and filterable and condensable PM₁₀ and PM_{2.5}. Exhaust gases containing process emissions from the ovens are captured in hoods at either ends of each oven or within the oven structure.

Carbonization is the next downstream step in the manufacturing of carbon fiber. This step is comprised of two (2) different phases. The first phase is tar removal. This occurs within a furnace through which the fiber continuously passes, commonly referred to as the low temperature furnace. The tar removal step takes place in an electrically heated furnace at temperatures ranging from 300 °C to 800 °C. Process emissions generated from the tar removal phase are primarily HCN, VOCs, and particulates.

The second carbonization phase occurs at temperatures higher than those of the tar removal phase, ranging from 1,200 °C to 1,450 °C. The high temperature treatment of the fiber occurs in another electrically heated furnace, commonly referred to as the high temperature furnace or HT furnace. This phase of carbonization primarily generates HCN, VOC, and particulates emissions.

Hexcel is permitted to operate 14 Fiber Lines, each located in a separate building. The proposed control device options evaluated for each Fiber Line were based on the assumption that all stack flow would be directed to one control device per building.

BACT Analysis for PM_{2.5} Emissions

Condensable Particulate Matter

UDAQ is required to evaluate condensable PM_{2.5}, in addition to the filterable fraction of the pollutant. CPM comprises a considerable fraction of PM_{2.5} and can be converted to submicron filterable particles under certain atmospheric conditions.

Review of the RBLC and other sources indicates that recently determined BACT controls have no direct control for CPM. CPM are mainly made up of organics, nitrates, and sulfates. Therefore,

controlling VOCs, NO_x , and SO_2 will provide control for CPMs. Since this analysis includes BACT reviews for VOC, NO_x , and SO_2 , further review of specific controls for CPM was not conducted.

Queries of the U.S. EPA's RBLC database and other sources were conducted to determine what emission controls have been accepted by permitting authorities as RACT, BACT or LAER for all forms of particulate, including condensable PM_{10} or $PM_{2.5}$. The result of this query is included in the summary for the $PM_{2.5}$ BACT and did not identify any RACT, BACT or LAER determinations for condensable PM_{10} or $PM_{2.5}$.

It has therefore been assumed that control technologies that were found to be BACT for particulate matter (PM₁₀ and PM_{2.5}) apply to the filterable portion and that the condensable portion has been addressed through BACT analyses for VOCs, NO_x, and SO₂.

Identify All Control Technologies for PM_{2.5}

Based on the review of U.S. EPA RBLC database and similar operations, Hexcel has identified the following control technologies that would be applicable for controlling filterable PM_{2.5} emissions from the proposed gas streams:

- 1. Good Combustion Practices,
- 2. Use of Natural Gas Only as Fuel,
- 3. Baghouse/Filter Boxes,
- 4. Venturi Scrubber, and
- 5. Wet Electrostatic Precipitator (ESP)

The search of the RBLC database produced two carbon fiber manufacture facilities. Results of this search are presented in Attachment C, Table C-1. Additional searches of the database, for similar combustion units fired with natural gas were also conducted. The results of these searches for all particulate are presented in Table C-2. The controls applicable to filterable PM and PM₁₀ are assumed to provide a level of control for PM_{2.5} as well.

Good Combustion Practices

Several operations are listed in the U.S. EPA's RBLC database where good combustion practices are the accepted technology for minimizing particulate emissions. Particulate emissions are reduced by good combustion practices by keeping the burners maintained properly so that they continue to operate according to their design.

Use of Natural Gas Only as Fuel

Particulate emissions from combustion of natural gas are typically very low and generally lower than from combustion of other fuels such as diesel. Hexcel currently employs natural gas as fuel for control of particulate emissions from combustion sources at the facility.

Baghouse

Baghouse operation involves removal of particulates by collecting particulates on filter bags as an exhaust stream passes through the baghouse. Optimal operational temperature of a baghouse is at 500 °F or less, and cannot typically withstand higher exhaust temperatures. Baghouse technology is a well-established particulate control technology that has historically been established as BACT for many types of facilities and processes. Baghouse control efficiencies are highly dependent upon inlet grain loading to the baghouse, but have been shown to obtain a particulate collection efficiency up to 99.5% for PM₁₀, and up to 99% capture for PM_{2.5}. Although many of the calculated grain loadings for the Fiber Lines were less than 0.005 gr/dscf, a commonly achievable baghouse control standard, controlled emission rates were conservatively calculated for all Fiber Lines according to presumed baghouse control efficiency.

Filter Box

In March of 2017, Hexcel submitted a Notice of Intent to UDAQ for the redesign of the particulate control system for the new Fiber Lines 15 and 16. Based on operational experience with Fiber Lines 13 and 14, Hexcel determined that the DFTO exhaust and the RTO exhaust from the Fiber Lines would be better controlled separately. The control manufacturer determined that the most efficient way to do this was to install a baghouse to control the DFTO emission stream and a filter box to control the RTO emission stream. Filter box operation involves removal of particulates by collecting particulates on filter bags as an exhaust stream passes through the filter box. In contrast to the baghouse technology, the filter box allows for easier filter replacement. Filter box control efficiencies are similar to bag house control efficiencies and are highly dependent upon inlet grain loading to the filter box. It is expected that the combination of baghouse control on the DFTO and filter box control on the RTO will provide control efficiencies as permitted for the Hexcel facility for Fiber Lines 15 and 16.

As part of compliance with this BACT, Hexcel plans to submit a Notice of Intent (NOI) at the end of 2018 or beginning of 2019 to modify Fiber Lines 13 and 14 to incorporate the filter box control.

Venturi Scrubber

Venturi scrubbers are generally applied for controlling particulate matter and sulfur dioxide. They are designed for applications requiring high removal efficiencies of particles with diameters between 0.5 and 5.0 micrometers. Venturi scrubbers accelerate the waste gas stream to atomize the scrubbing liquid to improve gas to liquid contact. Scrubbers employ gradually narrowing and then expanding sections, called the throat, to accelerate the gaseous streams. Liquid is either introduced to the venturi upstream of the throat or injected directly into the throat where it is atomized into small droplets by turbulence. Once the liquid is atomized, the mixture decelerates causing additional impacts and agglomeration of the droplets. Once the particulate is captured within the liquid, the wet particulate is separated from excess water using a cyclonic separator and/or mist eliminator.

The high pressure drop required for these systems results in high energy use. The relatively short gas-liquid contact time restricts their application to highly soluble gases. Therefore, they are infrequently used for the control of volatile organic compound emissions in dilute

concentration¹⁸. Venturi scubber particulate collection efficiencies range from 70% to greater than 99%, depending on the application. The BACT analysis estimates scrubber PM_{2.5} control efficiency at 98% based on vendor information¹⁹. Although there is a potential for particulate from Hexcel operations to clog a packed bed scrubber, the quote provided by Pollution Control Systems is for a 2-stage unit with a venturi scrubber upstream of a packed bed scrubber, for control of PM_{2.5}, SO₂ and NH₃ to 98%.

Wet ESP

The possibility of using a Wet Electrostatic Precipitator (ESP) was reviewed for this analysis. Particulates are removed by electrically charging the particles and collecting the charged particles on plates. Collected particulate is washed off the plates and collected in hoppers below the ESP. High efficiency, wet ESPs can achieve 99%+ removal efficiency for submicron particles at minimum pressure drop.²⁰.

Eliminate Technically Infeasible Options

Wet ESP

At a Davis County disposal facility in the 1990's, Hexcel experienced systematic failure of an ESP due to the presence of small carbon fiber filaments upon incineration of carbon preimpregnated fiber. The very fine broken carbon filaments in the process gas stream are conductive and, as a result, they short circuited the ESP. Based on this proven technical infeasibility, Hexcel will not be considering this control technology further for this application.

Baghouse

Through operation of a baghouse associated with Fiber Lines 13 and 14, it has been shown that the previously presumed efficiencies cannot be met under current fiber line operating conditions. Specifically, because of the moisture in the Fiber Line source stream, the baghouse was becoming plugged rapidly. Because of these conditions, the control system will be modified to include a filter box to control the RTO portion of the emission stream. Hence, Hexcel has determined that incorporation of the baghouse alone for control of the Fiber Line emissions streams will not be technically feasible.

Rank Technically Feasible Control Technologies

Based on the information provided in the previous section, control technologies applicable for control of filterable PM_{2.5} are the following, with most effective control first and least effective control last.

¹⁸ OAQPS, EPA Air Pollution Control Cost Manual, Sixth Edition, EPA 452-02-001, Daniel C. Mussatti & William M. Vatavuk, January 2002. Section 5 SO2 and Acid Gas Controls, Section 5.2 Post-Combustion Controls, Chapter 1 Wet Scrubbers for Acid Gas, p. 1-5.

¹⁹ The basic equipment cost of a 2-stage unit, with a venturi scrubber upstream of a packed-bed scrubber able to achieve 98% removal efficiency was e-mailed on 03/31/17 from Pollution Control Systems to L. Courtright (Aspen Outlook, LLC).

²⁰ Clean Gas Systems, Inc (CGS) Wet Electrostatic Precipitators, http://www.cgscgs.com/precip.htm

- 1. Baghouse/Filter Box
- 2. Venturi Scrubber
- 3. Good Combustion Practices
- 4. Use of Natural Gas Only as Fuel

Evaluation of Most Effective Controls

Evaluate Emission Impacts from Potential Control Technologies

Attachment A presents emissions for each Fiber Line associated with the existing process operation, as well as the emissions once each particulate control technology under evaluation is applied. Supporting detailed emission calculations are provided in Attachment B, Table B-1.

Because existing operations of the Fiber Lines incorporates good combustion practices and natural gas as fuel as part of current operations, these controls have not been further evaluated beyond calculation of existing emissions from the facility. Combined baghouse and filter box emissions were calculated assuming a particulate collection efficiency of 99.5% for filterable PM₁₀, and 99% capture for filterable PM_{2.5}. Although many of the calculated grain loadings for the Fiber Lines were less than 0.005 gr/dscf, a commonly achievable baghouse control standard, controlled emission rates were conservatively calculated for all Fiber Lines according to presumed baghouse control efficiency²¹. Control efficiency associated with operation of a 2-stage system with a venturi scrubber upstream of a packed bed was estimated at 98% for PM_{2.5} based on a vendor cost estimate for control of PM_{2.5}, SO₂ and NH₃²².

Cost/Benefit Analysis for Potential Control Technologies

Annualized costs associated with implementing the baghouse/baghouse + filter box and wet scrubber technologies on Fiber Lines 2 - 7, 8, 10, 11, 12, 13, 14, 15 and 16 were calculated and are summarized in Attachment A for each of the Fiber Lines. Detailed annualized cost calculations are provided in Attachment B, Tables B-2 and B-3.

Environmental Impact Analysis for Potential Control Technologies

Additional environmental impact is associated with waste disposal requirements for both the operation of a baghouse or a wet scrubber. Baghouse operation requires disposal of the solid waste collected from the filters. Wet scrubber operation for control of PM requires disposal of waste in the form of a slurry or wet sludge. This creates a need for both wastewater treatment and solid waste disposal.

²¹ The 0.005 gr/scf emitted after control is a commonly achievable baghouse standard cited in many BACT findings. This limit is also attributable to the maximum achievable control technology standards for iron and steel foundries, found in 40 CFR 63.7690.

²² The basic equipment cost of a 2-stage unit, with a venturi scrubber upstream of a packed-bed scrubber able to achieve 98% removal efficiency was e-mailed on 03/31/17 from Pollution Control Systems to L. Courtright (Aspen Outlook, LLC).

Select BACT for Filterable PM_{2.5}

The review of U.S. EPA RBLC database for operations similar to Hexcel's showed that technologies typically used for particulate controls include: good combustion practices, baghouse, wet scrubber, or wet ESP. The RBLC database does not contain any examples of carbon fiber facilities installing particulate control devices for RACT, BACT, or LAER. As described above, the wet ESP technology is incompatible with Hexcel's operations.

Hexcel has installed baghouses in compliance with BACT requirements to control the new Fiber Lines 13 and 14. Due to operational issues, Hexcel has subsequently implemented parallel particulate controls, with a baghouse controlling the DFTO emission stream and a filter box controlling the RTO emission stream on Fiber Lines 15 and 16. Hexcel has also committed to installing the parallel baghouse/filter box control, in compliance with BACT requirements to control permitted Fiber Lines 13 and 14. As implementation of the baghouse/filter box technology has been shown to be the most effective control of filterable PM2.5, no additional particulate control is warranted to meet BACT for Fiber Lines 13, 14, 15 and 16.

Low particulate emission rates, in addition to excessive retrofit costs associated with the other existing individual Hexcel Fiber Lines make add-on control device technology cost prohibitive. Redesign of the Fiber Lines would also require significant loss in production for Hexcel. Costs associated with loss of production have conservatively not been included in the total costs associated with the installation of particulate controls for the older lines. The estimated annualized cost effectiveness of installing a baghouse or particulate scrubber on existing Fiber Lines (2 -7, 8, 10, 11 and 12) is more than \$60,000 per ton of particulate reduced, which is greater than the UDAQ \$20,000 BACT threshold. Therefore, existing controls, including good combustion practices and use of natural gas as fuel are determined to be PM2.5 BACT for Fiber Lines 2-7, 8, 10, 11 and 12.

BACT Analysis for SO₂ Emissions

Identify All Control Technologies for SO₂

Hexcel has identified the following control technologies applicable for controlling SO₂ emissions from the Fiber Lines, based on the review of U.S. EPA RBLC database and similar operations:

- 1. Use of Natural Gas Only as Fuel, and
- 2. Venturi Scrubber

Two carbon fiber manufacture facilities were identified in the search of the RBLC database. Attachment C, Table C-1 presents a summary of controls identified for the carbon fiber manufacturing facilities. As shown in this table, SO_2 is not a regulated pollutant for these facilities. Table C-3 presents the results of searches of the database conducted for similar combustion units fired with natural gas for SO₂. These results indicate that SO₂ controls are rarely implemented for similar types of units.

Use of Natural Gas Only as Fuel

 SO_2 emissions from combustion of natural gas are typically very low and generally lower than from combustion of other fuels such as diesel. Hexcel currently employs natural gas as fuel for control of SO_2 emissions from combustion sources at the facility.

Venturi Scrubber

Venturi scrubbers are generally applied for controlling particulate matter and sulfur dioxide. Operation of this unit is described in detail in the PM_{2.5} BACT section.

The BACT analysis estimates scrubber SO₂ control efficiency at 98% based on vendor information²³. Although there is a potential for particulate from Hexcel operations to clog a packed bed scrubber, the quote provided by Pollution Control Systems is for a 2-stage unit with a venturi scrubber upstream of a packed bed scrubber, for control of PM_{2.5}, SO₂ and NH₃ to 98%.

Eliminate Technically Infeasible Options

None of the identified technologies are technically infeasible.

Rank Technically Feasible Control Technologies

Based on the information provided in the previous section, control technologies applicable for control of SO_2 are the following, with most effective control first and least effective control last.

- 1. Venturi Scrubber
- 2. Use of Natural Gas Only as Fuel

Evaluation of Most Effective Controls

Evaluate Emission Impacts from Potential Control Technologies

Emissions associated with existing process operation for each Fiber Line, and the emissions once each SO₂ control technology under evaluation is applied are presented in Attachment A. Supporting emission calculations are provided in Attachment B, Table B-1.

Because existing operations of the Fiber Lines incorporates good combustion practices and natural gas as fuel as part of current operations, these controls have not been further evaluated beyond calculation of existing emissions from the facility. Emissions estimates from the fiber lines with Venturi scrubber technology installed are calculated assuming 98% control efficiency.

Cost/Benefit Analysis for Potential Control Technologies

Annualized costs associated with implementing the Venturi scrubber technology on Fiber Lines 2 -7, 8, 10, 11, 12, 13, 14, 15 and 16 were calculated and are summarized in Attachment A for

²³ The basic equipment cost of a 2-stage unit, with a venturi scrubber upstream of a packed-bed scrubber able to achieve 98% removal efficiency was e-mailed on 03/31/17 from Pollution Control Systems to L. Courtright (Aspen Outlook, LLC).

each of the Fiber Lines. Detailed annualized cost calculations are provided in Attachment B, Table B-4.

Environmental Impact Analysis for Potential Control Technologies

Additional environmental impact is associated with waste disposal requirements for the operation of a Venturi scrubber which creates a need for wastewater treatment. High energy use requirements are also associated with these units, creating increased combustion emissions.

Select BACT for SO₂

The review of U.S. EPA RBLC database for operations similar to Hexcel's showed that technologies typically used for control of SO₂ include: combustion of natural gas as a fuel and use of scrubber technologies. The RBLC database does not contain any examples of carbon fiber facilities installing SO₂ control devices for RACT, BACT, or LAER. Low SO₂ emission rates, in addition to excessive retrofit costs associated with the other existing individual Hexcel Fiber Lines make add-on control device technology cost prohibitive. Redesign of the Fiber Lines would also require significant loss in production for Hexcel. Costs associated with loss of production have conservatively not been included in the total costs associated with the installation of SO₂ controls for the older lines. The estimated annualized cost effectiveness of installing scrubber technology on existing Fiber Lines is more than \$115,000 per ton of SO₂ reduced, substantially more than the UDAQ \$20,000 BACT threshold. Therefore, existing controls, including use of natural gas as fuel is determined to be SO₂ BACT for all Fiber Lines.

BACT Analysis for NO_x Emissions

As described previously, Fiber Line operation depends on the oxidation process, completed with oxidizer ovens set at specified temperatures to achieve the required oxidation for fiber stabilization. The ovens have the capability to be either electrical or natural gas heated. Fiber lines 2, 3 and 4 have been established with electrically heated ovens, which emit no combustion emissions Fiber Lines 5, 6, 7, 8, 10, 11, 12, 13, 14, 15 and 16 have been established with natural gas heated ovens. Natural gas combustion related emissions are minimal, with NO_x being the primary emission from these sources. Process emissions generated during the oxidizing process within the ovens are not combined with the natural gas combustion emissions in the existing configuration of Fiber Lines 5 – 7, but are combined with the combustion emissions in the configuration of Fiber Lines 8, 10, 11, 12, 13, 14, 15 and 16. For this analysis, combined emissions from the Fiber Lines were evaluated.

Identify All Control Technologies

Hexcel has identified the following control technologies applicable for controlling NO_x emissions from the Fiber Lines, based on the review of U.S. EPA RBLC database and similar operations:

- 1. Good Combustion Practices,
- 2. Use of Natural Gas Only as Fuel,
- 3. De-NOx water system for DFTO,
- 4. Low-NO_X Burners,
- 5. Ultra-Low-NO_x Burners,

- 6. LoTO_x
- 7. NOXIDIZER
- 8. Selective Catalytic Reduction (SCR), and
- 9. Selective Non-Catalytic Reduction (SNCR)

Two carbon fiber manufacture facilities were identified in the search of the RBLC database. Attachment C, Table C-1 presents a summary of controls identified for the carbon fiber manufacturing facilities. These facilities used combustion of natural gas as the accepted NO_X control. Table C-4 presents the results of searches of the database conducted for similar combustion units fired with natural gas for NO_X. The list above is a summary of these results.

Good Combustion Practices

The search of the U.S. EPA RBLC database identified many operations where NO_x emissions are controlled by good combustion practices. Good combustion practices include keeping burners maintained and operating within design parameters, thereby keeping NO_x emissions to a minimum.

Use of Natural Gas Only as Fuel

The search of the U.S. EPA RBLC database identified some operations where NO_x emissions are controlled by firing of natural gas. NO_x emissions may be limited by restricting fuel type to natural gas because combustion of other fuels may increase NO_x emission rates. Hexcel currently employs natural gas as fuel and good combustion practices for control of NO_x emissions from many of the combustion sources at the facility.

De-NO_x water system

Hexcel has been working with Anguil Environmental Systems, Inc. (Anguil) to reduce NO_X emissions from the DFTO. The DFTO is used in combination with the RTO to control VOCs and HAPs from Fiber Lines 13, 14, 15 and 16. One of the solutions reviewed to achieve lower NO_X emissions from the DFTO is to install a system to control the air, steam and water to the unit. After installation of the DFTO on Fiber Lines 13 and 14, and based on in-house testing, Hexcel has determined that NO_X emissions were increasing significantly with elevation of the DFTO burner temperature. With the introduction of "quench water", Hexcel was able to significantly reduce the NO_X emissions from the DFTO. Hexcel is currently reviewing the feasibility of incorporating this adjustment in order to offset current NO_X emissions in anticipation of future production increases.

Low-NO_x Burners

LNB are accepted technology for control of NO_x from sources similar to the oxidation ovens. Low NO_x burner technology implements a staged combustion process utilizing lean fuel conditions and a lower temperature environment. Lean combustion is achieved by increasing the air-to-fuel ratio such that peak and average temperatures in the combustion zone are lowered. The addition of excess air can also reduce residence times at peak temperatures. These conditions reduce thermal NO_x formation. Standard LNB technology can reduce NO_x emissions as compared with standard burners by $50\%^{24}$.

Ultra Low-NO_x Burners

ULNB add on to the LNB technology to include a process such as flue gas recirculation to further reduce NO_x. Recirculation of cooled flue gas reduces temperature by diluting the oxygen content of the combustion air and by causing heat to be diluted in the larger quantity of flue gas. ULNBs provide a stable flame using several different zones, such as a primary combustion zone, a zone where fuel is added to chemically reduce NO_x, and a zone for final combustion with low excess air to limit temperature. There are many variations on the ULNB theme of reducing NO_x that can produce more than 80% Destruction Removal Efficiency (DRE)²⁵. NO_x emission rates as low as 9 ppmv have been achieved in practice²⁶, however this has not been shown to be applicable to Hexcel RTO control system.²⁷

LoTOx System[™]

The LoTOx SystemTM is a relatively new NO_x control system. It is a low temperature oxidation process which reduces NO_x emissions by the addition of ozone at an optimum temperature of 325 °F. The ozone oxidizes nitrous oxides to higher oxides of nitrogen such as N₂O₅. After oxidation, these oxides can be removed using other conventional pollutant control technologies. The LoTOx SystemTM must be used in conjunction with an absorption or adsorption process, such as scrubbers because the system oxidizes the NO_x to N₂O₅ which is soluble in water or reactive with alkaline solids. Ozone required for the process is produced from oxygen on-site through a conventional industrial ozone generator.²⁸

NOXIDIZERTM

A NOXIDIZERTM uses a staged-combustion approach which involves initial combustion under O₂deficient conditions, followed by off-gas cooling and final combustion under excess O₂ conditions. The approach takes advantage of the basic thermodynamics of NO_x formation, which is favored by excess O₂ and temperatures above 2,400°F.

²⁸ Information on the LoTOx SystemTM obtained from the following website: <u>http://www.linde-gas.com/en/products_and_supply/emissions_solutions/lotox/index.html</u> and provided by The Linde Group on March 31, 2017.

(footnote continued)

²⁴ Based on assumptions contained in emission factors available through AP-42 Table 1.4-1 - Emission Factors for Nitrogen Oxides (NO_X) and Carbon Monoxide (CO) from Natural Gas Combustion. Uncontrolled emissions from a small boiler are 100 lb/10⁶ scf while controlled Low-NO_X burner emissions from a small boiler are 50 lb/10⁶ scf. Therefore, Low NO_X burners are assumed to control emissions by 50%. [1-50/100 = 50%]

²⁵ U.S. EPA Technical Bulletin "Nitrogen Oxides (NO_X) Why and How are They Controlled", EPA 456/F-99-006R November 1999.

²⁶ Manufacturer guarantees, including http://rto.americanenvironmental.us/Ultra_Low_NOx_Burners_9ppm.html

²⁷ Email from Rich Grzanka of Anguil Environmental Systems, Inc. to Hexcel April 3, 2018.

SCR

SCR reduces NO_x emissions through a post combustion process involving the injection of a reductant (ammonia) into the exhaust gas stream, upstream of a catalyst. The catalyst lowers the activation energy for the reaction to occur between NO_x in the exhaust and the reductant to form nitrogen and water. SCR can be applied as a stand-alone NO_x control or with other technologies such as combustion controls. In practice, SCR systems operate at to achieve NO_x control efficiencies in the range of 70% to 90%²⁹.

SNCR

SNCR controls NO_x emissions by injecting ammonia or a urea solution into the post combustion zone, reducing NO_x to molecular N₂ and water. The reagent can react with a number of flue gas components. However, the NO_x reduction reaction is favored over other chemical reaction processes for a specific temperature range and in the presence of oxygen, therefore, it is considered a selective chemical process³⁰.

The technique requires thorough mixing of reagent into the furnace chamber with at least 0.5 seconds of residence time at a temperature above 1,600 °F and below 2,100 °F. Optimally, the reagent is injected into the furnace at approximately 1,900 – 1,950 °F which is a good tradeoff between the competing reaction of oxidation of ammonia to NO_x and maximizing the residence time prior to the low temperature limit³¹.

SNCR can be applied as a stand-alone NO_x control or with other technologies such as combustion controls. The SNCR system can be designed for seasonal or year-round operations. SNCR can achieve NO_x reduction efficiencies of up to 75% in short-term demonstrations. In typical field applications, however, it provides 30% to 50% NO_x reduction. Reductions of up to 65% have been reported for some field applications of SNCR in tandem with combustion control equipment such as LNB³².

The hardware associated with an SNCR installation is relatively simple and readily available. Consequently, SNCR applications tend to have low capital costs compared to LNB and SCR. Installation of SNCR equipment requires minimum downtime.

²⁹ OAQPS, *EPA Air Pollution Control Cost Manual*, Sixth Edition, EPA/424/B-02-001 (http://www.epa.gov/ttn/catc/dir1/c_allchs.pdf); January 2002

³⁰ OAQPS, *EPA Air Pollution Control Cost Manual*, Sixth Edition, EPA/424/B-02-001 (http://www.epa.gov/ttn/catc/dir1/c_allchs.pdf); January 2002

³¹ SNCR System - Design, Installation and Operating Experience, David L. Wojichowski, De-NOx Technologies LLC

³² Ibid.

Eliminate Technically Infeasible Options

LoTOx System[™]

The LoTOx System[™] must be used in conjunction with an absorption or adsorption process, such as a scrubber. Therefore, it is not an ideal NO_x control option for Hexcel as these additional controls are not currently used at the facility. In addition, the system operates optimally at a temperature of 325 °F. The temperature of the ovens and other combustion sources are variable and typically not at this specified temperature. The air stream would need to be cooled or heated to the optimal temperature of 325 °F for proper LoTOx operation. This would require additional operational expense and as well as increased combustion related emissions.

For these combined reasons, LoTOx technology is considered to be technically infeasible for controlling NO_x emissions from the Fiber Lines.

NOXIDIZERTM

NOXIDIZER incineration had proved to be infeasible for Hexcel as it creates an "over-draft" situation in the low temperature furnace (LTF) process by pulling the nitrogen blanket out of the furnace. If the nitrogen blanket is removed from the LT furnace then atmospheric oxygen is pulled into the furnace and would immediately ignite the PAN, destroying the PAN fiber itself as well as severely damaging the furnace. Furthermore, the incinerator cannot be hard piped to the furnace but instead is connected to an open atmosphere "burner box. A key requirement of the NOXIDIZER is to control the amount of excess oxygen during incineration, and with an open atmosphere burner box the amount of excess oxygen is impossible to control. Finally, NOXIDIZER incineration requires excessive fuel consumption when a large number of inert compounds are present in the exhaust stream. The NOXIDIZER system is considered technically infeasible.

SCR

In the review of the RBLC database and other control technology resources for ovens, furnaces, dryers and burners, as shown in Tables C-1 through C-4, application of SCR is found in association with devices and processes such as gas turbines, nitric acid plants, and steel mill annealing furnaces. These particular types of operations are not the same as the operations found at the Hexcel facility, therefore, it has been shown that this type of control technology has not been used in operations similar to Hexcel operations.

Inherent to Hexcel's operations in the presence of Silica Oxide (SiO₂) at a very small particle size (0.3 μ m) in the gas stream. Because of the particulate laden stream, installation of a baghouse would be required prior to operation of a SCR for the Hexcel stream to minimize catalyst plugging or poisoning. The very small size of the particulate in the Hexcel stream may not be captured within the baghouse, and have a high potential to poison or plug the catalyst of the SCR. This would make the SCR ineffective for the fiber line process.

Because the SCR technology does not control emissions effectively at high temperatures, in excess of 1,000 °F, as well as at low temperatures, below 700 °F, the air stream would need to be cooled to a maximum of 450 °F for proper baghouse operation and the air stream would be

reheated to above 700 °F for proper SCR operation. This would require significant operational expense and additional combustion related emissions.

An additional negative aspect associated with the SCR system is additional ammonia emissions. Ammonia slip (release of ammonia emissions) increases as the SCR catalyst activity decreases. Therefore, an increase in ammonia emissions would be expected with the operation of the SCR. As noted in the introduction to this analysis, ammonia is a PM_{2.5} precursor.

For these combined reasons, SCR technology is considered to be technically infeasible for controlling NO_x emissions from the Fiber Lines.

SNCR

Though simple in concept, it is challenging in practice to design an SNCR system that is reliable, economical, simple to control, and meets other technical, environmental, and regulatory criteria. The review of the RBLC database and other control technology resources for ovens, furnaces, dryers and burners shown in Tables C-1 through C-4 show that this type of control technology has not been used in operations similar to Hexcel operations.

The SNCR technology does not control emissions effectively at temperatures below 1,600 °F. Because the Hexcel the air stream will be controlled by baghouse for particulate emissions, it would need to be cooled to a maximum of 450 °F for proper baghouse operation and the air stream would be reheated to above 1,600 °F for proper SNCR operation. This would require significant operational expense and additional combustion related emissions.

Additional ammonia emissions are also associated with the ammonia injection process for the SNCR. Most of the excess reagent used in the process is destroyed through other chemical reactions. However, a small portion remains in the flue gas as ammonia slip³³. Ammonia is considered as a precursor to PM_{2.5} formation.

For these reasons, the SNCR technology is considered to be technically infeasible for the Hexcel Fiber Line process.

Rank Technically Feasible Control Technologies

Based on the information provided in the previous section, control technologies applicable for control of NO_x are the following, with most effective control first and least effective control last.

- 1. Ultra-Low-NO_x Burners,
- 2. Low-NO_x Burners,
- 3. De-NO_x Water System,
- 4. Good Combustion Practices,
- 5. Use of Natural Gas Only as Fuel,

³³ OAQPS, *EPA Air Pollution Control Cost Manual*, Sixth Edition, EPA/424/B-02-001 (http://www.epa.gov/ttn/catc/dir1/c_allchs.pdf); January 2002

Evaluation of Most Effective Controls

Evaluate Emission Impacts from Potential Control Technologies

Emissions associated with existing process operation for each Fiber Line, and the emissions once each NO_x control technology under evaluation is applied, are presented in Attachment A. Supporting emission calculations are provided in Attachment B, Table B-1.

Because existing operations of the Fiber Lines incorporates good combustion practices and natural gas as fuel as part of current operations, these controls have not been further evaluated beyond calculation of existing emissions from the facility. Emissions associated with implementation of the LNB burner technology on units currently uncontrolled by this technology were calculated assuming 50% control efficiency³⁴. Emissions associated with implementation of the ULNB burner technology were calculated assuming 80% control efficiency³⁵. For evaluation purposes, review of the cost/benefit of incorporating the ULNB technology on the units that currently have LNB technology has been evaluated. This applies to the Fiber Line 13 -16 ovens. Hexcel has reviewed applying this to the existing RTO control units and has found that this is not a technically feasible option due to the extensive modifications it would require.

Cost/Benefit Analysis for Potential Control Technologies

Annualized costs associated with implementing the LNB burner technologies on Fiber Lines 2 -7, 8, 10, 11, 12, 13, 14, 15 and 16 were calculated and are summarized in Attachment A for each of the Fiber Lines. Detailed annualized cost calculations are provided in Attachment B, Tables B-6, B-7 and B-8.

Environmental Impact Analysis for Potential Control Technologies

Additional environmental impact is associated with additional energy requirements and potential emissions associated with the firing of LNBs.

Select BACT for NO_x

The review of U.S. EPA RBLC database for operations similar to Hexcel's showed that technologies typically used for NO_x controls include: good combustion practices, use of natural gas as a fuel, use of LNBs, and use of LoTOx, SCR or SNCR. It has been shown that LoTOx, SCR and SNCR technologies are technically infeasible for Hexcel's operations. Therefore, the proposed operation of LNB technology is the best available control for this type of gas stream.

(footnote continued)

³⁴ Based on assumptions contained in emission factors available through AP-42 Table 1.4-1 - Emission Factors for Nitrogen Oxides (NO_x) and Carbon Monoxide (CO) from Natural Gas Combustion. Uncontrolled emissions from a small boiler are 100 lb/10⁶ scf while controlled Low-NO_x burner emissions from a small boiler are 50 lb/10⁶ scf. Therefore, Low NO_X burners are assumed to control emissions by 50%. [1-50/100 = 50%]

³⁵ U.S. EPA Technical Bulletin "Nitrogen Oxides (NO_x) Why and How are They Controlled", EPA 456/F-99-006R November 1999.

Hexcel has installed LNBs in compliance with BACT requirements to control the new Fiber Lines 13 and 14, as well as new Matrix Tower 1, 3 and 4 thermal oxidizer replacements. Hexcel is also committed to installing LNBs in compliance with BACT requirements to control permitted, but not built Fiber Lines 15 and 16. On May 19, 2015, Hexcel submitted a letter to UDAQ regarding "Supplemental Responses – BACT for Oxidation Ovens of Proposed New Carbon Fiberlines 15 and 16 Modification of AO DAQE-AN113860023-0015 to Add Carbon Fiber Lines 15 and 16".³⁶ This letter provides supplemental information regarding determination of BACT for the oxidation ovens for Fiber Lines 15 and 16 as implementation of LNB technology, and is provided as Attachment D. Cost calculations provided in this letter in 2015 dollars determined a cost per ton threshold for installation of ULNB on the Fiber Line 13, 14, 15 or 16 oxidation ovens at \$47,890 per ton of NO_X reduced. This threshold will be higher in 2017 dollars, in addition to requiring retrofit costs for Fiber Lines 13 and 14. Review of the costs and benefits associated with implementing ULNB technology on all Fiber Lines 13 – 16 oven burners has been conducted as part of this analysis and is addressed below. Summary calculations are provided in Attachment A.

Hexcel has conducted additional review of the cost effectiveness of installing ULNB on Fiber Lines 13 – 16 oven burners currently controlled with LNB technology. This analysis did not include costs associated with loss of production for the facility. As shown in tables A-11 through A-14, the estimated cost effectiveness of implementing the ULNB technology on Fiber Lines 13 – 16 is well above the UDAQ cost effectiveness threshold for BACT of \$20,000 per ton of NO_x reduced. Thus, the ULNB technology has been determined to be cost prohibitive for these sources.

Upon installation and operation of the DFTO units on Fiber Lines 13 and 14, and based on recent in-house stack measurements of Fiber Lines 13 and 14, Hexcel has determined that NO_x emissions were increasing significantly with elevation of the DFTO burner temperature. With the introduction of De-NO_x water, Hexcel was able to significantly reduce the NO_x emissions from the DFTO. Hexcel is currently evaluating the feasibility of incorporating this adjustment for the DFTOs to meet current permit limits.

Burners installed for existing units in Fiber Lines 2 through 7, 8, 10, 11, and 12 were installed from 1981 through 2011. The burners on the ovens for these Fiber Lines were installed based on Hexcel's permitted allowable emissions at the time of permitting. Retrofit of the existing burners to incorporate LNB technology would require many expensive operational adjustments to the ovens, including, but not limited to:

- Demolition of existing operations;
- Redesign of hoods;
- Ductwork, ID-fan and stack redesign;
- Air flow adjustments;
- Gas line input retrofit; and

³⁶ Letter to Nando Meli, UDAQ from Bryan Wheeler, Hexcel Corporation May 19, 2015.

Installation of pressure regulators.

A retrofit factor of 1.4 was included in the cost of installing the LNBs based on documentation provided in the OAQPS manual, however this does not represent the true additional costs associated with retrofitting the older lines to incorporate newer burners. Because proper oxidation is essential to the carbon stabilization process, redesign of the oven burner operations would require a complete redesign of the Fiber Line process to achieve permitted production levels. Redesign of the Fiber Lines would create significant loss in production for Hexcel. In order to install LNB technology, Hexcel estimates up to 3 weeks of down time per line for Fiber Lines 11 and 12. Upon UDAQ's request³⁷, Hexcel has not included the costs associated with loss of production in the total costs associated with the installation of LNBs for the older lines.

Even when not considering the costs associated with the loss of production, this proposed technology is cost prohibitive for controlling NO_x emissions from Fiber Lines 2, 5, 6, 7, 8, 10, 11 and 12. The estimated cost effectiveness of implementing this technology on existing Fiber Lines (2, 5, 6, 7, 8, 10, 11 and 12) is equal to or more than the UDAQ cost effectiveness threshold for BACT of \$20,000 per ton of NO_x reduced. Thus, the LNB technology has been determined to be cost prohibitive for these lines.

Because the burners associated with Fiber Lines 3 and 4 are largely electrical burners, only one natural gas combustion burner, associated with the incinerator for each of these Fiber Lines, would need to be addressed. While this appears to reduce the potential cost of incorporating the LNB technology for these Fiber Lines, further evaluation is warranted. The incinerators for Fiber Lines 3 and 4 were installed and began operation many years ago. The construction of the incinerators does not lend itself to simple replacement of the incinerator burners with newer technology. Modification of these incinerators would require complete replacement of the incinerators. Because Hexcel has reviewed costs and benefits of doing this for the Matrix Tower incinerators, it has been determined that the costs associated with the replacement of the incinerators is very high. Therefore, replacement of the Fiber Line 3 and 4 incinerators is not warranted for the minor reduction in NO_x emissions that this would produce.

Existing controls, including good combustion practices and use of natural gas as fuel is determined to be NO_x BACT for Fiber Lines 2 - 8, 10, 11, and 12. NO_x control for the newer Fiber Lines 13 and 14, and proposed Fiber Lines 15 and 16 will incorporate LNB as established in the AOs approved for Hexcel December 2011 and August 2015, respectively. Hexcel is currently in the process of evaluating the technical feasibility of incorporating De-NO_x water systems to control NO_x emissions from the DFTOs on Fiber Lines 13 and 14, and proposed Fiber Lines 15 and 16.

³⁷ Meeting at UDAQ April 5, 2018 with Nando Meli, Jon Black and Brandy Cannon from UDAQ, and Bryan Wheeler of Hexcel and Miriam Hacker of Aspen Outlook, LLC. Nando Meli suggested at this meeting that a replacement of burners could be phased in and loss of production should not be accounted.

BACT Analysis for VOC Emissions

Identify All Control Technologies

Hexcel has identified the following control technologies applicable for controlling VOC emissions from the Fiber Lines, based on the review of U.S. EPA RBLC database and similar operations:

- 1. Good Combustion Practices,
- 2. Use of Natural Gas Only as Fuel,
- 3. Oxidation Catalyst,
- 4. Flares,
- 5. Incinerators, and
- 6. Regenerative Thermal Oxidizer (RTO)

Two carbon fiber manufacture facilities were identified in the search of the RBLC database. Attachment C, Table C-1 presents a summary of controls identified for the carbon fiber manufacturing facilities. The only VOC control associated with the identified carbon fiber manufacture facilities is a wet scrubber for the control of VOCs from an acrylonitrile delivery storage tank. This type of system does not exist at the Hexcel facility. Table C-5 presents the results of searches of the database conducted for similar combustion units fired with natural gas for VOC. The list above is a summary of these results. Each identified control technology is discussed further below.

Good Combustion Practices

Good combustion practices are the accepted technology for minimizing VOC emissions for many sources listed in the U.S. EPA's RBLC database. In this practice, VOC emissions are reduced by keeping burners maintained properly and operating according to their design. Hexcel has opted for this level of control for combustion sources.

Use of Natural Gas Only as Fuel

The use of natural gas as fuel limits VOC emissions, as compared to other fuel options, such as diesel or coal, because these options generate more VOC emissions per heat output. VOC emissions from combustion of natural gas are lower than emissions from any other readily available fuel. Therefore, Hexcel has opted for this level of control for combustion sources.

Catalytic Oxidation

Catalytic air purification is characterized by flameless oxidation of the pollutants contained in the exhaust air at temperatures between 200 and 500 °C. This control technology is typically used for abatement for low to medium air volumes. After the exhaust air has been heated up, the pollutants are oxidized by the catalyst to CO₂ and H₂O. The process can only be applied to certain pollutants and to exhaust air containing no dust. Certain contaminants will chemically react or alloy with common catalysts and cause deactivation. Control by catalytic oxidation can achieve VOC reductions greater than 95% at optimal temperatures and conditions.

Flares

Flaring/vapor combustion is a VOC combustion control process in which the VOCs are piped to a remote, usually elevated, location and burned in an open flame in the open air using a specially

designed burner tip, auxiliary fuel, and steam or air to promote mixing for nearly complete destruction. VOC destruction efficiency depends on an adequate flame temperature, sufficient residence time in the combustion zone, and turbulent mixing. A properly operated flare can achieve a destruction efficiency of 98% or greater. The waste gas stream must have a heating value greater than 300 Btu/scf. If this minimum is not met, auxiliary fuel must be introduced to achieve sufficient combustion.

Flares can be used to control almost any high concentration VOC stream, and can handle fluctuations in VOC concentration, flow rate, heating value, and inert content. Flaring is appropriate for continuous, batch, and variable flow vent stream applications³⁸.

Incinerators

Incineration destroys organic emissions by oxidizing them to carbon dioxide and water vapor. Incineration is the most universally applicable control method for organics. Given the proper conditions, any organic compound will oxidize. Oxidation proceeds more rapidly at higher temperatures and a higher organic pollutant content.

The heart of an incinerator system is a combustion chamber in which the VOC-containing waste stream is burned. Since the inlet waste gas stream temperature is generally much lower than that required for combustion, energy must be supplied to the incinerator to raise the waste gas temperature. The energy released by the combustion of the VOCs in the waste gas stream is rarely sufficient to raise its own temperature to the desired levels, so that auxiliary fuel (e.g., natural gas) must be added.

The reactor temperature is determined by the required level of VOC control of the waste gas that must be achieved within the time that it spends in the thermal combustion chamber. The shorter the residence time, the higher the reactor temperature must be. Once the unit is designed and built, the residence time is not easily changed, so that the required reaction temperature becomes a function of the particular gaseous species and the desired level of control³⁹.

Regenerative Thermal Oxidizer

A RTO destroys HAPs, VOCs and odorous emissions that are often discharged from industrial or manufacturing processes. Emission destruction is achieved through the process of high temperature thermal oxidation, using the proper mix of temperature, residence time, turbulence and oxygen to convert pollutants into carbon dioxide and water vapor. RTOs

³⁸ OAQPS, *EPA Air Pollution Control Cost Manual*, Sixth Edition, EPA 452-02-001, Daniel C. Mussatti & William M. Vatavuk, January 2002. Section 3 VOC Controls, Section 3.2 VOC Destruction Controls, Chapter 1 Flares, p. 1-5.

³⁹ OAQPS, *EPA Air Pollution Control Cost Manual*, Sixth Edition, EPA 452-02-001, Daniel C. Mussatti & William M. Vatavuk, January 2002. Section 3 VOC Controls, Section 3.2 VOC Destruction Controls, Chapter 2 Incinerators, p. 2-6.
repurpose the thermal energy generated during operation to reduce operating costs and energy consumption of the system itself.

VOC and HAP-laden process gas is either pushed or pulled into the inlet manifold of the oxidizer via a system fan. Flow control directs this gas into energy recovery chambers where it is preheated. The process gas and contaminants are progressively heated in ceramic media beds as they move toward the combustion chamber.

Once oxidized in the combustion chamber, the hot purified air releases thermal energy as it passes through the media bed in the outlet flow direction. The outlet bed is heated and the gas is cooled so that the outlet gas temperature is only slightly higher than the process inlet temperature. Poppet valves alternate the airflow direction into the media beds to maximize energy recovery within the oxidizer. The high-energy recovery within these oxidizers reduces the auxiliary fuel requirement and saves operating cost. RTOs can achieve high destruction efficiency and self-sustaining operation with no auxiliary fuel usage at low concentrations.

Emissions associated with implementation of the RTO technology were calculated assuming 98% control efficiency⁴⁰.

Eliminate Technically Infeasible Options

Catalytic Oxidation

The catalytic oxidation process can only be applied to certain pollutants and to exhaust air containing no dust in a small temperature range. Certain contaminants will chemically react or alloy with common catalysts and cause deactivation. Hexcel has had issues with the silica dust associated with the Fiber Lines and catalysts in the past.

Additional negative aspects may include the products of combustion, which may increase the emissions of some pollutants. Specifically, sulfur containing compounds will be converted to their oxides, and halogen containing compounds will be converted to acids.

For these reasons, catalytic oxidation is considered to be technically infeasible for the Hexcel Fiber Line process.

Rank Technically Feasible Control Technologies

Based on the information provided in the previous section, control technologies applicable for control of VOC are the following, with most effective control first and least effective control last.

- 1. Regenerative Thermal Oxidizer
- 2. Incinerators
- 3. Flares
- 4. Use of Natural Gas Only as Fuel

⁴⁰ OAQPS, EPA Air Pollution Control Cost Manual, Sixth Edition, EPA 452-02-001, Daniel C. Mussatti & William M. Vatavuk, January 2002. Section 3 VOC Controls, Section 3.2 VOC Destruction Controls, Chapter 2 Incinerators, p. 2-7.

5. Good Combustion Practices

Evaluation of Most Effective Controls

Evaluate Emission Impacts from Potential Control Technologies

Emissions associated with existing process operation for each Fiber Line, and the emissions once each VOC control technology under evaluation is applied are presented in Attachment A. Supporting emission calculations are provided in Attachment B, Table B-1.

Because the existing operations of the Fiber Lines include good combustion practices, natural gas as fuel, flaring and incineration, the estimated emissions associated with these controls are equal to existing emissions from the facility.

Cost/Benefit Analysis for Potential Control Technologies

Annualized costs associated with implementing the RTO on Fiber Lines 2 – 7, 8, 10, 11 and 12 were calculated and are summarized in Attachment A for each of the Fiber Lines. Supporting cost calculations are provided in Attachment B, Table B-8.

Environmental Impact Analysis for Potential Control Technologies

Additional environmental impact is associated with additional energy requirements and potential emissions associated with the firing of the RTO.

Select BACT for VOC

Based on the review of U.S. EPA RBLC database for operations somewhat similar to Hexcel's, control technologies typically used for VOC controls include: good combustion practices, use of natural gas as a fuel, and use of thermal oxidizer technologies. The proposed operation of a RTO, following a high temperature furnace is clearly the best available control for this type of gas stream and has been installed for use with Fiber Lines 13 and 14, and has been planned for installation for the proposed Fiber Lines 15 and 16.

However, the estimated cost effectiveness of implementing this technology on existing Fiber Lines (2 -7, 8, 10, 11 and 12) is more than is the UDAQ cost effectiveness threshold for BACT of \$20,000 per ton of VOC reduced. The estimated annualized cost to install and operate an addon control device for VOC is more than \$35,000 per ton of VOC reduced. In addition, redesign of the Fiber Lines would require significant loss in production for Hexcel. Costs associated with loss of production have conservatively not been included in the total costs associated with the installation of VOC controls for the older lines. Thus, installation of the RTO technology on the older lines has been shown to be cost prohibitive. Therefore, existing controls, including good combustion practices, use of natural gas as fuel, incineration and flaring technology are determined to be VOC BACT for Fiber Lines 2-7, 8, 10, 11 and 12.

Revision 2- May, 2018

BACT Analysis for Ammonia Emissions

Per the letter received from UDAQ on April 9, 2018 regarding the Serious PM2.5 NAA SIP Control Strategy – Ammonia BACT Requirement, all NH₃ emission sources at the site have been listed and the NH₃ BACT assessment has been reviewed and updated.

Hexcel NH₃ Emission Sources

The stabilization process occurring in the oxidation ovens produce NH₃ emissions. Exhaust gases containing oxidation process emissions from the ovens are captured in hoods at either ends of each oven or within the oven structure. NH₃ emissions can be measured from all fiber line emission release points associated with the fiber lines, including surface treatment operations.

Because of the unique processes associated with Hexcel operations, emissions cannot be estimated based on standard available emission factors. In 1996, NH3 emissions were measured from Fiber Line 4, 6 and 7 release points. These measurements were used to estimate emissions in Fiber Lines 2 – 7. In 2007, Hexcel measured NH₃ from all fiber line emission release points associated with Fiber Line 8, including surface treatment operations. The data from these measurements has been used to estimate NH₃ emissions from Fiber Lines 8 – 12. In 2016 NH₃ emissions were measured from Fiber Line 13 oven and baghouse release points. These measurements were used to estimate emissions from Fiber Lines 13 – 16. Surface treatment emissions from these fiber lines were estimated based on the Fiber Line 8 measurements.

Additional Observations

Very little additional information was identified for potential NH₃ control technologies. Several papers were identified that discussed emission factors for ammonia emission sources as well as source category contributions. Much of the literature is focused on the contribution from agricultural sources, which are the predominant contributor to national and regional emissions. However, one paper indicated that in urban areas industrial sources can make significant contributions.

Identify All Control Technologies

Hexcel has identified the following control technologies applicable for controlling NH₃ emissions from the Fiber Lines, based on the review of U.S. EPA RBLC database and similar operations, as well as from Control and Pollution Prevention Options for Ammonia Emissions⁴¹:

- 1. Good operating practices,
- 2. Capture systems,
- 3. Exhaust stream recovery and recycle,
- Leak Detection and Repair Program (LDAR),
- 5. Wet scrubber, and
- 6. Condensate strippers

⁴¹ OAQPS Control Technology Center, Control and Pollution Prevention Options for Ammonia Emissions, EPA 456/R-95-002, Jennifer Phillips, April 1995.

Two carbon fiber manufacture facilities were identified in the search of the RBLC database. Attachment C, Table C-1 presents a summary of controls identified for the carbon fiber manufacturing facilities. The facility did not install NH₃ control equipment. Table C-6 contains the results of additional searches for NH₃ controls in the database, for similar combustion units fired with natural gas. The only sources identified with NH₃ BACT requirements were associated with the operation of a SCR, or a combustion turbine. No specific control devices for NH₃ were identified.

Ammonia emissions can be controlled by various control technologies including both add-on control devices and pollution prevention techniques. The wet packed tower scrubber can control ammonia emissions with control efficiencies up to 99%. Condensers can remove ammonia by converting gas to a liquid, with the condensate being returned to the process for reuse. Ammonia recycle, where ammonia is collected from the exhaust gas stream and subsequently returned to the process, is a common pollution prevention method. This process is most often used in the manufacture of fertilizers where quantities of ammonia are abundant and subsequently render the method feasible. Each identified control technology is discussed further below.

Good Operating and Maintenance Practices

Good operating practices limit ammonia emissions by ensuring that fugitive emissions are minimized. Ammonia leaks occurring from process equipment can be easily controlled by applying capture devices to collect the fugitive emissions. After collection, the vapors may be conveyed to a control device such as a filter or wet scrubber for treatment. In addition, the equipment must be properly maintained to ensure that worn parts are replaced. U.S. EPA acknowledged in the OAQPS manual, that, where the cost of add-on controls is not warranted, ammonia emissions may be limited by applying good management practices⁴².

Capture Systems

Capture devices such as hoods may be used to collect ammonia emissions. Enclosures, either partial or complete, encircle the emission source without interrupting the process and prevent emission releases from entering the atmosphere. Capture hoods are placed on the outside of the process and use a powerful airstream to draw emissions into the hood after they are released to the atmosphere. Receiving hoods use the momentum of certain exhaust streams to facilitate the collection of emissions and capture emissions once they exit the process. Once these streams are collected using capture systems, the streams are often vented to a control device for treatment.

⁴²OAQPS Control Technology Center, *Control and Pollution Prevention Options for Ammonia Emissions*, EPA 456/R-95-002, Jennifer Phillips, April 1995. p. 2.

Exhaust stream recovery and recycle

For operations that use ammonia as a feedstock, emissions control is intrinsic in the recovery and recycle process. For smaller applications such as refrigeration systems, emissions of ammonia refrigerant may be collected and recycled back to the system for reuse.

LDAR

Leak Detection and Repair Programs (LDAR) are used in operations where liquid ammonia is contained in pipes. The program entails routine monitoring for leaks around piping connections and pumps using a handheld analyzer.

Wet Scrubber

The most common add-on control device used to control ammonia emissions is the wet scrubber which employs the method of absorption. Through absorption, gaseous material is collected through direct contact with a scrubbing liquid, which is usually water. The success of the scrubber is dependent on the solubility of a gas in the scrubbing liquor. Since ammonia is highly soluble in water, the wet scrubber is effective in controlling ammonia emissions. Control efficiencies up to 99% have been demonstrated in actual applications.

Venturi scrubbers are generally applied for controlling particulate matter and SO_2 . However, with the incorporation of a packed bed scrubber, NH_3 may be efficiently controlled as well. Operation of this unit is described in detail in the $PM_{2.5}$ BACT section.

The BACT analysis estimates scrubber/packed bed NH_3 control efficiency at 98% based on vendor information⁴³. Although there is a potential for particulate from Hexcel operations to clog a packed bed scrubber, the quote provided by Pollution Control Systems is for a 2-stage unit with a venturi scrubber upstream of a packed bed scrubber, for control of $PM_{2.5}$, SO_2 and NH_3 to 98%.

Disadvantages associated with the use of wet scrubbers include a possible water disposal problem, possibility of high pressure drop and horsepower requirements, and corrosion of the unit. The high pressure drop through these systems results in high energy use, and the relatively short gas-liquid contact time restricts their application to highly soluble gases.

Condensate Strippers

Condensation converts a gas to a liquid by removing heat or increasing the pressure. Removal efficiencies of condensate strippers are not high for most gas pollutants since the unit does not lower temperatures below 100 F. Condensate strippers create a resulting process condensate.

⁴³ The basic equipment cost of a 2-stage unit, with a venturi scrubber upstream of a packed-bed scrubber able to achieve 98% removal efficiency was e-mailed on 03/31/17 from Pollution Control Systems to L. Courtright (Aspen Outlook, LLC).

Eliminate Technically Infeasible Options

Leak Detection and Repair Program

The LDAR programs that are cited in the RBLC are associated with processes involving concentrated, aqueous ammonia containment where ammonia is emitted from fugitive components, not a stack. The ammonia associated with the Hexcel process is primarily emitted at the stack, is gaseous and dilute, and formed as a by-product of either the combustion process or the open surface treatment operations. A LDAR program would not be an effective control for either of these types of operations, and is not considered further.

Condensate Strippers

This type of technology is not typically applied for process NH₃ emissions such as Hexcel's as the expected removal efficiency is not high. Condensate strippers are most commonly used to remove ammonia in the fertilizer industry, where the resulting process condensate can be recycled back to the process. This application will not apply at the Hexcel facility.

Exhaust stream recovery and recycle

Hexcel does not use ammonia as a feedstock, therefore, the recovery and recycle process will not apply for this facility.

Rank Technically Feasible Control Technologies

Based on the information provided in the previous section, control technologies applicable for control of NH_3 are the following, with most effective control first and least effective control last.

- 1. Wet scrubber,
- 2. Good operating practices,
- 3. Capture systems

Evaluation of Most Effective Controls

Evaluate Emission Impacts from Potential Control Technologies

Attachment A presents for each Fiber Line the emissions associated with the existing process operation, and the emissions once each NH₃ control technology under evaluation is applied. The supporting detailed emission calculations are provided in Attachment B, Table B-1.

Because the existing operations of the Fiber Lines includes good operational practices as part of the existing process, no further evaluation of emissions associated with these controls were evaluated beyond calculation of existing emissions from the facility. In addition, Hexcel currently employs hoods over all surface treatment operations to capture emissions as effectively as possible, therefore, no further evaluation of emissions associated with these controls were evaluated beyond calculation of existing emissions from the facility. Emissions as effectively as possible, therefore, no further evaluation of emissions associated with these controls were evaluated beyond calculation of existing emissions from the facility.

associated with implementation of a wet scrubber/packed bed technology were calculated assuming 98% based on vendor information⁴⁴.

Cost/Benefit Analysis for Potential Control Technologies

Annualized costs associated with implementing a wet scrubber/packed bed on all Fiber Lines were calculated and are summarized in Attachment A for each of the Fiber Lines. Supporting cost calculations are provided in Attachment B, Table B-5.

Environmental Impact Analysis for Potential Control Technologies

Additional environmental impact associated with the use of wet scrubber/packed beds include water disposal requirements and potential packed bed replacement resulting in solid waste disposal. The high pressure drop through these systems results in high energy use, resulting in additional combustion emissions.

Select BACT for Ammonia

Based on the review of U.S. EPA RBLC database and other sources for operations somewhat similar to Hexcel's, control technologies typically used for ammonia controls include: good operating practices, leak detection and repair programs, and use of wet scrubber technologies. Use of an LDAR program for ammonia at Hexcel has been shown to be technically inapplicable.

Installation of wet scrubber/packed bed technology would require redesign of the Fiber Lines. Redesign of the Fiber Lines would require significant loss in production for Hexcel. Costs associated with loss of production have conservatively not been included in the total costs associated with the installation of NH₃ controls for the older lines. The estimated cost effectiveness of implementing a wet scrubber technology on all Fiber Lines is more than is the UDAQ cost effectiveness threshold for BACT of \$20,000 per ton of NH₃ reduced. The estimated annualized cost to install and operate an add-on control device for ammonia is more than \$55,000 per ton of NH₃ reduced. In addition, redesign of the Fiber Lines would require significant loss in production for Hexcel, which has, conservatively, not been included in the total costs associated with the installation of NH₃ controls for the Fiber Lines. Therefore, the wet scrubber/packed bed technology has been determined to be cost prohibitive.

Existing controls, including good operating practices is determined to be ammonia BACT for all Fiber Lines. The RBLC database indicates that good management practices is a common control technology used in conjunction with similar types of processes. Thus, the RBLC search results support Hexcel's BACT determination.

⁴⁴ The basic equipment cost of a 2-stage unit, with a venturi scrubber upstream of a packed-bed scrubber able to achieve 98% removal efficiency was e-mailed on 03/31/17 from Pollution Control Systems to L. Courtright (Aspen Outlook, LLC).

35

BACT Analysis for Miscellaneous Operations Associated with the Fiber Lines

Hexcel's primary Fiber Line manufacturing operations require operation of associated operations which include: pilot plant operations, matrix operations, comfort heating and emergency generation equipment. The pilot plant is a research facility which is essentially a small Fiber Line. Matrix or Pre-Preg operations involve the finishing process of application of resins to the carbon fiber. Emissions associated with these operations primarily include ammonia, xylene, and combustion emissions from operation of the pilot plant, the matrix incinerators, the HVAC system and emergency generators.

The discussions provided for the Fiber Line operations also apply to the Pilot operations, as well as the Matrix incinerator operations, except for the inclusion of ammonia and VOC emissions from the Matrix process.

Annualized costs associated with implementing proposed control technologies on the Pilot and Matrix operations were calculated and are summarized in Attachment A for each of the Pilot and Matrix operations. Supporting cost calculations are provided in Attachment B.

Over the last few years Hexcel has updated the control technology associated with the Matrix, Tower 1, Tower 3 and Tower 4 incinerators. These upgrades included installation of a more efficient incinerator for Tower 1 and RTOs for Towers 3 and 4 in place of the previously existing incinerators, reducing incinerator and combustion related emissions. All new thermal oxidizers have been installed with LNB technology.

Hexcel has conducted additional review of the cost effectiveness of installing ULNB on burners currently controlled with LNB technology, which include Matrix RTO burners. This analysis did not include costs associated with loss of production for the facility. As shown in table A-16, the estimated cost effectiveness of implementing the ULNB technology on the Matrix RTOs is well above the UDAQ cost effectiveness threshold for BACT of \$20,000 per ton of NO_x reduced. Thus, the ULNB technology has been determined to be cost prohibitive for these sources.

BACT for the Pilot and Matrix operations is determined to be maintenance of good operation and combustion practices and operation of all incinerators and burners with natural gas fuel, consistent with the Fiber Line BACT determinations. Hexcel will continue to evaluate the functionality of existing control technologies on the Matrix operations and upgrade as appropriate.

BACT for the HVAC system is determined to be maintenance of good operation and combustion practices and operation of all burners with natural gas fuel.

BACT for the emergency generators will be the use of engines in compliance with NSPS Subparts IIII and JJJJ and NESHAP ZZZZ, a restriction on the number of hours the generators are allowed to operate annually, and use of low sulfur diesel fuel, propane or natural gas. These types of controls have been clearly established as BACT for these types of sources. There is no

Revision 2- May, 2018

precedence established for implementing add-on controls such as baghouse, SCR, scrubber technology, or thermal oxidation technology on a small diesel engine that is used for emergency purposes. No further evaluation of these controls has been conducted.

A summary of emission rates associated with the HVAC and diesel generator sources is provided in Attachment A.

Revision 2- May, 2018

Startup/Shutdown Emissions Controls for BACT Listed Equipment

On April 30, 2014 Hexcel submitted a response to a request from UDAQ for additional information related to the PM2.5 SIP RACT Request. In this request, Hexcel was asked to provide recommendations for startup and shutdown controls for the RACT listed equipment at the facility. In the response to the request, Hexcel provided a detailed evaluation of the startup/shutdown emission controls for Hexcel's processes including Fiber Lines 2, 3, 4, 5-7, 8, 10, 11, 12, 13, and 14 and Matrix (pre-preg) operations which manufacture solvated resins and perform solvated resin impregnation. This analysis provided a description of the available controls, best operational practices, and Hexcel's procedures including those above and beyond the AO requirements to eliminate or prevent emissions during startup/shutdown.

Hexcel's standard operating procedure is to not start processing product until desired operating conditions have been achieved. Therefore, the startup sequence begins and runs to completion prior to the input or passing of PAN or pre-preg through the system. Similarly, shutdown of the system is conducted at a time which no product is running through the fiber lines or pre-preg processes. Therefore, during start-up and shutdown of the carbon fiber lines, process related emissions are not expected; only natural gas combustion related emissions are expected. These emissions have already been accounted as part of Hexcel's normal emissions and are permitted as a part of facility-wide natural gas consumption limits. Hexcel currently accounts for emissions during startup/shutdown of equipment and reports them to UDAQ in its annual emissions inventory.

Hexcel will refer to the April 30, 2014 letter submitted to UDAQ for the detailed description of startup/shutdown operations and best practices associated with the Hexcel West Valley City Facility.⁴⁵ These identified operations satisfy startup/shutdown BACT conditions for the facility and apply to Fiber Lines 15 and 16 as well. A copy of this letter is provided in Attachment E for reference.

⁴⁵ Letter to Ms. Camron Harry, UDAQ from Shannon Storrud, Hexcel Corporation, dated April 30, 2014, RE: PM2.5 SIP RACT - Responses to Request for Additional Information.

Recommended Emission Limits and Monitoring Requirements

Hexcel currently operates under Approval Order DAQE-AN113860031-18. Within this AO, Hexcel is bound to existing emission limits and monitoring requirements.

All Hexcel sources are listed in the Special Provision Section, Section II.A of the AO. This section details source type, manufacturer and rating where available for each Hexcel emission source. All sources have been discussed and evaluated in the previous BACT sections. PM2.5 BACT determinations have been made for each of the facility sources.

Emission limits and monitoring requirements for the facility as a whole, as well as for each identified source are listed in the Special Provision Section, Section II.B of the AO. All requirements have been established to ensure the Hexcel facility meets all applicable state and federal standards and requirements. In permitting this facility, BACT determinations have been made for the most recently permitted Fiber Lines (Fiber Lines 13, 14, 15 and 16).

In the previous sections of this BACT Analysis, it has been shown that no additional controls are required for this facility to meet the requirements of a PM2.5 BACT determination. Therefore, the emission limits and monitoring requirements established for the facility in its AO are sufficient to meet PM_{2.5} BACT/ BACM requirements.

Hexcel's Efforts Above and Beyond - ISO 14001 Environmental Management System Procedures

Hexcel has implemented and maintains a rigorous system of training, inspections and reporting at the Facility as a part of ISO 14001 procedures that ensures compliance with the all applicable emission standards and limits.

Hexcel environmental staff ensure that all employees are properly trained to do the required monitoring to maintain compliance with the facility AO and other environmental requirements. The staff environmental engineer requires that at least one employee conduct daily inspections of all operations. During these inspections, the employee observes any opacity events, as well as other non-conforming environmental conditions, and reports them.

An Emission Control Record (ECR) system is maintained to complement the inspection procedures. The ECR system helps Hexcel to efficiently identify and respond to any deviations or excess emissions events. A thorough investigation is conducted for each identified concern or nonconformance to determine its viability or any impacts. Appropriate actions will be identified, taken, and documented on the ECR form to mitigate all concerns or impacts resulting from each nonconformance. The ECR itself is not an excess emission event. The ECR is simply an internal procedure to track all deviations. Once an ECR is initiated, the Environmental Engineer determines whether to notify UDAQ with an Unavoidable Breakdown report or not. Emission standards and limits, which are tracked at the Facility, are part of the ECR. The ECR system essentially is a Nonconformance and Corrective/Preventative Action Plan that is part of Hexcel's overall Environmental Management System Procedure.

BACT Implementation Calendar

In March of 2017, Hexcel submitted a Notice of Intent to UDAQ for the redesign of the particulate control system for the new Fiber Lines 15 and 16. Based on operational experience with Fiber Lines 13 and 14, Hexcel determined that the DFTO exhaust and the RTO exhaust from the Fiber Lines would be better controlled separately. As part of compliance with this BACT, Hexcel plans to submit a Notice of Intent (NOI) at the end of 2018 or beginning of 2019 to modify Fiber Lines 13 and 14 to incorporate the filter box control.

Hexcel is currently in the process of determining the feasibility of incorporating the De-NOx water adjustment for the DFTOs in order to meet current permit limits for Fiber Lines 13, 14, 15 and 16. If it is found that this process is technically feasible with the current control system, Hexcel will begin the NOI and modification process for these adjustments in 2019 and into 2020.

Hexcel is committed to meeting all monitoring and reporting requirements established in its AO and will continue to do so within the required schedule.

Potential Modification Benefit Review

Hexcel environmental staff have discussed potential modifications with operations and plant engineering personnel. Hexcel has determined that no additional modifications or incorporation of additional control technologies, other than the modifications being reviewed as part of this BACT, will result in increased production or reduced costs. **Attachment A**

PM_{2.5} BACT Summaries

Revision 2- May, 2018

Component ID: Quick Component Description: Fiber Line 2 BACT Option Analysis PM2.5 SO2 NOx VOC NH3 BACT option 1 Good Combustion Practices Good Combustion Practices Good Combustion Practices Good Operation Practices Good Operation Practices Good Operation Practices Good Operation Practices Good Operation Practices Box Leak Detect and Repation Practices Leak Detect	Site Name:	Hexcel Corpora Ope	tion Salt Lake City rations	Site Location:	: West Valley City, UT		
BACT Option Analysis PM2.5 SO2 NOx VOC NH3 BACT option 1 Good Combustion Practices Good Combustion Practices Foregram BACT option 3 Venturi Scrubber Natural Gas Natural Gas Leak Detect and Repai BACT option 4 Wet ESP Utifra Low NOX Burner Beicrucation Selective Catalytic Reduction Selective Non- Catalytic Reduction Thermal Oxidiration Venturi Scrub Program BACT option 5 Infer Selective Non- Catalytic Reduction Venturi Scrub Selective Non- Catalytic Reduction NA1 BACT option 5 Infe 0.06 0.09 2.98 NA1 BACT option 1 1.62 0.06 0.09 2.98 NA1 BACT option 3 0.03 0.046 2.98 NA1 BACT option 3 0.03 0.046 2.98 NA1 BACT option 4 NA1 0.03 0.046 2.98 NA1	Component ID:	Quick Compo	nent Description:				
PM2.5 SO2 NOx VOC NH3 BACT option 1 Good Combustion Practices Natural Gas Good Combustion Practices Good Combustion Practices Good Combustion Practices Good Combustion Practices Good Combustion Practices Good Combustion Practices Practices Natural Gas Natural Gas Leak Detect and Repair Program BACT option 2 Baghouse + Filter Box Venturi Scrubber Uventuri Scrubber Natural Gas Natural Gas Leak Detect and Repair Program BACT option 4 Wet ESP Wet ESP Utra Low NOx Burner with Filee Gas Thermal Oxidization Thermal Oxidization BACT option 5 Controlled Emissions Table (tpp); Thermal Oxidization Thermal Oxidization Thermal Oxidization Controlled Emissions Table (tpp); Controlled Emissions Table (tpp); Controlled Emissions Table (tpp); Controlled Emissions Table (tpp); PM2.5 SO2 NOx VOC NH3 BACT option 1 1.62 0.06 0.09 2.98 NA ¹ BACT option 3 0.45			BACT Option Analy	sis			
BACT option 1 Good Combustion Practices Sood Combustion Practices Good Combustion Practices Good Combustion Practices Good Combustion Practices BACT option 2 Baghouse + Filter Box Venturi Scrubber Natural Gas Natural Gas Leak Detect and Repai Program BACT option 3 Venturi Scrubber Low NOx Burner Incineration/ Flares Existing Incineration/ Flares Venturi Scrub Venturi Scrub BACT option 5 Wet ESP Utra Low NOx Burner Refractation Selective Catalytic Reduction Thermal Oxidization Venturi Scrub BACT option 5 Venturi Scrub Catalytic Reduction Thermal Oxidization Venturi Scrub BACT option 6 Venturi Scrub Catalytic Reduction Natural Gas Natural Gas BACT option 6 Venturi Scrub Catalytic Reduction Natural Gas Natural Gas BACT option 6 Venturi Scrub Sood 0.09 2.98 Natural Oxidization BACT option 1 1.62 0.06 0.09 2.98 Natural Oxidization BACT option 3 0.03 0.046 2.98 Natural Oxidization BACT option 3 0.03 0.046 2.98 Natural Oxidization BACT option 5 Statu option Natural Oxidization Natural Oxidization Natural Oxidization		PM2.5	SO2	NOx	VOC	NH3	
BACT option 2 Baghouse + Filter Box Venturi Scrubber Natural Gas Natural Gas Leak Detect and Repair Incineration/ Flares BACT option 3 Venturi Scrubber Low NOx Burner Bact option 4 Existing Incineration/ Flares Existing Incineration/ Flares BACT option 4 Wet ESP Wet ESP Burner with Flue Gas Retirculation Selective Non- Selective N	BACT option 1	Good Combustion Practices	Natural Gas	Good Combustion Practices	Good Combustion Practices	Good Operating Practices	
BACT option 3 Venturi Scrubber Low NOx Burner Existing Incineration/Flares Venturi Scrub BACT option 4 Wet ESP Burner with Flue Gas Thermal Oxidization Thermal Oxidization BACT option 5 Existing Allowable Emissions Table (tpv): Thermal Oxidization Image: Controlled Emissions Table (tpv): Existing Allowable Emissions (ton/yr) 1.62 0.06 0.09 2.98 NA ¹ BACT option 1 1.62 0.06 0.09 2.98 NA ¹ BACT option 2 0.45 0.001 0.09 2.98 NA ¹ BACT option 3 0.45 0.001 0.09 2.98 NA ¹ BACT option 4 NA ² 0.06 0.09 2.98 NA ¹ BACT option 5 0.45 0.001 0.09 2.98 NA ¹ BACT option 1 1.62 0.06 0.09 2.98 NA ¹ BACT option 2 0.45 0.001 0.09 2.98 NA ¹ BACT option 3 0.03 0.046 2.98 NA ¹ BACT option 6 VOC NH3 NA ² NA ¹ BACT option 6 S102,265 S104,9016 NA ² NA ¹ BACT option 6 S102,265 NOx <td< td=""><td>BACT option 2</td><td>Baghouse + Filter Box</td><td>Venturi Scrubber</td><td>Natural Gas</td><td>Natural Gas</td><td>Leak Detection and Repair Program</td></td<>	BACT option 2	Baghouse + Filter Box	Venturi Scrubber	Natural Gas	Natural Gas	Leak Detection and Repair Program	
BACT option 4 Wet ESP Utira Low NOX Burner with Flue Gas Thermal Oxidization BACT option 5 BACT option 6 Selective Reduction Selective Reduction Selective Reduction BACT option 6 BACT option 6 Selective Non- Catalytic Reduction Selective Non- Catalytic Reduction Existing Allowable Emissions (ton/yr) 1.62 0.06 0.09 2.98 NA ¹ BACT option 1 1.62 0.06 0.09 2.98 NA ¹ BACT option 2 0.45 0.001 0.09 2.98 NA ¹ BACT option 3 0.03 0.0466 2.98 NA ¹ BACT option 3 0.03 0.0466 2.98 NA ¹ BACT option 4 NA ¹ 0.018 0.06 1.02 BACT option 5 SO2 NOx VOC NH3 BACT option 5 SO2 NOx VOC NH3 BACT option 5 SO2 NOx VOC NH3 Cost Effectiveness (s/ton) 2.99,671 \$ 2,678,730 U U Cost Effectiveness (s/ton) S 92,515 S 405,171 U NA ¹ Cost Effectiveness (s/ton) S 92,515 S 405,171 U NA ¹ Cost Effectiveness (s/ton) S 92,515	BACT option 3	Venturi Scrubber		Low NOx Burner	Existing Incineration/ Flares	Venturi Scrubbe	
BACT option 5 Catalytic Reduction Selective Non- Catalytic Reduction BACT option 6 Catalytic Reduction Selective Non- Catalytic Reduction Existing Allowable Emissions (ton/yr) 1.62 0.06 0.09 2.98 0.00 BACT option 1 1.62 0.06 0.09 2.98 NA ¹ BACT option 2 0.45 0.001 0.09 2.98 NA ¹ BACT option 2 0.45 0.001 0.09 2.98 NA ¹ BACT option 3 0.03 0.046 2.98 NA ¹ BACT option 4 NA ¹ 0.018 0.06 1.42 NA ¹ BACT option 5 NA ¹ 0.038 0.046 2.98 NA ¹ BACT option 5 NA ¹ 0.018 0.06 1.42 NA ¹ BACT option 5 S 350,265 \$149,016 NA ² NA ² NA ¹ Emission Reduction (tons) 1.17 0.056 1.42 NA ² NA ³ Cost Effectiveness (\$/ton) \$ 299,671 \$ 2.678,730 1.42	BACT option 4	Wet ESP		Ultra Low NOx Burner with Flue Gas Recirculation	Thermal Oxidization		
BACT option 6 Catalytic Reduction FM2.5 SO2 NOx VOC NH3 Existing Allowable Emissions (ton/yr) 1.62 0.06 0.09 2.98 0.00 BACT option 1 1.62 0.06 0.09 2.98 NA ¹ BACT option 2 0.45 0.001 0.09 2.98 NA ¹ BACT option 3 0.03 0.046 2.98 NA ¹ BACT option 3 0.03 0.046 2.98 NA ¹ BACT option 3 0.03 0.046 2.98 NA ¹ BACT option 4 NA ¹ 0.018 0.066 NA ¹ BACT option 5 V NA ¹ NA ¹ NA ¹ BACT option 6 VOC NH3 NA ¹ NA ¹ BACT option 7 \$ 350,265 \$149,016 NA ² NA ¹ Emission Reduction (tons) 1.17 0.056 Interviewer NA ¹ Cost Effectiveness (\$/ton) \$ 299,671 \$ 2,678,730 Interviewer NA ¹ <tr< td=""><td>BACT option 5</td><td></td><td></td><td>Catalytic Reduction Selective Non-</td><td></td><td></td></tr<>	BACT option 5			Catalytic Reduction Selective Non-			
Controlled Emissions Table (tpy):PM2.5SO2NOxVOCNH3Existing Allowable Emissions (ton/yr)1.620.060.092.980.00BACT option 11.620.060.092.98NA1BACT option 20.450.0010.092.98NA1BACT option 30.030.0462.98NA1BACT option 4NA10.0180.06MA1BACT option 5VOCNA1NA1VOCBACT option 6VOCNA1NA1VOCBACT option 6VOCNA1NA1BACT option 6VOCNA1NA1BACT option 6VOCNH3BACT option 6VOCNH3BACT option 6VOCNH3BACT option 7SO2NOxVOCPM2.5SO2NOxVOCCost Effectiveness (\$/ton 81.170.056Cost Effectiveness (\$/ton 92.99,6712.678,730Cost Effectiveness (\$/ton 99.2,515\$ 405,171Cost Effectiveness (\$/ton 9NA1\$ 23,329Cost Effectiveness (\$/ton 9NA1BACT option 6NA1BACT option 7\$ 20,323Cost Effectiveness (\$/ton 9NA1Cost Ef	BACT option 6			Catalytic Reduction			
PM2.5 SO2 NOx VOC NH3 Existing Allowable Emissions (ton/yr) 1.62 0.06 0.09 2.98 0.00 BACT option 1 1.62 0.06 0.09 2.98 NA ¹ BACT option 3 0.03 0.09 2.98 NA ¹ BACT option 3 0.03 0.045 2.98 NA ¹ BACT option 4 NA ¹ 0.018 0.06 2.98 BACT option 4 NA ¹ 0.018 0.06 2.98 BACT option 5 NA ¹ NA ¹ NA ¹ 1.62 BACT option 5 SO2 NOx VOC NH3 Annualized Cost (\$) \$ 146,766 \$18,449 NA ² NA ¹		Cor	trolled Emissions Tal	ble (tpy):			
Existing Allowable Emissions (ton/yr) 1.62 0.06 0.09 2.98 0.00 BACT option 1 1.62 0.06 0.09 2.98 NA ¹ BACT option 2 0.45 0.001 0.09 2.98 NA ¹ BACT option 3 0.03 0.046 2.98 NA ¹ BACT option 4 NA ¹ 0.018 0.060 1009 BACT option 5 0.03 0.046 2.98 NA ¹ BACT option 5 0.03 0.046 2.98 NA ¹ BACT option 5 0.03 0.046 2.98 NA ¹ BACT option 6 NA ¹ 0.018 0.06 1009 BACT option 6 NA ¹ 0.018 0.06 1009 BACT option 7 NA ¹ NA ¹ 1005 1019 Cost Effectiveness (\$/ton) 1.17 0.056 1019 1019 Cost Effectiveness (\$/ton) \$ 299,671 \$ 2,678,730 1019 1019 1019 Emission Reduction (tons) 1.59		PM2.5	502	NOx	VOC	NH3	
(ton/yr) Image: Constraint of the second secon	Existing Allowable Emissions	1.62	0.06	0.09	2.98	0.00	
BACT option 2 0.45 0.001 0.09 2.98 NA ¹ BACT option 3 0.03 0.046 2.98 NA ¹ BACT option 4 NA ¹ 0.018 0.06 NA ¹ BACT option 5 NA ¹ 0.018 0.06 NA ¹ BACT option 6 NA ¹ 0.018 0.06 NA ¹ BACT option 6 NA ¹ 0.018 0.06 NA ¹ BACT option 6 NA ¹ NA ¹ 0.018 0.06 NA ¹ BACT option 6 NA ¹ NA ¹ NA ¹ NA ¹ NA ¹ NA ¹ Option 2 Cost/Benefit Analysis Summary Option 3 Cost/Benefit Analysis Summary Option 3 Cost/Benefit Analysis Summary PM2.5 SO2 NOx VOC NH3 Annualized Cost (\$) \$ 146,766 \$ 18,449 NA ² NA ¹ Emission Reduction (tons) 1.59 0.046 0.073 NA ¹ Option 4 Cost/Benefit Analysis Summary	(ton/yr) BACT option 1	1.62	0.06	0.09	2 98	NA ¹	
BACT option 3 BACT option 4 BACT option 5 BACT option 5 BACT option 6 0.03 NA ¹ 0.046 2.98 0.018 NA ¹ BACT option 5 BACT option 6 NA ¹ NA ¹ NA ¹ NA ¹ BACT option 6 VOC NA ¹ NA ¹ NA ¹ BACT option 6 VOC NA ¹ NA ¹ NA ¹ BACT option 6 VOC NH3 NA ¹ NA ¹ BACT option 6 VOC NH3 NA ¹ NA ¹ Option 2 Cost/Benefit Analysis Summary Option 3 350,265 \$149,016 NA ² NA ¹ Emission Reduction (tons) 1.17 0.056 Option 3 Cost/Benefit Analysis Summary Option 3 Cost/Benefit Analysis Summary Option 4 Cost/Benefit Analys	BACT option 2	0.45	0.001	0.09	2.98	NA	
BACT option 4 BACT option 5 BACT option 6 NA ¹ 0.018 0.06 BACT option 6 NA ¹ NA ¹ NA ¹ Determine 1 Option 2 Cost/Benefit Analysis Summary VOC NH3 Annualized Cost (\$) \$ 350,265 \$149,016 NA ² NA ² NA ¹ Emission Reduction (tons) 1.17 0.056 Cost Effectiveness (\$/ton) \$ 299,671 \$ 2,678,730 PM2.5 SO2 NOx VOC NH3 Annualized Cost (\$) \$ 146,766 \$ 148,449 NA ² NA ¹ Cost Effectiveness (\$/ton) \$ 92,515 \$ 405,171 Cost Effectiveness (\$/ton) \$ 92,515 \$ 405,171 Cost Effectiveness (\$/ton) \$ 92,515 \$ 502 NOx VOC NH3 Annualized Cost (\$) \$ 146,766 \$ 148,449 NA ² NA ¹ Cost Effectiveness (\$/ton) \$ 92,515 \$ 405,171 PM2.5	BACT option 3	0.03		0.046	2.98	NA1	
BACT option 5 BACT option 6 NA ¹ NA ¹ Option 2 Cost/Benefit Analysis Summary Option 2 Cost/Benefit Analysis Summary VOC NH3 Annualized Cost (\$) \$ 350,265 \$149,016 NA ² NA ² NA ¹ Emission Reduction (tons) 1.17 0.056 NA ¹	BACT option 4	NA1		0.018	0.06		
BACT option 6 NA ¹ Option 2 Cost/Benefit Analysis Summary Option 2 Cost/Benefit Analysis Summary PM2.5 SO2 NOx VOC NH3 Annualized Cost (\$) \$ 350,265 \$149,016 NA ² NA ¹ Emission Reduction (tons) 1.17 0.056 Image: Cost Effectiveness (\$/ton) \$ 299,671 \$ 2,678,730 Image: Cost Effectiveness (\$/ton) \$ 1mage: Cost (\$) \$ 146,766 \$ 18,449 NA ² NA ¹ Emission Reduction (tons) 1.59 SO2 NOx VOC NH3 Cost Effectiveness (\$/ton) \$ 92,515 \$ 405,171 Image: Cost (\$ 0,0073 I	BACT option 5	が滅滅する 減谷道を第1 減谷協に始めない。		NA1			
Option 2 Cost/Benefit Analysis Summary PM2.5 SO2 NOx VOC NH3 Annualized Cost (\$) \$ 350,265 \$149,016 NA ² NA ² NA ¹ Emission Reduction (tons) 1.17 0.056 Cost Effectiveness (\$/ton) \$ 299,671 \$ 2,678,730 Option 5 Cost/Benefit Analysis Summary Option 5 Cost/Benefit Analysis Summary Annualized Cost (\$) \$ 146,766 \$ NOx VOC NH3 Annualized Cost (\$) \$ 146,766 \$ 405,171 Cost Effectiveness (\$/ton) \$ 92,515 \$ 202 NOx VOC NH3 Cost Effectiveness (\$/ton) \$ 92,515 \$ NA ¹ \$ 405,171 Option 4 Cost (\$ NA ¹ \$ S02 NOx VOC NH3 Annualized Cost (\$ NA ¹ \$ 202,515 \$ MOX VOC	BACT option 6			NA1	10日本のなどの「数はまた」		
PM2.5 SO2 NOx VOC NH3 Annualized Cost (\$) \$ 350,265 \$149,016 NA2 NA2 NA1 Emission Reduction (tons) 1.17 0.056 NA1 Cost Effectiveness (\$/ton) \$ 299,671 \$ 2,678,730		Option	2 Cost/Benefit Analy	sis Summary			
Annualized Cost (\$) \$ 350,265 \$149,016 NA ² NA ² NA ¹ Emission Reduction (tons) 1.17 0.056		PM2.5	SO2	NOx	VOC	NH3	
Emission Reduction (tons) 1.17 0.056 Image: Const Effectiveness (\$/ton) 1.17 2.99,671 2.90,671 2.90,671 2.90,671 2.90,671 NH3 Annualized Cost (\$) \$ 146,766 \$\$ \$\$ 18,449 NA2 NA1 Emission Reduction (tons) 1.59 \$\$ 0.046 \$\$ \$\$ 1 Cost Effectiveness (\$/ton) \$ 92,515 \$\$ \$\$ 405,171 \$\$ Option 4 Cost/Benefit Analysis Summary Option 4 Cost (\$\$ NA1 Annualized Cost (\$ NA1 \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$	Annualized Cost (\$)	\$ 350,265	\$149,016	NA ²	NA ²	NA1	
Cost Effectiveness (\$/ton) \$ 299,671 \$ 2,678,730 Image: Summary state st	Emission Reduction (tons)	1.17	0.056				
Option 3 Cost/Benefit Analysis Summary PM2.5 SO2 NOx VOC NH3 Annualized Cost (\$) \$ 146,766 \$18,449 NA2 NA1 Emission Reduction (tons) 1.59 0.046 NA1 Cost Effectiveness (\$/ton) \$ 92,515 \$ 405,171 NA1	Cost Effectiveness (\$/ton)	\$ 299,671	\$ 2,678,730				
PM2.5 SO2 NOx VOC NH3 Annualized Cost (\$) \$ 146,766 \$18,449 NA ² NA ¹ Emission Reduction (tons) 1.59 0.046 NA ¹ Cost Effectiveness (\$/ton) \$ 92,515 \$ 405,171		Option	3 Cost/Benefit Analy	sis Summary	NA ST		
Annualized Cost (\$) \$ 146,766 \$18,449 NA ² NA ¹ Emission Reduction (tons) 1.59 0.046 NA ¹ NA ¹		PM2.5	SO2	NOx	VOC	NH3	
Emission Reduction (tons) 1.59 0.046 Cost Effectiveness (\$/ton) \$ 92,515 \$ 405,171 Option 4 Cost/Benefit Analysis Summary VOC NH3 Annualized Cost (\$) NA ¹ \$22,329 \$243,191 Emission Reduction (tons) 0.073 2.92 1	Annualized Cost (\$)	\$ 146,766		\$18,449	NA ²	NA1	
Cost Effectiveness (\$/ton) \$ 92,515 \$ 405,171 Option 4 Cost/Benefit Analysis Summary PM2.5 SO2 NOx VOC NH3 Annualized Cost (\$) NA ¹ \$23,329 \$243,191 \$405,171 \$405,171 Emission Reduction (tons) 0.073 2.92 \$405,171 <td>Emission Reduction (tons)</td> <td>1.59</td> <td></td> <td>0.046</td> <td></td> <td></td>	Emission Reduction (tons)	1.59		0.046			
Option 4 Cost/Benefit Analysis Summary PM2.5 SO2 NOx VOC NH3 Annualized Cost (\$) NA ¹ \$23,329 \$243,191 Emission Reduction (tons) 0.073 2.92 1	Cost Effectiveness (\$/ton)	\$ 92,515	4 化酸化化化、酸基酸化酶化 化酶化酶化酶化酶化酶化酶化酶化酶化 化酶化酶化酶化酶化酶化酶化酶化酶	\$ 405,171			
PM2.5 SO2 NOx VOC NH3 Annualized Cost (\$) NA ¹ \$23,329 \$243,191 \$23,292 \$243,191 Emission Reduction (tons) 0.073 2.92 \$23,292 \$23,292 \$23,292		Option	4 Cost/Benefit Analy	sis Summary	1		
Annualized Cost (\$) NA ¹ \$23,329 \$243,191 Emission Reduction (tons) 0.073 2.92		PM2.5	SO2	NOx	VOC	NH3	
Emission Reduction (tons) 0.073 2.92	Annualized Cost (S)	NA1		\$23.329	\$243,191		
	Emission Reduction (tons)			0.073	2 92		
	Cost Effectiveness (Charl			¢ 220.242	¢ 03 300	97 M 2 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4	

Table A-1: PM2.5 BACT Summary - Fiber Line 2

Option 1 Cost/Benefit Analysis Summary is not presented because it represents existing conditions

1 - Not technically feasible

Site Name:	Hexcel Corpora Ope	tion Salt Lake City rations	Site Location:	West Valle	y City, UT
Component ID:	Quick Compor	nent Description:		Fiber Line 3	
		BACT Option Ar	alysis		
	PM2.5	SO2	NOx	VOC	NH3
BACT option 1	Good Combustion Practices	Natural Gas	Good Combustion Practices	Good Combustion Practices	Good Operating Practices
BACT option 2	Baghouse	Venturi Scrubber	Natural Gas	Natural Gas	Leak Detection and Repair Program
BACT option 3	Venturi Scrubber		Low NOx Burner	Existing Incineration/ Flares	Venturi Scrubber
BACT option 4	Wet ESP		Ultra Low NOx Burner with Flue Gas Recirculation	Thermal Oxidization	
BACT option 5			Selective Catalytic Reduction Selective Non-		
BACT option 6			Catalytic Reduction		新学校派 18 月間登録数 第1日間,186 月間的間線
		Controlled Emissions	Table (tpy):		
	PM2.5	SO2	NOx	VOC	NH3
Existing Allowable Emissions (tn/yr)	4.38	1.67	14.06	3.60	3.82
BACT option 1	4.38	1.67	14.06	3.60	3.82
BACT option 2	1.22	0.03	14.06	3.60	NA
BACT option 3	0.09		8.82	3.60	0.076
BACT option 4	NA ⁻		5.83	0.07	
BACT option 5			NA	"#5)戴吟载"2)其非常正知。 梁柔诗钟宫赋马声马; 1933	
BACTOPTION	and the second processing of the		NA		「自然教人で記録はない」
	Opti	on 2 Cost/Benefit An	alysis Summary		
	PM2.5	SO2	NOx	VOC	NH3
Annualized Cost (\$)	\$ 539,075	\$189,349	NA ²	NA	NA
Emission Reduction (tons)	3.17	1.64			
Cost Effectiveness (\$/ton)	\$ 170,307	\$ 115,664			
	Opti	on 3 Cost/Benefit An	alysis Summary		
	PM2.5	SO2	NOx ³	VOC	NH3
Annualized Cost (\$)	\$ 310,697		\$17,947	NA ²	\$189,349
Emission Reduction (tons)	4.30		5.13	-	3.35
Cost Effectiveness (\$/ton)	\$ 72,320		\$ 3,497		\$ 56,440
	Opti	on 4 Cost/Benefit An	alysis Summary	I	
	PM2.5	502	NOv ³	VOC	NH3
Annualized Cost (C)	Na ¹		¢22 142	¢524 297	
Finingalized Cost (\$)	NA	1999、1993年2月1日(1993年1月) 1993年1月1日(1993年1月)	\$22,142	\$554,387	
Emission Reduction (tons)			8.21	3.52	
Cost Effectiveness (\$/ton)		1. ····································	\$ 2,696	\$ 151,669	·····································

Table A-2: PM2.5 BACT Summary - Fiber Line 3

Option 1 Cost/Benefit Analysis Summary is not presented because it represents existing conditions

1 - Not technically feasible

2 - Existing conditions

3 - Actual costs associated with incorporating this technology are much higher as they would include replacing an incinerator.

Site Name:	Hexcel Corpora Oper	tion Salt Lake City rations	Site Location:	West Valle	y City, UT
Component ID:	Quick Component Description:		Fiber Line 4		
		BACT Option A	nalysis		
	PM2.5	SO2	NOx	VOC	NH3
BACT option 1	Good Combustion Practices	Natural Gas	Good Combustion Practices	Good Combustion Practices	Good Operating Practices
BACT option 2	Baghouse	Venturi Scrubber	Natural Gas	Natural Gas	Leak Detection and Repair Program
BACT option 3	Venturi Scrubber		Low NOx Burner	Existing Incineration/ Flares	Venturi Scrubber
BACT option 4	Wet ESP		Ultra Low NOx Burner with Flue Gas Recirculation	Thermal Oxidization	
BACT option 5			Selective Catalytic Reduction		
BACT option 6			Selective Non-Catalytic Reduction		
		Controlled Emissions	Table (tpy):		
	PM2.5	SO2	NOx	VOC	NH3
tisting Allowable Emissions (tn/yr)	4.34	1.03	9.08	3.35	3.34
BACT option 1	4.34	1.03	9.08	3.35	3.34
BACT option 2	1.21	0.021	9.08	3.35	NA"
BACT option 3	0.09		3.04	3.35	0.067
BACT option 5	NA		5.00		
BACT option 5			NA ¹		
DACTOPROTO		an 2 Cost /Report A		ar with the data parts	
and the second second	Opti	ion 2 Costy Benefit An	naiysis Summary	WOC	
1 10 10	PMZ.5	502	NUX		NIN3
Annualized Cost (\$)	\$ 562,706	\$188,222	NA ⁻	NA	NA
Emission Reduction (tons)	3.13	1.01	-	-	-
Cost Effectiveness (\$/ton)	\$ 179,754	\$ 185,758			
	Opti	ion 3 Cost/Benefit A	nalysis Summary		
1	PM2.5	SO2	NOx 3	VOC	NH3
Annualized Cost (\$)	\$ 336,181	10日 - 10日 単一部 - 10日 - 100 -	\$23,424	NA ²	\$188,222
Emission Reduction (tons)	4.25		3.18		3.28
Cost Effectiveness (\$/ton)	\$ 79,124		\$ 7,373		\$ 57,420
	Opt	ion 4 Cost/Benefit A	nalysis Summary		
	PM2.5	SO2	NOx 3	VOC	NH3
Annualized Cost (\$)	NA1		\$27,620	\$573,911	
Emission Reduction (tons)			5.08	3.28	
Cost Effectiveness (\$/ton)			\$ 5,433	\$ 174,766	
cont Encources (4/ ton)		新教学学 鐵科 單位 總統的 第二級 等	0,100		深意したこちまとう

Table A-3: PM2.5 BACT Summary - Fiber Line 4

Option 1 Cost/Benefit Analysis Summary is not presented because it represents existing conditions

1 - Not technically feasible

2 - Existing conditions

3 - Actual costs associated with incorporating this technology are much higher as they would include replacing an incinerator.

Site Name:	Hexcel Corpora Ope	tion Salt Lake City rations	Site Location:	West Valle	y City, UT
Component ID:	Quick Compor	nent Description:		Fiber Line 5	
		BACT Option Ar	natysis		
	PM2.5	SO2	NOx	VOC	NH3
BACT option 1	Good Combustion Practices	Natural Gas	Good Combustion Practices	Good Combustion Practices	Good Operating Practices
BACT option 2	Baghouse	Venturi Scrubber	Natural Gas	Natural Gas	Leak Detection and Repair Program
BACT option 3	Venturi Scrubber		Low NOx Burner	Existing Incineration/ Flares	Venturi Scrubber
BACT option 4	Wet ESP		Ultra Low NOx Burner with Flue Gas Recirculation	Thermal Oxidization	
BACT option 5			Selective Catalytic Reduction Selective Non-Catalytic		
BACT option 6	臣務回國人遭 東軍御衛兵 總導又國書院軍 医陸軍之 總軍民國書院軍 医陸軍之 總軍民國書牌 正確的時代		Reduction		
		Controlled Emissions	Table (tpy):		
	PM2.5	SO2	NOx	VOC	NH3
Existing Allowable Emissions (tn/yr)	2.69	1.05	10.54	2.61	1.53
BACT option 1	2.69	1.05	10.54	2.61	1.53
BACT option 2	0.75	0.021	10.54	2.61	NA
BACT option 3	0.05		5.27	2.61	0.031
BACT option 4	NA		2.11	0.05	
BACT option 5	Martin and Sama and Sa Sama and Sama and Sa Sama and Sama and S		NA NA ¹	(1) Set (1) and (1)	
BACTOPLIONO			NA		
	Opt	ion 2 Cost/Benefit An	alysis Summary		
	PMZ.5	502	NOX	VOC	NHS
Annualized Cost (\$)	\$ 663,214	\$239,000	NA*	NA	NA*
Emission Reduction (tons)	1.94	1.03			
Cost Effectiveness (\$/ton)	\$ 342,057	\$ 232,444			
	Opt	ion 3 Cost/Benefit An	alysis Summary		
	PM2.5	SO2	NOx	VOC	NH3
Annualized Cost (\$)	\$ 417,852		\$207,519	NA ²	\$239,000
Emission Reduction (tons)	2.63	N. SHARE BLACK	5.27		1.50
Cost Effectiveness (\$/ton)	\$ 158,784		\$ 39,385		\$ 159,713
	Opt	ion 4 Cost/Benefit Ar	alysis Summary		
	PM2.5	SO2	NOx	VOC	NH3
Annualized Cost (\$)	NA1		\$243,517	\$641,116	
Emission Reduction (tons)			8.43	2.56	
Cost Effectiveness (\$/ton)			\$ 28,886	\$ 250.768	
		- Martin " In Capita" . The seat , Same 200 5. 8 1950 Min. 14			1 2 2 4 4 5 mile 1 1 4 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table A-4: PM2.5 BACT Summary - Fiber Line 5

Option 1 Cost/Benefit Analysis Summary is not presented because it represents existing conditions

1 - Not technically feasible

Site Name:	Hexcel Corpora Oper	tion Salt Lake City rations	Site Location:	West Valle	y City, UT
Component ID:	Quick Compor	ent Description:		Fiber Line 6	
		BACT Option An	alysis		
	PM2.5	SO2	NOx	VOC	NH3
BACT option 1	Good Combustion Practices	Natural Gas	Good Combustion Practices	Good Combustion Practices	Good Operating Practices
BACT option 2	Baghouse	Venturi Scrubber	Natural Gas	Natural Gas	Leak Detection and Repair Program
BACT option 3	Venturi Scrubber		Low NOx Burner	Existing Incineration/ Flares	Venturi Scrubber
BACT option 4	Wet ESP		Ultra Low NOx Burner with Flue Gas Recirculation	Thermal Oxidization	
BACT option 5			Selective Catalytic		
BACT option 6			Selective Non-Catalytic Reduction		
		Controlled Emissions	Table (tpy):		
	PM2.5	502	NOx	VOC	NH3
Existing Allowable Emissions	2.15	1.08	10.49	4.09	3.67
BACT option 1	2.15	1.08	10.49	4.09	3.67
BACT option 2	0.60	0.022	10.49	4.09	NA1
BACT option 3	0.04	全部認知: 關口將均能後期 国口的口里不關口與不是不	5.24	4.09	0.073
BACT option 4	NA1		2.10	0.08	(注意)、第一部に強い、「ない」が、 になっていた。 のは認め、「ない、
BACT option 5			NA ¹		
BACT option 6			NA ¹		
	Opti	on 2 Cost/Benefit An	alysis Summary		
	PM2.5	SO2	NOx	VOC	NH3
Annualized Cost (\$)	\$ 605,500	\$216,690	NA ²	NA ²	NA1
Emission Reduction (tons)	1.55	1.06			
Cost Effectiveness (\$/ton)	\$ 390,690	\$ 204.652			
	Opti	ion 3 Cost/Benefit An	alysis Summary		
	PM2.5	SO2	NOx	VOC	NH3
Annualized Cost (\$)	\$ 368.907		\$203,903	NA ²	\$216,690
Emission Reduction (tons)	2.10		5.24		3.55
Cost Effectiveness (\$/ton)	\$ 175.377		\$ 38.877		\$ 60.328
	Onti	ion 4 Cost/Benefit Ar	alvsis Summary		
and the second s	PM2.5	SO2	NOx	VOC	NH3
Appualized Cost (\$)	NA ¹		\$240.694	\$558 221	
Emission Reduction (teres)	INA		9 200,034	401	
Emission Reduction (tons)			8.39	4.01	
Cost Effectiveness (\$/ton)			\$ 28,682	> 139,179	

Table A-5: PM2.5 BACT Summary - Fiber Line 6

Option 1 Cost/Benefit Analysis Summary is not presented because it represents existing conditions

1 - Not technically feasible

Site Name:	Hexcel Corpora Ope	tion Salt Lake City rations	Site Location:	West Valle	y City, UT
Component ID:	Quick Compor	nent Description:		Fiber Line 7	
		BACT Option An	alysis		
	PM2.5	SO2	NOx	VOC	NH3
BACT option 1	Good Combustion Practices	Natural Gas	Good Combustion Practices	Good Combustion Practices	Good Operating Practices
BACT option 2	Baghouse	Venturi Scrubber	Natural Gas	Natural Gas	Leak Detection and Repair Program
BACT option 3	Venturi Scrubber		Low NOx Burner	Existing Incineration/ Flares	Venturi Scrubber
BACT option 4	Wet ESP		Ultra Low NOx Burner with Flue Gas Recirculation	Thermal Oxidization	
BACT option 5	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		Selective Catalytic		
BACT option 6			Selective Non- Catalytic Reduction		
	(Controlled Emissions	Table (tpy):		
	PM2.5	SO2	NOx	VOC	NH3
Existing Allowable Emissions	2.75	1.69	15.35	8.11	2.12
BACT option 1	2.75	1.69	15.35	8.11	2.12
BACT option 2	0.76	0.03	15.35	8.11	NA ¹
BACT option 3	0.05	新聞: 1993年1月1日日 1995年1月1日日 - 1995年1月1日日 1995年1月1日日 - 1995年1月1日日	7.68	8.11	0.042
BACT option 4	NA ¹	i af geredau. Kon spærskrigt	3.07	0.16	
BACT option 5			NA ¹	(1) 10 · 10 · 第二篇文化。 11 · 11 · 11 · 11 · 11 · 11 · 11 · 11	
BACT option 6			NA ¹		
	Optio	on 2 Cost/Benefit An	alysis Summary		
and the second second	PM2.5	SO2	NOx	VOC	NH3
Annualized Cost (\$)	\$ 675,551	\$243,305	\$ -	\$ -	NA1
Emission Reduction (tons)	1.98	1.65			
Cost Effectiveness (\$/ton)	\$ 340,763	\$ 147.035			
	Optio	on 3 Cost/Benefit Ana	alysis Summary		
-	PM2.5	SO2	NOx	VOC	NH3
Annualized Cost (\$)	\$ 460.081		\$202,924	\$ -	\$243.305
Emission Reduction (tons)	2.69		7.68		2.07
Cost Effectiveness (\$/ton)	\$ 170,989	CHERREN CONTROLOGIES NERSE CARE CERT	\$ 26.436		\$ 117 368
	Opti	on 4 Cost/Benefit An	alvsis Summary		
	PM2.5	502	NOx	VOC	NH3
Annualized Cost (\$)	NA ¹		\$239.240	\$720.200	
Emission Reduction (tons)	IVA		\$255,240	3720,290	
Cost Effectiveness (Char)		2월 11일은 왕선왕극도() 第 종일왕근帝(2章帝)왕(2)(8)(2)	t 10.470	ć 00.634	
Cost Enectiveness (\$/ton)		an a	\$ 19,479	\$ 90,631	

Table A-6: PM2.5 BACT Summary - Fiber Line 7

Option 1 Cost/Benefit Analysis Summary is not presented because it represents existing conditions

1 - Not technically feasible

Site Name:	Hexcel Corpora Ope	tion Salt Lake City rations	Site Location:	West Valle	y City, UT	
Component ID:	Quick Compor	nent Description:		Fiber Line 8		
		BACT Option An	alysis			
	PM2.5	SO2	NOx	VOC	NH3	
BACT option 1	Good Combustion Practices	Natural Gas	Good Combustion Practices	Good Combustion Practices	Good Operating Practices	
BACT option 2	Baghouse	Venturi Scrubber	Natural Gas	Natural Gas	Leak Detection and Repair Program	
BACT option 3	Venturi Scrubber		Low NOx Burner	Existing Incineration/ Flares	Venturi Scrubber	
BACT option 4	Wet ESP		Ultra Low NOx Burner with Flue Gas Recirculation	Thermal Oxidization		
BACT option 5			Selective Catalytic Reduction			
BACT option 6			Selective Non- Catalytic Reduction			
	(Controlled Emissions	Table (tpy):			
	PM2.5	SO2	NOx	VOC	NH3	
Existing Allowable Emissions	9.75	4.87	9.33	22.30	10.37	
(tn/yr)	0.75	4.07	0.22	22.20	10.37	
BACT option 1	2.71	4.87	9.33	22.30	NA ¹	
BACT option 3	0.20		4.65	22.30	0.206	
BACT option 4	NA1		1.86	0.44		
BACT option 5			NA1			
BACT option 6			NA1			
	Optio	on 2 Cost/Benefit An	alysis Summary			
	PM2.5	SO2	NOx	VOC	NH3	
Annualized Cost (\$)	\$ 1.080.856	\$1,041,904	NA ²	NA ²	NA1	
Emission Reduction (tons)	7.04	4.47				
Cost Effectiveness (\$/ton)	\$ 153 528	\$ 233 178				
	Opti	on 3 Cost/Benefit An	alvsis Summary			
	PM2 5	502	NOx	VOC	NH3	
Appualized Cost (\$)	\$ 795.004		\$190.631	NA ²	\$1.041.904	
Emission Reduction (tons)	0.56		\$150,051 A 65	10	10.07	
Cast Effectiveness (É (ten)	¢ 92 201		¢ 40.963		¢ 102.426	
Cost Effectiveness (\$/ton)	> 85,201	an A Cost /Repetit An	3 40,505		\$ 103,430	
	Deal E	con 4 costy benefit An	arysis Summary	NOC	NUS	
Annualized Cost (A)	PINZ.5	JUZ	(330 235	\$1 316 0CF	CIIN	
Annualized Cost (5)	NA		\$228,325	\$1,210,903		
Emission Reduction (tons)			7.45	21.64		
Cost Effectiveness (\$/ton)			\$ 30,664	\$ 56,234		

Table A-7: PM2.5 BACT Summary - Fiber Line 8

Option 1 Cost/Benefit Analysis Summary is not presented because it represents existing conditions

1 - Not technically feasible

Site Name:	Hexcel Corpora Ope	tion Salt Lake City rations	Site Location:	West Valle	y City, UT	
Component ID:	Quick Compor	nent Description:		Fiber Line 10		
		BACT Option An	alysis			
	PM2.5	SO2	NOx	VOC	NH3	
BACT option 1	Good Combustion Practices	Natural Gas	Good Combustion Practices	Good Combustion Practices	Good Operating Practices	
BACT option 2	Baghouse	Venturi Scrubber	Natural Gas	Natural Gas	Leak Detection and Repair Program	
BACT option 3	Venturi Scrubber		Low NOx Burner	Existing Incineration/ Flares	Venturi Scrubber	
BACT option 4	Wet ESP		Ultra Low NOx Burner with Flue Gas Recirculation	Thermal Oxidization		
BACT option 5			Selective Catalytic			
BACT option 6			Selective Non- Catalytic Reduction			
	(Controlled Emissions	Table (tpy):			
	PM2.5	SO2	NOx	VOC	NH3	
Existing Allowable Emissions	9.75	4.87	9.33	22.30	10.37	
(tn/yr) BACT option 1	9.75	4.87	933	22 30	10.37	
BACT option 2	2.71	0.09	9.33	22.30	NA1	
BACT option 3	0.20		4.65	22.30	0.206	
BACT option 4	NA1		1.86	0.44		
BACT option 5			NA1			
BACT option 6			NA1			
	Optio	on 2 Cost/Benefit An	alysis Summary			
	PM2.5	502	NOx	VOC	NH3	
Annualized Cost (\$)	\$ 1,080.856	\$1.041.904	NA ²	NA ²	NA1	
Emission Reduction (tons)	7.04	4 47				
Cost Effectiveness (t /han)	¢ 453,530	¢ 222.470				
cost Effectiveness (\$/ton)	2 155,528	255,1/8 on 3 Cost/Renefit An	alvsis Summary			
	PM2 5	SO2	NOr	VOC	NH3	
Annualized Cost (C)	\$ 705 004		¢100 ¢21	Na ²	¢1 041 004	
Emission De duction (1	755,004		\$190,031	NA	\$1,041,904	
Emission Reduction (tons)	9.56		4.65		10.07	
Cost Effectiveness (\$/ton)	\$ 83,201		\$ 40,963		\$ 103,436	
	Optio	on 4 Cost/Benefit An	alysis Summary			
	PM2.5	502	NOx	VOC	NH3	
Annualized Cost (\$)	NA1		\$228,325	\$1,216,965		
Emission Reduction (tons)		新加拿起来就算了。 1999年的新闻了。	7.45	21.64		
Cost Effectiveness (\$/ton)			\$ 30,664	\$ 56,234		

Table A-8: PM2.5 BACT Summary - Fiber Line 10

Option 1 Cost/Benefit Analysis Summary is not presented because it represents existing conditions

1 - Not technically feasible

Site Name:	Hexcel Corpora Ope	tion Salt Lake City rations	Site Location:	West Valle	City, UT	
Component ID:	Quick Component Description:			Fiber Line 11		
		BACT Option A	nalysis			
	PM2.5	SO2	NOx	voc	NH3	
BACT option 1	Good Combustion Practices	Natural Gas	Good Combustion Practices	Good Combustion Practices	Good Operating Practices	
BACT option 2	Baghouse	Venturi Scrubber	Natural Gas	Natural Gas	Leak Detection and Repair Program	
BACT option 3	Venturi Scrubber		Low NOx Burner	Existing Incineration/ Flares	Venturi Scrubber	
BACT option 4	Wet ESP		Uitra Low NOx Burner with Flue Gas Recirculation	Thermal Oxidization		
BACT option 5	》是他认为他们要有"你。 17.我们都是你们的问题。 19.我们就是你们的问题。		Selective Catalytic			
BACT option 6			Selective Non-Catalytic Reduction			
		Controlled Emissions	Table (tpy):			
	PM2.5	SO2	NOx	voc	NH3	
Existing Allowable Emissions	11.98	5.99	11.47	32.24	12.75	
BACT option 1	11.98	5.99	11.47	32.24	12.75	
BACT option 2	3.33	0.11	11.47	32.24	NA1	
BACT option 3	0.24		5.72	32.24	0.253	
BACT option 4	NA		2.29	0.64		
BACT option 5			NA [*]			
BACT OPTION 0	and the second		NA	and an in the same and the set of the set		
	Op	tion 2 Cost/Benefit A	nalysis Summary			
	PM2.5	SO2	NOx	VOC	NH3	
Annualized Cost (\$)	\$ 973,140	\$927,376	NA ²	NA ²	NA ¹	
Emission Reduction (tons)	8.65	5.49				
Cost Effectiveness (\$/ton)	\$ 112,479	\$ 168,885	No. COMPANY COMPANY			
	Op	tion 3 Cost/Benefit A	nalysis Summary			
	PM2.5	SO2	NOx	VOC	NH3	
Annualized Cost (\$)	\$ 719,626		\$191,417	NA ²	\$927,376	
Emission Reduction (tons)	11.74		5.72		12.38	
Cost Effectiveness (\$/ton)	\$ 61,283		\$ 33,470		\$ 74,916	
	Op	tion 4 Cost/Benefit A	nalysis Summary			
	PM2.5	SO2	NOx	VOC	NH3	
Annualized Cost (\$)	NA1		\$229,053	\$1,116,063		
Emission Reduction (tons)			9.15	31.33		
Cost Effectiveness (\$/ton)			\$ 25,032	\$ 35,619		

Table A-9: PM2.5 BACT Summary - Fiber Line 11

Option 1 Cost/Benefit Analysis Summary is not presented because it represents existing conditions

1 - Not technically feasible

Site Name:	Hexcel Corpora Ope	tion Salt Lake City rations	Site Location:	West Valle	y City, UT
Component ID:	Quick Compor	nent Description:		Fiber Line 12	
		BACT Option An	alysis		
	PM2.5	502	NOx	VOC	NH3
BACT option 1	Good Combustion Practices	Natural Gas	Good Combustion Practices	Good Combustion Practices	Good Operating Practices
BACT option 2	Baghouse	Venturi Scrubber	Natural Gas	Natural Gas	Leak Detection and Repair Program
BACT option 3	Venturi Scrubber		Low NOx Burner	Existing Incineration/ Flares	Venturi Scrubber
BACT option 4	Wet ESP		Ultra Low NOx Burner with Flue Gas Recirculation	Thermal Oxidization	
BACT option 5		n Charles Suit () Xeisel de Moree	Selective Catalytic		
BACT option 6			Reduction Selective Non- Catalytic Reduction		
		Controlled Emissions	Table (tpv):		
	PM2.5	SO2	NOx	VOC	NH3
Existing Allowable Emissions	11.98	5.99	11.47	32.24	12.75
BACT option 1	11.98	5.99	11.47	32.24	12.75
BACT option 2	3.33	0.11	11.47	32.24	NA ¹
BACT option 3	0.24		5.72	32.24	0.253
BACT option 4	NA1		2.29	0.64	
BACT option 5			NA1		
BACT option 6			NA ¹	的 會 的著作者的發展變化的 全國的第三人称形式的發展	
	Opti	on 2 Cost/Benefit An	alysis Summary		
	PM2.5	SO2	NOx	VOC	NH3
Annualized Cost (\$)	\$ 973,140	\$927,376	NA ²	NA ²	NA1
Emission Reduction (tons)	8.65	5.49		-	
Cost Effectiveness (\$/ton)	\$ 112,479	\$ 168.885			
	Opti	on 3 Cost/Benefit An	alysis Summary		
	PM2.5	SO2	NOx	VOC	NH3
Annualized Cost (\$)	\$ 719.626		\$191,417	NA ²	\$927,376
Emission Reduction (tons)	11.74		5.72		12.38
Cost Effectiveness (\$/ton)	\$ 61,283		\$ 33.470		\$ 74.916
	Opti	on 4 Cost/Benefit An	alvsis Summary		
	PM2.5	502	NOx	VOC	NH3
Annualized Cost (\$)	NA ¹		\$229.053	\$1 116 063	
Emission Reduction (tons)	INA		9225,055	21 22	
Cost Effectiveness (\$/ton)			\$ 25.022	\$ 35.610	· ● · · · · · · · · · · · · · · · · · ·
COSt Effectiveness (\$/ton)		The second s	25,032	3 33,019	

Table A-10: PM2.5 BACT Summary - Fiber Line 12

Option 1 Cost/Benefit Analysis Summary is not presented because it represents existing conditions

^{1 -} Not technically feasible

Table A-11: PM2.5 BACT Summary - Fiber Line 13

Site Name:	Hexcel C	Corporation Salt Lake C	ity Operations	West Valley City, UT						
Component ID:	Quick Component Description:		Fiber Line 13							
BACT Option Analysis										
	PM2.5	SO2	NOx	VOC	NH3					
BACT option 1	Good Combustion Practices	Natural Gas	Good Combustion Practices	Good Combustion Practices	Good Operating Practices					
BACT option 2	Baghouse	Venturi Scrubber	Natural Gas	Natural Gas	Leak Detection and Repair Program					
BACT option 3	Venturi Scrubber		Low NOx Burner	Existing Incineration/ Flares	Venturi Scrubber					
BACT option 4	Wet ESP		De-NO _x Water for DFTO	Thermal Oxidization						
BACT option 5			Ultra Low NOx Burner with Flue Gas Recirculation							
BACT option 6			Selective Catalytic Reduction Selective Non-							
BACT option 7			Catalytic Reduction							
		Controlled Emissions	Table (tpy):							
	PM2.5	\$02	NOx	voc	NH3					
kisting Allowable Emissions	6.04	0.76	18.48	4.10	2.12					
(tn/yr) RACT option 1	6.04	0.76	18.48	4 10	212					
BACT option 2	6.04	0.02	18.48	4.10	NA1					
BACT option 3	NA ²		NA ³	NA ²	0.042					
BACT option 4	NA1		11.51	NA ²						
BACT option 5			10.42							
BACT option 5		1. 1999年1月。20日本1月第1日第1日 1月1日年 - 1月1日年 -	NA ⁻	編58月12回日報19章 回編8月2回日報19章						
BACTOPHONO		17 红月湖和黄竹寨部設	NA	· 第四条: · · · · · · · · · · · · · · · · · · ·						
	Op	tion 2 Cost/Benefit Ar	alysis Summary							
	PM2.5	SO2	NOx	VOC	NH3					
Annualized Cost (\$)	NA ²	\$1,262,705	NA ³	NA ³	NA					
Emission Reduction (tons)		0.74								
Cost Effectiveness (\$/ton)		\$ 1,698,368								
	Op	tion 3 Cost/Benefit Ar	alysis Summary							
	PM2.5	\$02	NOx	VOC	NH3					
Annualized Cost (\$)	NA ²		NA ³	NA	\$1,262,705					
Emission Reduction (tons)					2.07					
Cost Effectiveness (\$/ton)				-	\$ 610,687					
	Op	tion 4 Cost/Benefit A	nalysis Summary		an Aste					
	PM2.5	\$02	NOx ⁴	VOC	NH3					
Annualized Cost (\$)	NA1		\$57,505	NA ²	· 你不能有些心心。					
Emission Reduction (tons)			6.97	1						
Cost Effectiveness (\$/ton)			\$ 8,248							
	Op	tion 5 Cost/Benefit An	nalysis Summary							
	PM2.5	SO2	NOx	VOC	NH3					
Annualized Cost (\$)	NA1		\$138,511	NA ²	- 線道建立建立体					
Emission Reduction (tons)			0.54	1						
		200 - 200 C. Mil (20 200 - 20 200 - 10	A 354 600		200877 44 448 343 7 4 586 464 1					

Option 1 Cost/Benefit Analysis Summary is not presented because it represents existing conditions

1 - Not technically feasible

2 - Not applicable - maximum control already applied

^{3 -} Existing conditions

Table A-12: PM2.5 BACT Summary - Fiber Line 14

Site Name:	Hexcel C	Corporation Salt Lake C	City Operations Wes		/alley City, UT					
Component ID:	Quick Compo	Quick Component Description: Fiber Lin		Fiber Line 14						
BACT Option Analysis										
	PM2.5	SO2	NOx	VOC	NH3					
BACT option 1	Good Combustion Practices	Natural Gas	Good Combustion Practices	Good Combustion Practices	Good Operating Practices					
BACT option 2	Baghouse	Venturi Scrubber	Natural Gas	Natural Gas	Leak Detection and Repair Program					
BACT option 3	Venturi Scrubber		Low NOx Burner	Existing Incineration/ Flares	Venturi Scrubbe					
BACT option 4	Wet ESP	10日本の日本では、10日本	De-NO _X Water for DFTO	Thermal Oxidization						
BACT option 5			Ultra Low NOx Burner with Flue Gas Recirculation							
BACT option 6			Selective Catalytic Reduction							
BACT option 7			Selective Non- Catalytic Reduction							
		Controlled Emissions	Table (tpy):							
	PM2.5	SO2	NOx	VOC	NH3					
xisting Allowable Emissions	7.28	0.76	30.60	3.68	2.12					
BACT option 1	7.28	0.76	30.60	3.68	2.12					
BACT option 2	7.28	0.02	30.60	3.68	NA1					
BACT option 3	NA ²		NA ³	NA ²	0.042					
BACT option 4	NA ¹		11.51	NA ²	● 単式的対応序 1 年1日、日本の総					
BACT option 5			10.42 NA ¹							
BACT option 6			NA1							
	Om	tion 2 Cost/Benefit An	alveis Summary							
	PM2 S	507	NOv	VOC	NH2					
Annualized Cost (\$)	NA ²	\$1 404 101	NA ³	NIA ³	NA ¹					
Emission Reduction (tons)	ina	0.74	100		ina.					
Cost Effectiveness (\$/ton)		¢ 1 999 540								
Cost Enectiveness (5/ ton)	Ont	tion 3 Cost/Benefit An	alvsis Summary	L						
	PM2 5	507	NOv	VOC	NH3					
Annualized Cost (\$)	NA ²	Star in an in the star star in the star in the	NA ³	NIA ³	\$1 404 10					
Emission Reduction (tons)	110		IA	100	21,404,10					
Cost Effectiveness (\$/ten)		2015 2016 2017 2017 2017 2017 2017 2017 2017 2017			£ 670.07					
Cost Effectiveness (5/10/1)	On	tion A Cost/Benefit An	alutic Summany		\$ 013,011					
	DM7 5	son	NO.4	VOC	NUS					
Annualized Cost (6)	hial		110X	142	CUIN States and the second					
Emission Reduction (Acad	NA ⁻		\$57,505	NA-						
Cost Effortiveness (\$ (tons)			19.09							
COST Effectiveness (\$/10n)	Ont	tion 5 Cost/Reposit An	alvsis Summary							
	Dirt C	con	NO-	Voc	81112					
Annualized Cost (4)	PM2.5	502	NUX		RH3					
Annualized Cost (\$)	NA"		\$138,511	NA						
Emission Reduction (tons)			0.54							
Cost Effectiveness (\$/ton)		法通信 就不能能通信 世	\$ 254,688							

Option 1 Cost/Benefit Analysis Summary is not presented because it represents existing conditions

1 - Not technically feasible

2 - Not applicable - maximum control already applied

^{3 -} Existing conditions

Table A-13: PM2.5 BACT Summary - Fiber Line 15

Site Name:	Hexcel C	orporation Salt Lake C	City Operations	ions West Valley City, UT Fiber Line 15						
Component ID:	Quick Compo	ment Description:								
		BACT Option A	nalysis							
	PM2.5	SO2	NOx	VOC	NH3					
BACT option 1	Good Combustion Practices	Natural Gas	Good Combustion Practices	Good Combustion Practices	Good Operating Practices					
BACT option 2	Baghouse	Venturi Scrubber	Natural Gas	Natural Gas	Leak Detection and Repair Program					
BACT option 3	Venturi Scrubber		Low NOx Burner	Existing Incineration/ Flares	Venturi Scrubber					
BACT option 4	Wet ESP		De-NO _x Water for DFTO	Thermal Oxidization						
BACT option 5			Ultra Low NOx Burner with Flue Gas Recirculation							
BACT option 6			Selective Catalytic Reduction	alla Sara 12						
BACT option 7			Catalytic Reduction							
		Controlled Emissions	Table (tpy):		City, UT NH3 Good Operating Practices Leak Detection and Repair Program Venturi Scrubber NH3 2.93 NH3 2.93 NA1 0.058 2.93 NA1 NH3 \$2,028,030 2.86 \$ 708,347 NH3					
	PM2.5	SO2	NOx	VOC	NH3					
xisting Allowable Emissions	4.42	0.82	33.20	6.16	2.93					
(tn/yr) BACT option 1	4.47	0.87	33.20	6.16	2.93					
BACT option 2	4.42	0.02	33.20	6.16	NA1					
BACT option 3	NA ²		NA ³	NA ²	0.058					
BACT option 4	NA1		11.66	NA ²						
BACT option 5			10.48	会会を実施で続ける。						
BACT option 5			NA1	強い事べ記録書く読						
BACT option 6	MA COM		NA	STR BOARD						
	Op	tion 2 Cost/Benefit A	nalysis Summary							
	PM2.5	SO2	NOx	VOC	NH3					
Annualized Cost (\$)	NA ²	\$2,028,030	NA ³	NA ³	NA1					
Emission Reduction (tons)		0.81								
Cost Effectiveness (\$/ton)		\$ 2,514,220		1						
	Op	tion 3 Cost/Benefit A	nalysis Summary							
	PM2.5	SOZ	NOx	VOC	NH3					
Annualized Cost (\$)	NA ²	·····································	NA ³	NA ³	\$2,028,030					
Emission Reduction (tons)					2.86					
Cost Effectiveness (\$/ton)					\$ 708 347					
Cost Enecureness (s) con	On	tion 4 Cost/Benefit A	nalysis Summary		1					
-	PM2 5	507	NOv ⁴	VOC	NH3					
Annualized Cost (6)	NA ¹	- ALCONTRACTOR	¢57 505	ava ²						
Emission Reduction (Acad	INA		337,303	in						
Cost Effectiveness (\$/top)			¢ 2670							
Cost Ellectiveness (\$/ton)	0.	tion 5 Cost/Benefit A	alvsis Summary							
	PM2 5	son a cost perient A	NOv	Voc	NUS					
Annuality 10 140	PM2.5	JUL .	100A		ento					
Annualized Cost (\$)	NA"		\$138,511	NA						
Emission Reduction (tons)			0.55		2 · · · · · · · · · · · · · · · · · · ·					
Cost Effectiveness (\$/ton)		於國軍部常能快援於軍	\$ 234,751							

Option 1 Cost/Benefit Analysis Summary is not presented because it represents existing conditions

1 - Not technically feasible

2 - Not applicable - maximum control already applied

3 - Existing conditions

Table A-14: PM2.5 BACT Summary - Fiber Line 16

Site Name:	Hexcel C	Corporation Salt Lake C	West Valley City, UT							
Component ID:	Quick Compo	ment Description:		Fiber Line 16						
		BACT Option Ar	natysis							
	PM2.5	SO2	NOx	VOC	NH3					
BACT option 1	Good Combustion Practices	Natural Gas	Good Combustion Practices	Good Combustion Practices	Good Operating Practices					
BACT option 2	Baghouse	Venturi Scrubber	Natural Gas	Natural Gas	Leak Detection and Repair Program					
BACT option 3	Venturi Scrubber		Low NOx Burner	Existing Incineration/ Flares	Venturi Scrubber					
BACT option 4	Wet ESP	は、1441日にある 14日日の第 14日日の第 14日日の第 14日日の第 14日日のの 14日日の 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	De-NO _x Water for DFTO	Thermal Oxidization						
BACT option 5			Ultra Low NOx Burner with Flue Gas Recirculation	市市市市 市市市市市市市市市 市市市市市市市市市市市 市市市市市市市市市市						
BACT option 6			Selective Catalytic Reduction							
BACT option 7		运到 月間 - 農門港 > 橋 橋長 第51 家院総計	Catalytic Reduction							
		Controlled Emissions	Table (tpy):							
	PM2.5	SO2	NOx	VOC	NH3					
Existing Allowable Emissions	4.42	0.82	33.20	6.16	2.93					
BACT option 1	4.42	0.82	33.20	6.16	2.93					
BACT option 2	4.42	0.02	33.20	6.16	NA1					
BACT option 3	NA ²	新客舗設護整整支持:	NA ³	NA ²	0.058					
BACT option 4	NA1	· · · · · · · · · · · · · · · · · · ·	11.66	NA ²	2月秋日天一直前日					
BACT option 5	1. 1997年1997年1997年1997年1997年1997年1997年1997		10.48		and the second se					
BACT option 5			NA*	dir salah di kata kata kata kata kata kata kata kat						
BACT Option 6			NA	第14日日日間の日本						
	Opt	tion 2 Cost/Benefit Ar	alysis Summary							
	PM2.5	SO2	NOx	VOC	NH3					
Annualized Cost (\$)	NA ²	\$2,028,030	NA ³	NA ³	NA					
Emission Reduction (tons)	-	0.81								
Cost Effectiveness (\$/ton)		\$ 2,514,220	-		-					
	Opt	tion 3 Cost/Benefit Ar	alysis Summary							
	PM2.5	SO2	NOx	VOC	NH3					
Annualized Cost (\$)	NA ²		NA ³	NA ³	\$2,028,030					
Emission Reduction (tons)					2.86					
Cost Effectiveness (\$/ton)					\$ 708,347					
	Opt	tion 4 Cost/Benefit Ar	alysis Summary							
	PM2.5	502	NOx 4	VOC	NH3					
Annualized Cost (\$)	NA1		\$57,505	NA ²						
Emission Reduction (tons)			21.54		TO DE LA SA					
Cost Effectiveness (\$/ton)			\$ 2,670							
	Op	tion 5 Cost/Benefit Ar	nalysis Summary		and the part of the second states					
	PM2.5	SO2	NOx	VOC	NH3					
Annualized Cost (5)	NA ¹		\$138,511	NA ²						
Emission Reduction (tons)			0.59							
Cost Effortiveness (Chan)			¢ 124 751							
Cost Enectiveness (\$/ton)		(1) 建立、新具制器 章 注意 (1) 11 11 11 11 11 11 11 11 11 11 11 11 1	234,/51		an an and an and a second and					

Option 1 Cost/Benefit Analysis Summary is not presented because it represents existing conditions

1 - Not technically feasible

2 - Not applicable - maximum control already applied

3 - Existing conditions

Site Name:	Hexcel Corpora Oper	tion Salt Lake City rations	Site Location:	West Valle	y City, UT
Component ID:	Quick Compon	nent Description:	P	ilot Fiber Line	
		BACT Option An	alysis		
	PM2.5	SO2	NOx	VOC	NH3
BACT option 1	Good Combustion Practices	Natural Gas	Good Combustion Practices	Good Combustion Practices	Good Operating Practices
BACT option 2	Baghouse	Venturi Scrubber	Natural Gas	Natural Gas	Leak Detection and Repair Program
BACT option 3	Venturi Scrubber		Low NOx Burner	Existing Incineration/ Flares	Venturi Scrubber
BACT option 4	Wet ESP		Ultra Low NOx Burner with Flue Gas Recirculation	Thermal Oxidization	
BACT option 5			Selective Catalytic		
BACT option 6			Selective Non-Catalytic Reduction		
		Controlled Emissions	Table (tpy):		
	PM2.5	SO2	NOx	VOC	NH3
xisting Allowable Emissions	0.01	0.0051	0.035	0.04	0.03
BACT option 1	0.01	0.0051	0.035	0.04	0.03
BACT option 2	0.003	0.0001	0.035	0.04	NA1
BACT option 3	0.0002		0.018	0.04	0.001
BACT option 4	NA		0.0071	0.001	
BACT option 5			NA		
BACI option 6			NA		
	Opt	tion 2 Cost/Benefit An	alysis Summary		
	PM2.5	502	NOx	VOC	NH3
Annualized Cost (\$)	\$ 504,305	\$162,282.1	NA ²	NA ²	NA
Emission Reduction (tons)	0.01	0.00			
Cost Effectiveness (\$/ton)	\$ 70,259,137	\$ 32,745,904			
	Opt	tion 3 Cost/Benefit An	alysis Summary		
	PM2.5	SO2	NOx	voc	NH3
Annualized Cost (\$)	\$ 288,289	日本第2月第三日の第三月の第三月 (19月2日) - 19月日の第三月の第三月の第三月の第三月の第三月の第三月の第三月の第三月の (19月2日) - 19月の第三月の第三月の第三月の第三月の第三月の第三月の第三月の第三月の第三月の第三	\$18,449	NA ²	\$162,282.1
Emission Reduction (tons)	0.01		0.02		0.03
Cost Effectiveness (\$/ton)	\$ 29,592,182		\$ 1,044,326		\$ 5,639,822
		1	alvsis Summary		
	Opt	tion 4 Cost/Benefit An			
	Opt PM2.5	SO2	NOx	VOC	NH3
Annualized Cost (\$)	Op PM2.5 NA ¹	SO2	NOx \$20,581	VOC \$418,534	NH3
Annualized Cost (\$) Emission Reduction (tons)	Op PM2.5 NA ¹	SO2	NOx \$20,581 0.03	VOC \$418,534 0.04	NH3

Table A-15: PM2.5 BACT Summary - Pilot Fiber Line

Option 1 Cost/Benefit Analysis Summary is not presented because it represents existing conditions

1 - Not technically feasible

Table A-16: PM2.5 BACT Summary - Matrix Operations

Site Name:	Hexcel Corpora Ope	tion Salt Lake City rations	Site Location:	West Valley C	City, UT
Component ID:	Quick Compor	nent Description:		Matrix Operations	
		BACT Option An	alysis		
	PM2.5	SO2	NOx	VOC	NH3
BACT option 1	Good Combustion Practices	Natural Gas	Good Combustion Practices	Good Combustion Practices	
BACT option 2	Baghouse	Venturi Scrubber	Natural Gas	Natural Gas	
BACT option 3	Venturi Scrubber		Low NOx Burner	Existing Incineration/ Flares	
BACT option 4	Wet ESP		Ultra Low NOx Burner with Flue Gas Recirculation	Thermal Oxidization	
BACT option 5			Selective Catalytic Reduction		
BACT option 6			Selective Non- Catalytic Reduction		
	(Controlled Emissions	Table (tpy):		
	PM2.5	SO2	NOx	VOC	NH3
xisting Allowable Emissions	0.79	0.063	5.21	0.59	0.00
(tn/yr) BACT option 1	0.79	0.063	5.21	0.59	\$105 ya 47 30 1
BACT option 2	0.008	0.001	5.21	0.59	
BACT option 3	0.016		NA ³	0.59	
BACT option 4	NA1		NA1	NA ²	
BACT option 5			NA1		
BACT option 6	で、「「「」」		NA ¹	目離信事法(学会考示略体) (1)))) (1))) (1)) (1)) (1)) (1)) (1))	
	Opti	on 2 Cost/Benefit An	alysis Summary		-
	PM2.5	SO2	NOx	VOC	NH3
Annualized Cost (\$)	NA1	\$284,628.9	NA ³	NA ³	
Emission Reduction (tons)		0.06	-		
Cost Effectiveness (\$/ton)		\$ 4.641.697			
	Opti	on 3 Cost/Benefit An	alysis Summary		n 3440 - 2006 (960) 1889 (749)
	PM2.5	502	NOx	VOC	NH3
Annualized Cost (5)	\$ 290,427		NA ²	NA ³	St 22 Mail
Emission Reduction (tone)	0.79				
Cast Effectiveness (C/ten)	¢ 272.014				y gango a se gang segar segar a conse selen e conse dan e conse a conse selen e conse danse a conse selen e conse danse
Cost Energiaeness (\$/ton)	2 3/3,914	on & Cost /Reposit An	alucis Summan		n sann san san san san san san san san s
	Para c	costy benefit An	aryois summary	NOC	NUD
	PM2.5	302	NUX		NII3
Annualized Cost (\$)	NA		NA	NA"	
Emission Reduction (tons)		企業部務:>海営業会務(#) 業業務支援主義等等部額(#)			
		As some anger that as an array ton correct - some some		1000	

Option 1 Cost/Benefit Analysis Summary is not presented because it represents existing conditions

1 - Not technically feasible

2 - Not applicable - maximum control already applied

Table A-17: PM2.5	BACT Summary	- Emergency	Generators	
-------------------	---------------------	-------------	------------	--

Site Name:	Hexcel Corporation Sa	It Lake City Operations	Site Location:	West Valley	City, UT					
Component ID:	Quick Compone	ent Description:		Emergency Generators						
		BACI Optio	on Analysis							
	PM2.5	SO2	NOx	VOC	NH3					
BACT Condition	Annual Hours of Operation Restriction	NA								
BACT Condition	Restrictions and Use of Low Sulfur Fuel	NA								
BACT Condition	Engines compliant with NSPS IIII and JJJJ and NESHAP ZZZZ	Engines compliant with NSPS IIII and JJJJ and NESHAP ZZZZ	Engines compliant with NSPS IIII and JJJJ and NESHAP ZZZZ	Engines compliant with NSPS IIII and JJJJ and NESHAP ZZZZ	NA					
PARTS PROVING		的人们在自己的问题。	A REAL PROPERTY AND	Search States - March March						
		Controlled Emiss	ions Table (tpy):							
Component ID:Quick Component Description:Emergency GeneratorsBACT Option:BACT Option:PM2.5SO2NOxVOCNH3BACT ConditionAnnual Hours of Operation RestrictionAnnual Hours of Operation RestrictionNABACT ConditionRestrictions and Use of Low Sulfur FuelRestrictions and Use of Low Sulfur FuelRestrictions and Use of Low Sulfur FuelRestrictions and Use of Low Sulfur FuelNABACT ConditionEngines compliant with NSPS IIII and JJJJJ and NESHAP ZZZZEngines compliant with NSPS IIII and JJJJJ and NESHAP ZZZZEngines compliant with NSPS IIII and JJJJJ and NESHAP ZZZZNAExisting Allowable Emissions (tn/yr)1.361.0811.651.03NA										
Existing Allowable Emissions (tn/yr)	1.36	1.08	11.65	1.03	NA					

the second second

Table A-18: PM2.5 BACT Summary - HVAC Systems

Site Name:	Hexcel Corporation Sa	It Lake City Operations	Site Location:	West Valley (City, UT	
Component ID:	Quick Compone	ent Description:		HVAC Systems		
		BACT Optio	Analysis			
	D142 5	BACTOPHO	Aldiysis	Mag		
and the second s	PMZ.5	502	NUX	VUC	NH3	
	Burning of Natural	Burning of Natural	Burning of Natural	Burning of Natural		
BACT Condition	Gas Fuel	Gas Fuel	Gas Fuel	Gas Fuel	NA	
	Good Combustion	Good Combustion	Good Combustion	Good Combustion		
BACT Condition	Practices	Practices	Practices	Practices	NA	
		Controlled Emiss	ions Table (tpy):	and the second sec		
	PM2.5	SO2	NOx	VOC	NH3	
Existing Allowable Emissions (tn/yr)	0.56	0.04	6.98	0.41	NA	

Attachment B

Emission and Cost Calculations

Revision 2- May, 2018

	PM2.5	SO2	NOx	VOC	NH3		
FL2	1.18	0.06	0.09	2.98	0.00		
FL3	3.20	1.67	14.06	3.60	3.82		
FL4	3.16	1.03	9.08	3.35	3.34		
FL5	1.96	1.05	10.54	2.61	1.53		
FL6	1.57	1.08	10.49	4.09	3.67		
FL7	2.00	1.69	15.35	8.11	2.12		
FL8	7.11	4.87	9.33	22.30	10.37		
FL10	7.11	4.87	9.33	22.30	10.37		
FL11	8.74	5.99	11.47	32.24	12.75		
FL12	8.74	5.99	11.47	32.24	12.75		
FL13	2.32	0.76	18.48	4.10	2.12		
FL14	2.79	0.76	30.60	3.68	2.12		
FL15	0.41	0.41 0.82		6.16	2.93		
FL16	0.41	0.41 0.82 33.20		6.16	2.93		
Pilot	0.01	0.005	0.04	0.04	0.03		
Matrix ^b	0.79	0.06	5.21	0.59	0.00		
Emergency Generators	0.75	1.08	11.65	1.03	NA		
HVAC	0.56	0.04	6.98	0.41	NA		
Total Point							
Source							
Emissions	52.80	32.65	240.56	155.99	70.86		

Table B: Existing/Proposed BACT PTE Emissions Summary (tpy)^a

Notes:

^a Since submission of the BACT Revision 1 assessment, emissions have been updated per 2016 FL13, FL14 and FL15 stack tests.

^b Since the BACT Revision 1 was completed, the Tower 3 and 4 incinerators have been approved. Emissions associated with the approved incinerators have been updated.

	Animina "CC Artha ana Artha ana Artha Arthal)	£0-3645 S	7 2006 03 5 1965-03 4 2606-03 4 2606-03 4 2606-03 4 2606-03 4 2606-03	17:12:00 17:12:00 17:12:00 17:12:00 17:00 10:0	50 3161'9 10-31(07)	90-3129-5 10-3822-5 10-3822-5 10-3822-1 10-3827-1 90-3827-5 10-3827-1 10-3827-5 10-3827-1 10-382	5133100 71900503 51331603 51321603 11009603
D1M	VDC" Emission Adda Addar Control (10/11v)	CO-3065 T SO-3065 T ZO-3160 T	50.284.07 7.8796(-0) 7.8796(-0) 1.78796(-0) 1.628(-0) 1.	10 1116 6 10 216/27 10 216/27 10 99555 10 99555	17582103 1766503 1756600 17156600	12-16871 02-16871 12-06071 14-07070 14-07070 14-07070 14-07070 14-07070 14-07070 14-070	1 3136 CD 1 3136 CO 1 3136 CO 1 3136 CO 1 3136 CO 1 3136 CO 1 3136 CO
Pume Bumer	MC ₂ [*] Emination Borts Allow Control	50-185T.'s	20-365979 10-36-0979 20-360627 20-360627 20-360627 20-360627 20-360627 20-360627	2 0001-01 623.11 (30 170000 (0) 170000 (0) 1700000 (0) 1700000 (0) 1700000000 (0) 17000000000000000000000000000000000000	80-32527 10-32527	4 800 80 90 1020-80 5 70076 05 1 73007 05 2 70074 05 2 70074 05	NO-3011'1 1'1268-05 NO-3011'5 NO-3011'7 7'1008-09
Burner UBT Low-RO _X	Viteration I Viteration I (M/Y)	A.	N A N N N N N N	L M M M M M M M M M M M M M M M M M M M	N		4 2 2 2
208-wol	noga kata MC ₄ ⁸ Emission Lucas (hr(hf)	1'0406-03	20 34221 11254-00 17404:07 17404:07 17404:07 17404:07 17404:07 17404:07 17404:07	10 JPS.C / 10 JLS.S /	13,286.05	17346 07 17346 07 17346 05 17336 05 1736 17336 05 17336 05 17356 05 17356 05 17356 0	5.1746-04 3.1746-02 2.7746-04 2.97746-04 1.9016-01
Annual XON-MOX	yllianindow? Yliaidilaan? (bf\y)	Å	N L N N N N N		N	2.4.2.2. A 2. 2. 2. 2.	*
Mater edd-en Coe-NO,	Embality Embality Embality Embality Embality						
	Emilision Emilision Rates Allier Control	factor	60-3028 1 50-3581 7 50-3581 7 50-3581 7 50-3581 7 60-3201 7 60-3201 7 60-3201 7 60-3201 7 60-3201 7 60-3201 7 80-3201 7 80-3201 7	v9:sum? v9:sub? v9:sub? <td< th=""><th>2 10916 01 2 00916 02 2 00916 02 1 10016 02 1 10016 02 1 10016 02 0 120216 02 0 12020 02</th><th>(0-36111 50-10755 10-10551 10-10551 50-10507 10-10507 10-10507 10-10507 10-10507 10-10507 10-10507 10-10507 10-10557 10-10557 10-10557 10-10505 10-10505</th><th>177171-02 177171-02 177171-02 1777171 10731527</th></td<>	2 10916 01 2 00916 02 2 00916 02 1 10016 02 1 10016 02 1 10016 02 0 120216 02 0 12020 02	(0-36111 50-10755 10-10551 10-10551 50-10507 10-10507 10-10507 10-10507 10-10507 10-10507 10-10507 10-10507 10-10557 10-10557 10-10557 10-10505 10-10505	177171-02 177171-02 177171-02 1777171 10731527
And during the	" _p Oe notasim] heth stull (vr(vf)	10-12-25-31-04	60-46567	40-3052 7.286-04	69,306518	50-315557 30-346979 30-346979 30-346979 30-346978 30-346978 30-346978 30-346978 30-346878 30-346878	90-382013 10-3606-1
(hullmark)	Total PM23 Parameter Marina Parameter Paramete	\$0-3265°.4	Ho-77(2)-0 Ho-77(2)-0 Ho-77(2)-0 Ho-77(2)-0 Ho-77(2)-0 Ho-77(2)-0 Ho-31(2)-0 Ho-31(2)-0 Ho-31(2)-0 Ho-31(2)-0 Ho-77(2)-0	10 1000 1000 1000 1000 1000 1000 1000	ED-30(1'1 H0-31(1'5 ED-30(2)'E	10 31212 Z 10 31212 S 10 31213 S 10 3121 S 1	3 4341 04 5 3906 92 3 4346 98 3 4346 94 3 4346 94 3 4346 94
	Total MAs, Emission Foreitor Control	10-1069/1	60-352971 (0-35971 60-35971 60-35971 60-35971 60-35971 60-35971 60-35971 60-35971 60-35971	0-801182 00-11622 00-116275 00-115878 00-115878 00-115878 00-115878 00-115878 00-115878 00-115878 00-115878 00-115878 00-115878 00-115878 00-115878 00-115878 00-115878 00-11677 00-10077 00-10077 00-10007 0	50-346177 50-34007 50-349574 50-340529	10 3005 V 10 3105 V	PO 38191 50-34597 70-345-04 70-34191 70-38191 90-38191 91-38100000000000000000000000000000000000
	Left Magaz noisefm3 finite Affer forthol (w()40	10-3420-1	17816-05 87856-05 77336-05 77336-05 17336-05 17336-05 17336-05 17336-05 17336-05 17336-05	10 3000 3 10 3000 3 10 3000 2 10 3000 2	20-3045'T 10 3991'2 20-300'5	10.350 t 10.360	10-3222 07 9-523 07 9-520 07 9-523 07 9-520 07 9
×oq	Metrodes Metro	£0-3969 Z	10-1910 T (0-1/25 C 10-1915 T 10-1915 T 10-1915 T 10-1915 T 10-1915 T 10-1915 T 10-1915 T	0.5300 C	90-3611 9 90-3981 1 10-3991 5 50-305 7	50-3900 8 10-3988 1 10-3988 1 10-3988 1 10-3988 1 10-388 1 1	1032520 879112-00 13251-00 13252-00 13252-00 13982-00
1453E1 + 867.04	Technically Technically	A	* * * * *	西南流道县县县县县县县县县县县县县县县县	Å	医法氏尿及尿尿尿尿尿尿尿尿尿尿尿尿尿尿尿尿尿	5 5 5 5 5
(deg	a, arri faso T noiceim3 mrfA sta R formo3 [mf/di]	10-3726 T	1 8876-05 1 8876-05 1 8876-05 1 8256-05 1 8256-05 1 8256-05 1 8256-05 1 8256-05 1 8256-05	2014/2014 2014/2014 2014/2014 2014/2014 2014/2014 2014/2014 2014/2014 2014/2014 2014/2014 2014/2014 2014/2015		- - - - - - - - - - - - - -	ED-3896'¥ HQ-3828'E ED-3858'¥ ED-3658'¥ ED-3511'6
	ecter Miseration Maga Miser Control Control	10-37297		021051 2038025 203802 2	- - - - - - - - - - - - - - - - - - -		67 2011 - 02 97 2278 - 02 97 2015 - 02 97 2015 - 02 77 57 58 - 04
	Nation (1999) Syntheol (1947)	5420	HOD TO LEO O SOD TO SOD TO SOD TO SOD TO SOD TO SOD TO SOD TO	12000 10	0'015 0'00'0 0'00'0	0000 0000 0000 0000 0000 0000 0000 0000 0000	100 0 00010 10010 10010 80010
	welt herbit	£'657	C'0991 0 0991 1 9991 1 5111 1 5111 1 5111 1 5111 1 5111 1 5111 1 5111	2 yrz.1 0769 076	09651 ¥922 3355 6001	9 50%1 9 50%2 2 8%21 0 25% 7 5%11 0 25% 7 5%10 25% 7 5%10 25% 7 5%10 25% 7 5%10 25% 7 5%10 25% 7 5%10 25% 7 5%10 25\%10 25\%100 25\%1000000000000000000000000000000000000	6'6600 9'287 6'6600 6'6600 6'6600
	VCC (mission Sata Beleve Additional Control	20 36066'2 20 36066'2 	10 31660°T 20 316100°5 20 382202 2 20 392202 2 20 39289 7 20 39289 7 20 39289 7 20 39289 7 20 39289 7 20 39289 7	00 Point P 00 20121 T 00 20121 T 00 9100/72 00 9100/72 00 9100/72 00 9100/72 00 9100/72 00 9100/72 00 9100/72 00 9100/72 00 9100/72 00 9900/72 00 990			6-36943C-05 8-0364659 8-0364659 8-0364659 8-036459
	CD Ewissian Pade Belows Additional Control			2012/1011/2012/2012/2012/2012/2012/2012			23331212 US 73323066-05 5332322 05 5332322 05 1 00408-05
	Mitty Emiliation Profess Burlow Antipetition Confired Confired		20-396+1 6 10-32522 6 10-35260 1 10-35260 5 20-32605 5 20-30505 5 20-30505 5 20-30505 5 20-30505 5 20-30505 5 20-305	Arman, C C2 JOSO (C) C2 JOSO (C) C3 JOSO (C) C) C3 JOSO (C) C) C3 JOSO (C) C) C3 JOSO (C) C) C) C) C) C) C) C) C) C)			20 32555 5
	radiantim) r/32 mandati spall karahati karahati (raf40)			10 16326 C			NO-16ETO Y
000000	stati noittimii stati noittimii meteti karottibiki furtuoi		20-359.LT % LO-316855 % 20-348187% 20-348187% 20-348187% 20-348187% 20-348187% 20-348187% 20-348187%	10 1011 C 10 1011 C 10 1011 C 10 1011 C 10 1011 C 10 1011 C 10 1010 C 10 1000 C			1"11660 05 1"16436-03 1"16436-03 1"1668 05 1"1668 05
	ritherate PAC ₁₁ entro Erec entro entro herodet form (MMC)		20-313903 10-3892552 20-329555 20-329555 20-329555 20-329555 20-329555 20-329555 20-329555 20-329555 20-3295555 20-3295555 20-32955555 20-329555555555555555555555555555555555555	UP 1000 1 10 11000 2 10 10000 2 10 10000 2 10 10000 2 10 1000	- - - - - - - - - - - - - - - - - - -		20 32252 1 10 32099 8 20 32552 1 20 32552 1 20 32252 1 70 32592 1 7
	Total Phi _s (mission fuets feetore feetore Control famil		20-3552118 10-96(-8.9 20-35528.9 20-35528.9 20-35528.9 20-35528.9 20-35528.9 20-35528.9 20-35528.9 20-35528.9	10 3100 F			7 90356-02 7 54946-03 7 80356-05 7 80356-05 3 35586-05
	Filteration Pake Emission Rado Beform Control Control			-0-1900 (20-1200 (20 10005 1 20 10005 1 10 11604 2 10 11604 2 10 11604 2 10 20 20 20 20 20 20 20 20 20 20 20 20 20	7 31961-05 8 10215-04 1 31961-05 7 31982-05 5 45348-05
	xOH IsaamA shili nolulen3 sedes fanol#BbA fartna2 farf48	20-380.5	20232 021 20222 022 20222 022 2022 20222 022 202 20 20	Common al C			PO 368745'S 20-358882'9 PO-86895'5 PO-368945'5 TO-36404'E
	neityjsted scruoł	364V AND	ie Lisen's surface surface to the surface surface to the surface surface to the surface s	Denie of a first of a	reactions to 1 reactions to 1 reaction for the reaction reaction for the reaction for the reaction for the reaction reaction for the reaction for the reaction for the reaction reaction for the reaction for the reaction for the reaction for the reaction reaction for the reaction fo	Advancegistic - and innum (Advancegistic - and innum (Advancegistic - and advancegistic (Advancegistic - advancegistic - advancegistic (Advancegistic - advancegistic - advancegistic (Advancegistic - advancegistic - advancegistic (Advancegistic - advancegistic - advancegistic - advancegistic - advancegistic (Advancegistic - advancegistic - advancegistic (Advancegistic - advancegistic - advancegistic - ad	- A.M. F3, rK0, JK0 8.m. F3, rK0, JK0 8.m. F3, rK0, JK0 8.m. F3, rK0, JK0 A.F3/0, F3, rK0, rK0 A.F3/0, F3, rK0, rK0 A.F3/0, F3, rK0, rK0 A.F3/0, F3, rK0, rK0 A.F3/0, rK0, rK0, rK0, rK0, rK0, rK0, rK0, rK
	Source Code	UT2 HHT2 GO2 HHT2	2000 2000 2000 2000 2000 2000 2000 200	407 3916 4209 652 4 1209 652 4 1900 5510 1900 5510 1900 5510 1900 5510 100 5500 100 5500 100 5500 100 5500 100 5500 100 5500 100 5500 100 5500 10000000000	129 9192 029 9392 619 9592 919 9592 219 9592 219 9592 919 9592 919 9592 719 9592 719 9592 719 9592 719 9592 719 9592 719 9592 719 9592	0.05 %Re2 615 %Re2 61	5418 8059 5428 8050 5428 8010 5428 8019 5428 825 5428 825 5428 820
	() energy	502 602 902 902 902 902 902 903 802 802 802 802 802	111 011 805 805 907 507 907 507 507 507 507 507 507 507 507 507	007 84.09 94.09 9500 9500 9500 9500 9500 9500 9500 9	659 659 219 219 219 519 819 719 719 719 719 719	2015 215 215 215 215 215 215 215 215 215 2	409 400 400 409 409 409 409 409
	grahit.d	HHE2 HHE2 HHE2 HHE2 HHE2 HHE2 HHE2 HHE2	50m 50m 50m 50m 50m 50m 50m 50m 50m 50m	MR2	91142 92142 92142 92142 92142 92142 92142 92142 92142 92142 92142 92142 92142 92142 92142 92142 92142	9142 9542 9542 9542 9642 9642 9642 9642 9642 9642 9642 96	5423 5423 5423 5426 5436 5436 5436
	ndhadR Cl			***************	****	***********************	9 9 9 5 5 5

Table B-La: Emission Reduction Calculations

	1 1901 C 31 1 1901 C 31 1 1904 C 31 1 1906 C 31 1 190	00-3199 6 00-3199 6 00-300 1 00-300 1 00-3	20-36591 20-30652 20-30652 20-3656 20-3656 20-3665 20-3665 20-3665 20-3665 20-3665 20-3665 20-3665 20-3665 20-3665 20-3665 20-3665 20-3665 20-3665 20-3665 20-3665 20-36555 20-36555 20-36555 20-36555 20-365555 20-365555 20-36555555555555555555555555555555555555	ED-3996 T 5D-3211 C 10-1596 S 6D-3158 T	20 35#172 20 16:00 1
	10 2325 0 10 2000 0	E- 3005 E 10 MIGL 2 C MIGL 2 C MIGL 2 10	60-25562 20-2067-6 20-20601 20-20601 20-20987 20-2067 20-2075 20-2076	10-3052 1 10-3000 1 10-3602 1 10-3602 1 10-3662 2 10-3961 2	70-310071 30-310-05
	7348 69 3338 63 3338 65 3338 65 3338 65 33388 65 37388 65 37388 65	10-982 (1 325 (2 10-325 (2 10-325 (2 10-325 (2 10-316 (1 10-316 (1)) (1 10-316 (1	20-31 MC2 5 JHIE 05 7 JHIE 05 7 JHIE 05 7 JIE 03 7 JIE 03	60-320675 52-366-03 57-356-03 57-056-03 57-056-03	20-3788.6 20-3582.5
Norm A Norm Norm No	Å Å Å Å Å	4. A.	4 4 4 4 4 4 4	A A A	Å
	4324604 4324605 4334105 4334105 9334105 121806 1218060 1218060 1218060 1218060 1218060 1218060 1218060 1218060 1218060 1218060 1218000 1218000 1218000 1218000 1218000 1218000 1218000 1218000 1218000 1218000 1218000 1218000 1218000 12180000000000	10-16/01 10-16/01 10-11/11 10-11/	20-3658 5 20-3658 5 20-36558 5 20-3658 5 20-36555555555 20-36555555555555555555555555555555555555	50-3620.2 E0-3620.2 E0-3600.2 E0-3600.2	1'1556 01 9'3#08:05
		1	***		:
	10 3/91T 10 3/9T 10	0 3218 1 0 3228 1 0 325 6 0 325 6 0 325 6 0 325 6 0 326 7 0 326 7 0 0 326 7 0 326 7	80-3596°C 40-3696°C 80-3690°C 80-3690°C 80-3687°C 80-3687°C 80-3687°C 80-3667°C	50-39-19-2 3-30-26-09 3-32126-09 3-32126-09 3-32126-03 3-54-26-03	1 5378-03
	90-1464 % 50-3464 % 60-3669 ¥ 90-3820 % 90-3820 %	H0-4197 (19-309(2) 90-32188 90-32188 90-32188 90-32188 90-32188 90-32188 90-32188 90-32188 90-32188 90-32188 90-32188	ED-350911 ED-359611 ED-359611 ED-359611 ED-309611 ED-300511 ED-311411	ED-360721 27800501 27352603 27352603	80-3195'T 80-3414'T
	4 2008 04 5 8326 02 2 8326 02 1 3000 04 1 30000 04 1 3000 04	PO-1828 1 PO-100 1 PO-10	5.364E-03 5.354E-03 5.354E-03 3.364E-03 3.364E-03 3.365E-03 3.365E-03 6.365E-03 9.365E-03 9.365E-03 9.365E-03 9.365E-03	50-369/2 2750.46-03 752.962-03 50-3066-9	87988-03 673856-03
	272381 01 272381 01 273391 01 27391 01 27391 01 27391 01 27391 00 273911 00 273911 00 273911 00 273911 00 273911 00	10-1255 8 10-1251 10-7520 1 10-7520 1 10-	2 23115-03 2 32115-03 2 30515-03 2 30515-03 2 30515-03 1 31001-05 2 30515-03 2 3055-03 2 3055-03 2 3055-03 2 3055-03 2 30	50-3(2872 1723(6-03 573556-03 173966-05	1 130C-05
	72316 01 72316 01 8034 09 8036 01 10334 09 81000 01 11116 01 11116 00 111116 00 1111100 111100 110110	10-31495 2 00-4164 1 10-224 0 10-324 0 10-	20-119276 20-316078 20-35672 20-35672 20-35672 20-35672 20-35672 20-35672 20-35672 20-35672 20-35672 20-35672 20-35672 20-35672 20-35672 20-35672 20-35672 20-35652 20-35652 20-35652 20-35652 20-35652 20-35652 20-35652 20-35652 20-35652 20-35652 20-35652 20-35652 20-35652 20-35652 20-35652 20-35652 20-355552 20-355552 20-355552 20-355552 20-355552 20-355552 20-355552 20-355555555552 20-35555555555	20-3911 °C 72-3910 °C 72-3310 °C 72-3310 °C	8 1306-05
No. No. <th>90-3709 T 50-352T Z 50-352T Z</th> <td>50-3899 9 90-4895 6 10-3205 7 10-3205 7 10-3205 7 10-3205 7 50-3900 7 50-3900 7 50-3900 7 50-3900 7 50-3900 7 50-3900 7 50-3000 7 50-3200 8 50-3200 8 50-3000 8 50-3000 8 50-3000 8 50-3000 8 50-3000 8 50-3000 8 50-3000 8 50-300</td> <td>8 8087-04 8 21705-04 2 21705-04 1 2467-04 1 2386-03 3 39465-03 2 3011-03</td> <td>0-3182.8 H0-3182.8 H0-3182.8</td> <td>3 3446 D2 5 5336 O3</td>	90-3709 T 50-352T Z 50-352T Z	50-3899 9 90-4895 6 10-3205 7 10-3205 7 10-3205 7 10-3205 7 50-3900 7 50-3900 7 50-3900 7 50-3900 7 50-3900 7 50-3900 7 50-3000 7 50-3200 8 50-3200 8 50-3000 8 50-3000 8 50-3000 8 50-3000 8 50-3000 8 50-3000 8 50-3000 8 50-300	8 8087-04 8 21705-04 2 21705-04 1 2467-04 1 2386-03 3 39465-03 2 3011-03	0-3182.8 H0-3182.8 H0-3182.8	3 3446 D2 5 5336 O3
	天 人 人 人 人 人 人 人 人 人 人 人 人 人	五云天天上 人名英克克瓦马英克马克英克英马马英语英国	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	A A A A	*
	E9-1892/2 	10-3628 + 20-38428 + 20-38428 + 10-38888 + 10-38888 + 10-38888 + 10-38888 + 10-38888 + 10-3888 + 10-3	20-1616'9 20-19827'9 20-19827'9 20-19827'9 20-1980'5 20-1980'5 20-1696'5 10-3650'6 10-3650'6 		10-36#5 1 10-3550 1
	179821-09 	52 1999 1 1 19 205 1 2 19 205 1 2 19 205 2 2 59 205 2 2 50 205 2 50 200 2 50 200 200 2 50 200 200 2 50 200 2 50 200 200 2 50 200 20		 	5.0606-03 1.3986-03
Base Base <th< td=""><th>2003 0 000 0 000000</th><td>100 0 (00 0 900 0 100 0 10</td><td>80010 80010 80010 80010 80010 80010 80010 80010</td><td>90010 H0010 90010 05010</td><td>60070 60070</td></th<>	2003 0 000 0 000000	100 0 (00 0 900 0 100 0 10	80010 80010 80010 80010 80010 80010 80010 80010	90010 H0010 90010 05010	60070 60070
	1166 1166 1166 1166 1196 196 196 196 196	2 2221 4 4888 2 2225 8 0987 5 5666 9 182 9 18 9 182 9 182 9 182 9 182 9 182 182 182 182 182 182 1	8 0752 8 0752	8 8515 D EP51 T T691 D EP51 E 84291	¥ 0225 8 0425
	T 149216 01 	00 11 MeV 2 00 41 MeV 2 10 41	0 32426 9 10 30595 9 10 30595 9 10 30595 9 10 30515 5 10 30259 9 10 30259 5 10 32259 5 10 32259 5	10-325251 	10-35250 6 10-36259 5
Base Base <th< td=""><th>20 31199 E </th><td>12 31199 1 12 34199 1 12 3461 1 13 3461 1</td><td>20-30591 (0.5 10-30591 (0.5 10-30591 (0.5 10-30591 (0.5 10-30595 (0.5 10-30595 (0.5 10-3056 (0.5)) (0.5 10-3056 (0.5)) (0.5) (0.5)) (0.5) (0.5) (0.5)) (0.5) (0.5) (0.5)) (0.5) (0.5) (0.5)) (0.5) (0.5) (0.5) (0.5)) (0.5) (0.5) (0.5)) (0.5) (0.5) (0.5) (0.5)) (0.5) (0.5) (0.5) (0.5)) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5)) (0.5) (0.</td><td></td><td>10-305817 to-3086201</td></th<>	20 31199 E 	12 31199 1 12 34199 1 12 3461 1 13 3461 1	20-30591 (0.5 10-30591 (0.5 10-30591 (0.5 10-30591 (0.5 10-30595 (0.5 10-30595 (0.5 10-3056 (0.5)) (0.5 10-3056 (0.5)) (0.5) (0.5)) (0.5) (0.5) (0.5)) (0.5) (0.5) (0.5)) (0.5) (0.5) (0.5)) (0.5) (0.5) (0.5) (0.5)) (0.5) (0.5) (0.5)) (0.5) (0.5) (0.5) (0.5)) (0.5) (0.5) (0.5) (0.5)) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5)) (0.5) (0.		10-305817 to-3086201
	20-141.0-5 	CO 10091 5 (0) 10091 5 (0) 47(10) 1 (0) 47(10) 1 (0) 1000 1 (0) 10	20-3039-172 20-3029-102 20-395(20-3 20-395(20-7 10-3529-1 10-	- - - - - - - - - - - - - - - - - - -	10-36MSS-9 10-358M9-1
		60 MINTEL 10-1000 h 10-1000 h 10-100	20-34081 2 20-34084 2 20-35064 9 20-35064 9 20-35064 9 20-35064 9 20-35064 9 20-35064 9 20-35064 9 20-35064 9 20-35064 2 20-35064 2	- - - - - - - - - - - - - - - - - - -	20 35809 2 20-38885 8
	200011 02 	10-3+2+1 6 00-1100 5 20-3100 7 10-3440 7 10-3440 7 10-3440 7 10-3400 7	111001-01 1111500 01 111500 01 1105200-01 105200-01 10500-01 10500-01 10500-01 10500-01 10500-01 10500-01 10500-00 1000-000-		10-36091 E
D2 JUNCE D3 JUNCE JUNCE <t< td=""><th>194014 65 194014 65 194014 194014 65 194014 65 194</th><td>e revuel 01 31 700000 01 13 700000 01 13 700000 01 13 700000 01 14 7000000 01 14 7000000000000000000000000000000000000</td><td>20021-03 011021-03 10000-01 10000-01 1121211-01 1132311-01 113231-01 1133110000000000</td><td>- - - - - - - - - - - - - - - - - - -</td><td>10-3469C'E 10-39062 2</td></t<>	194014 65 194014 65 194014 194014 65 194014 65 194	e revuel 01 31 700000 01 13 700000 01 13 700000 01 13 700000 01 14 7000000 01 14 7000000000000000000000000000000000000	20021-03 011021-03 10000-01 10000-01 1121211-01 1132311-01 113231-01 1133110000000000	- - - - - - - - - - - - - - - - - - -	10-3469C'E 10-39062 2
B.D.STR.F.Z. SMAXPO 18*070 D.D.B.T.R.F.Z. D.D.R.T.R.F.Z. D.D.R.T.R.F.Z. <thd.r.t.r.f.z.< th=""> <thd.r.t.r.f.z.< th=""> <thd.r.t.r.f< td=""><th>40-30468 2 </th><td>10.1497 (1) 10.1497 (1) 10.14</td><td>CO-3H024 E CO-3H024 E TO-35745 T TO-35745 T TO-35755 T TO-357555 T TO-3575555 T TO-3575555 T TO-357555 T TO-357555 T</td><td>- - - 20 3089972 10-3909711 10-3906273</td><td>50-3841915 10-3165816</td></thd.r.t.r.f<></thd.r.t.r.f.z.<></thd.r.t.r.f.z.<>	40-30468 2 	10.1497 (1) 10.1497 (1) 10.14	CO-3H024 E CO-3H024 E TO-35745 T TO-35745 T TO-35755 T TO-357555 T TO-3575555 T TO-3575555 T TO-357555 T TO-357555 T	- - - 20 3089972 10-3909711 10-3906273	50-384 19 15 10-3165816
State State <th< td=""><th>20 3906/072 10-310(17 P 10-310(17 P 10-3100 P 10-31</th><td>20182.681 1 c01866 6 101867 0 1019807 0</td><td>54524-01 35824-01 375464-01 375464-01 375254-01 3755554-01 3755554-01 3755554-01 37555554-01 37555555555555555555555555555555555555</td><td> </td><td>to 31611.9 10-36562.7</td></th<>	20 3906/072 10-310(17 P 10-310(17 P 10-3100 P 10-31	20182.681 1 c01866 6 101867 0 1019807 0	54524-01 35824-01 375464-01 375464-01 375254-01 3755554-01 3755554-01 3755554-01 37555554-01 37555555555555555555555555555555555555	 	to 31611.9 10-36562.7
State State <t< td=""><th>00 34.00 FT </th><td>10-44011 9 10-84995 1 00-84995 1 00-84995 2 20-9506 9 20-9506 9 20-9506 9 20-3666 9 </td><td>0 20051 5 10-360/11 10-360/11 10-360/11 10-3606 1 10-3606 1</td><td></td><td>10-35892'2 17589316-01</td></t<>	00 34.00 FT 	10-44011 9 10-84995 1 00-84995 1 00-84995 2 20-9506 9 20-9506 9 20-9506 9 20-3666 9 	0 20051 5 10-360/11 10-360/11 10-360/11 10-3606 1 10-3606 1		10-35892'2 17589316-01
Dott Dott Dott Text Dott Dott Dott Text Dott Dott Dott Text Dott Dott Dott Dott Text Dott Dott Dott Dott Dott Dott Text Dott Dott Dott Dott Dott Dott Constance Dott	4.6.0 (B, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40	40.01 24.00 200 40.01	(12 Seal International Sector 2014) International Sector 2014 International Sector 2014 International Sector 2015 International Sector 2015 Internation	Notexhold TI Not leave TI Not leave TI Juo l	betangised xxH MARINI T8, x0, x0 MARINO T8, v0, x0
	VID. 66.07 VID. 66.07	11.1 Autor 11.6 A	012 0892 609 0892 808 0992 409 0892 909 0892 909 0892 808 0892 808 0892 808 0892 108 080 108 080 1000 100	3482 830 3482 830 3480 832 3480 832 3480 832 3480 837 3480 833 3480 833 3480 833 3480 833 3480 833	5481 10 03 5481 10-01 5460 851
1441 1441	9722 2029 619 419 419 619 9015 9015 9015 9019 8019 9019 90219 90219 90219 90219 90219 90219 90219 90219 90219 9029 902	111111111111111111111111111111111111	010 600 200 200 900 900 900 900 100 100 100 100 100 1	830 618 918 218 918 518 919 518 718 718 718	10 05 10 05 129
			5490 5490 5490 5490 5490 5490 5490 5490	C0892 C0892 C0892 C0892 C0892 C0892 C0892 C0892 C0892 C0892 C0892 C0892 C0892	5497 5490 5490

toolseivaleD moltovibeR molesim3 :s2-8 aldeT

SD-30996 1	90-82187 80-30466 Y	20-10994.T		59-31.697	1 *		3 425E-04		90-3(99 T	90-3125.6	50-3406.7	10-3950.9	*	\$0-31EP.7	20-3166'5	00010	5-6845	7'40296-09 5'79896-03	HQ-1/59FT	HO-201522.2	1	ED-37 LOC.3	50-32950-9	10-255191	10-3632111	SO-101116'S	5.5.1% (Sring Drynel) #15.2 mode #24 dry 31 mode #24 dry 32 mode #25 dry 32 mo	1014 2918 01-91 0697 20 91 0647	05-91 20 91	2918 06177 06177	10 16 91 91
10-364FZ	20-16012	90+36%27		60+TTE3%		5 5736+00	60-7630-1 10-7690-1	10 B/16 7	20-3526-1	5.0746.02	10-7689-1	10 3649 1	*	- 10-14696		0000	£765.6	111546+000	10-169//87	10-36206 V	10-184 SP T	10 3862916	20 16807 L	1 03696 + 00	20-36849-2	00+120ET2	ewarnii bueiri.#34freenstgu@(0f taemiseat exclusi	912-91 0682 50 91 0682	90-91 50 91	5440	91
10-3099.6		473748-05 7 2026-05		10-36501				11386-00	10-200111 10-363611	17896-04	179911-03	50-34061 50-35NEZ	Â	60-31160 B	90-3445'6 50-3421'T	0000	91992 91992 91992	10-1/5465	60-300971 60-32069 E	7 108-99-09 5 883-46-09 1 1-9296 03	10-302.92 P 10-39690 S	10-36866 5 10-36216 9 20-36666 5	10-31546 1 60-31546 7 10-31556 /	10-SCROB 5 ED-34/16'9 70-34/16'1	60-34546 2 60-34546 2	10-201601	2 9 1 42 68 40 40	20-91 0602 £0-91 0602 70 91 0602	E2-91 20-91	0072	91 91 91
10-36851		20-3064-9	L î	10-1621-1		1		101012	10-3080 5	H- 10807 E	60-365076	\$0-350(*)	ĩ	20-1820'5	SD-H221 &	600.0	£'1457	89-36-96TS	ED-ADARYS (10-29086 6	7 38466 05	20-HOEST	E0-30508 T	T-STOREST	60-30524 9	1-15588-01	00 00: 10 20 20 20 20 20 20 20 20 20 20 20 20 20	10-91-0642 01-51-6897	T0-91 01-51	0672 G842	91 51
	10-30(1)						6-750-1							-	-			10 26801 7	-	10-14ZH/ T	1	-	-	-	-	1	E.S.18 cropping wrank	20 51 68¥Z	20 ST 90-ST	5496 5486	\$t 57
20-106/972 10-2000/1	20-3504(7	532106+000 473146-005	N.	00+31ET2 T0226-40	1 .	2 31 <i>1</i> E+00	CD-3668.4	5:916-02	T 2526-96	5'0146'05 7'7966'04	10-368818 ED-368673	10-3689°2 50-3206 T	A A	10-362916 80-316019	10-307/1 10-3065%	00070 00070	8'16616 9'1961	1713346+00	10-300091E	10-36226.9	10-36459-1 50-36459-1	10-89129'6 50-32826'5	20-368091/2 58-368061	CLO+ 3050(10-1 SD-32626-5	20-3680+9'2 37-36806 T	00+140ET12 20-34E5011	0/10/10/10/2013/00/2013/00/2013/00 DF OF 04 29 2 8 2	5780 12 02 5480 12 04	S0 ST P0-ST	5493 5480	ST ST
3 0015-00 T 0005-07		20-32/96'7 20-3068'7	*	10-3050°L 10-3122°T	:			PO-3091'L	10-36%*3 10-254#*8	10-26/8°1 10-26/8°1	3736311-03 773661-03	50-2596 Z 50-3059'A	A A	373346-93 373966-93	50-362111 50-36221	00010	911994 911994	ED-36941.1	3'0004-02 T 00001 -05	7 346946 OB	\$0-396HFS 80-398HC1	50-30416.1	\$0-315#5 Z \$0-315#67.4	ED-36216'9 20-36256'T	\$0-315#5 2 E0-30969-1	1.09168-01	2 8 E 42 E8 '40 '40	5488 12-03 5488 12-03	2051 2051	5897 5992	51
40-36895 Z		20-3064'9		TO-MET T	•			10-1054 T	10-10071	P 0808-04	69-3620.6	\$0-350(*)	A	ED-1920'6	50-325T'E	00010	1.1005	27343E-03	E0-30605'2	00-3908E 6	20-10H(1-1	20-11062-1	60-10600 Y	20-34.DES'T	ED-305DE '9	10-19221.1	00:04:04:04:00	2489 12-01 2487 14-10	10-51	5480	51
1														-	-			20-2025979 10-202597	-	-	-	-	-	-		-	28 Mind Basis	140-11 5882 14-08	74-08	5892	И
	LIP ACTE 1	marth					60-361276	-		-		60.3717.0		-			A 14915	-	-	10-369091	In Mane 1		-	-	-	004367/53	Surface Treatment	3041 SH4	14-08	Sart Sart	14
10-36461	where the second	20-104815	Ē	20-360/4				F MARCHE	NO 2660 1	1'0036-04	10-3024 T	50-3052'1 50-3056'Z	Å	10-3514'E	BC-3864/18	0000	2.686	1147346-08	00+364/11 62-80109-E	10-32100 2	10-3006E'F	ED MAN S	1 122166-03	10-32990-5 50-35118-5	T-14246-02	29-30604.4 10-3e909-1	OF OF BISH185	5482 74-01	74:04	Sand Sand	74 74
10-3115816		4 30.14-05 4 30.14-05	1	10-M21'1 10-200 01				10-3067 10-7697	372156-00	17151-01 515211-01	20-150111 19-106218	50-10/89 80-31185	Å	1.1026-02	50-3469T	00010	2'6866 2'6862	10-3011216 () 30606-03	60-31198 6 E0-3056619	1 34036-02	1 03001-05 173,22,26 05	1'1000-05	60-75N/8-9 10-2910815	20-30984 1 20-36019'1	\$0-3512#59 60-3011#5	10-2090111 10-220001	OF OF \$1524 185 OF OF \$154 185	5482 JV-05 5482 74-07	20-91 10-91	500X 500X	14 Ft
1														-	-			20-39(55'9	-	-	1	-	1 :	-	1		ES mind print?	5484 73-70 5484 73-06	01-61 60-61	1997 1927	6
1	12238405													-				50-34259'9	-	-	-	-	1 :	-	1 -	[]	18 Yerd Drive 82	10-11 H0H2 20-51 H0H2	10-61 20-61	1002 1002	6 6
20-3016 1	TORNOT	53786-00		00-2508 E		55786+00	10-10121 10-101219	ED-361877	20-342.972	20-3258-2	10-1607-1	10 MET'S	A	10-101818	10-14H Z	10010	016819	10-36067-2	10-366661	10089602	10-3/EMET	00-299011 T	TO-MEET S	00-3052+1	10-95429'5	1-30486-00	saundiged & OTA	3494 12-08	50-61		n
10-3646 S		20-36870 20-36870	1	10-3600TT				10-34401	TTHE OR	NO-34111	10.000	10-10-11	â	E0-3899/C	10-3100'T	0000	2.6866	10-346191	69-354211 69-36109/E	10-14/150 C	ED-JZ98E'S	CD-PERTIES	50-34141 Z	60-36110-5 70-36110-5	LO-MINTZ	10-309001	04/04/04/04/04/04/04/04/04/04/04/04/04/0	ED EL HERT	CD-11 20-11	7484	11 11
10-31661		CO-BALLY	î	10-2560-1	1 -			10-3155'2	NO BLEFT	90-3128-5	E0-305E'8	10-3118-5	Â	80-35-2T T	50-990677	0000	£.8254C	0)-2060X Y	60-30566 9	10-16-93	20-12275.1	CD-MOLVI	60-30128'S	20-36019-1	\$0-30118'S	ID MINED T	Det Ox, De 1 AS 7 A 1 A 2	10-CL 9002	13-01	HENC GRAC	हा हा
														-	-			~		-	~	-	-	-	-	-	medit sille éta.36 hettargised sold	5487 13-50 5487 13-70	02-21	5483 5485	21 21
	10-15461													-	-		8 0661	10-161.6616	-	-	1	-	1	-	-	-	. K helped Dryles 2. Statefold Dryles 2.	12-51 5005 2403 13-13	87-87 47-87	5002 5002	रा रा
1							10-361275							-	-				-	1 00836-07	-	-	-	-	-	-	Surface Treat. Breat	5482 15-18	75 70 75-72	5083 5083	21
10-30/91 30-36/97	3.0936-05	60-956/'9 10-3451'2	*	20-9661'1 20-9661'1	Â		50-7562'¥ 10-2005'E	10-36241	10-1151-2	10-3500.1	3.0611-02	10-3900'1 HO-3909'1	Å	20-3/987	10-30/9'9 10-30EFT	90010	1.095	10-31111'L 20-30606'T	7.64046-02	\$0-3526C2 T_1_135E-03	2, 42086-02	10-768211	10-39500 T 20-3190 T	20-316//1	20.3821819	20-35265°2 00+35860°T	AN INNE TTH	3482 13-14	11-11	1397	21
60-36695'9 50-36695'9	5 87.55 03	50-11204.5 60-11296.5		10.396.41	Â		10-1452.7	10-1009.1	£0-329072	5.1466-02	10-3598-2	10-36152 10-32111	Å	10-3616.6	10-3202'S	2000	54082 C112FE	1.59696-01 1.31966-03	20-308-03	to-source t	to-poners	10-30662 9	10-252ET E	00+362401	10-34556-7	122474-01	valence 11 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	11-21 6102	13-13	C00-2	21
79-39/27	2024/11	ab wart		10-17517			10-1004-T	10-362/11	50-3106-7	10.352.07	20 1260 9	10-2052 L		-	-	50070		LO IL OUS	10-24//27	20 201151		10-35059-1	-		10-20105-1	10-25009-1	Or. Dv. MOMAN	5987 15-08	15-08	3983	15
20-36682 20-36682	20-3062 T	2877 422		20-3261'/ 20-3261'/	Ä		1 12116-03	10-1059'T 10-1059'T	10-3662 Z	3.702F-03	20-3964'E 20-1596'Y	10-32.96'6 \$0-3606'T	Å	20-3541'S 20-3961'Z	HO-160619	90010 90010	£'6866	10-30065 9	5 93696-01 5 93154-02	20-3465215	8 5115E-05 8 5115E-05	T 309996 T	10-1200-1	T 90456-07	10-30106-1 LO-32/68-1	10-95363-1 10-35803-1	NY UN IN IN IN IN	5482 15-01 5483 13-02	15-04 15-08	5483 5483	21 21
20-3189-2 20-9642-1	20-3829-1 78236-05	79342-03	*	20-3261'/ 8'3015-05	1		\$0-3508"Z 20-3506"1	T_114E-07 1 #246E-07	5038592 979893	10-3696 V	3°8331 45	10-3085'6 50-3996'T	Å	87388295 87885675	10-380618 173036-03	07002 07002	£'6866 £'8866	10-3/0VT-9 10-90694-6	10-321991-2 10-35222.6	10-35209-1 2-96036-03	8 \$1096-05 8 \$1176-05	1.0066-01	89-32625'6 10-30996'T	10-2942272	10-3119971	10-36809-1	DF OF 83 PF MAN	5000 15 00 5000 15 00	15-02 73-9H	5807 7462	रा रा
179681-03	20-1045 T	00-386070 20-301575	*	10-3610'L 10-3625'L	1		E0-3151'8 E0-3151'8	7 8465 02 7 8166-02	60-32/17 20-32/17	810436-03 113886-03	20-1995'T	172516-03 4 1036-02	Å	8 3065-05 7 3045-01	1-1056-03	0.006	£'686C £'686E	10-32122-2	10-34001 E 10-360254-01	10-125201	20-32062 6 20-306495 6	10-39690.5	10-32125°t 10-3001°F	10-38080 (10-39086 9	10-3260272 LO-3129075	10-31250 Z	OF ON \$3 POWR	5483 15 03 5485 15 05	75-02 75-03	5403 5402	21 27
20-3616-1	20-99191	50-3611.6	^	D0-3266.'L	1		\$0-3250 P	\$0.3011.5	50-3021°1	60-3228-63	10-3120.0	69-351872	Å	10-3262-1	\$0-981£1	0100	25066	10-2808019	10-290161	10-365207	10-M8950 1	10-26658 E	10-3251972	10-30(1/ 9	10-3656976	LO-JEIPSS T	breaking and	349313-01	12-01	2002	11
														-	-				-	-	-	-	-	-	-	-	model data drazili	61-11 CBVZ	64-11	ZINT	11
1	50-15M X				ļ									-	-		8.09468	TO-36166'T	-			-	- 1	-	-	-	Surface Treas. River Survey Dryam 3.	3483 11-11 5485 11-10	21-11 94 11	2392 2392	11 11
10-10491	w.m.r	ED 3664.14		10-3661-t		1	9-3513E-08	1010451	10-3464-2	10-10951	50-35EB-E	£0-3500-1		10-24MY	10 30(11	5076	T 1647	10-31111-1	20-32949T	10 20200 1	20-361/97/	10-35861-1	10-30500 T	10-319/27	10-36682 T	E0-3626E-S	240 Imat 1714 2607 5387492	51-11 2002 5405 51-14	11-12 21-14	3483	11
60-363670 60-363670	10-8609 1 SD-3601 1	10-16517 80-816671	1	10-3266'S 50-90/9'E			10-3912.E	10-101911 10-101911	50-363677 573856-623	2.0531.03	2.0411-02	10-3800/S	1	50-3616.5	¥ 1388-08	1000	5'58'2	20-30-90-9"T	20-30665 9	1.91806-01	CO-30029-2 20-3915170	10-360671	50-31800-2	20-10121-0	10-36660,1	00+253601 10-2925679	100 Mag 201	21.11 5.005	11-11	343	11
60-38A/P7	10-32.04.5	20-3004/2	^	80-362110	1		60 W.F. 1	09-3008-7	10-3064 V	20-3001.5	10.3461.1	10 34111	*	10-3696.0	10-16161		#106Z	20-95/11/9	CO-34822.2	20-327.68.5	20-14054 W	-	-	10-14/18010	to-persorz	60-36422E.A	Vigent 411	5487 11-10	01-11	2002	II II
20-38477	20-3441'T	10-14.1872		20-3761'/	1 :		10-3202/T	17,106-03	60-3106-Z	17,000,03	20-326079	80-2050'T		20-125615	10-321674	90070 97099	2'606E	10-31/89"5	SP-3NLLET	0-2001518 20-20055/5	10.3006.02	10-3505V T	LO-36/50TE	10-3269172	10-302851	TO- MARKIN' T	VINO NE NO TO	548511-08	90-11 (9-11	2482	n u
20-34197 20-31997	20-32951 to-98291	20 344872 20 344872	Å	17856-05		ł –	89-141572 80-150872	1'88 m 47	12726-03	8° 320216 493 C 39726-432	4 9696 -02	1 7076-08	A A	20-3641'/	10-380916	90010	2'606E	10-36664-2	10-32/097 10-6(1992	10-34362'T	8132126-05	10-31984/T to-30944FT	10-1/2011 70-1/60516	5 00156-01 5 31100 01	10-32468 T	TO BEARY T	NV41940 EX 140 140 XV4194 EX 140 140	5485 11 08 5465 11 08	10-11 10-11	2002 2002	tt TI
27368CS	1.9577-02	20-1944 1 20-194479	4	8" 3616-05 1"0386-03	1		20-3060 T 50-3151 W	1.6648-03	60-30/079 60-32/179	110032003	20-306219 20-30621	50-3094/1 50-312571	*	20-32035 20-32021	60-34061 19-32011	01008 01008	£'6866 £'6866	10-30(32.6	10-2582/216 3178882-01	10-32060 5	053205E-05	2,08566-01	1 20106-01	10-30105 E	5.61418-01	10-3286911 30-3826072	OK OF 85 OF WA	548511-94 548511-93	13-08 11-02	5985 5985	11
20-05407	20-1996-2 20-19191	22198155 311136-05	*	10-3645-1 80-3664-1			1 6118-05 50-3250 9	20-2016-0 57-106-05	20-141111 20-141111	20-34881-1 50-3229/6	10-1670.1	10-3617	Å	10-3406'T	55-3817.1 1.7788-49	\$10'0 010'0	2'6866 2'6866	T 5 (904 +00 IT 08086-01	10-32549 Z	10-36550 3	20-110495'6 10-16950'1	LO-30041975 LO-3665876	10-316011+	10-30111.9	TO-ALTHOR	10-3125272 60-3095571	894/9018/070 894/9018/070	10-11 200-2	11-05	2483	11 11
														1 -	-			1 -		-	-	-		-	-	-	haden jang entatu. beitangkand kolé	02:06 1892	10-51	1892	01 01
1		1												-	2		FIST	10-455091	-	-	-		1	-	-	-	Steing Drink 2.	ST-07 1992 (1-06 1997	20-78	1892	01 01
1							2,6246-09							-				-	-	10-81205-1	-	-	-	-	-	-	Surface Treat. Brief	5487 10-18 5487 10-72	91-05 51-07	3487 3483	10 70
60-300CT 60-32167	10-3600 1 90-3600 1	10-3664 T	Å	50-70%/16 10-300679	1		ED-3206'E	10-364E1 40-32861	60-8696'2 80-3408'1	5 9834-03 T 2296-08	31184-05 T@116-05	FQ-3181 8 HQ-3100 Y	*	20-1096 E	10-356/X	90070 H0070	C.F.PET	20-30190'6 20-35205'T	20-396861 20-3021572	1.94296-03 1.64296-03	21506-05 T 20206-05	10-32121-1	20-361818	TO-30699.7	10-362501 20-36266-5	20-36055 T	ALL Food PTH	91-01 1992 \$1-01 1992	30-14 70-11	1897 1892	01 67
69-360015 62-305071	10-25457 60-39917	1 11% 07	Å	50 MAN 45	1		10 121.1	10-342E-1 ED-3ME 10	60-3066'9	1,7446.02	50-3617.6 50-3666.5	10-30113 10-30062	*	10-3001.F	4.2333C-04 2.28HC-03	90019	124110 14130	10 3616F1	20-36046 S	10320011	20-36209-9 10-3126076	10-32991'8 10-369-69'T	5,24906-02	10-38091'T To-39062'8	CD-36699/8 LO-38698/8	10 36259'S 10 36100'1	. William 2012 Voltamentaria 177 Teat Out.	5482 10-15 5481 10-11	10-01 10-01	1992 1992 1997	70 70
	20-26101	m-11-17					SP MARY	(3) 100×1	10-2147-2	ID-ITECT	20-1107-1	to least	,		-	TOTO	0000	LO MANT	LO MEGET	20-39676-9		LO-MONT.T	20-3790979	10-M64/1	10-34/1871	10-300/11	Auge Deviced May Deviced	50-01 E007	60-01 90-01	1892	01
20-30012	59-30611'6 80-3060'1	20 W 91 7	Å	IN-BISE'S De-BISE'S			60-10-50 G	10-28FCT	10-10-12 Z 10-14-06 Z	10036-03	T 0411-03	HO-300113	Â	20-38227	HO-30EV1	100.0	FREES	10-30595">	10-10600 2 10-20001 2	59-11289 V	50-160KL'9	TO-MOLET.I	EN-12011'8	1.54128-03	1.12408-01	10-150L1-1	OF OF BERVER	5401 10-01 5401 10-02	10-01	1892 1892	OT OT
20-3501 T 20-3501 T	1 1000-03	5 HE K 45	A	20-3050°S	Å		50-7582 Z 60-1565 Z	119991-03	5-7506-93 8-041E-03	¥ 3036-92	20-3556-2 20-3428-5	10-3452'L	Å	2*00%-03 8*0006-03	HO-3052'9 E0-3090'1	600.0 200.0	BUCES BUCES	10-30105-5	57 102 201 01 57 002 01 01	10-1111-01 Lo-15(.90 V	20-3281271 0-328028-05	10-32110-1 10-3404.6'L	10-31469-1	10-3055811 10-3594672	1-121128-01	20-350LTT 10-39596-1	DF OF 83 PF WW	50-01 LBN2 10-01 LBN2	30-02 10-04	1892 1892	01 Di
20-26662	10326-05	372766-05	A 604/33	20-3162-8 6-96488		-	E0-3229'9	1.9028-03	50-3665°.5	10-34167 (m/ml	to-HILY	17306-03	1 (14/14)	50-3694/19	10-2496-21 LAU/96	10070	BOCES (mpmd)	10-3009115	50-32065-7 (mg/mg)	10-359TE 1	1221006-05	10-362691	10-364821	to atose z	10-38262.1	10-32856-01	OF DA BURNEY	5487 70-03	70-03	2481	qt
	Constant Constant			Community		Continued	Constant									,74944 1995				Content	Content	Canada	-	Content	Contrast	Content	ومحدة ومنشرقونه	died) annual	e mart		
animina '90				and set of the set of			.54	, too	Louis hand	-	Contrast of	-		"The party	-						and and a state			and respected							1
-	44						1	-					NAME + DOUG	i ing	- 1913/1916							THE PART		and internal of							
-																										_					_

1

Table B-1a: Emission Reduction Calculation
									Uncontr	oiled Emission R	ate"					I							Cor	crofied Emissi	ion Rata			· · · · ·			
																	ter.	rhouse + Ritter	bex			Venturi	Scrubber		De-NO _X Water add-in	Low-NC _x Burner	Low-NO ₂ Burner	Uttra Low-NO ₂ Burner	Ditris Low-NO ₂		170
					Annual HDs	Fitterable PM ₃₀	Total PM-se	Ritorobie PM _{2.5}	Tetal PM _{2.5}		1					Fillerable			Filterable		F-11-1 MA										
					Emission Bata	Emission Rate	Emission Rate	Emission Itata Balton	Emission Rate	SOx Emission Bate Balance	KH3 Emission Rate Balance	CO Emission Bata Baltura	VOC Emission			Emission	Emission		Emission	Emission	Emission	Enviruion	SO ₂ "	Emission	Emission		NO ₂ ^b Emission		NO ₂ ¹ Emiliation	VOC" Emission	CO"Emission
Fiberilis					Additional	Additional	Addictional	Additional	Additional	Additional	Additional	Additional	Additional		FM ₁₀ grain	Rate After	Rata Alter	Technically	Rate After	Rate After	Rate After	Rate After	Rata Alter	Rate After	Bale After	Technically	Rate After	Technically	Rata Altar	Rate After	Rate After
10	Building	Searce ID	Source Code	Source Description	Control Bb/bri	Control (Hs/hr)	Control Els/bri	Control	Control Eb/ht	Control	Control	Control (b/hr)	Control (tb/hr)	SCFM Ave (scfm)	loading" (gr/scf)	Control*	Control"	feasible"?	Control"	Control" Elb/hr)	Control" (Ib/hr)	(b/hr)	(Ne/hr)	Control (Ry/hr)	Control (th/hv)	Feasible??	Cantrol (1a/hr)	Peaselblar? (Y/N)	Control (Ny/ter)	(lb/hr)	(tb/hr)
PILOT	8162	PL02a	8162 FL02a	Pilot Plant LT Furnace #1 in	(4.22328-05	5.7904E 05	2.1708E-05	2.97638-05	1.4.21	1 8577E-07		2-8800E-05	623.6	0.000	2.112E-07	1.588£ 05	Y	2.1716-07	8.2738-06	1.1582-06	5.953E-07		3 715E 09						5.760E-07	
PILOT	8162	PL02b	8162 PLD2b	Pilot Plant LT Furnace #1 Out Pilot Plant LT Furnace #2 In	-	4.5171E-04 8.2704E-04	6.1954E-04	2.3218E-04 4.2511E-04	3.1835E-04 5.8700E-04		1.7908E-04	5.7019E-04	2.3702E-03 4 8735E-03	623.6	0.000	2.2598-06	1.6996-04	L ,	2.322E-06 4.251E-06	8.849E-05 1.820E-04	1.239E-05 2.268E-05	6.367E-06 1.166E-05		3.5822-06	!					4.740E-05 9.747E-05	3.7022-05
PROT	\$152	PL03b	#162 PL03b	Pilot Plant L1 Furnace #2 Out	-	4.22328-05	5.7904F-05	2.17081-05	2.9763E-05		1.85778-07		2.8800F-05	623.6	0.000	2.112E-07	1.588E-05	Y	2.171E-07	8.2731-06	1.1581-06	5.953E-07		3 715E-09						5.760E-07	
PROT	8162	PL04a	8162 PL04a	Pliot Plant HT Furnace In		4.22328-05	5.7904E-05	2.1708E-05	2.9763E-05	-	1.8577E-07	-	2.5450E-04	623.6	0.000	2.112E-07	1.588E-05	Ľ,	2.1718-07	8.273E-06	1.158E-06	5.953E-07		3 715E-09						5.292E-06 5.292E-06	
PILOT	8162	PLOSa	8162 PL05a	Pilot Plant HM Furnace In		4.22321-05	5.79046-05	2 17081-05	2 97631-05	-	1.8577E-07		2.54501-04	673.6	0.000	2.112E-07	1.568E-05	Y Y	2.1711-07	8.2738-06	1.158E-06	5 953E-07		3.7156-09						5.2928-06	
PILOT	8162	PIOSID	8162 P805b	Pilot Plant HM Furnace Out		4.22328-05	5.7904E-05	2 1708E-05	2.9753E-05		1.8577E-07	-	2.6450E-04	623.6	0.000	2.1126-07	1.5888-05	Ľ.	2.171E-07	8.2738-06	1.158E-06	5.953E-07	3 1997 05	3.715E-09		1.	40001-03	,	1.6037-01	5.292E-06	4.4057.05
Matrix	2478	2478 1	2478 1	Tower 1 RTO	0 30952	0.0470	0.0470	0 0470	0.0470	0.0037	122381.07	0.2476	0.0271	2589.4	0.001	2.3528-04	2 3528-04	;	4.705E-04	4.705E-04	9 410E-04	9 4 10E-04	7.4296-05			Ň	3.095E-01	Ň	3.0956-01	2.7146-02	2 476E-01
Matrix	2478	2478 16	2478 15	Tower 4 RTO	0.42857	D.0651	0.0651	0.0651	0.0651	0.0051		0.3429	0.0543	2275.1	0.003	3.2572-04	3.257E-04	Y	6.514E-04	6.514[-04	1.303E-03	1.3038-03	1.0298-04			N	4.2866-01	N	4.2856-01	5.4296-02	3.4296-01
Matrix EmGen	2478	2478_17 G-31	2478_17 6-31	Tower 3 RTO Emergency Generator	0.45238	0.0648	0.0688	0.0688	0.0685	0.0054	-	0.3619	0.0943	2275.1	0.004	3.4582-04	3.4382-04	· ·	6.8766-04	6.8752-04	3.3758-03	1.3757-03	1.0867-04			l "	6.5240-03		4.3246-01	54798-07	7.0196-01
EmGen	2344	6-15	6.35	Emergency Generator	3.627	0.2574	0.2574	0.2574	0.2574	0.23985		0.78156	0.2943497			1			1	1					1						
EmGen	2436	G-54	6-54	Emergency Generator	9.455	0.671	0.6710	06710	0 6710	0.62525	-	2 0374	0 7568005			1			1	1											1
Emilian	2430	6.76	6-76	Emergency Generator	13.95	0.99	0.9900	0 9900	0 9900	0.9225	-	3 006	1.131345			1		i i	1												1
EmGen	2479	G-81	6-83	Emergency Generator	15 035	1 067	10670	1 0670	1 0670	0.99425	-	3 2398	1.2193365		ł	ł			1												1
EmGen L/MGen	8132	G-83 G-M	G-83 G-84	Emergency Generator Emergency Generator	6.944	1.023	1.0230	1.0230	0.4929	0.4592	1	3.1062	1.1690565			1				1											1
£mGen	2478	6-85	6-85	Emergency Generator	16.585	1 177	1.1770	1 1770	1.1779	1.09675	-	3.5738	1.3450435						1	1											1
EmGen	2480	G-86 G-87	G-86 G-87	Emergency Generator	23.312	1 6544	1.6544	1.6544	1.6544	1.5426	_	5.02336	1.8906032			1		ł	ł.		1	{									1
EmGen	2481	6-88	6-88	Emergency Generator	23 467	1.6654	1.6654	1 6654	1 6654	1.55185	-	5.05676	1.9031737			1						}									1
EmGen	2481	G-89	G-89	Envergency Generator	23.467	1.6654	1.6654	1 5654	1.6654	1.55185	1	5.05676	1.9031737			1															
EmGen	2482	G-2482-1 West	G-2482-1 West	Emergency Generator Emergency Generator	23 512	1.6544	1.6544	1.6544	1.6544	1.5416		5.02336	1.8906032			1			1									{			
EmGen	2483	G 2443-1 Wey	G-2483-1 West	Emergency Generator	23 312	1.6544	16544	1 5544	1 6544	1.5416		5.02336	1.8906032			1			1												
EmGen	2483	G-2483-2 Earl G-2484-1 Wey	G-2483-2 East G-2484-1 West	Emergency Generator Emergency Generator	23 912 5.4902	0.0640	0.0840	16544	0.0840	1.5416	-	1.7807	0.7758	1								l									
EmGen	2484	G-2484-2 Fast	G-2484-2 East	Emergency Generator	5.4902	0.0840	0.0840	0.0840	0 0840	1.5671		1 7807	0 7758									1	1								1
EmGen	2485	G-2485-1 West	G-2485-1 West	Emergency Generator	5.4902	0.0840	0.0840	0.0540	0.0840	1.5621		1.7807	0.7758		1		ł	ł	1		l l	ł	1				1	(1	
EmGen	2486	G-2486-1 West	G-2485-1 West	Emergency Generator	5.4902	0.0840	0 0840	0.0840	0.0840	1 5621	~	1.7807	0.7758			1	-		1											!	
EmGen	2485	G-2486-2 East	G-24ME-2 East	Emergency Generator	5.4902	0.0840	0.0840	0.0840	0.0840	1.5621	-	1.7807	0.7758			1			1								1	1			
EmGen	2487	G-2487-1 West G-2487-2 East	G-2487-2 East	Emergency Generator Emergency Generator	5.4902	0.0840	0.0840	0.0640	0.0640	1.5621	-	1.7807	0.7758			1		1	1		1		1		1					1	
EmGen	2478	G-90	6 90	Emergency Generator	6.107	0 4334	0.4334	0.4334	0.4334	0.40385		1.31596	0.4952777			1			1	[1						
EmGen	2478	6-91	6-91	Emergency Generator	1.519	0 1078	0 1078	0 1078	0.1078	0.10045	-	6 32732	0 1231909			1			1												
Emilien	Plant	CA 239	CA 219	Air Compressor	7.75	9.55	0.5500	0.9500	0 \$500	0.5125		1.67	0.528525	ļ	1	1			1						[
HVAC	2344	2564-7	2344-7	HVAC Heaters	0.1401	0 0113	0.0113	0.0113	0 0113	0.0009	-	0.0596	0.0082	[ł		1	1	i i												
HVAC	2422	2422 1	2422 1	HVAC Heaters	0.0123	0.0010	0.0010	0 0010	0 0010	0.0001	-	0.0053	0 0007					[1										1
HVAC	2436	2436-1	2436-1	Boller-Dut of Service	0.0000	0.0000	0 0000	0.0000	0.0000	0.0000	1 -	0 0000	0 0000			1		1	1	1	1	ł									1
HVAC	2436	2456-10 2478-36	2456-10	HVAL Heaters Roler	0.0290	0.0023	0.0128	0 0023	0.0023	0.0010	- 1	0 0124	0.0017			1	ł			1	1						1				
HVAC	2479	2479-3	2479-1	HVAC Heaters	0.1509	0 0122	0.0122	0.0122	0.0122	0.0010		0.0642	0.0088		1	1				1											
HVAC	2480 2481	2480-1 2481-1	2480 1 2481-1	HVAC Heaters	0.1339	0.0308	0.0108	0 0 0 0 0 0	0 0108	0 0009		0.0570	0 00 78		1	1															
HVAC	2482	2482-18	2482-18	HVAC Heaters	0.2678	0 0217	0 0217	0 0217	0.0217	0.0017		0 1140	0 0 1 5 7			1							[ł						
HNAC	2483	2463 18	2463 18	HVAC Heaters	0.2678	0 0217	0 0217	0.0217	0.0217	0.0017		0 1140	0.0157			1															
HVAC	2486	2486-2	2486-2	HVAC unit side discharge	0.0056	0.0004	0.0004	0.0004	0.0004	0.0000		0.0024	0.0003					1							1						
HYAC	2486	7486-3	2486-3	Heaters	0.0038	0 0003	0 0003	0.0003	0 0003	0.0000		0 0016	0.0002			l l						1									
HVAC	2485	2488 1	2488 1	HVAC Heaters	0,00,19	0.0003	0.0003	0.0003	0.0003	0.0000		0.0017	0.0002		1	1	1	i			1				1			1			1
HVAC	8156	8156-1	#156-1	HVAC Heaters	0 0171	0 0014	0.0014	0 0014	0 0014	0 000 1		0 0073	0 0010			1	1		1	1											
HVAC	8132 8162	8152-1	8152-1 8162 2	HVAL Heaters	0.0153	0.0012	0.0012	0 0012	0.0012	0.0001		0.0085	0 0017			1				1											
HVAC	8167	8167-1	8167-1	HVAC Heaters	0.0086	0.0007	0 0007	0.0007	0.0007	0.0001		0 00 36	0 0005		1	1	-		1												
HVAC	8185	8185-1	8185-1 #186-1	Air Conditioners	0.0086	0.0007	0.0007	0.0007	0.0007	0 0001		0.0036	0.0005		1	1			1	1						Į				Į –	
HVAC	8249	\$249-1	8249-1	Boiler	0.0115	0 0009	0.0009	0.9009	0.0009	0.0001	-	0.0049	0.0007			1			1						1						
HNAC	8249	8249 2	8249 2	Hot Water Heater	0.0023	0.0002	0.0002	0.0002	0.0002	0.0000		0.0010	0.0001			1			1												
HVAC	9364	9364-1	9364-1	HVAC Heaters	0.0126	0 0010	0.0010	0.0010	0.0010	0 0001		0 0053	0 0007	1		1			1												
HVAC	9364	9364 2	9364 2	Boiler	0.0258	0.0014	0.0014	0.0014	0.0014	0 0001		0.0071	0 00 10			1			1								1				
PYAL	4370	41/01	1001	RVAL REALEY	0.0025	0.0010	0.001	1 00002	00002	0 0000	1	00011			· · · ·					-											
* Environ	s upstated per	2014 FL15/16 No	3 update and 2016 F	L13. FL14 and 2017 FL15 stack tests																											
* PM⇒₫%	en komfing (gr.)	u:f) = lb/hv x 200	0 gr/1b x 1 hr/60 min	xmn/sci																											
Although	oune/Hiter bo operation of	a baghouse for w	icency was assumate rets with grain loadin	d at 99.5% control of Piterapie PM3 gs below 0.905 gs/scfm is not comin	dered to be efficient	nutions calculated a L baghnuse technoli	is total PM30 - Pile ogy was reakinged	for all units, regardle	na of Latcoleters grav	hading																					
The bagi	ouse/Wher ba	Phil, coveral ef	Reancy was estimate	ed at 99 ON control of filterable PM.	25. Total controller	PM2.5 is salculated	f as Total PM2.5 F	ilerabre PM2.5 < Cor	trolled Filterable PN	42.5																					
The scrut	ber PM ₃₈ cont dwr PM-s cort	rol efficiency wat wol efficiency wa	s estimated at 98% of a estimated at 98% (1 total PMID based on a vendor cost ptal PM2.5 based on a vendor cost a	estimate indication (H OF PM ₂₃ #19875 WIN control of PM																									
The scru	iber's \$0, and	NH, control effic	arry was estimated	at 98% based on a vendor cost estim	mate invitating 90%	control of SO, and	NH, by a 2-stage sy	stem including vents	n scrubber and pack	red best																					
The De-N	D, water add	n only apples to	the DFTO is Fiber LP	es 13, 14, 15, and 16 and will bring	NO, emission down	to emission rates or	ullanaya tha the surger	d by the Durr. Herce	will incorporate the	s control on Fiber L	ines 13, 14 35 and 15	i.																			
A low-NC	burner emassio	n dervid sechnical ans were calcular	ny realized it the extent of assuming 50% cos	ring purner to natural gas powered, stro-efficiency, AP-42 Table 1.4.1 - c	non effective. Companies of users	ntrolled emissions h	rom a small boiler i	100 lb/10 ⁴ rcf) to col	stralled Low-NO, but	mer emissions from	n a smäll boller (50 lb	(un ^a ver) (1.50/100	~ 50%]																		
URra-Low	ND ₄ burner e	INSIANS WERE CA	sulated assuming BC	M control efficiency. For barners th	at are currently con	trailed by Low NOX	burners, applicatio	n of Litra Low MOX t	surners are assumed	to control uncentr	oiled envisions by BC	~																			
The RTC	control efficie	ncy of VOC is esti	mated at 98% based	or DAOPS manual page 2-7, which	describes a therma	carditer operating a	et 1600 degrees Fa	hranhait LairtTean (14/20-inti-	This calculation is in	and on State control	of efficiency																				
1444																															

Table 8-1a: Emission Reduction Calculations

Table B-1b: Emission Reduction Calculations

<u>(</u>			Ton man give	Ton-mos	Tonimura	DE-HOV MINEL												L I			
0	1.11	Bumar	Burner	Burner	Burner	u-ppe		tabbet	k hutneV	L	30	il refilt + sevorig	18	xo	đ 1etili + stuody	ni -					
CD [®] Collected	VOC"Collected	(IP/M) NO ^x ,Collected	YleidindonT Y <mark>eldineet</mark> (N/Y)	hected "Collected" (10/hr)	Technically featible?? {YN}	(IP/M) (IP/M)	1011 ¹ ° Collected	\$0 ⁵ , Collected	(Ib/hr) [(b/hr)	PM ₃₄ Collected ⁶	Total PM _{2.5} Collected [®]	Technically feetbie (V/Y)	رمانه (الما _{عه} (الم/امة (الم/امة)	Collected [*]	VitaxintxeT fotikaet (N/Y)	Collocted ⁶ Collocted ⁶	воізфітона Селиса	epo) esinos	GI sonog	Bribling	enilred Cl
	10 3000 3															for here	Ox. Oven Vest.	5344 505 5344 500	505 500	5344 5344	z
	10-3660.5	20-3599.1	*	1.040E-02				Z0-3022.1	10-3229.5	TO-39P0 2	TO-3699'Z	A	10-3912.2	TO-3699'Z	*	10-3812.2	Incinerator LTF Seel Ex. Out	2344 204 2344 203	504 503	5344 5244	2
																	LTF Seal Ex. Out	502 WEZ	502	1111	s l
																	HTF Seal Ex. In	7344 501	202	THEZ	5
	20-3158.7																HITE Seal EX. In HMF Seal EX. In	5344 508 5344 508	805 208	5344	5
	20-3158-7																TO .X3 Iss? TMH	5344 210	510	7744	5
																	Sung Driet Ex.	212 WEZ	212	111EZ	2
3 9245-02	4'398E'05	00+300010	N	00+3000.0	N		20-3666.5		4,7226-02	20-3689.9 20-3689.9	20-367A.E	Å	20-3656.4	3.4796-02	Å	4"953E-05	728V.nl J1.vO.rO 128V.nl J1.vO.rO	5344 305 5344 301	20E 10E	2344	3 1
3 9245-02	20-396E'V	00+300010	N	00+300010	N		2.3995-02		\$20-3221.0	20-3689'9	20-3664	Å	4.953E-02	3.4796-02	٨	20-365619	725Y. N. V.	5344 303	EDE	19952	3
20-39-26°E	20-396E'V	00+300010	N	00+3000.0	N		20-3666-5		¥11225-02	20-2689-9 20-3689-9	20-367A.E		20-3556.4	3-4795-02	Å	20-3E56 P 20-3E56 P	199V OL FR. VO. KO	337E 9982C	YOE	WEZ	1
20-3#26'E	20-386E'Y	00+3000.0	N	00+300010	N		20-3666'5		4.7226-02	20-3689.9	20-3671.6		20-3656.9	20-364VE	Å	20-3626.4	RaVING EN.VO.XO	50E 19EZ	908	19462	3
Z0-34.96'T	20-3006'9 20-3055'/	00+352871	*	11135400	A		10-312011	10-3209'8	3.4625E-01	20-3E96-2 T0-39E2-9	20 3910 E	Å	CO 3268 5	2010101	Å	10-3886.1	incinerator Incinerator	80E 77E2	305	19462	1
20-31.00.6	1.0165-01	00+300010	N	0.0001400	N		9.1885-04		70 35500	10-3576-1	70 3010 5	,	70 3/49/6	70 391010	,	70 3/68.0	HITPLE Seal EX. Out	01E 99EZ	018	79EZ	8
																	x3 feer Treat Ex	TTE PPEZ	ττε	7944	3
3,9246-02	20-3965'¥	00+3000.0	N	00+3000 0	N .		20-366£ S		50-3527.A	\$0-3689.9	3,479E-02	*	\$0-3526.4	\$0-367A.E	*	20-3526.A	K3 TYPE BAR TO THE REAL POOL OF THE POOL O	5344 313 5344 315	212 212	5344	3
3'3546-02	20-3865.4	00+3000-0	N	00+3000'0	N N		20-3661.2		4.7225-02	20-3689.9	\$0-3674.6	, k	20-3626.4	3.4796-02	Å	4.953E-02	booHruO IN.VO.XO	5344 374	974	5344	ε
3.9248.02	20-386E'F	00+300010	N	00+300010	N		20-366615		4'1725E-05	20-3689'9	20-36/9°E	Å	20-3656.4	20-36/9'E	*	20-3256'V	booHING SNVO.KO	51E 99EC	916 516	2344	E
3.9246-02	4"398E-05	00+300010	N	00+3000'0	Ň		20-3666.62		4.7226-02	20-3689.8	20-36/# E	Å	20-3556'P	20-3676.6	Å	4.9536-02	booH.nl EN.VO.KO	2344 317	215	5344	\$
20-3099/T	20-31E0'I 20-3965'r	00+3000'0	N	00+300010	N		60-3868'6 20-3666'S	20-31256-12	20-3222/1V	2.2605-02	20-3266 T	Å	20-3568.5	20-3266'1 20-3629'E	Å	20-3568'E 20-3856'#	booHJuO EN.vO.rO dtiingmosei0 - soll mmull	2344 322	222 816	5344	1 6
1 8946-05	20-3006.5	00+3000-0	N	00+3000.0	м		4.8825-02		20-3562.2	3 2516-02	20-31691	Å	20-3704.5	20-3169.1	Å	2.407E-02	A.nl 24 novO.xD	2436 400V	4004	5436	1
20-3912-2	120-3061'¥	00+3000.0	N	00+3000.0	N		20-32257 20-322975		20-3990-5	20-3502.2	20-32/9/2 20-32/9/2	Â	20-3588 5	20-32/92 2	Â.	20-3522 5	8.nl It nevO.x0	2439 400B	8007	5436	1
5 5646-05	3.5121.02	00+300010	N	00+3000.0	N		¥ 25256-05		31846-05	20-3966'9	52676-02	<u>.</u>	316556-02	20-3295-2		20-3559'E	STUD T# UPAD XO	5436 4018	9109	9692	1
20:3629:2	20-3622.72	00+3000.0	N	00+3000.0	N		20-3242 5		20-3226-02	1416-02	5.1546-02	î.	3.0668-02	5.1546-02	Â	3.0665-02	A.nl Sil nevO.x0	5436 402A	A20h	5439	1
20-3629/2	20-3622/2	00+300010	N	00+300010	N		20-32vE'E 20-32vE'E		20-3626-2	4'T#TE-05	20-3951-2	<u>,</u>	20-3990'E 20-3990'E	20-3#51-2	*	20-3990'E 20-3990'F	B.nl Sit nevO.xO AtuO Sit nevO.xO	2436 403A	820P	5436 5436	1:
5,4295.02	2013012	00+300010	N	00+300010	N		20-3246.6		20 3656.2	4'141E 05	5 1246 05	Å	3.0666-02	5.1546-02	Å	Z0 3990'E	BINO ZH UBAO KO	2436 4038	8601	3436	1
20-3126-22	2.54E-02	00+300010	N	00+3000'0	N		2.7356-02		7'4946-05 V'9986-05	2 073E-02 6.612E-02	1 018E-03		20-3585'1 20-3968'9	20-3970.1 20-387-02	*	20-356510	A.nl EllinsvO.xO B.nl EllinsvO.xO	AAQA 35640 2436 404A	Abûb Abûb	9592	
2.4296.02	2.7236-02	00+300010	N	00+3000-0	N		3'345E-05		20-3626-2	4'7476-05	20-3¥5T Z	<u>.</u>	3.0665-02	20-30-51-2	*	20-3990'8	AfuO EN navO.xO	5436 405V	A208	5436	1
2 4296-02 2 4296-02	2.7235-02	00+3000.0	N	00+3000.0	N		3.3425-02		20-3526-22	4.1415-02	20-1951-2	Å	3.0663-02	5.1546-02	Â	20-3990.£	Bruo En nevo.xo	2436 4058	8509	5436	1 :
7 4566-05	20-3627.5	00+300010	N	00+3000'0	N		20-3296.6		5.9235-02	41416-05	5.154E 02	Å	20 3990'8	20-3951-2 20-3951-7	۸ 4	20-3990'E	A.ni MinevO.x0 8.ni MinevO.x0	8909 989Z	A304- 8304	5436 5436	
20-3566-2	20-30107	00+3000-0	N	00+3000.0	N		1.0296-02		ZO-3018'T	2.5646-02	1.3345-02	Â	1.899E-02	1.3346-02	Å	20-3668.1	AluQ 48 nav0.x0	3436 407A	ATOM.	5436	1 1
20-3812'T	Z0-39/9'9 Z0-3512'7	1'101E+00	Å	10-395772	A N		1,2095-04 20-3A10-1	2,2306-01	10-3591576	10-30/17	10-36251		3.0882E-01	10-3625'T E0-3TT0'2	*	10-3880.5 50-3586.6	8140 Million Million ATJ	2436 4078	870%	2436	1:
1.2286-03	\$0-3255'P						20-3497.4		10-3906.1	TO-380/ E	1,4041-01		10-35#2.2	1.4046-01	*	5.7455.01	tzue/x31ee/2 111	5436 410	410	5430	
	20-3057.2						312406-03		20-3555'5	103226-01	1.8675-02	Â	20-39262	7.8678-02	Â	3,6505-02	A3 1662 9TH/9TJ	5436 411	TT#	5436	1
20-3272.2	50-3M0E-02	00+3000.0	N	0.000E+00	N		20-3089'S		70-3656-6	10-3//0.1	Z0-38/01		70-39/61/	70-38/012		20-39(67	32060X3 1692 3TH	5436 413	413	5436 5436	
							20-3522.2										Surface Treat Ex	5436 414	ele.	5436	
							20-35/17										x3 seart esertion	2436 415	517	2436	
																	ATHE DAME BY	219 9592 919 9597	412	5439 5439	1:
																		5439 478	819	5436	1
																	-	543E 450 543E 416	430	5439	1
		-a- 2000 d																5439 451	457	5439	1 2
10-3950.6	20-372/9'E ED-308E'9	00+3000'0	N	00+300010			2°426E-03	60-3595'8	7 10/2 - 05 7 10/2 - 05	3.2566-02	1.23355-02		2, 29315-02	1 6116-03	î	20-3129-22	Burner Box - Dragonmouth	5436 422	422	2436	
	£0-3270.A						\$1,7588-03		5.4296-03	3.441E-03	1.7905-03	*	25496-03	11,306-03	Å.	\$0-3845°Z	DOOH.nl IW.YO.YO	8105 95¥Z	8105	9697	S
1.2056-02	\$0-3729'E	20-3690'5	*	3.1688-02	A		20-3500 2	PO-3096'E	80-308E.8	1.1876-03	90-3962 1	Â	PO-3164.8	PO-3#/1'9	Â	PO-3167.8	DK.Ov.B1 In. Gas	2436 501C	2010	5436	s
	£0-3561'L						E0-3029'E		E0-31E9'E	E0-3198'F	2,5385-03	<u>,</u>	£0-3665°E	5.528£-03	*	E0-3665'E 70-35#8'T	000H 2-18-00-XO	8205 9EVZ	8205 ¥205	5436 5436	s
1.2056-02	90-3165'8	20-3028-5	٨	3.3256.02				¥0-3091'¥	PO-308E-8	1.1876-03	PO-3#21'9	Å	90-3162.8	PO-39/11'9	A	\$0 3167.8	SED JUO TRI VO'KO	2436 502C	20SC	5436	s
20-3502.1	90-3165'8 Z0-3109'F	20-3026.2	Å	3.3255-02	^		20-300E'T	41,160E-04	1.3326-04	T' 7826-03	6.174E-04		1.3976-04 1.3976-04	PO-3018-6	Â	10-3162'8 70-3268'7	0x,0v,#2 In, 544	2436 503C	7£05	2436	s
	20-3100'E						1.3006-02		1.3326-02	1.6865-02	£0-3018'6	Å	20-3268-1	£0-3018'6	÷.	70-3/68-1	New WILLIAM OT CALL	5436 504A	AM02	9672	S
3.0186-03	8.3226-06	20-3026-2	*	3 3326-03	^		3"5246-03	PU-SUST P	EO-3010.E	4.2706-03	5.2215-03	Â	3.1625-03	5.2216-03	î	3.162E-03	DA. DV. M2-3 HOOd	2436 5048	89098	5436	s
20-3112/2	20-3990'9	20-307515		20-3575'5			1.651E-02	40-3091.4	7-308E-F	20-3556'T F0-3/81'T	10176-02	*	20-3264/2	7'0716-05	Å	20-32.09°T 90-3162'8	teaV.nl Ell.vO.x0	2436 505A	VS05 209C	2436	s
1.2056-02	PO-3165'8	2:3506-05	Å	3-3256-02	~			4.160E-04	10-3085.8	1.1876-03	90-3921.9	A	#0-3164 B	PO-39/11.9	X	NO-316/18	OX.OV.#3 In. Gas	2436 505C	2020	543P	s
20-358111	20-3550'T						10-3529-9		3"168E-03 7"456E-03	1 V81203	E0-396E'Z	*	20-3525-5	20-314150'1		3 333E-03 T 406E-03	Reaving Envolution	5436 506A	8905	3436	ŝ
10.3200 1	MO-3165.8	20-3026-22	٨	3.325E-02	*			10-3091'1	NO-3085.8	1.1876-03	PO-37/119	*	PO-3162'8	PD-39/119		\$0-3166'8	SED THO ER YO'NO	2438 2080	2905	9692	S
20-36-07-1							1 991E-02		1.4265-02	2.020E-02	T-021E-05		ZO-396₽'I	T-051E-05	*	T 486E-05	5t+9 V.ml \$8, vO.xO	X436 507A	¥205	2436	1 5

2018 8-20: Emission Reduction Calculations

60-3628'9 50-3822'2 20-3822'2 20-3822'2 12-386-03	8-582E-05 2-208E-05 4-223E-05 7-999E-05	17-9616-03 37-9636-05 77-7676-00	A A A	1 256E 03 5 1126-05 2 324E-07	A A A	20-315575 57281-03 97281-03 77281-03 772036-04 772036-04	5,2316-01	20-31901 20-31955 10-39061 10-3061	20-3601-2 4 656E-05 3:108E-07 4:120E-07	1.9871E-03 1.8677E-02 1.404E-01 1.5757E-01	i. i. i.	3'0986-01 3'0926-05 3'0986-01	10-3678.1 20-3789.1 20-3789.1	i i i i	20-3295'T 30905'05 5'5435'07 3'0985'07	yolosanizol Izuerta3 lea2 171 Izuerta3 lea2 171 Izuerta3 lea2 171 Izuerta3 lea2 171 Izuerta3 lea2 171 Izuerta3 booH	215 9692 215 9692 215 9692 215 9692 215 9692 215 9692 215 9692 2069 9692	215 515 615 115 015 605	5436 5436 5436 5436 5436 5436 5436 5436	*****
5,100E-03	6,300E.03 6,462E-03 20-3C926-03	4'436E-04 4'436E-04 3'D43E-07	*	10-31/22 10-31/22 10-31/06-1	*	0-3864.03 20-3666.03 20-3666.03	£0-359E.8	20-31670,1 20-31680,1 20-31680,1	T 113E-05	70-30427 7-3466-05 7-3466-05	А Д	7, 9126-02 2, 9126-02 2, 9126-02	7,240£-02 1,240£-02 1,240£-02	*	20-3616-1 20-3616-1 20-3616-2		2429 5292 2429 525 2429 525 2429 525 2429 525 2429 525 2429 529 2404 5292	812 052 152 512 8104	2479 2479 2436 2436 2436 2436 2436 2436 2436 2436	9 5 5 5 5 5
3 420E-05 3 420E-05 1 542E-05 5 100E-05 5 100E-05 1 545E-05	4'124E-05 4'124E-05 9'824E-04 9'402E-05 9'402E-05 9'402E-05	2:031E-05 4:438E-04 4:438E-04 2:031E-05	й й й	3 144E-05 5 224E-04 5 224E-04 3 144E-05	۸ ۸ ۸	20-3222-5 20-3222-5 20-3222-5 20-3222-5	90-31466-6	1 052E-05 1 052E-05 1 101E-03 1 203E-05 1 203E-05 1 203E-05 1 101E-03	T 000E-05 T 000E-05 T 553E-03 T 553E-03 T 553E-05 T 553E-03	2 220E-03 2 220E-03 8 224E-04 7 540E-05 7 540E-05 8 224E-04	4 4 4 4	0090.03 0000.03 0000.03 0000.03 0000.03 0000.03 0000.03 0000.03	2:520E-03 2:220E-03 8:224E-04 T:540E-05 8:224E-04	۵. ۵. ۵.	20-3966-2 30905-04 11-3136-05 20-3216-05 11-3136-05 11-3156-05 110	240 24 VO XO 240 24 VO XO 8.1VO 24 VO XO 8.1VO 24 VO XO 240 24 VO XO 8.01 24 VO XO 8.01 24 VO XO 8.01 26 VO XO	2479 6038 2479 6038 2479 6028 2479 6028 2479 6028 2479 6010	6038 6026 6027 6026 6028 6028	5479 2479 2479 2479 2479 2479	9 9 9 9
3 4206-05 3 4206-05 1 5456-05 3 4206-05 5 4206-05 1 5456-05	10-39-31 P 10-39-58 8 10-39-51 P 10-39-51 P 10-39-58 8	20-31E-05 2-031E-05	Å Å	3 T#4E-05 3 T#4E-05	Å	20-322275 20-322275 20-322275	MO 31450.5	1 052E-05 1 191E-03 1 052E-05 1 052E-05 1 191E 03	1 0806-03 1 5536-03 1 5536-03 7 0806-05 1 5536-03	2030557 2030504 20305503 2030503 2030503 2030503 2030503 2030503 2030503 2030503 2030503 2030503 2030503 2030502 2030500 2030500 2030500 203050000000000	Å Å Å	E0-3966 / 90-3090 6 E0-3966 / E0-3966 / 90 3090 6	E0-3055 2 H0-3H55 8 E0-3055 2 E0-3055 2 H0-3H55 8	4 4 4	E0-3966.2 P0-3090.6 E0-3966.2 P0-3066.2 P0-3090.6	0,11,02,11,0	5436 6057 5436 604C 5436 604C 5436 6047 5436 6047	605A 604C 604C 604A 603C 603C	5475 6785 6785 6785 9779 9779	9 9 9 9
5.9506-02 1.242E-02 5.950E-02 5.950E-02 1.242E-02	3'484E03 3'484E04 3'484E04 3'484E05 3'484E04 2'3484E04 2'3454E04	20-3150'S 20-3150'S	Å Å	3"T#4E-05 3"T#4E-05	*	5"2046-05 5"2046-05 5"2046-05	NG-314EQ.E	20-3960't E0-3191't 20-3960't 20-3960't E0-3191't 20-3520't	1 1226-03 1 2536-03 1 2536-03 1 1226-05 1 2526-05 1 2526-05 1 2526-05 1 20806-05	60-3990-9 90-3955-8 50-3990-9 50-3990-9 90-3955-9 90-3955-7	۸ ۸ ۶	0-3090'8 0-3090'6 0-3595'8 0-3595'8 0-3090'6 0-3090'6	80-3090-38 80-30-32-46-04 80-30-32-46-03 80-30-32-46-03 80-30-32-55-8 50-32-56-32 50-32-56-52 50-32-56-52	*	E0-3595'8 \$0-3090'6 E0-3595'8 E0-3595'8 \$0-3090'6 E0-3966'4	R. ni Ek. VO. JO 2. Ni V.	5479 607A 2479 606C 2479 6068 2479 606A 2479 606A 2479 605C 2479 6058	8209 8209 8209 8209 8209 8209	2479 2479 2479 2479 2479 2479 2479	9 9 9 9 9
1' 6691' 03 1' 7451' 03 5' 6601' 03 5' 6601' 03 1' 7451' 03	20-302505 90-39589 20-395895 20-395895 20-39589 20-39589 20-395895 20-395895 20-395895 20-395895 20-395895 20-395895 20-395895 20-395895 20-395895 20-395895 20-39585 20-39555 20-39555 20-39555 20-39555 20-395555 20-395555555 20-39555555555555555555555555555555555555	20-3160'S 20-3160'S	*	3.1445-02	*	3, 5646-02 2, 5046-02 2, 5046-02 2, 5046-02	00-3066-6 00-3066-6	E0-3E21.E 20-3101.2 20-3800.7 E0-3101.2 E0-3E21.E	T 323E-03 T 323E-03 T 323E-03 T 323E-05 T 323E-05 T 323E-05	E0-3890.9 E0-3890.9 E0-3890.9 F0-3955.8 E0-3890.9	* * * *	00-3090'6 E0-3595'8 E0-3595'8 P0-3090'6 E0-3595'8	EO-1822 2 EO-3880-8 EO-3880-8 EO-3880-8 FO-3880-8 FO-3880-8	* * *	90-3090'6 E0-3595'8 E0-3595'8 90-3090'6 E0-3595'9	9.11 PM (VO 300 04. OV M4 G22 04. OV M4 C22 05. OV M4 G22 05. OV M4 G22	5419 609C 5419 609C 5419 609B 5419 605C 5419 601C 5419 601C	608C 608C 608C 608C 608C	27479 27479 27479 27479 27479	9 9 9
E0-3959'¥ 20-3959'¥ 20-3020'T 20-3552'T E0-3066'T	3"50%E 03 3"50%E 03 5%836E 05 5%836E 05 1"515E 05 1"550E 05	1 2965 T 0 3895 T 0 3895 T 0 3895 T	Å Å Å	20-3862-6 10-391E-9 10-391E-9 10-3921-2	8 8 8	E0-32.51 E 20-3519 E 20-3519 E 20-3519 E 90-3992 1 E0-3892 1 E0-3892 1	ED-311E-0	ED-3529 8 20-390E T 20-390E T 10-3602 2 E0-35247 E	1 6785-02 2 6405-02 2 6405-02 2 6405-02 2 17325-03 2 17725-03	e 3222-03 8-2502-03 8-2502-03 1-2502-03 1-2502-03 5-3382-03	*	20-3E#2'1 20-3E#2'1 20-3E#2'1 20-3E#1 10-32#1'5 80-31/5'5	E0-355E 9 E0-3029 6 E0-3029 6 To-3829 f E0-3829 f E0-38EE 7 E0-38EE 7	*	1"343E-05 1"881E-05 1"881E-05 1"881E-05 1"835E-01 10-323E-03 4 22,125-03	A. (n Isae 37.) B. n Isae 37.) totastonon 17.) A. su O Isae 37.) B. su O Isae 37.) A. n Isae 37.)	4219 6192 8119 6192 9119 6192 919 6192 8699 6192 9699 6197	A008 8008 018 A118 8118 8118 A518	5428 5428 5428 5428 5428 5428 5428 5428	8 8 8 8 8
20-3050'T 20-3050'T 20-3050'T 50-3050''	20-355E19 20-355E19 50-388Z16	10 38957		Z0-3864 6	A	20-3122/5 E0-391072 E0-391072 E0-325172	4°3116 03	E0-3558°2 E0-3558°2 E0-35597 E0-3529'8	ED-3055 5 ED-3055 5 ZD-3829 T	571035-03 571035-03 571035-03 6 3225 03	4 4	4'T13E-03 4'T13E-03 1'543E 05	5-103E-03 5-103E-03 6-322E 03	ير بر	4'113E-03 4'113E-03 4'113E-03	B. of Idea 2119 B. of Idea 2119 B. Judo (sea 2119 B. Judo (sea 2119) booth renneration 35 sea booth renneration 35 sea anuado 36 mile Juda 7 mile 2004(sea find 2 mile 2 mile 2 mile 2 mile 2 mile find 2 mile 2	5436 613 5436 618 5436 618 5436 619 5436 619 5436 619 5436 619 5436 619 5436 619 5436 619 5436 6155	8219 819 919 919 819 819 819 819 819 819 8	5420 5420 5420 5420 5420 5420 5420 5420	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
20-3562 °E 20-3562 °E 20-3562 °E 20-3562 °E 20-3562 °E	1036821 10788207 1098207 1038207 1031221 1031221	e 3666 Or 9 0626 Or 9 0626 Or 9 0626 Or 9 0626 Or 9 0626 Or	* * *	10-345614 10-345614 20-365614 20-365614 10-345614 10-345614	*	20-3429-1 20-3229-1 20-3855-5 20-3855-5	10-3COE.E	20-31996 T 20-31996 T 60-3558 T 20-31996 T 20-31996 T	20-3287.5 20-3287.5 20-3287.5 20-3287.5	20-37 hA 1 20-37 hA 1 20-37 hA 1 20-37 hA 1 20-37 hA 1 20-37 hA 1	4 4 4 4	5'060E-03 5'060E-03 1'455E-03 5'060E-03 5'060E-03	1'4426-05 3'6866-04 1'4426-05 1'4426-05 7'4426-05	* *	5'060E-05 5'060E-05 7'455E-03 5'060E-05 5'060E-05	Inav II(q2 A ni Fk vO xO B.ni Fk vO xO 8.bi Fk vO xO A.JuD Fi vO xO 8.JuD Fi vO xO	023 8742 A 107 8745 A 107 8745 0107 8745 A 207 8745 A 207 8745 A 207 8745	053 AIOT BIOT DIOT ASOT BSDT	5479 2479 2479 2479 2479 2479 2479 2479	L L L L 9
20-34145 20-341455 20-36467 20-36467 20-36455 20-347455	20-3066'6 20-3066'6 20-3696'6 20-3696'6 20-3696'6	20-3525'5	*	20-3659°E	Å	7 3736-05 7 3736-05 7 3736-05 7 3126-05	4/350E-DM	20-39611 20-39611 20-35521 20-39611 20-39611 20-39611	1 6946-05 1 6946-05 1 6546-05 1 6546-05 1 6946-05 1 6546-05 1 6546-05	E0-3E18 8 E0-3E18 8 90-3985 6 E0-3E18 8 E0-3E18 8 E0-3E18 8	*	035521 15256-05 15256-05 15256-05 15256-05 15256-05 15256-05	8:8736-03 6:3878-03 9:3878-03 9:3878-03 8:8736-03 8:8736-03 9:39866-04	* * * *	1"526E-05 1"526E-05 1"455E-03 1"455E-05 1"526E-05 1"526E-05 1"455E-03	8402 Eli vO. xO A.ri S.li vO. xO B.ni S.li vO. xO B.ni S.li vO. xO 25. VO. xO A.tuO S.li vO. xO 8.tuD S.li vO. xO	2479 7026 2479 7036 2479 7036 2479 7046 2479 7046 2479 7046	2207 AE07 AE07 AM07 AM07 BM05	5426 5426 5426 5426 5426 5426 5426	L L L L
4 '0'361'05 4 '0'2561'05 1'30'66'05 2'41'46'05 1'36'6'05	20-322478 20-322478 20-369611 20-322478 20-322478 20-322478	20-3525'5		20-3659°E	X	10-3295-6 10-3295-6 10-3295-6	40-305-14	20-3192 T 20-3192 T 20-355E T 20-355E T 20-396T T 20-396T T 20-396T T 20-395E T	1 8126-03 1 8126-03 1 6506-03 1 6646-05 1 6506-03	t0-3986-6 90-3986-6 20-3518-8 50-3518-8 50-3518-8 50-3518-6	* * *	1'9446-05 1'956-03 1'956-03 1'5266-05 1'5226-05 1'9556-03	6 3199 6 6 3298 6 7 3298 6 8 3326 0 7 3218 9 8 60 3218 9 8 60 3218 9 8 60 328 6	~ 	1'344E-05 1'45E-03 1'52E-05 1'52E-05 1'52E-05	242 24 24 24 24 24 24 24 24 24 24 24 24	5423 1066 5423 105C 5423 105C 5423 1058 5423 1066 5423 104C	0902 0502 8502 9502 0402	5479 2479 2479 2479 2479	L L L
10 3625 V 4 6236-05 1 046-05 1 046-05 1 046-05 1 046-05 1 046-05 1 046-05	2012602 27383603 27383603 8423605 8423603 7383603	20-3525'5 20-3525'5	*	20-3659°8 20-3659°8	Å	E0-37956'S E0-3295'6 E0-3295'6	VC-302E'V	20-3182 1 20-3552 T 20-3582 T 20-3582 T 20-3582 T 20-3552 T	20-35181 20-3026T 20-3518T 20-3518T 20-3519T 20-3026T	0-3114 6-3886-0 6-3844-03 6-384-03 6-384-03 6-3886-6	5 5 5 5	1'3446-03 7'4556-03 7'3446-05 7'3446-05 7'3446-05 7'4556-03	E0-31996-6 E0-31996-6 E0-31996-6 F0-31996-6	۸ ۸ ۸ ۸	1'344E-03 1'455E-03 1'455E-03 1'344E-05 1'455E-03	OX: OV: 84: 002 OX: OV: 86: 635 OX: OX: 0V: 86: 635 OX: 0V: 0V: 86: 635 OX: 0V: 86: 635 OX: 0V: 86: 635 OX: 0V: 0V: 0V: 0V: 0V: 0V: 0V: 0V: 0V: 0V	2479 7056 2479 7076 2479 7076 2479 7076 2479 7076	2807 2807 2707 2707 2707	5479 2479 2479 2479 2479 2479	

Esim3					
	calculations)	Reduction	noirelm3 :d1-	adet .	

North State State <th< th=""><th>01 101 01 221 01 221 01 22000</th></th<>	01 101 01 221 01 221 01 22000
	101 101
	10 10 10 10 10 10 10 10 10 10
North State State <th< th=""><th>101 102 103 103 104 105 105 105 105 105 105 105 105</th></th<>	101 102 103 103 104 105 105 105 105 105 105 105 105
North State State <th< td=""><td>10 11 12 12 12 12 12 12 12 12 12</td></th<>	10 11 12 12 12 12 12 12 12 12 12
North Obset A Dest Dest <thdest< th=""> Dest Dest D</thdest<>	10 10 10 10 10 10 10 10 10 10
Distri Distri Distri A Distri A Distri A Distri Number of a bit of a b	10 10 10 10 10 10 10 10 10 10
Distri Distri Distri A Distri A Distri A Distri Number of a point Distri	10 10 10 10 10 10 10 10 10 10
Distri Distri<	101 102 103 104 105 105 105 105 105 105 105 105
No. No. <td>10 10 10 10 10 10 10 10 10 10</td>	10 10 10 10 10 10 10 10 10 10
North Owner A Distri A Distri	101 102 102 102 102 102 102 102
Unit Destri Destri <td>10 10 10 10 10 10 10 10 10 10</td>	10 10 10 10 10 10 10 10 10 10
District	10 10 10 10 10 10 10 10 10 10
UNDERT UNDERT UNDERT A <	101 102 103 104 105 105 105 105 105 105 105 105
Unit Distri Distri A Distri Distri <thdistri< th=""> <thdistri< th=""> <thdistri<< td=""><td>10 10 10 10 10 10 10 10 10 10</td></thdistri<<></thdistri<></thdistri<>	10 10 10 10 10 10 10 10 10 10
2 3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	101 102 103 103 104 105 105 105 105 105 105 105 105
U U	10 10 10 10 10 10 10 10 10 10
Burner Burner A Burner <	101 102 103 103 104 105 105 105 105 105 105 105 105
Unit Series Series <td>10 10 11 11 10 10 10 10 10 10</td>	10 10 11 11 10 10 10 10 10 10
1 1	107 107 107 107 107 107 107 107
Direct: Direct: <t< td=""><td>107 107 107 107 107 107 107 107</td></t<>	107 107 107 107 107 107 107 107
Unit Unit <th< td=""><td>10 10 10 10 10 10 10 10 10 10</td></th<>	10 10 10 10 10 10 10 10 10 10
District	101 102 102 102 102 102 102 102
District	10 10 10 10 10 10 10 10 10 10
District	107 107 107 107 107 107 107 107
District District A District District A District District District District A District A District A District A District A District Distrit District District	10 11 11 11 11 11 11 11 11 11
United Constrain A District	107 107 107 107 107 107 107 107
District Construct Construct <th< td=""><td>10 10 10 10 10 10 10 10 10 10</td></th<>	10 10 10 10 10 10 10 10 10 10
Unitation Definition A Definition Control Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition <thdefinit< th=""> Definition Definition</thdefinit<>	10: 10: 10: 10: 10: 10: 10: 10:
10 10 <t< td=""><td>107 107 107 107 107 107 107 107 107 107</td></t<>	107 107 107 107 107 107 107 107 107 107
United 0.978/CL 1978/CL A 1978/CL 1978/CL 1978/CL A 1978/CL A<	10 10 10 10 10 10 10 10 10 10
2 5	107 107 107 107 107 107 107 107
10 2017 00 2017 10 2017 <t< td=""><td>10 10 10 10 10 10 10 10 10 10</td></t<>	10 10 10 10 10 10 10 10 10 10
U DALKT UPWEC A UDWEC A	10- 10- 10- 10- 10- 10- 10- 10-
100 100 <td>101 102 102 102 102 102 102 102</td>	101 102 102 102 102 102 102 102
U DILLY C DWYNC I A (1994) A (10: 10: 10: 10: 10: 10: 10: 10:
UDX.LIVE OPTROL A UDX.LIVE	107 107 107 107 107 107 107 107
UDXLIFE OPFREEL DEVENT A UDXLIFE OPFREEL UDXLIFE A UDXLIFE UDXLIFE A UDXLIFE UDXLIFE A UDXLIFE DEVENT A UDXLIFE A UDXLIFE DEVENT A UDXLIFE A UDXLIFE DEVENT A UDXLIFE DEVENT A UDXLIFE A UDXLIFE DEVENT A UDXLIFE A	10: 10: 10: 10: 10: 10: 10: 10:
D 2,117 C D 2,117 C <thd 2,117="" c<="" th=""> D 2,117 C <thd 2,117="" c<="" th=""> D 2,117 C <thd 2,117="" c<="" th=""> <thd 2,117="" c<="" th=""> <thd 2<="" td=""><td>10- 20-3015 T 10- 20-305 T 20- 20-305 T 20- 20-305 T 10- 20-305 T 10- 10-305 T 1</td></thd></thd></thd></thd></thd>	10- 20-3015 T 10- 20-305 T 20- 20-305 T 20- 20-305 T 10- 20-305 T 10- 10-305 T 1
100 // 100 //	10 20 30151 20 30151 20 30151 20 30155 10 20 30107 10 10 10 10 10 10 10 10 10 10
DP 241YE DOP/14/E DP 34/E A 109 34/E C	10: 10: 10: 10: 10: 10: 10: 10:
10 2.11°C 10 2.91°C (1) 10 2.91°C (1	10 10 10 10 10 10 10 10 10 10
ID_XLIFC DD_FRACT ID_FRACT A ID_FRACT ID_FRACT	10: 10:52 2006 05 10:52 2006 05 10:52 2006 05 10:12 2006 05 1
10 2.11 P 10 2.11 P <t< td=""><td>10 10 10 10 10 10 10 10 10 10</td></t<>	10 10 10 10 10 10 10 10 10 10
DP_X1YE D0P_MEET DP_MEET A IDP_MEET A IDP_MEET DP_MEET A IDP_MEET DP_MEET A IDP_MEET DP_MEET A IDP_MEET DP_MEET DP_MEET A IDP_MEET DP_MEET DP_MEET <thdp_meet< th=""> <thdp_meet< th=""> <thdp_me< td=""><td>10: 10: 10: 10: 10: 10: 10: 10:</td></thdp_me<></thdp_meet<></thdp_meet<>	10: 10: 10: 10: 10: 10: 10: 10:
LD 2,LIF C D0F/HC C LD 346C C A	10: 20:3015 1 10: 20:305 2 20: 20:305 2 20: 20:305 2 20: 20:305 2 10: 20:305 2 10:
DP 24174C ODP 744 CF DP 346 CF A	10- 20-201511 10- 20-2015672 20- 20-205072 10- 10-205072 10-
LUD_LIFE DUP_LIFE LUD_MECT	10- 10-10-20 20-3059-72 20-30-75 20-30-75 10-30-50-72 10-30-72 10-30
DP_XIVE DOP_MACE 1 DP_MACE 1 <thdp_mace 1<="" th=""> DP_MACE 1 <thdp_mace 1<="" th=""> <thdp_mace 1<="" th=""> <thdp_< td=""><td>10-305072 10- 10-305072 10- 10-305072 10- 10-305072 10- 10-305072 10- 10-35672 10- 10-35772 10- 10-37772 10</td></thdp_<></thdp_mace></thdp_mace></thdp_mace>	10-305072 10- 10-305072 10- 10-305072 10- 10-305072 10- 10-305072 10- 10-35672 10- 10-35772 10- 10-37772 10
UD 24174 DOP/REF4 ID 34647 A 109-3647 AD 39667 A 109-3647 A 109-3647 </td <td>10-30571 10-30572 20-30572 20-305972 10-305072 10-</td>	10-30571 10-30572 20-30572 20-305972 10-305072 10-
UD X1YE D0PHECE I UP 3996 C A UD 3457 C D0PHECE I UP 3996 C A UD 3457 C D0PHECE I UD 3457 C A UD 3457 C D0PHECE I D0PHECE I D0PHECE I UP 3457 C D0PHECE I D0PHECE I <thd0phece i<="" th=""> <thd0phece i<="" th=""> <th< td=""><td>10-110-110-110-110-110-110-110-110-110-</td></th<></thd0phece></thd0phece>	10-110-110-110-110-110-110-110-110-110-
UP X1YFC DOP/RET L DF/RET A 109/RET A	10-1005072 1005072 10050
UD 261YE D0940FZ I D1940FZ I <thd1940fz i<="" th=""> D1940FZ I <thd1940fz i<="" th=""> <thd1940fz i<="" th=""> <thd19< td=""><td>10- 20-30151 10- 20-36952 20- 20-39665 10- 20-39665 10- 20-3050 2 10-3</td></thd19<></thd1940fz></thd1940fz></thd1940fz>	10- 20-30151 10- 20-36952 20- 20-39665 10- 20-39665 10- 20-3050 2 10-3
UD X1Y C DOWNER LI D-3986 C A 109-385 C D-3986 C D-3986 C D-3986 C A 109-385	20-3015 T 10- 20-3015 T 10- 20-3955 Z 20- 20-3955 T 10- 20-3955 T 10- 20-3050 Z 10-2
LD 2.1 FC DD 9.1 FC LD 9.1 FC A LD 9.1 FC LD 9.1 FC LD 9.1 FC A LD 9.1 FC	10: 20:301511 10: 20:315672 20: 20:396675 10:
LD 241FC D09/842C1 LD 346C2 A LD 346C6 LD 346C7 A LD 346C6 LD 346C7 A LD 346C7 LD 34C7 LD 346C7	20-3015'T 10- 20-3055'Z 20-
10 24174 00 2474 27 10 24674 A 10	101
LD 241FC DD 241FC LD 240FC A LD 240FC LD 240FC A LD 240FC LD 240FC A LD 240FC A </td <td>το:</td>	το:
10 2418 2 00-9852 5 10-2896 2 A 10-9462 A 10-9	το-
107211FC 007915CF 10-26905 C A 10-365CT A 10-365CT A 10-365CT 10-2155 10-2009 10-3690 P A 10-160 P A 10-2100 P NV4/1PO 14-V0 AD 10-2101 F A 10-2100 P NV4/1PO 14-V0 AD 10-210 F A 10-210 P A 1	
LO 2617 C DOP 364 C C LO 364 C C A LO 364 C C LO 3	
10 2115 2 00 9112 C 10 24192 C A 10 2492 C 10 24	
UDIERE DOMERCE DISECT A DOMERCE A DOMERCE A DOMERCE A DOMERCE A DOMERCE DISECT	
1 10-31/82 1 12-32 12-02 1 X 11 10-31/02 1 X 11 10-31/02 1 X 11 10-31/02 1 X 11 10-31/02 1 X 11 12-02 1 X 11 10-31/02 1 X 12-02 1 X 12-0	10-3281.1 10-
	10-3/18-2 00+

			_	_		_	_	-		_		_	_		-	_		_	_	_	_			_	_	_	_	_	-	_	_	_		-		_	-	_	_	_	-		-	_		_		_			-	-	-		-		_	_	_		÷	-		-	_			-	-
			1	2.9456-01	2.9736-01 Z.64436-01	2.0506-01		20-3020E-02	2.56.56.02	1.5106-02		-				60-3562-93	E. 166803	3.0626-03	3.03466+00	10.364/11					6.2956-03	B. MAR03	3.062E-03	3.0366 +000	2.340M-01					6-306-03	9.61% -03	3.3226-03	3.2946+00	2.5475-01			CONTRACTOR	0.6196-03	TO-Sector	1. 794K +00	2.5675-01			A 1 Your A		5 1326 04						3.9454-05	2.4796-01	3.6196-01											
	Ē		-	9.5476-01	7.5556-01	5.7694-01		1.2926-01	1.0096-02	1.0096-01		1.957E-01								10-3000//	6.524E-02					-			6.1056-01		6.5246-02							1.1496+00		2.124E-01					1.1496+00		2.124E-01	1 3796.04	2.0226-05	2 3236-03	9.7786-03	2.593E-D4	2.593E-04	2.5936-04	2.5936-04	5-TM-02	2.7146-02	5.4296-02											-
Alter Low-Hilly	ł			1.1516-01	1.1516-01	1.151E-01		9.8736-02	10-346.6.8	1.9185-02						3.1D4E-02	3.3416-02	3.0196-02	2.9136-02						3.104E-02	3.341E-02	3.0196-02	2.9136-02	0.00001+000					1. MAS. 02	3,6661-02	3.276E-02	3.1605-02	0.000€+00			C NEW C	3. 2001-VIC	1 2765-000	3.1605-02	0.0001-00			A TTAK M								6.4116-03	0.00000+000	0.0001-000											-
Two Low RO. 1	1	Turburk P	(1/10)	* *	* *	*		> >	- >-	٠						*	*	>	>	z	_			_	*	٨	٨	*	z					,		*	۶	x			,	- ,	.,	• •	×			,								>													-
1-10 ¹	J			8.391E-02 7.192E-02	7.1926-02	7.192E-02		6.173E-02	5.3946-01	1.1996-02						0.0006+00	0.0000 +000	0.0001+000.0	0.0006+000	0.000000000					0.0006+000	0.0001+00	0.00001+000	0.0000 +00	0.9001+00					Dimme and	0.0000 +00	0.000€+00	0.000f+00	0.0006+00							0.0006+00											4.607E-03	0.0006+00	0.0006+000							_		_		-
Len-MO.	Burner		(1/16)	* *	* *			≻ >		٨	-						z	×	*	*					*	*	z	×	×					,				z			,					-		,								*													-
Su-NOL Winter	1	-	eD, Collected (Ib/hr)								_									1 5926+00	-								4.3460(+00									4.9186+00							4.9185+00																					-			-
			mi, Collected	5.3406-01 1.3746-01	1.2336-01	8.341E-02		1.3516-01	1.7586-02	2.3506-03	1.5746-01									3.1476-01	to b/CT								3.1471-01	1.5748-01			-					4.8296-01	1.7086-01						4.8296-01	1.7064-01			1.0216-07	1 755E ON	1.30.4E-04	1.8216-07	6.0946-03	1.8216-07	1.8216-07		-												-
on Reduction			Colored 1	8.693E-02	\$.1066-02 • 1066-02	8.4586-02		3.7246-01	7.5886-02 2.372E-02	7.5186-02						1.2506-02	1.5976-02	5.278E-03	4.3066-03	1.3176-01					1.2506-02	1.5976-02	5.2796-03	4.3064-03	1.3176-01					1 1045 01	1 7235-002	5.7276-03	4.572E-03	1.4296-01				1 3946-02	1.7336-02	5.727E-03	1.4296-01											1.131E-03	3.640E-03	5.3206-03									-		-
Emiss	Venturi Son			2.3736-01 1.2806-01	1.7506-01	1,4216-01	_	4.2096-01	1.0106-01 7.3676-02	1.351E-01						1.3825-02	1.7506-02	E0-1/201.2	5.355E-03	1.310€+00				-	1.3826-02	1.750E-02	5.7026-03	5.3556-03	1.5456+00			_			1.11000-02	6.1964-03	5.8105-03	9.4305-01				1 5000 -02	1.8996-02	6.106E-03	10-2010-6				2.9176-05	3 1206 04	5.712E-04	20-2116-2	2.9176-05	2.9176-05	2.9171-05	1.065E-03	4.611E-02	6.384E-02 6.710E-02											-
			Collected 74	513E-01	10-3645	10-3921		D51E+00		7396-01					_	3826-02	7506-02	7026-03	13556-03	00+376E					1827-02	1.7506-02	5.702E-03	.3556-03	00+345E	_		_			1.5005-04	5.1866-03	5.810E-03	0166+00				. yoor -02	20-3648	6.1866-03	0164+00				L 3036-06	5 O691 O4	1.111E-03	5.675E-05	6755-05	\$ 6758-05	S.675E-05	2 1106-03	4.611E-02	6.304E-02							_	_			
		- Marine	<u>+</u>	7486-01	2906-01	DA7E-01		10-3101	144E-02	954E-02						1316-03	0066-03	1405-03	7406-03	0616-01	-			-	10-3652	3066-03	140E-03	7406-03	10-306-01		_				1041 - 01	3226-03	L 0005E-03	3746-02	-			2426-03	384E-01	10-3726-03	3745-00				1446-05	299E 04	NO- 1602	C. 149E-05	20-36FT	2 1495-05	2.149E-05	1.991E-04	1.6548-02	6.449E-02							-	_	_	_	-
	se - Filter Ben	Ĩ			* 1			~					-			×		×	- -	×								-				-						~				-	*	×)						*	*		- ,		>	*	*		- 		-					_		_	_
	Internet	i i	13	601E-01	10-3899	10-384-01		7946-01	035E-01	2016-01						7875-03	MADE-03	1516-03	749E-03	MTE-01					10-1212	03-001-03	1516-03	7498-03	247E-01					-	2751-03	3336-03	1976-03	4126-02			-	2736-03	421E-03	10 HE	10-1/2				1728-04	10 3464	2296-04	2021-05	20.25 CO	2021-05	2026-05	5636-03	6#1E-02	4826-02	70-17-0					_	-		_		
	-	able PMLs To];	486-03 21	906-01	10-14		016-01 7.	446-02 1.	946-02						5 10-313	006-03	406-03	1 10-304	\$1E-01 5		-			10-44	006-01	406-03	406-03	2010-306-01				_		9 50-328	225-03	1.13.03	174E-02 7.			-	421-03 6.	12 19 10 10 10 10 10 10 10 10 10 10 10 10 10	2216-03	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-			ANK-OS	A NO MO	CONC-ON B.	2 M 4	20.20	4 404-05	4 SO-163	916-04	S8E-02 4.	1496-02 B.		_	_	_							
	 Filter bec 	-	3 -	V 1.7	2			3.1	* *							· · ·		22	Y 1.7	Y 50					,		712	7 1.7	r 6.1					;				Y 7.3				Y	۲. ۲	2:		-				× 22	¥	~ ~			Y 2.1	Y 7.9	¥.	29 J	-				_						_
	Laphone	de Phila]-	16-01	10-36	10-31		10-31	16 01 16 00	16-01						10.2	20-93	1E-03	K-03	10-34	-		_		PE-04	10-01	16-03	ME-03	76-01	_					10-10	10-11	76-03	26-02				3E-03	16-03	M-03	101	70.77			5 2	2	10	5 2	S IS	50 12	26-05	3E-03	16-02	24-02	20-22		_	_							
Ц		Filteral	۽ د	2.60	1.85	751		7.784	101	121						14		2.15	1.76	5.44					1 24		2.15	1.74	1.24						6.27	232	1.69	Recover 7.41		~		• 53	2.42	233	Earned 7.41	Ter lanna			Mens 1.17	104 449	82 M 8.22	2 Out 4 20	E 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 W 4.20	or 1.56	4.68	6.48			ar	ar	Dr.	à	à i	ar o		, ja	JQ.
			Searce Description	DK. OV. #2 OM.PM	On. On. R3 Out.PM	OR. OV. M. M. PAN	Not Designated LTF Seal In.	LTF Incirmator	LTF Seel Out.	MTF Seel Out.	Surface Treat.	Skeing Driver 1.	Skeing Dryer 2.	Bkarb Mix Room	Not Denigrated		On Do 12 Zh 14	Ox Ov. #3 Zn 1 & 1	Ox. Ov. M ZA 18.1	RTO & Baghouse	Surface Treatment	Tay service During	Sizing Unyer #2	and all the second		On Dv. C2 7A 1	Ox. Ov. 63 Zh 18	On Ov. M Zh 18.	RTO & Baghowse	Surface Treatment	Sizing Dryer #1	Sizing Dryer #2	Skiling Dryer #3	Bicarb Mix Room	OX. OV. #1 Zh 1	Ov Dv #1 Zn 1 B	On Ov #4 Zn 1 &	O/Baghouse/SCR/Heat	Surface Treatmen	Suring Dryers #1.2.	Ricarb Mix Room	Ok. Ov. #1 2n 1 8	On. Ov. #2 2h 1 &	Ox. Ov. #3 Zh 1 8	OX. OV. M ZN 1 B .	Surface Treatment	Siring Dryers #1.2.	Bicarb Mix Roum	Plot Plant Oxidation C	Prior Plant LT Furnace 8	Pflot Plant LT Fumace	Pliot Plant LT Furnace I	PLAN PRIME IN THINK	Pikot Plant HM Furnac	Pilot Plant HM Furnaci	Philod Plant Incinecat	TOWNER 1 RTO	Tower & RTD	Emments of the	Emergency General	Emergency Generat	Emergency Generat	Emergancy General	Emergency General	Emengency General				
		_	Source Code	2483 12-04	2483 12-06	2483 12-07 2483 12-08	2483 12-09 2483 12-10	2483 12-11	2483 12-12	W-21 EB92	2469 12-15	21-21 6892	2483 12-18	2483 12-19	2483 12-20	10-11 0002	24411-02	2484 13-03	2484 13-04	2484 13-05	2484 13-06				TARK LAND	2485 14.02	2485 14-03	2485 14-04	2485 14-05	24B5 14-06	2485 14-07	2485 14-08	2485 14-09	2485 14 10	2489 15-01	20.61 -042	2489 15-04	2489 15-05	2489 15-06	2489 15-07	01 51 BSFC	2490 15-01	2490 15-02	2490 16-03	2490 16-04	60 at 05.02	2490 16 07	2490 15-10	107 101 101	6162 PL02b	\$162 PL03a	8162 M.D3b		B162 PL05e	\$162 PI056	6162 M.06	2478_1	24.75_16	11 8/67	6-32	6-54	6-58	G-76	18-5		59-5	986	G-87	G-88
	-		di masi	12.04	12-06	12-07	12-09	12-11	12-12	12-14	12-15	12-17	12-18	12-19	12:20	19-21		13-03	13-04	13-05	13-06	10-61			1011	1402	14-03	14-04	14-05	14-06	14-07	14-06	14-09	UL PI	12 01	12.01	15-04	15-05	15-06	15-87	15.10	16-01	16-07	16-01	15-04	16.06	16.07	16-10	1014	PL026	PL03a	MD3b	and la	- Contraction	PIDS6	PLOS	2478_1	2478_26	(4/8_1/	583	3.9	5 5 5	G-76	185	8	1	986	6-87	10
			ł	2483	2483	2483	2483 2483	2483	2483	2483	2483		2483	5463	2483	1444		2484	2484	2484	2484			1		i i	2485	2485	2485	2485	2485	2485	2485	2485	2489	2485	2489	7437	2489	2489	2489	2490	2490	2490	2490	2490	2490	2490	8162	8162	8162	8162	2918	2918	8162	5928	2478	BLW2	24.2	1462	2436	2436	2478	5479	8132	87.85	2480	2480	2481
		Theritas	8	я :	1 2	a a	<u> 1</u> 1	ü	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	3 3	я :	3 3	3	7	a :		1 =	1 =	2	1	2	2 :		. :			1 2	17	1	2	24	a:	14	14	÷	4 =	. ::	11	51	57		16	36	2	a 2	5.4	1.4	14		TOP	PRLOT	1014		LOT L	MUDT	PILDT	Matrix	Mayeria	Matrie	Emilee	Eműen	Emúen	Emúen	Emdem	Ember	"moen	EmGen	Eműen	EmGen

Table B-1h: Emission Reduction Calculations

Table B-1b: Emission Reduction Calculations

													Em	ission Reduction								
						1						1				De-NO _x Water	Low-NO ₃	Low-NO _x	Ultra Low-NO _x	Ultra Low-NO _x		
	- 1	ł				8	aghouse + Filter I	lox		aghouse + Filter I	low		Venturi 5	icrubber		add-In	Burner	Burner	Burner	Burner) R	то
1							ľ			ľ		1						1	1	1		
Fiber	808					Filterable PM ₁₄	Technically	Filterable PM2.3	Total PM ₁₀	Technically	Total PM _{2.5}						Technically		Technically			
1 1	o la	uAdina	Source ID	Source Code	Source Description	Collected	feasible*?	Collected	Collected	fensible"?	Collected	PM., Collected	PM., Collected	50.ª Collected	NH. ^b Collected	NO. ¹ Collected	femilie?	NO. ⁸ Collected	feesible'?	NO. Collected	VOC"Collected	CO" Collected
1		- 1				(lb/hr)	(Y/N)	(lb/br)	(lb/hr)	(Y/N)	{lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	{Y/N)	(lb/hr)	(Y/N)	(lb/hr)	(lb/hr)	(lb/hr)
Em	ien	2481	6-89	6-89	Emergency Generator	1 1 2 1		1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1				<u> </u>		1			<u> </u>	
Em	ien	2482	G-2482-1 West	G-2482-1 West	Emergency Generator	1										1						1
Emo	-en	2482	G-2482-2 East	G-2482-2 East	Emergency Generator	1																
Emo	Sen	2483	G-2483-1 West	G-2483-1 West	Emergency Generator	1													1			
Emo	ien	2483	G-2483-2 East	G-2483-2 East	Emergency Generator	1													1			
Emt	ien	2484	G-2484-1 West	G-2484-1 West	Emergency Generator	1													1			
Emo	ien	2484	G-2484-2 East	G-2484-2 East	Emergency Generator	1										1						
Em	ien	2485	G-2485-1 West	G-2485-1 West	Emergency Generator	1																
Emd	ien	2485	G-2485-2 East	G-2485-2 East	Emergency Generator	1						1				1						
Emt	ien	2486	G-2486-1 West	G-2486-1 West	Emergency Generator	1						1				1						
Emi	-	2486	G.2485.2 Fast	G-2485-2 Fast	Emergency Generator	1																
Emf	-	7487	5-2487-1 West	G-7487-1 West	Emergency Generator	1						1									1	
Emf	ien	2487	G-2487-2 Fast	G-2487-2 Fast	Emergency Generator	1																
Emf	an l	2478	6.90	6.90	Emergency Generator	1						1									1	
Emf		2478	6-91	6-91	Entergency Generator	1															1	1
Emt	ien	2486	6-92	G-92	Emergency Generator	1	!							1							1	
Emo	ien	Plant	CA-219	CA-239	Air Compressor	1								1								
HV	AC	2344	2344.7	2344.7	HVAC Heaters	1	l									1						
HV		23.43	2343.1	7343.1	HVAC Heaters																	
HV	AC	2422	2422-1	2422-1	HVAC Heaters									1		1						
HV	AC	2436	2436-1	2436-1	Boiler-Out of Service											ł						1
HW	AC	2436	2436-10	2436-10	HVAC Heaters																	
HV	AC	7478	2478-16	2478-16	Boiler			1					1		1		1					
HV	AC L	2479	2479 1	7479.1	HVAC Heaters										1							
HV	AC	2480	2480-1	2480-1	HVAC Heaters					!	1	1	1		1							!
HV	AC 1	7481	7481-1	24R1-1	HVAC Heaters						1		1		1		ł					
HV	ar	7487	2482-18	7482-1R	HVAC Heaters					1		1			f i i i i i i i i i i i i i i i i i i i				1			1
HV	ar I	2483	2483.18	2483.18	HVAC Heaters						1	1										
HV	AC	2486	2486-1	2486-1	HVAC unit downflow						1	1			1			1	1			
HV	aC	2486	7486-2	2486-2	HVAC upit side discharge							1										
HV.	AC	2486	2486-3	2486-3	Heaters							1										
HV	AC	7486	2486-4	2486-4	Boilers							1							1			
HV	AC	2488	2488-1	2488-1	HVAC Heaters							1										
HV	AC	8156	8156-1	8156-1	HVAC Heaters							1										
IW	ac	8132	8132.1	8132.1	HVAC Heaters							1										
HV	AC	8162	8162-2	8162-2	HVAC Heaters							1		1								
HV	AC	B167	8167-1	8167-1	HVAC Heaters							1								i		
I HV	AC	8185	8185-1	8185-1	Air Conditioners	1		1			1	1	1	1	1	1				1		1
HV	AC .	8186	\$186-1	8186-1	Air Conditioners	1						1		1						1		ŀ
HW	AC	8249	8249-1	8249-1	Boiler	1						1		[l
HV.	AC	8249	8249-2	8249-2	Hot Water Heater	1						1]		
HV.	AC.	8259	8259-1	8259-1	HVAC Heaters	1						1				1						
HV.	AC	9364	9364-1	9364-1	HVAC Heaters	1						1				1						
HV.	AC	9364	9364-2	9364-2	Boiler	1						1		1								
HV.	AC	9370	9370-1	9370-1	HVAC Heaters	1		1				1										

 Invac
 Status
 Security

 Collector
 Security
 Security
 Security

 * Attracting operation is the deproce/Titler too use calculated based on 995 % control of Titlerable PM_a.
 Security

 * Attracting operation is the deproce/Titler too use calculated based on 995 % control of Titlerable PM_a.
 Security of Titlerable PM_a.

 * Total calculates by the deproce/Titler too use calculated based on 996 control of Titlerable PM_a.
 Security of Titlerable PM_a.

 * Total calculates by the scalebard for PM_a was estimated at 80 based on a version control of PM_a.
 958.

 * Total calculates by the scalebard for PM_a was estimated at 80 based on a version control of PM_a.
 958.

 * Total calculates by the scalebard for PM_a was estimated at 80 based on a version control of PM_a.
 958.

 * Total calculates by the scalebard for PM_a was estimated at 80 based on a version control of PM_a.
 958.

 * Total calculates by the scalebard for PM_a was estimated at 80 based on a version control of PM_a.
 950.

 * Total calculates by the scalebard for PM_a was estimated at 80 based on a version control of PM_a.
 950.

 * Collected ensistering for PM_a was estimated at 80 based on a version control of PM_a.
 950.

 * Collected ensistering for PM_a was estimated at 80 based on a version control of PM_a.
 950.

 * Collected ensist

A sovertop source is commente sourceary assumption the sale assignment a sale assignment a sale assignment assessment associated associated assignment associated aspectiated associated associated associated associated associated as

Table 8-2: Baghouse Annualized Cost Estimate

Table 8-2.1. Vendor Estimated Boghouse Cost

	Besic Equipment
Flow Rate (acfm)	Cest *
50,000	\$1,389,500
40,000	\$1,191,000
30,000	\$992,500
20,000	\$794,000
10,000	\$595,500

"Duer estimate includies OFTO, IFTO, bagdiosse, redundant RTO, Inst 1 recovery, stack ducting \$3,570,000.00 Failers Des designed for 12,000 cells Assumes Baghomse/Hiter Box, abone is 25% of total cost Assumes Ductwork is 4% of total cost \$154,800.00 Cost of each 10,000 increases of devicement from 10,000 estimated at cost +/-2%. Based on proposal provided 09/30/16.

Hencel Line No.	Average ^b Flow Rate (scfm)	Average * Flow Rate (actim)	PM ^c Collector (b/hr)
2	254	750	0.62
3	14,641	21,250	1.42
4	17,330	19,600	1.45
5	23,580	35,350	0.97
6	19,790	28,100	0.66
7	30,557	9,900	1.03
8	49,022	80,700	2.96
10	49,022	80,700	2.96
11	41,381	66,250	3.64
12	41,381	66,250	3.64
13	NA	NA	NA
14	NA	NA	NA
15	NA	NA	NA
16	NA	NA	NA
PILOT	7,030	8,900	0.00
Matrix	NA	NA	NA
112	NA	NA	NA

 $^{\circ}$ PM Collected = PM30 collected / fraction of PM smaller than 10 microns. PM10 collected is the sum of PMs another than for point sources. The secrege fraction of PMs smaller than 10 microns based on particle size distribution analyses of Neucel dust is 84%

Table B.7.2	Annualized	Barboune	Cost Bar I	inveni i ind

					Hencel File	er Line No.					
Peremeter	2	3	4	S	6	7	8	10	11	12	PILOT
Direct Cente											
Purchased equipment costs											1
Basic Equipment, Baghouse (BE) *	\$402,037	\$687,628	\$740,992	\$873,010	\$789,834	\$1,003,549	\$1,370,083	\$1,370,083	\$1,218,417	\$1,218,417	\$536,540
Ductwork	not estimated	not estimated	not estimated	\$158,800	\$158,800	\$158,800	\$158,800	\$158,800	\$158,800	\$158,800	\$158,800
instrumentation	\$40,204	\$68,763	\$74,099	\$87,301	\$78,983	\$100,355	\$137,008	\$137,008	\$121,842	\$121,842	\$53,654
Sales taxes	\$12,061	\$20,629	\$22,230	\$26,190	\$23,695	\$30,106	\$41,102	\$41,102	\$36,553	\$36,553	\$16,096
Freight	\$20,102	\$34,381	\$37,050	\$43,650	\$39,492	\$50,177	\$68,504	\$68,504	\$60,921	\$60,921	\$26,827
Purchased Equipment cost, PEC	\$474,403	\$811,401	\$874,371	\$1,030,151	\$932,004	\$1,184,187	\$1,775,498	\$1,775,498	\$1,596,532	\$1,596,532	\$791,917
Direct Installation Costs											
Foundation & supports	\$18,976	\$32,456	\$34,975	\$41,206	\$37,280	\$47,367	\$71,020	\$71,020	\$63,861	\$63,861	\$31,677
Handling & erection	\$237,202	\$405,700	\$437,185	\$515,076	\$466,002	\$592,094	\$887,749	\$887,749	\$798,266	\$798,266	\$395,959
Electrical	\$37,952	\$64,912	\$69,950	\$82,412	\$74,560	\$94,735	\$142,040	\$142,040	\$127,723	\$127,723	\$63,353
Piping	\$4,744	\$8,114	\$8,744	\$10,302	\$9,320	\$11,842	\$17,755	\$17,755	\$15,965	\$15,965	\$7,919
Insulation for ductwork	\$33,208	\$56,798	\$61,206	\$72,111	\$65,240	\$82,893	\$124,285	\$124,285	\$111,757	\$111,757	\$55,434
Painting	\$18,976	\$32,456	\$34,975	\$41,206	\$37,280	\$47,367	\$71,020	\$71,020	\$63,861	\$63,861	\$31,677
Direct Installation Costs, DIC	\$351,059	\$600,437	\$647,034	\$762,312	\$689,683	\$876,299	\$1,313,869	\$1,313,869	\$1,181,434	\$1,181,434	\$586,019
Site Preparation Cost Not Estimated	Not estimated	Not estimated	Not estimated	Not estimated	Not estimated	Not estimated	Not estimated	Not estimated	Not estimated	Not estimated	Not estimated
Assume No New Buildings Needed	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Tetal Direct Costs, DC	\$825,462	\$1,411,838	\$1,521,405	\$1,792,463	\$1,621,687	\$2,060,486	\$3,089,367	\$3,089,367	\$2,777,966	\$2,777,966	\$1,377,936
Endirect Installation Costs											
Engineering	\$94,881	\$162,280	\$174,874	\$206,030	\$186,401	\$236,837	\$355,100	\$355,100	\$319,306	\$319,306	\$158,383
Construction & field expenses	\$94,881	\$162,280	\$174,874	\$206,030	\$186,401	\$236,837	\$355,100	\$355,100	\$319,306	\$319,306	\$158,383
Contractor fees	\$47,440	\$81,140	\$87,437	\$103,015	\$93,200	\$118,419	\$177,550	\$177,550	\$159,653	\$159,653	\$79,192
Start-up	\$4,744	\$8,114	\$8,744	\$10,302	\$9,320	\$11.842	\$17,755	\$17,755	\$15,965	\$15,965	\$7,919
Performance test	\$4,744	\$8,114	\$8,744	\$10,302	\$9,320	\$11.842	\$17,755	\$17,755	\$15,965	\$15,965	\$7,919
Contingencies	\$14,232	\$24,342	\$26,231	\$30,905	\$27,960	\$35.526	\$53,265	\$53,265	\$47,896	\$47,896	\$23,758
Total Indirect Costs, IC	\$260.922	\$446.271	\$480,904	\$\$66,583	\$512,602	\$651.303	\$976.524	\$976.524	\$878.093	\$878,093	\$435.554
		•••••		*****	+	+,	*****				
TOTAL CAPITAL INVESTMENT (2017\$), TCI	\$1,520,937	\$2,601,351	\$2,803,233	\$3,302,665	\$2,988,004	\$3,796,505	\$5,692,247	\$5,692,247	\$5,118,482	\$5,118,482	\$2,538,886
Direct Annuel Costs											
Operating Labor											
Operator	\$50,760	\$50,760	\$50,760	\$50,760	\$50,760	\$50,760	\$50,760	\$50,760	\$50,760	\$50,760	\$50,760
Supervisor	\$7.614	\$7.614	\$7.614	\$7.614	\$7,614	\$7.614	\$7,614	\$7.614	\$7.614	\$7.614	\$7,614
Maintenance											
Labor	531.320	\$31,320	\$31,320	\$31,320	\$31.320	\$31,320	\$31,320	\$31,320	\$31,320	\$31,320	\$31,320
Electricity for fan, did not estimate compressed			*,								
air cost h	\$842	\$23,870	522,016	\$39,708	\$31,564	\$11,120	\$90,649	\$90,649	\$74,417	\$74,417	\$9,997
Bag Replacement, New Filters + Labor	\$1,446	\$21,946	\$20,296	\$36,046	\$28,796	\$10,596	581.396	\$81,396	\$66,946	\$66,946	\$9,596
Waste disposal	\$67	\$153	\$156	\$104	\$77	\$112	\$320	\$320	\$392	\$ 293	<u>دہ</u>
			110	2204				\$310		****	~
Total Direct Annual Cont	603.070	4132.003		4.00.000	6150.005		4040.050	4242.000		4000 450	6400 BDA
Fotal Direct Annuel Cost	\$92,050	\$135,663	\$132,163	\$165,552	\$150,126	\$111,522	\$262,059	\$262,059	\$231,451	\$231,451	\$109,288
to the state of the state								[
Contract Annual Conto	dra aur				443.844	*****		400.000			453.844
Overhead	\$53,816	553,816	\$53,816	\$53,816	\$53,816	\$53,816	\$53,816	\$53,816	\$53,816	\$53,816	\$53,816
Promotive Charges	\$30,419	552,02/	\$56,065	\$66,053	\$59,760	\$75,930	\$115,845	\$113,845	\$102,370	\$102,370	550,778
Interference	\$15,209	526,014	\$28,032	\$33,027	\$29,880	\$37,965	\$56,922	556,922	\$51,185	\$51,185	\$25,389
Insurance	\$15,209	\$26,014	528,032	533,02/	\$29,880	\$37,965	\$56,922	\$56,922	\$51,185	\$51,185	\$25,389
Capital recovery factor, CRF	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09
Capital Recovery	\$143,561	\$245,542	\$264,597	\$311,739	\$282,038	\$358,352	\$537,291	\$537,291	\$483,133	\$483,133	\$239,645
				4				4444 1999	4311		
roter memett Annuel Costs	\$258,215	\$403,412	\$430,543	\$497,662	\$455,374	\$564,029	5818,798	\$818,798	\$741,689	\$741,689	\$395,017
TOTAL ANNUAL COST	\$350,265	\$\$39,075	\$562,706	\$663,214	\$605,500	\$675,551	\$1,080,856	\$1,080,856	\$973,140	\$973,140	\$504,305

A dat cost calculations equations are provided in Table 1-101. Unless otherwise noted, equations are taken from U.S. Environmental Protection Agency, IPA Ar Pollution Control Cost manual, Sorth Edition. EPA/452/8-02 001, January 2002. * Interpolated from Table 8-2.1. * The detector cost was estimated based on a percentage (4%) of the total cost quote from burn for the entire system for the 30,000 actm RTO+. The ductuorit cost estimate was conservatively added to the basic equipment cost only for flows graater than 20,000 actm. * Bebroff factor based on array of 13,15, provided on Oxf975 Meanal, Section 6, Ocapter 2, Page 3-41. * Electricity cost of 50.06/W-fit communication from Byte Wheeler of Hearet to Misam Madler of Agen Ovdidol, LLC on 03/20/17 via email communication. Electricity cost based on Cost Control Manual Equation 2.10. * Capital recovery factor based on 20-year system He and a 7% annual interest rate

Table B-3: Venturi Scrubber Annualized Cost Estimate for PM Control

Table B-3.1. Vendor Esti	mated Venturi Scrubbe	r Cost
	Basic Equipment	
Flow Rate (scfm)	Cost *	
17,000	\$350,000	
0	\$0	

The basic equipment cost of a 2-stage unit, with a venturi scrubber upstream of a packed-bed skrubber able to achieve 98% removal efficiency was e-mailed on 03/31/17 from Pollution Control Systems to L. Courtright (Apen Outlook, LLC).

lexcel Line No.	Average ^b Flow	Average Flow
	Rate (scfm)	Rate (acfm)
2	254	750
3	14,641	21,250
4	17,330	19,600
5	23,980	35,350
6	19,790	28,100
7	30,557	9,900
8	50,565	\$2,300
10	50,565	82,300
11	44,288	69,250
12	44,288	69,250
13	NA	NA
14	NA	NA
15	NA	NA
16	NA	NA
PILOT	7,030	8,900
Matrix	7,140	10,000
112	NA	NA

for point sources presented in Table B-1.

Table B-3.3. Annualized Venturi Scrubber Cost Per Hexcel Line ⁴

					Hexcel Fiber Lin	No.						
Parameter	2	3	4	5	6	7	8	10	11	12	PILOT	Matrix
Direct Costs												
Purchased equipment costs												
Basic Equipment, Venturi scrubber, BF 4	\$5,224	\$301,437	\$356,786	\$493,713	\$407,444	\$629,107	\$1,041,040	\$1,041,040	\$911,803	\$911,803	\$144,730	\$146,991
Dertwerk '	not estimated	not estimated	not estimated	\$158,800	\$158,800	\$158,800	\$158,800	\$158,800	\$158,800	\$158,800	\$158,800	\$158,800
Instrumentation	\$522	\$30.144	\$35.629	\$49 371	\$40.744	\$67,911	\$104,104	\$104,104	\$91,180	\$91,180	\$14,473	\$14,699
Ealer taxes	¢167	\$9.043	\$10,704	\$14.811	\$17 223	\$18 873	\$31 231	\$31,231	\$27.354	\$27.354	\$4 347	54.410
Sales Cales	\$261	\$15.072	\$17 820	\$74,611	\$20 372	\$31.455	\$52.052	\$52.052	\$45,590	\$45 590	\$7,236	\$7 350
Freight	5201	203 2353	\$421,007	(582 581	\$440 783	\$742 346	\$1 387 227	\$1 387 227	\$1,234,728	\$1 234 728	\$329 581	\$132.249
Purchased Equipment Cost, PEC	30,104	3333,035	J421,007	3704,701	3400,705	3742,540	6	10,001,001	04,004,020	******		VVV IL V
Direct Installation Costs, DIC	\$5,239.76	\$302,340.88	\$357,855.92	\$495,193.86	5408,665.87	\$630,993.89	\$1,179,143.09	\$1,179,143.09	\$1,049,518.38	\$1,049,518.38	\$280,143.72	\$282,411.70
Total Direct Costs, DC	\$11,404.17	\$658,036.02	\$778,862.88	\$1,077,774.88	\$689,449.25	\$1,373,339.65	\$2,566,370.26	\$2,556,370.26	\$2,284,245.88	\$2,284,245.88	\$609,724.56	\$614,660.75
Indirect Installation Costs				.								
Engineering	\$616	\$35,570	\$42,101	\$58,258	\$48,078	\$74,235	\$138,723	\$138,723	\$123,473	\$123,473	\$32,958	\$33,225
Construction & field expenses	\$616	\$35,570	\$42,101	\$58,258	\$48,078	\$74,235	\$138,723	\$138,723	\$123,473	\$123,473	\$32,958	\$33,225
Contractor fees	\$616	\$35,570	\$42,101	\$58,258	\$48,078	\$74,235	\$138,723	\$138,723	\$123,473	\$123,473	\$32,958	\$33,225
Start-up	\$62	\$3,557	\$4,210	\$5,826	\$4,808	\$7,423	\$13,872	\$13,872	\$12,347	\$12,347	\$3,296	\$3,322
Performance test	\$62	\$3,557	\$4,210	\$5,826	\$4,808	\$7,423	\$13,872	\$13,872	\$12,347	\$12,347	\$3,296	\$3,322
Contingencies	\$185	\$10,671	\$12,630	\$17,477	\$14,424	\$22,270	541,617	\$41,617	\$37,042	\$37,042	\$9,887	\$9,967
Total Indirect Costs, IC	\$2,158	\$124,493	\$147,352	\$203,903	\$168,274	\$259,821	\$485,530	\$485,530	\$432,155	\$432,155	\$115,353	\$116,287
TOTAL CAPITAL INVESTMENT (20175)	\$18,986	\$1,095,541	\$1,296,701	\$1,794,350	\$1,480,813	\$2,286,425	\$4,272,660	\$4,272,660	\$3,802,961	\$3,802,961	\$1,015,109	\$1,023,327
<u>Direct Annual Costs</u> Operating Labor												
Operator	\$50,760	\$50,760	\$50,760	\$50,760	\$50,760	\$50,760	\$50,760	\$50,760	\$50,760	\$50,760	\$50,760	\$50,760
Supervisor	\$7,614	\$7,614	\$7,614	\$7,614	\$7,614	\$7,614	\$7,614	\$7,614	\$7,614	\$7,614	\$7,614	\$7,614
Maintenance												
Labor	\$31,320	\$31,320	\$31,320	\$31,320	\$31,320	\$31,320	\$31,320	\$31,320	\$31,320	\$31,320	\$31,320	\$31,320
Operating Materials						1		1				
Water ¹	\$2	\$65	\$60	\$109	\$86	\$30	\$253	\$253	\$213	\$213	\$27	\$31
Chemical	Not estimated	Not estimated	Not estimated	Not estimated	Not estimated	Not estimated	Not estimated	Not estimated	Not estimated	Not estimated	Not estimated	Not estimated
Wastewater												
Wastewater Seven Een - Not Applicable h												
Thudas Disperal. Not Estimated												
Studge Disposal - Not Estimated			1				1					
Electricity	4744		418.243	433.000	(1)(1)	60.262	677.034	677.034	664.000	664.822	64.333	60.201
Fan	5702	\$19,891	518,347	\$33,090	\$20,303	\$9,267	\$77,038	\$77,036	904,623	304,623	36,331	37,301
Total Direct Annual Cost	\$90,398	\$109,651	\$108,101	\$122,893	\$116,084	\$98,991	\$166,985	\$166,985	\$154,729	\$154,729	\$98,052	\$99,085
Indirect Annual Costs												
Overhead	\$53,816	\$53,816	\$53,816	\$53,816	\$53,816	\$53,816	\$53,815	\$53,816	\$53,816	\$53,816	\$53,815	\$53,816
Administrative charges	\$380	\$21,911	\$25,934	\$35,887	\$29,616	\$45,728	\$85,453	\$85,453	\$76,059	\$76,059	\$20,302	\$20,467
Property tax	\$190	\$10,955	\$12,967	\$17,943	\$14,808	\$22,864	\$42,727	\$42,727	\$38,030	\$38,030	\$10,151	\$10,233
Insurance	\$190	\$10,955	\$12,967	\$17,943	\$14,808	\$22,864	\$42,727	\$42,727	\$38,030	\$38,030	\$10,151	\$10,233
Capital recovery factor?	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09
Capital Recovery	\$1.792	\$103.408	\$122,396	\$169.369	\$139,774	\$215,816	\$403,296	\$403,296	\$358,961	\$358,961	\$95,816	\$96,592
Total Indirect Annual Costs	\$56.368	\$201,046	\$228,080	\$294,959	\$252,823	\$361.089	\$628.019	\$628,019	\$564,896	\$564,896	\$190,237	\$191.341
		0.01,040		111111								
TOTAL ANNUAL COST	\$146,766	\$310,697	\$336,181	\$417,852	\$368,907	\$460,081	\$795,004	\$795,004	\$719,626	\$719,626	\$288,289	\$290,427

* All cost calculations equations are provided in Table 8-11. Unless otherwise noted, equations are taken from U.S. Environmental Protection Agency, EPA Air Pollution Control Cost manual, Sixth Edition. EPA/452/9-02-001, January 2002.

⁶ Interpolated from Table B-3.1 *The ductwork cost was estimated based on a percensage (45) of the total cost quote from Durr for the entire system for the 30,000 sclm. RTO+. The ductwork cost estimate was conservatively added to the basic equipment cost only for flows greater than 20,000 sclm.

¹ Retrofit factor based on average of 1.3 - 1.5, based on information provided in OAQPS Manual, Section 6, Chapter 2, Page 2-49.

reprort (acc bases on average or 1.5 - 1.5, seels on indimation province in Unit's Weinig, website U, Unit's Weinig, and Alex U, Unit's Weinig, and Alex U, Al

Table 8-4: Venturi Scrubber Annualized Cost Estimate for SO₂ Control

Table 8-4.1. Vendor Estimated Venturi Scrubber Cost

I I	Basic	
Flow Rate	Equipment Cost	
(scfm)	•	
17,000	\$350,000	
0	\$0	
*The basic equipm venturi scrubber up able to acheive 985 03/31/17 from Poll (Aspen Outlook, Up	ent cost of a 2-stage astream of a packed 6 removal efficiency ution Control Syste C)	unit, with a I-bed scrubber was e-mailed on ms to L. Courtright

Table B-4.2. Hexcel Exhaust Flow Rate Average ^b Flow Rate Average ^b Flow Rate (acfm) rcel Líne No (scfm) 254 750 6,000 6,000 11,600 3 2,208 2,096 4 5 4,065 6,046 50,565 6 8,200 9,900 7 82,300 82,300 69,250 В 50,565 10 11 44,288
62,321 69,250 108,341 13 62,321 108,341 62,321 108,341 124,368 108,341 124,368 108,341 254 750 7,140 10,000 NA NA 14 15 16 PILOT Matrix 112

^b The average flow rate shown is the sum of flow rates per Hexcel line for point ocurces with non-negligible SO, emission rates presented in Table 8-1. Point sources with negligible SO, emission rates were considered not technologically feasible to control with a scrubber.

	1			_			Hexcel Fib	er Line No.								
Parameter	2	3	4	5	6	7	8	10	11	12	13	14	15	16	PILOT	Matrix
Direct Costs		1	1													
Purchased equipment costs					1										45.000	4446.000
Basic Equipment Venturi strubber, BE	\$5,224	\$45,460	\$43,152	\$101,951	\$83,694	\$124,475	\$1,041,040	\$1,041,040	\$911,803	\$911,803	\$1,283,088	\$1,283,088	\$2,560,512	\$2,560,512	\$5,224	\$146,991
Distant *	not estimated	not estimated	not estimated	\$158,800	\$158,800	\$158,800	\$158.800	\$158,800	\$158,800	\$158,800	\$158,800	\$158,800	\$158,800	\$158,800	\$158,800	\$158,800
Instrumentation	\$522	\$4,546	\$4,315	\$10,195	\$8,369	\$12,447	\$104,104	\$104,104	\$91,180	\$91,180	\$128,309	\$128,309	\$256,051	\$256,051	5522	214,633
Sales tares	\$157	\$1,364	\$1,295	\$3,059	\$2,511	\$3,734	\$31,231	\$31,231	\$27,354	\$27,354	\$38,493	\$38,493	\$76,815	\$76,815	\$157	\$4,410
Freight	\$261	\$2,273	\$2,158	\$5,098	\$4,185	\$6,224	\$52,052	\$52,052	\$45,590	\$45,590	\$64,154	\$64,154	\$128,026	\$128,026	\$261	\$7,350
Purchased Engineent Cost, PEC	\$6,164	\$53,643	\$50,919	\$120,302	\$98,759	\$146,880	\$1,387,227	\$1,387,227	\$1,234,728	\$1,234,728	\$1,672,843	\$1,672,843	\$3,180,204	\$3,180,204	\$164,964	\$332,249
	1				1		•					i i	{			
Direct Installation Costs, DIC	\$5,239.76	\$45,596 66	\$43,281.45	\$102,256 \$4	\$83,945.57	\$124,848.40	\$1,179,143.09	\$1,179,143.09	\$1,049,518.38	\$1,049,518.38	\$1,421,916.90	\$1,421,916.90	\$2,703,173.45	\$2,703,173.45	\$140,219.76	\$282,411.70
Total Direct Costs, DC	\$11,404.17	\$99,239.79	\$94,200.80	\$222,558.36	\$182,705.06	\$271,728.87	52,566,370.26	\$2,566,370.26	\$2,284,245.88	\$2,284,245.88	\$3,094,760.31	\$3,094,760.31	\$5,883,377.51	\$5,883,377.51	\$305,184.17	\$614,660.76
Indirect Installation Costs											6167.304	6167 384	\$118.020	\$318.070	\$16,496	\$33.225
Engineering	\$516	\$5,364	\$5,092	\$12,030	\$9,876	\$14,688	\$138.723	\$138,723	\$123,473	\$123,473	5167,204	\$167,284	\$318,020	\$318.020	\$16,495	\$33,225
Construction & field expenses	\$616	\$5,364	\$5,092	\$12,030	\$9,876	\$14,688	\$138.723	\$138,723	\$123,473	\$123,473	5107,204	6167.384	\$218,020	\$318.020	\$16,496	\$33,225
Contractor fees	\$616	\$5,364	\$5,092	\$12,030	\$9,876	\$14,688	5138,723	\$138,723	\$123,4/3	5123,473	\$167,204	5107,204	121 802	\$31.802	51,630	\$3.322
Start-up	\$62	\$536	\$ 509	\$1,203	\$988	\$1,469	\$13,872	\$13,872	\$12,347	\$12,347	\$10.728	516,728	(31,000	\$31,802	\$1,650	\$3,322
Performance test	\$62	\$536	5 509	\$1,203	\$988	\$1,469	\$13.872	\$13.872	\$12,347	\$12,347	516,726	516,728	\$95,000	\$95,406	54.949	\$9,967
Contingencies	\$185	\$1,609	\$1,528	\$3,609	\$2,963	\$4,406	\$41,617	541,617	\$37.042	\$37,042	\$50,185	520,183	61 113 (77)	\$1,113,071	\$57,738	\$116.287
Total Indirect Costs, IC	\$2,158	\$18,775	\$17,822	\$42,106	\$34,565	\$51,408	\$485,530	\$485,530	5432,155	\$432,155	2303,495	3383,435	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
TOTAL CAPITAL INVESTMENT (20175)	\$18,986	\$165,221	\$156,832	\$370,530	\$304,179	\$452,392	\$4,272,660	\$4.272,660	\$3,802,961	\$3,802,961	\$5,152,358	\$5,152,358	\$9,795,029	\$9,795,029	\$508,090	\$1,023,327
Direct Annual Costs																
Operating Labor			1.	4	1	440.750	610.200	410.700	650.760	660 760	\$5.0.760	\$50.760	\$50,760	\$50,760	\$50,760	\$50,760
Operator	\$50,760	\$50,760	\$50,760	\$50,760	\$50,760	550,760	\$50,760	\$30,700	67.614	530,700	\$7.514	57.614	\$7.614	\$7.614	\$7,614	\$7,614
Supervisor	\$7,614	\$7,614	\$7,614	\$7,614	\$7,614	\$7,614	\$7,614	\$1,614	37,014	37,014	51,014	21,021				
Maintenance						414 330	633.330	631.330	631 220	\$21,220	\$31 320	\$31.320	\$31.320	\$31,320	\$31,320	\$31,32D
Labor	\$31,320	\$31,320	\$31,320	\$31,320	\$31,320	\$31,320	\$51,520	\$31,320	\$31,520	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1	*,		1		1
Operating Materials		1				1 1 1 1	4353	6363	6117	610	6122	\$333	\$333	\$333	\$2	\$31
Water *	\$2	\$18	\$18	\$36	\$25	530	\$255	2253	5213	4007.700	(3)(0))	6375 012	\$125.027	5325.022	\$2.250	\$30,000
Chemical ^b	\$2,250	\$18,000	\$18,000	\$34,800	524,600	\$29,700	\$246.900	\$245,900	\$207,750	\$207,750	3325,022	3313,014	3525,022	22.00		
Wastewater		1							}	1						
Wastewater Sewer Fee - Not Applicable		1			1	1		}			1					1
Sludge Disposal - Not Estimated	i	+				1		1			1	1				1
Electricity	i	1						1				6101.414	\$101.414	\$101.414	\$702	\$9,361
Fan ¹	\$702	\$5.616	\$5,616	\$10,858	\$7,676	\$9,267	\$77,038	\$77,038	\$64,823	\$64,823	\$101,414	5101,414	5101,414	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Total Direct Annual Cost	\$92,648	\$113,329	\$113,329	\$135,388	\$121.995	\$128.691	\$413.885	\$413.885	\$362,479	\$362,479	\$516,463	\$516,463	\$516,463	\$516,463	\$92,648	\$129,085
Indirect Annual Costs								1	67.0.00		652.816	\$195 712	\$195.213	\$195,213	\$1.351	\$18.018
Overhead	\$53,816	\$53,816	\$53,816	\$53,816	\$53,816	\$53,816	\$\$3,816	\$53,816	\$53,816	\$353,610	\$33,010	\$103.047	\$195,901	\$195,901	\$10,167	\$20,467
Administrative charges	\$380	\$3,304	\$3,137	\$7,411	\$6,084	\$9,048	\$85,453	\$85,453	576,059	\$70,039	651574	\$51.574	\$97.950	\$97,950	\$5,081	\$10,233
Property tax	\$190	\$1,652	\$1,568	\$3,705	\$3,042	\$4,524	\$42,727	542,727	538,030	080,880	551,544	451 524	597.950	\$97,950	\$5,081	\$10,233
Insurance	\$190	\$1,652	\$1,568	\$3,705	\$3,042	\$4,524	\$42,727	\$42,727	\$38,030	\$38,030	351,524	0.09	0.09	0.09	0.09	0.09
Capital recovery factor*	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	(496 221	6024 553	\$974 553	\$47.959	\$96.592
Capital Recovery	\$1,792	\$15,595	\$14,803	\$34,974	\$28,711	\$42,701	\$403,296	\$403,296	\$358,961	\$358,961	5466,331	(117.63)	\$1511567	\$1 \$11 567	\$69,634	\$155.543
Total Indirect Annual Costs	\$56,368	\$76,021	\$74,893	\$103,612	\$94,695	\$114,613	\$628,019	\$628,019	\$564,896	5564,896	5746,242	300/,000	31,311,367		1	1
TOTAL ANDRUM COST	\$149.016	\$189 349	\$188,222	\$239,000	\$216,690	\$243,305	\$1,041,904	\$1,041,904	\$927,376	\$927,376	\$1,262,705	\$1,404,101	\$2,028,030	\$2,028,030	\$162,282	\$284,629
IUTAL ANNUAL COST	4149,010	440,049	4.00/LLL	44007000	1 +-14/855	1 1- 14/4			_							

All cost cakulations equations are provided in Table B-11. Unless otherwise noted, equations are taken kron U.S. Environmental Protection Agency, EPA Air Pollution Control Cost manual, Sinth Edition. EPA/452/B-02-001, January 2002.

The dustreent cost was estimated based on a parcentage (4%) of the total cost quote from Durr for the entre system for the 30,000 scfm RTO+. The dustreent cost estimate was conservatively added to the basic equipment cost only for flow greater than 20,000 scfm

The utaking tools was summarized based on a particular provided in DAQPS Manual, Section 6, Chapter 2, Page 2-49.
⁶ It is estimated that the scrubber would consume 183 gallors of water per day based on water consumed by a similar sized scrubber.

It is estimated that the scrubber would consume 18.8 gallone of water part and y back on water consumes by a simular science.

 Constant and water science and and and and y back on water consumes or y a simular science.

 Constant and water science and and and and y back on water consumes or y a simular science and used on:

 Constant and water science and and and y back on water consumes or y a simular science and used on:

 Constant and water science and and and y back on water consumes or y a simular science and used on:

 Constant and y and and the of S20.7

 Constant and y and y and the of S20.7

 Constant and y and y and y and y and y and y back on the separated to increase.

 Electricity y cost of S0.06/WHY communicated from Bryen Wheeler of Heavel to Milam Hacker of Appen Oxfoods, ULC on 03/20/17 via email communication.

 Electricity y cost of S0.06/WHY communicated from Bryen Wheeler of Heavel to Milam Hacker of Appen Oxfoods, ULC on 03/20/17 via email communication.

 Electricity y cost of S0.06/WHY communicated from Bryen Wheeler of Heavel to Milam Hacker of Appen Oxfoods, ULC on 03/20/17 via email communication.

 Electricity y cost of S0.06/WHY communicated from Bryen Wheeler of Heavel to Milam Hacker of Appen Oxfoods, ULC on 03/20/17 via email communication.

 Electricity y cost of S0.06/WHY communicated from Bryen Wheeler of Heavel to Milam Hacker of Appen Oxfoods, ULC on 03/20/17 via email communication.

 Electricity y cost of S0.06/WHY communicated from Bryen Wheeler of Heavel to Wilam Hacker of Appen Cost of S0.07

 Electricity y cost of S0.06/WHY communicated from Bryen Wheeler of Heavel to Wilam Hacker of Appen Cost of S0.07

 Electricity y cost of S0.06/WHY communicated from Bryen Wheeler of Heavel to Wilam Hacker of Heavel to Heavel to Wilam Hacker of Heavel to Heavel to Wilam Hacker

^d Interpolated from Table 8-4.1

Table B-5: Venturi Scrubber Annualized Cost Estimate for NH₃ Control

Table B-5.1. Vendor Entimated Venturi Scrubber Cost

Flow Rate (scfm)	Basic Equipment Cost*
17,000	\$350,000 \$0
"The basic equipment cost o	of a 2-stage unit, with a

venturi scrubber upstream or a packeo-ped scrubber able to acheive 98% removal efficiency was e-mailed on 0.3/31/17 from Pollution Control Systems to L. Courtright (Aspen Outlook, LLC).

Hexcel Line No.	Average *	Average How		
	Flow Rate (scfm)	Rate (acfm)		
2	254	750		
3	2,208	6,000		
4	2,096	6,000		
5	4,952	11,600		
6	4,065	8,200		
7	6,046	9,900		
8	50,565	82,300		
10	\$0,565	82,300		
11	44,288	69,250		
12	44,288	69,250		
13	62,321	108,341		
14	62,321	108,341		
15	124,368	108,341		
16	124,368	108,341		
PILOT	254	750		
Matrix	7,140	10,000		

 Interim
 0.0000

 **The average flow rate shown is the sum of write shown reading the sources with nonegligible 50, emission rates presented in Table B.1. Point sources with negligible 50, emission rates were considered not technologically leasible to control with a studber.

Table B-5.3. Annualized Venturi Scrubber Cost	Table B-53. Annualized Venturi Scrubber Cost Par Hyscel Line 5															
					-		Hexcel Fiber L	ne No.		- 12						
Parameter	2	3	4	5	6	,	8	10	11	12	13	14	15	16	PILOT	Matrix
Direct Costs															1	
Purchased equipment costs	65.324	645.460	642.153	\$101.051	583 604	\$174.475	\$1.041.040	\$1.041.040	5011 803	\$911.603	\$1 283 068	\$1 283 088	\$2 560 512	\$7 560 512	\$5 774	\$146.001
Basic Equipment, Venturi scrubber, BE	\$3,624	\$45,400	343,132	\$101,951 \$158,800	(158 800	\$158 800	\$158,800	\$158,800	\$158.800	\$158,800	\$158.800	\$158,800	\$158,800	\$158,800	\$15P #00	\$158.800
Ductwork *	66.22	CA CAG	CA 215	\$10,195	\$136,600	\$17.647	\$104.104	\$104.104	591 180	\$91 180	\$128,309	\$128.309	\$256.051	\$256.051	\$577	514 500
Externation	\$157	\$1 364	\$1 205	\$3,059	\$2.511	\$3,734	\$31,231	\$31,231	\$27.354	\$27.354	\$38,493	\$38,493	\$75.815	\$76.815	\$157	\$4.410
Erainht	\$261	\$2,273	\$2.158	\$5,098	\$4,185	\$6,224	\$52,052	\$52,052	\$45,590	\$45,590	\$64,154	\$64,154	\$128.026	\$128.026	\$261	\$7.350
Burcharad Equipment Cost BEC	\$6.154	\$53.643	\$50.919	\$120 302	\$98,759	\$146,880	\$1.387.227	\$1.387.227	\$1,234,728	\$1,234,77B	\$1.672.843	\$1,672,843	\$3,180,204	\$3,180,204	\$164.964	\$332.249
				+	****		•									
Direct Installation Costs, DIC	\$5,239.76	\$45,596.66	\$43,281 45	\$102.256.54	\$83,945.57	\$124,848.40	\$1,179,143 09	\$1,179,143.09	\$1,049,518.38	\$1,049,518.38	\$1,421,916.90	\$1,421,916.90	\$2,703,173 45	\$2,703,173.45	\$140,219.76	\$282,411.70
Total Direct Costs, DC	\$11,404.17	\$99,239.79	\$94,200.80	\$222,558.36	\$182,705.06	\$271,728.87	\$2,566,370.26	\$2,566,370.26	\$2,284,245.88	\$2,284,245.88	\$3,094,750.31	\$3,094,760.31	\$5,883,377.51	\$5,883,377.51	\$305,184.17	\$614,660.76
Indirect Installation Costs								4								
Engineering	\$616	\$5,364	\$5,092	\$12,030	\$9,876	\$14,688	\$138,723	\$138,723	\$123,473	\$123,473	\$167,284	\$167,284	\$318,020	\$318,020	\$16,496	\$33,225
Construction & field expenses	\$616	\$5,364	\$5,092	\$12,030	\$9,876	514,688	\$138,723	\$138,723	\$123,473	\$123,473	\$167,284	\$167,284	\$318,020	\$318,020	\$16,496	\$33,225
Contractor fees	\$516	\$5,364	\$5,092	\$12,030	\$9,876	\$14,688	5138,723	5138,723	\$123,473	\$123,473	5167,284	\$167,284	\$318,020	\$318,020	\$16,496	\$33,225
Start-up	562	\$536	5509	\$1,203	5968	\$1,469	513,872	\$13,872	512,347	512,347	516,726	516,728	\$31,802	531,802	\$1,650	\$3,322
Performance test	562	5536	5509	\$1,203	5968	\$1,469	515,672	515,672	512,347	512,547	510,720	516,728	\$31,802 CDE AGE	531,802	51,650	\$3,322
Contingencies	\$185	51,009	51,528	\$3,009	\$2,905	\$4,400	\$495.520	541,017	537,042	6432.155	\$585,405	201,002	\$1,113,071	\$1,113,071	\$57,738	\$7,70/
Total Indirect Costs, K	\$2,138	\$18,775	\$17,022	342,100	\$39,500	\$31,400	200,000		×34,155	<i>x</i> ,,,,,,	,,,,,,,,		31,113,071	51,113,071	\$37,730	\$110,207
TOTAL CAPITAL INVESTMENT (2017\$)	\$18,986	\$165,221	\$156,832	\$370,530	\$304,179	\$452,392	\$4,272,660	\$4,272,660	\$3,802,961	\$3,802,961	\$5,152,358	\$5,152,358	\$9,795,029	\$9,795,029	\$508,090	\$1,023,327
Direct Annual Costs																
Operating Labor																
Operator	\$50,760	\$50,760	\$50,760	\$50,760	\$50,760	\$50,760	\$50,760	\$50,760	\$50,760	\$50,760	\$50,760	\$50,760	\$50,760	\$50,760	\$50,760	\$50,760
Supervisor	\$7,614	\$7,614	\$7,614	\$7,614	\$7,614	\$7,614	\$7,614	\$7,514	\$7,614	\$7,614	\$7,614	\$7,614	\$7,614	\$7,614	\$7,614	\$7,614
Maintenance	424.220	634.330	631.330	(31.330	611.000	631.320	(21,220	621.220	621.220	631.220	\$31.220	621.220	621 200	631.320	631.336	631.220
Labor	\$31,320	\$31,320	\$31,320	\$31,320	\$31,520	\$31,520	\$31,520	\$31,320	\$51,520	\$31,320	\$31,320	\$51,520	\$51,520	351,520	\$31,320	\$31,520
Operating Materials				676	176	~~~	6767	6363	6712	6712	6333	6222	6337	6333		<i>c</i> 11
water	\$2	\$18	518	530	525	230	5255	5255	6207 70	6207.750	£335	(225.022)	(335.032	2355	(2)20	222
Chemical	\$2,250	\$18.000	518,000	\$34,800	\$24,600	\$29,700	\$240,900	3240,900	\$201,150	\$207,790	\$323,022	\$525,022	\$323,022	\$325,022	\$2,250	\$30,000
Wastewater																
Wastewater Sewer Fee - Not Applicable																
Sludge Disposal - Not Estimated	1															
Fan '	\$702	\$5,616	\$5,616	\$10,858	\$7,676	\$9,267	\$77,038	\$77,038	\$64,823	\$64,823	\$101,414	\$101,414	\$101,414	\$101,414	\$702	\$9,361
Total Direct Annual Cost	\$92,648	\$113,329	\$113,329	\$135,388	\$121,995	\$128,691	\$413,885	\$413,885	\$362,479	\$362,479	\$516,463	\$516,463	\$516,463	\$516,463	\$92,648	\$129,085
Contract pullitual Corts	453.016	652.016	\$53.916	653.816	\$52.816	\$53,816	\$53,816	\$53,816	\$53.816	\$53,816	\$53,816	\$195 213	\$195 213	\$195 713	\$1351	\$18.018
overnead	\$23,510	\$33,610	\$33,610	\$33,010	\$53,610 A80.32	\$9,610	S#5.453	585 453	\$76.059	\$76,059	\$103.047	\$103.047	\$195,001	\$195,901	\$10,162	\$20,467
Aoministrative charges	\$380	\$3,304	\$3,13/ \$1 \$68	\$3,705	\$3,042	\$4.524	\$42 727	\$42,727	\$38,030	\$38,030	\$51.524	\$51,524	\$97,950	\$97,950	\$5.081	\$10,233
Insurance	\$190	\$1.652	\$1,568	\$3,705	\$3.042	\$4,524	\$42,727	\$42,727	\$38,030	\$38,030	\$51,524	\$51,524	\$97,950	\$97,950	\$5,081	\$10,233
Capital recovery factor *	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09
Capital Recovery Hellor	\$1.797	\$15 595	\$14,403	\$34.974	\$28,711	\$42.701	5403,296	\$403,296	\$358.961	\$358,961	\$486.331	\$486.331	\$924,553	\$924,553	\$47,959	\$96.592
Total Indirect Annual Costs	\$56.368	\$76.021	\$74,893	\$103.612	\$94,695	\$114,613	\$628,019	\$628,019	\$564,896	\$564,896	\$746,242	\$887,638	\$1,511,567	\$1,511,567	\$69.634	\$155,543
															. ,	
TOTAL ANNUAL COST	\$149,016	\$189,349	\$188,222	\$239,000	\$216,690	\$243,305	\$1,041,904	\$1,041,904	\$927,376	\$927,375	\$1,262,705	\$1,404,101	\$2,028,030	\$2,028,030	\$162,282	\$284,629

* Al cost calculations equations are provided in Table 8-11. Unless otherwise noted, equations are taken from U.S. Environmental Protection Agency, EPA Air Pollution Cost manual, Sixth Edition. EPA/452/8-02-001, January 2002.

"Interpolated from Table B-5.1

* The ductivent cost was estimated based on a percentage (4%) of the total cost quote from Durr for the entire system for the 30,000 scfm RTO+. The ductivent cost estimate was conservatively added to the basic equipment cost only for flowing reater than 20,000 scfm.

¹ Retrofit factor based on average of 1.3 - 1.5, based on information provided in OAQPS Manual, Section 6, Chapter 2, Page 2-49.
⁸ It is estimated that the scrubber would consume 183 gallons of water per day based on water consumed by a similar sized scrubber.

* Cost per acfm is estimated based 2011 estimate and increase for \$2017.

'Hexcel pays a flat fee of \$2427.84/month for sewer that would not be expected to increase.

Bechricity cost of \$0.06//W-4r communicated from Bryan Wheeler of Heacel to Miriam Hacker of Aspen Dutlook, LLC on 03/20/17 via email communication. Electricity cost based on Cost Control Manual Equation 2.10.

Capital recovery factor based on 20-year system life and a 7% annual interest rate

Table B-6: Low NO_x Burner Annualized Cost Estimate for NO_x Control

Table B-6.1. 2011 Vendor Estimated Low NO_X Burner Costs

Capacity	Basic Equipment Cost	Total Installed Cost ⁶	\$/MMBtu
750,000 BTU/hr	\$31,475	\$47,213	\$62,950
2.7 MMBtu/hr	\$47,213	\$70,819	\$26,229
13 MMBtu/hr	\$70,819	\$106,228	\$8,171

*The uninstalled estimated cost of a 750,000 BTU/hr Ultra Low NOx Burner provided by Matthew McDonald (Hexcel) via Bryon Wheeler (Hexcel) to M. Hacker (Aspen Outlook) on 03/27/2017. Higher MM BTU/hr capacity burners estimated as + 1.5% of the lower capacity cost. ^bInstalled cost was interpolated at a rate of 1.5 times the uninstalled cost.

Hexcel Line No.	Equipment <=750,000 BTU/hr	Equipment > 0.75 MMBtu/hr and <=2.7 MMBtu/hr	Equipment > 2.7 MMBTU and <=1. MMBtu/hr	
2	1	0	0	
3	1	0	0	
4	0	1	0	
5	0	9	0	
6	1	8	0	
7	1	8	0	
8	1	8	0	
10	1	8	0	
11	1	8	0	
12	1	8	0	
13	NA	NA	NA	
14	NA	NA	NA	
15	NA	NA	NA	
16	NA	NA	NA	
PILOT	1	0	0	
Matrix	NA	NA	NA	

therefore not part of this assessment.

Table B-6.3. Annualized Low-NO_x Burner Cost Per Hexcel Line ^c

		Hexcel Fiber Line No.										
Parameter	Total Value	2	3	4	5	6	7	8	10	11	12	PILOT
Direct Costs												
Purchased equipment costs			i i									
Total Purchased Equipment Cost (Burners) d	\$2,990,125	\$31,475	\$31,475	\$47,213	\$424,913	\$409,175	\$409,175	\$409,175	\$409,175	\$409,175	\$409,175	\$31,475
Installation Costs												
Total Direct Installation Cost	\$1,495,063	\$15,738	\$15,738	\$23,606	\$212,456	\$204,588	\$204,588	\$204,588	\$204,588	\$204,588	\$204,588	\$15,738
Total Direct Costs (TDC)	\$4,485,188	\$47,213	\$47,213	\$70,819	\$637,369	\$613,763	\$613,763	\$613,763	\$613,763	\$613,763	\$613,763	\$47,213
Indirect Installation Costs												
Engineering	\$299.013	\$3.148	\$3.148	\$4 771	\$42.491	\$40.918	\$40.918	\$40.918	\$40.918	\$40.918	\$40,918	\$3,148
Construction & field expenses	\$299.013	\$3.148	\$3.148	\$4,721	\$42 491	\$40.918	\$40.918	\$40.918	\$40.91B	\$40.91B	\$40,918	\$3,148
Contractor fees	\$299.013	\$3,148	\$3.148	\$4,721	\$42,491	\$40,918	\$40.918	\$40,918	\$40,918	\$40.918	\$40,918	\$3,148
Start-up	\$29.901	\$315	\$315	\$472	\$4,249	\$4,092	\$4.092	\$4.092	\$4.092	\$4.092	\$4,092	\$315
Performance test	\$29.901	\$315	\$315	\$472	\$4,249	\$4.092	\$4,092	\$4.092	\$4,092	\$4,092	\$4,092	\$315
Contingencies	\$89,704	\$944	\$944	\$1.416	\$12,747	\$12,275	\$12,275	\$12.275	\$12,275	\$12,275	\$12,275	\$944
Total Indirect Costs, IC	\$1,046,544	\$11,016	\$11,016	516,524	\$148,719	\$143,211	\$143,211	\$143,211	\$143,211	\$143,211	\$143,211	\$11,016
TOTAL CAPITAL INVESTMENT * (2017\$)	\$7,744,424	\$81,520	\$81,520	\$122,280	\$1,100,523	\$1,059,763	\$1,059,763	\$1,059,763	\$1,059,763	\$1,059,763	\$1,059,763	\$81,520
Annual Cost Summary												
Total Direct Annual Cost				4	4			4	1			44.740
Operation/Maintenance Cost	\$312,854	\$4,740	\$4,740	\$4,740	\$42,662	\$42,662	\$42,662	\$42,662	\$42,662	542,662	\$42,662	\$4,740
Indirect Annual Costs												
Labor Ratio [#]		0.9681	0.7914	0.7914	0.6625	0.7352	D.6970	0,2167	0.2167	0.2474	0.2474	0.9681
Overhead ^h	\$84,636	\$2,753	\$2,251	\$2,251	\$16,958	\$18,820	\$17,840	\$5,547	\$5,547	\$6,334	\$6,334	\$2,753
Administrative charges	\$154,888	\$1,630	\$1,630	\$2,446	\$22,010	\$21,195	\$21,195	\$21,195	\$21,195	\$21,195	\$21,195	\$1,630
Property tax	\$77,444	\$815	\$815	\$1,223	\$11,005	\$10,598	\$10,598	\$10,598	\$10,598	\$10,598	\$10,598	\$815
Insurance	\$77,444	\$815	\$815	\$1,223	\$11,005	\$10,598	\$10,598	\$10,598	\$10,598	\$10,598	\$10,598	\$815
Capital recovery factor	0.09	0.09	0.09	0.09	D.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09
Capital Recovery	\$730,996	57,695	\$7,695	\$11,542	\$103,878	\$100,031	\$100,031	\$100,031	\$100,031	\$100,031	\$100,031	\$7,695
Total Indirect Annual Costs	\$1,125,409	\$13,709	\$13,206	\$18,684	\$164,857	\$161,241	\$160,262	\$147,969	\$147,969	\$148,755	\$148,755	\$13,709
TOTAL ANNUAL COST	\$1,438,263	\$18,449	\$17,947	\$23,424	\$207,519	\$203,903	\$202,924	\$190,631	\$190,631	\$191,417	\$191,417	\$18,449

Notes:

^c All cost calculations equations are provided in Table B-11. Unless otherwise noted, equations are taken from U.S. Environmental Protection Agency, EPA Air Pollution Control Cost manual, Sixth Edition. EPA/452/B-02-001, January 2002.

^d Interpolated from Basic Equipment and Installed Cost from Table 1.

The product instance of the product of the product

Maximum estimated 1993 Capital Cost (\$/MMBtu) \$8,300

Maximum estimated 1993 Operational Cost (\$/MMBtu)

\$1,500 = 526,229/58,300 * 51,500 (mid-range (for 2.7 MMBtu/hr burner) estimated 2017 \$/MMBtu was used for the calculation) Estimated 2017 Operational Cost (S/MMBtu) \$4,740,21

*Ratio of operation and Maintenance labor costs to total operation and maintenance costs from scrubber operations

* 60% * (Labor Ratio) * (Total Direct Annual Cost)

¹ Capital recovery factor based on 20-year system life and a 7% annual interest rate.

Table B-7: NO_x Water Injection System Annualized Cost Estimate for NO_x Control of DFTO

Table B-7.1. Vendor Estimated Water Injection System Cost								
Basic Equipment Cost *								
\$107,325								

*The basic equipment cost of a Control Panel, SmartLink control of Air/Gas Supply and Steam Train/Water Flow Monitoring, quote provided by Anguil to Hexcel for control of DFTO NOX emissions, Dec. 7, 2017. DFTO operational parameters: inlet gas flow 1100 scfm Furnace exhaust gas heat load 4.7 MMBtu/hr

Table 8-7.2. Annualized NO_x Water Injection Cost Per Hexcel Line ^b

		Hexcel Fiber Line No.						
Parameter	Total Value	13	14	15	16			
Direct Costs								
Purchased equipment costs								
Total Purchased Equipment Cost	\$429,300	\$107,325	\$107,325	\$107,325	\$107,325			
Installation Costs								
Total Direct Installation Cost ⁶	\$120,000	620,000	\$20,000	620,000	\$20,000			
Tatal Direct Casta (TDC)	\$120,000	\$30,000	\$30,000	\$30,000	\$30,000			
Total Direct Costs (TDC)	\$345,500	\$137,325	\$137,325	\$137,325	\$137,325			
Indirect Installation Costs								
Engineering	\$42,930	\$10,733	\$10,733	\$10,733	\$10,733			
Construction & field expenses	\$42,930	\$10,733	\$10,733	\$10,733	\$10,733			
Contractor fees	\$42,930	\$10,733	\$10,733	\$10,733	\$10,733			
Start-up	\$4,293	\$1,073	\$1,073	\$1,073	\$1,073			
Performance test	\$4,293	\$1,073	\$1,073	\$1,073	\$1,073			
Contingencies	\$12,879	\$3,220	\$3,220	\$3,220	\$3,220			
Total Indirect Costs, IC	\$150,255	\$37,564	\$37,564	\$37,564	\$37,564			
TOTAL CAPITAL INVESTMENT ⁴ (2017\$)	\$979,377	\$244,844	\$244,844	\$244,844	\$244,844			
Annual Cost Summary								
Total Direct Annual Cost								
Operation/Maintenance Cost *	\$89,116	\$22,279	\$22,279	\$22,2 7 9	\$22,279			
Indirect Annual Costs								
Labor Batio ^f		0.1737	0.1737	0.1737	0.1737			
Charboard ⁸	\$9,286	\$2,322	\$2,322	\$2,322	\$2,322			
Administrative charges	\$19.588	\$4.897	\$4.897	\$4,897	\$4,897			
Property tax	\$9,794	\$2,448	\$2,448	\$2,448	\$2,448			
Insurance	\$9,794	\$2,448	\$2,448	\$2,448	\$2,448			
Capital recovery factor h		0.09	0.09	0.09	0.09			
Capital Recovery	\$92,443	\$23,111	\$23,111	\$23,111	\$23,111			
Total Indirect Annual Costs	\$140,905	\$35,226	\$35,226	\$35,226	\$35,226			
TOTAL ANNUAL COST	\$230,020	\$57,505	\$57,505	\$57,505	\$57,505			

Notes:

^b All cost calculations equations are provided in Table B-11. Unless otherwise noted, equations are taken from U.S. Environmental Protection Agency, EPA Air Pollution Control Cost manual, Sixth Edition. EPA/452/B-02-001, January 2002. ⁶ Interpolated from Basic Equipment and Installed Cost from Table 1.

^d The retrofit factor for a venturi scrubber is applied. Retrofit factor based on average of 1.3 - 1.5, based on information provided in OAQPS Manual, Section 6, Chapter 2, Page 2-49.

* Assumed similar to LNB operational costs. EPA Technical Bulletin, Nitrogen Oxides (NOx) Why and How They Are Controlled, EPA/456/F-99-006R (http://epa.gov/ttn/catc/dir1/fnoxdoc.pdf), November 1999. Operational costs obtained from Table 14 - Costs of NOx Controls, multiplied by a ratio of 2017 capital costs to 1993 capital costs, to estimate 2017 operational costs.

Maximum estimated 1993 Capital Cost (\$/MMBtu) \$8,300 Maximum estimated 1993 Operational Cost (\$/MMBtu) \$1,500

m estimated 1993 operational Cost (\$/MMBtu) \$4,740.21 Estimated 2017 Operational Cost (\$/MMBtu) \$4,740.21 = \$26,229/\$8,300 * \$1,500 (mid-range (for 2.7 MMBtu/hr burner) estimated 2017 \$/MMBtu was used for the calculation)

¹Ratio of operation and Maintenance labor costs to total operation and maintenance costs from scrubber operations ²60% * (Labor Ratio) * (Total Direct Annual Cost)

^h Capital recovery factor based on 15-year DFTO system life and a 7% annual interest rate.

Table B-8: Ultra Low NO_x Burner Annualized Cost Estimate for NO_x Control

Table B-8.1. 2011 Vendor Estimated Ultre Low NO_X Burner Costs

Capacity	Basic Equipment Cost *	Total Installed Cost ^b	\$/MMBtu
750,000 BTU/hr	\$41,475	\$62,213	\$82,950
2.7 MMBtu/hr	\$57,213	\$85,819	\$31,785
13 MMBtu/hr	\$80,819	\$121,228	\$9,325
*The installed estimated cost is based on i	nformation provided by Ang	uil in an email to	

Hexcel April 3, 2018, stating that incorporation of the ULNB technology would cost at a Uninstalled cost was interpolated at a rate of the installed cost divided by 1.5.

Table 8-8.2. Hexcel Burner Count										
Hencel Line No.	Equipment <=750,000 BTU/hr	Equipment > 0.75 MMBtu/hr and <=2.7 MMBtu/hr	Equipment > 2.7 MMBTU and <=13 MMBtu/w							
2	1	0	0							
3	1	0	0							
4	0	1	0							
5	0	9	0							
6	1	8	0							
7	1	8	0							
8	1	8	0							
10	1	8	0							
11	1	8	0							
12	1	8	0							
13	0	4	1							
14	0	4	1							
15	0	4	1							
16	0	4	1							
PILOT	1	0	0							
Matrix	0	0	3							

Table 8-8.3. Annualized Ultra Low-NOX Burner Cost Per Hexcel Line ⁴

								Нехо	el Fiber Line No./Sc	surce Name							
Parameter	Total Value	2	3	4	5	6	7	8	10	11	12	13	14	15	16	PILOT	Matrix
Direct Costs																	
Purchased equipment costs	1	[E						1				
Total Purchased Equipment Cost (Burners	\$3,650,125	\$41,475	\$41,475	\$57,213	\$514,913	\$499,175	\$499,175	\$499,175	\$499,175	\$499,175	\$499,175	\$309,669	\$309,669	\$309,669	\$309,669	\$41,475	\$242,456
Installation Costs	ł		1														
Total Direct Installation Cost	\$1,825,063	\$20,738	\$20,738	\$28,606	\$257,456	\$249,588	\$249,588	\$249,588	\$249,588	\$249,588	\$249,588	\$154,834	\$154,834	\$154,834	\$154,834	\$20,738	\$121,228
Total Direct Costs (TDC)	\$5,475,188	\$62,213	\$62,213	\$85,819	\$772,369	\$748,763	\$748,763	\$748,763	\$748,763	\$748,763	\$748,763	\$464,503	\$464,503	\$464,503	\$464,503	\$62,213	\$363,684
Indirect Installation Costs					1												
Engineering	\$365,013	54,148	\$4,148	\$5,721	\$51,491	\$49,918	\$49,918	\$49,918	\$49,918	\$49,918	\$49,918	\$30,967	\$30,967	\$30,967	\$30,967	\$4,148	\$24,246
Construction & field expenses	\$365,013	\$4,148	\$4,148	\$5,721	\$51,491	\$49,918	\$49,918	\$49,918	\$49,918	\$49,918	\$49,918	\$30,967	\$30,967	\$30,967	\$30,967	\$4,148	\$24,246
Contractor fees	\$365,013	\$4,148	\$4,148	\$5,721	\$51,491	\$49,918	\$49,918	\$49,918	\$49,918	\$49,918	\$49,918	\$30,967	\$30,967	\$30,967	\$30,967	\$4,148	\$24,246
Start-up	\$36,501	\$415	\$415	\$572	\$5,149	\$4,992	\$4,992	\$4,992	\$4,992	\$4,992	\$4,992	\$3,097	\$3,097	\$3,097	\$3,097	\$415	\$2,425
Performance test	\$36,501	\$415	\$415	\$572	\$5,149	\$4,992	\$4,992	\$4,992	\$4,992	\$4,992	\$4,992	\$3,097	\$3,097	\$3,097	\$3,097	\$415	\$2,425
Contingencies	\$109,504	\$1,244	\$1,244	\$1,716	\$15,447	\$14,975	\$14,975	\$14,975	\$14,975	\$14,975	\$14,975	\$9,290	\$9,290	\$9,290	\$9,290	\$1,244	\$7,274
Total Indirect Costs, IC	\$1,277,544	\$14,516	\$14,516	\$20,024	\$180,219	\$174,711	\$174,711	\$174,711	\$174,711	\$174,711	\$174,711	\$108,384	\$108,384	\$108,384	\$108,384	\$14,516	\$84,860
TOTAL CAPITAL INVESTMENT (2017\$)	\$9,453,824	\$107,420	\$107,420	\$148,180	\$1,333,623	\$1,292,863	\$1,292,863	\$1,292,863	\$1,292,863	\$1,292,863	\$1,292,863	\$802,042	\$802,042	\$802,042	\$802,042	\$107,420	\$627,962
Annual Cost Summary																	
Total Direct Annual Cost	i													1			
Operation/Maintenance Cost '	\$379,119	\$5,744	\$5,744	\$5,744	\$51,698	\$51,698	\$51,698	\$51,698	\$51,698	\$51,698	\$51,698	\$28,721	\$28,721	\$28,721	\$28,721	\$5,744	\$17,233
Indirect Annuel Costs																	
Labor Ratio ⁴		0.9136	0.5692	0.5692	0.4060	0.4916	0.4447	0.0928	0.0928	0.1163	0.1163	0.1163	0.1163	0.1163	0.1163	0.1163	0.1163
Overhead ^h	\$61,678	\$3,149	\$1,962	\$1.962	\$12,593	\$15,248	\$13,794	\$2,879	\$2,879	\$3.607	\$3.607	\$2.004	\$2,004	\$2,004	\$2,004	\$401	\$1,202
Administrative charges	\$189,076	\$2,148	\$2,148	\$2,964	\$26,672	\$25,857	\$25,857	\$25.857	\$25,857	\$25,857	\$25,857	\$16.041	\$16.041	\$16.041	\$16.041	\$2.148	\$12,559
Property tax	\$94,538	\$1,074	\$1,074	\$1,482	\$13,336	\$12,929	\$12,929	\$12,929	\$12,929	\$12,929	\$12,929	58.020	\$8,020	\$8,020	\$8,020	\$1,074	\$6,280
Insurance	\$94,538	\$1,074	\$1,074	\$1,482	\$13,336	\$12,929	\$12,929	\$12,929	\$12,929	\$12,929	\$12,929	\$8,020	\$8,020	\$8,020	\$8,020	\$1,074	\$6,280
Capital recovery factor		0.09	0.09	0.09	D.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09
Capital Recovery	\$892,346	\$10,139	\$10,139	\$13.987	\$125,881	\$122.033	\$122,033	\$122,033	\$122,033	\$122.033	\$122.033	\$75,705	\$75,705	\$75,705	\$75,705	\$10,139	\$59,273
Total Indirect Annual Costs	\$1,332,177	\$17,585	\$16,398	\$21,876	\$191,819	\$188,995	\$187,542	\$176,627	\$176,627	\$177,355	\$177,355	\$109,790	\$109,790	\$109,790	\$109,790	\$14,837	\$85,594
TOTAL ANNUAL COST	\$1,711,296	\$23,329	\$22,142	\$27,620	\$243,517	\$240,694	\$239,240	\$228,325	\$228,325	\$229,053	\$229,053	\$138,511	\$138,511	\$138,511	\$138,511	\$20,581	\$102,827

Notes

* All cost cakulations equations are provided in Table B-11. Unless otherwise noted, equations are taken from U.S. Environmental Protection Agency, EPA Air Pollution Control Cost manual, Soth Edition. EPA/452/B-02-001, January 2002.

^d Interpolated from Basic Equipment and Installed Cost from Table 1.

Retroft factors are not mentioned for Low MOX burnes in the OADPS Manual. Thus, the retrofit factor for a venturi scrubber is applied. Retroft factor based on average of 1.3 - 1.5, based on information provided in OAQPS Manual. Section 6, Chapter 2, Page 2-49.

Maximum estimated 1993 Operational Cost (\$/MMBtu) Maximum estimated 1993 Operational Cost (\$/MMBtu) \$8,300 \$1,500

Estimated 2017 Operational Cost (\$/MMBtu) \$5,744 = \$33,168/\$8,300 * \$1,500 (mid-range (for 2.7 MMBtu/hr burner) estimated 2017 \$/MMBtu was used for the calculation}

⁶ Ratio of operation and Maintenance labor costs to total operation and maintenance costs from scrubber operations ⁶ 60% * (Labor Ratio) * (Total Direct Annual Cost)

Capital recovery factor based on 20-year system life and a 7% annual interest rate.

Table B-9: Regenerative Thermal Oxidizer (RTO) Annualized Cost Estimate

Table 8-9.1. Vendor Estimated Regenerative Thermal O	I Oxidizer Cost	
--	-----------------	--

	Bar	lic Equipment	
Flow Rate (scfm)	1	Cost *	Source
50,000		\$1,389,500	
40,000		\$1,191,000	
30,000		\$992,500	Durr
20,000		\$794,000	
6,650		\$327,500	Angui
⁹ Cost of each 10,000 increase or decrease from 30,000 estimation	ted at	cost +/- 2%.	
^a Cost Estimates provided by Anguil and Durr for variable syste	ms, be	low:	
6650 scfm - Anguil total installed cost Durr estimate for a 30560 scfm R1O, includes DF1O, R1O,	\$	613,900.00	
baghouse, redundant RTO, heat recovery, stack ducting	\$	3,970,000.00	
Assume RTO, alone is 25% of total cost	\$	992,500.00	
Assume Ductwork is 4% of total cost	\$	158,800.00	

Table B-9.3. Annualized Regenerative Thermal Oxidizer Cost Per Hexcel Line ^c

Tabia	B-9.2.	Hexcel	Exhaust	Flow	Rate
	D-9.2.	THEADER	COMPAGE		1.00

Hexcel Line No.	Average ^b Flow Rate (scfm)	Average ^b Flow Rate (acfm)	VOC Emission Rate (lb/hr)		
2	254	2,250	0.68		
3	16,321	23,000	0.82		
4	18,866	21,200	0.77		
5	23,980	35,350	0.60		
6	19,790	28,100	0.93		
7	30,557	9,900	1.85		
8	53,724	85,800	5.09		
10	53,724	85,800	5.09		
11	47,678	72,750	7.36		
12	47,678	72,750	7.36		
13	NA	NA	NA		
14	NA	NA	NA		
15	NA	NA	NA		
16	NA	NA	NA		
PILOT	7,030	8,900	0.01		
Matrix	NA	NA	NA		
112	NA	NA	NA		

The average flow rate shown is the sum of flow rates per Hercel line for point sources with non-engligible VOC emission rates presented in Table 9. Point sources with negligible VOC emission rates were considered not technologically feasible to control with an RTO. Fiber Lines 13, 24, 15 and 16, and Martix Towers have been designed with RTOs and are therefore not part of this assessment.

	Hexcel Fiber Line No.										
Parameter	2	3	4	5	6	7	8	10	11	12	PILOT
Direct Costs											1
Purchased equipment costs											
Basic Equipment, BE d	\$245,478	\$628,660	\$689,340	\$811,319	\$711,389	\$968,153	\$1,520,648	\$1,520,648	\$1,376,478	\$1,376,478	\$407,074
Ductwork *	not estimated	not estimated	not estimated	\$158,800	\$158,800	\$158,800	\$158,800	\$158,800	\$158,800	\$158,800	\$158,800
Instrumentation	\$24,548	\$62,866	\$68,934	\$81,132	\$71,139	\$96,815	\$152,065	\$152,065	\$137,648	\$137,648	\$40,707
Sales taxes	\$7,364	\$18,860	\$20,680	\$24,340	\$21,342	\$29,045	\$45,619	\$45,619	\$41,294	\$41,294	\$12,212
Freight	\$12,274	\$31,433	\$34,467	\$40,566	\$35,569	\$48,408	\$76,032	\$76,032	\$68,824	\$68,824	\$20,354
Purchased Equipment Cost, PEC	\$289,664	\$741,819	\$813,421	\$957,356	\$839,439	\$1,142,420	\$1,953,164	\$1,953,164	\$1,783,044	\$1,783,044	\$639,147
							ь				
Direct Installation Costs, DIC	\$86,899.18	\$222,545.68	\$244,026.21	\$287,206.93	\$251,831.73	\$342,726.01	\$585,949.29	\$585,949.29	\$534,913.30	\$534,913.30	\$191,744.24
Total Direct Costs, DC	\$376,563.12	\$964,364.62	\$1,057,446.90	\$1,244,563.37	\$1,091,270.82	\$1,485,146.03	\$2,539,113.61	\$2,539,113.61	\$2,317,957.65	\$2,317,957.65	\$830,891.72
Indirect Installation Costs											
Engineering	\$28,966	\$74,182	\$81,342	\$95,736	\$83,944	\$114,242	\$195,316	\$195,316	\$178,304	\$178,304	\$63,915
Construction & field expenses	\$14,483	\$37,091	\$40,671	\$47,868	\$41,972	\$57,121	\$97,658	\$97,658	\$89,152	\$89,152	\$31,957
Contractor fees	\$28,966	\$74,182	\$81,342	\$95,736	\$83,944	\$114,242	\$195,316	\$195,316	\$178,304	\$178,304	563,915
Start-up	\$5,793	\$14,836	\$16,268	\$19,147	\$16,789	\$22,848	\$39,063	\$39,063	\$35,661	\$35,661	\$12,783
Performance test	\$2,897	\$7,418	\$8,134	\$9,574	\$8,394	\$11,424	\$19,532	\$19,532	\$17,830	\$17,830	\$6,591
Contingencies	\$8,690	\$22,255	\$24,403	\$28,721	\$25,183	\$34,273	\$58,595	\$58,595	\$53,491	\$53,491	\$19,174
Total Indirect Costs, IC	\$89,796	\$229,964	\$252,160	\$296,780	\$260,226	\$354,150	\$605,481	\$605,481	\$552,744	\$552,744	\$198,190
	6652 002	\$1 577 060	\$1 833 450	\$2 157 881	\$1,892,096	\$2.575.015	\$4,402,432	\$4,402,432	\$4,018,982	\$4,018,982	\$1,440,638
TOTAL CAPITAL INVESTMENT (20175)	3032,903	31,072,000	\$1,633,450	42,237,002	\$1,051,050	<i>QUJUIUUUUUUUUUUUUU</i>	+ 17 - Cm 1 - C - C				
	1		1								
Orrect Annual Costs											
Operating Labor	650 760	\$50.760	\$50.760	\$50,760	\$50,760	\$50,760	\$50,760	\$50,760	\$50,760	\$50,760	\$50,760
Operator	\$7.614	\$7.614	\$7.614	\$7.614	\$7.614	\$7,614	\$7,614	\$7,614	\$7,614	\$7,614	\$7,614
Supervisor	\$7,014	<i>,,,,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			••••	***					
(abor	\$31.320	\$31,320	\$31,320	\$31.320	\$31,320	\$31,320	\$31,320	\$31,320	\$31,320	\$31,320	\$31,320
Capor Operating Materials	\$31,320	\$51,510		1	+,	****					
Natural Cae ⁴	\$1 883	\$140.419	\$155,768	\$174.377	\$131,393	\$191,068	\$414,014	\$414,014	\$370,550	\$370,550	\$59,230
Flastricity	\$1,005	,,			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
Ean	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Direct Annual Cost	\$91,577	\$230,113	\$245,462	\$264,071	\$221,087	\$280,762	\$503,708	\$503,708	\$460,244	\$460,244	\$148,924
Indirect Annual Costs											
Overhead	\$53,816	\$53,816	\$\$3,816	\$53,816	\$53,816	\$53,816	\$53,816	\$53,816	\$53,816	\$53,816	\$53,816
Administrative charges	\$13,058	\$33,441	\$36,669	\$43,158	\$37,842	\$51,500	\$88,049	\$88,049	\$80,380	\$80,380	\$28,813
Property tax	\$6,529	\$16,721	\$18,335	\$21,579	\$18,921	\$25,750	\$44,024	\$44,024	\$40,190	\$40,190	\$14,406
Insurance	\$6,529	\$16,721	\$18,335	\$21,579	\$18,921	\$25,750	\$44,024	\$44,024	\$40,190	\$40,190	\$14,406
Capital recovery factor "	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11
Capital Recovery	\$71,682	\$183,575	\$201,295	\$236,914	\$207,733	\$282,711	\$483,343	\$483,343	\$441,244	\$441,244	\$158,168
Total Indirect Annual Costs	\$151,615	\$304,274	\$328,449	\$377,046	\$337,234	\$439,528	\$713,257	\$713,257	\$655,820	\$655,820	\$269,610
								1		1	
	1	1	1	1							
TOTAL ANNUAL COST	\$243,191	\$534,387	\$573,911	\$641,116	\$558,321	\$720,290	\$1,216,965	\$1,216,965	\$1,116,063	\$1,116,063	\$418,534

⁴ All cost calculations are provided in Table B-11. Unless otherwise noted, equations are taken from U.S. Environmental Protection Agency, EPA Are Pollution Control Cost manual, Swith Edition. EPA/452/8-02-001, January 2002. ^d Interpolated from Table B-9.1

¹ The ductwork cost was estimated based on a percentage (4%) of the total cost quote from Durr for the entire system for the 30,000 scfm. ¹ Retroit factors are not mentioned for RTOs in the OAQPS Manual. Thus, the retroit factor for a venturi scrubber is applied. Retroit factor based on average of 1.3 - 1.5, based on information provided in OAQPS Manual, Section 6, Chapter 2, Page 2-49. ¹ Natural Gas cost calculations provided in Table 8-9: RTO Natural Gas Consumption and Emission Reductions ¹ Capital recovery factor based on 15-year system life and a 7% annual interest rate. RTO system life is 12-15 years, based on on-site experience.

Table B-10: RTO Natural Gas Consumption

					Hercel Fit	er Line No						
	2	3	4	5	6	7	8	10	11	12	PILOT	Comments
Waste Gas, Q _{wi} , scfm	254	16,321	18,866	23,980	19,790	30,557	53,724	53,724	47,678	47,678	7,030	
VOC (as propane) Emission Concentration [*] , volume fraction	3.90E-04	7.33E-06	5.91E-06	3.62E-06	6.888-06	8.83E-06	1.38E-05	1.38E-05	2.25E-05	2.25E-05	1.78E-07	
VOC Concentration in Waste Gas, ppm VOC	390.4	7.3	5.9	3.6	6.9	8.8	13.8	13.8	22.5	22.5	0.2	
Process Gas Exhaust Temperature, F	427	239	294	450	550	611	381	381	371	371	268	
Auxiliary Fuel Requirement [®] , Q _{ar,} scf/yr	369,129	27,533,092	30,542,739	34,191,526	25,763,393	37,464,336	81,179,248	81,179,248	72,656,796	72,656,796	11,613,702	Assumed negligible heat contribution from VOC
Fuel Cost ^c , \$/yr	\$1,883	\$140,419	\$155,768	\$174,377	\$131,393	\$191,068	\$414,014	\$414,014	\$370,550	\$370,550	\$59,230	
VOC Process Emissions, tpy	2.98	3.60	3.35	2.61	4.09	8.11	22.30	22.30	32.24	32.24	0.04	
VOC Emissions from Auxiliary Fuel Combustion, tpy	0.001	0.076	0.084	0.094	0.071	0.103	0.223	0.223	0.200	0.200	0.032	AP-42 Table 1.4-2
VOC Emissions Reduction ⁴ , tpy	2.92	3.45	3.20	2.46	3.94	7.84	21.63	21.63	31.40	31.40	0.005	Calculated as heater emissions minus emissions from auxiliary fuel combustion.

*VOC Concentration in Process Exhaust Gas at the RTO Inlet

= <u>lb VOC/hr x 1 hr/60 min x 1 gmol VOC (as propane)/44.09 g x 453.6 g/lb x 1 kg/1000 g</u>

Waste gas flow (scf/min) × 1 kgmol/849.5 scf (at 68 ° F)

^b Auxilary Fuel as methane needed for combustion (scf/yr), assumed negligable heat contribution from VOC

= Waste gas flow (scf/min) x 525,600 min/vr x 0.0751 lb/scf x 0.248 Btu/lb*F x (1600F - Process Gas Exhaust Temp *F) x (1-0.9 fraction of heat recovered) 0.0480 lb methane/scf x 21,502 Btu/lb methane heat of combustion x 0.9 heat transfer efficiency

5.5455 is methane/set x 22,552 stays methane near or compasion x 0.5 near transler ensiency

⁶ Based on Natural Gas Fuel cost of \$5/MMBtu. It is assumed that oxygen in the exhaust is sufficient for combusting VOC, and an additional air blower, and subsequent electricity cost is not required.

^d Emission reduction = Process Emissions x 98% destruction efficiency - VOC emissions from Auxiliary Fuel Combustion. 98% destruction efficiency is referenced on page 2-7 of the Cost Control Manual Section 3.2 for an incinerator operating at 1600 deg F.

Table B-11: Cost Calculation Equations and References

Table B-11.1. Direct Cost Equations

Ļ

Table 8-11.1. Direct Cost Equatio	ns			
Direct Costs	Equipment	Components	Equation	Reference
		Basic Equipment (BE)	N/A	Cost provided by vendor.
Burchasod Equipment Cost		Ductwork	N/A	Cost provided by vendor.
	All Equipment	Instrumentation	0.10 BE	EPA Control Cost Manual, Section 1
(PEC)		Sales Tax	0.03 BE	EPA Control Cost Manual, Section 1
		Freight	0.05 BE	EPA Control Cost Manual, Section 1
		Foundation & supports	0.04 PEC	EPA Control Cost Manual, Section 6
		Handling & erection	0.50 PEC	EPA Control Cost Manual, Section 6
		Electrical	0.08 PEC	EPA Control Cost Manual, Section 6
	Baghouse	Piping	0.01 PEC	EPA Control Cost Manual, Section 6
		Insulation for ductwork	0.07 PEC	EPA Control Cost Manual, Section 6
irect Installation Costs (DIC)		Painting	0.04 PEC	EPA Control Cost Manual, Section 6
		Total DIC	0.74 PEC	EPA Control Cost Manual, Section 6
	Scrubber		0.85 PEC	EPA Control Cost Manual, Section 5.2
	LNB, ULNB		N/A	Cost provided by vendor.
	RTO		0.03 PEC	EPA Control Cost Manual, Section 3.2
Total Direct Costs (DC)	All Equipment		PEC + DIC	EPA Control Cost Manual, Various Sections
		Engineering - Baghouse	0.20 PEC	EPA Control Cost Manual, Section 6
		Engineering - all else	0.10 PEC	EPA Control Cost Manual, Various Sections
Virect Installation Costs (DIC)		Construction & field expenses - Baghouse	0.20 PEC	EPA Control Cost Manual, Section 6
		Construction & field expenses - RTO	0.05 PEC	EPA Control Cost Manual, Section 3.2
Indirect Installation Costs (IC)	All Equipment	Construction & field expenses - all else	0.10 PEC	EPA Control Cost Manual, Various Sections
indirect installation costs (ic)	An Equipment	Contractor fees	0.10 PEC	EPA Control Cost Manual, Various Sections
		Start-up - RTO	0.02 PEC	EPA Control Cost Manual, Section 3.2
		Start-up - all else	0.01 PEC	EPA Control Cost Manual, Various Sections
		Performance test	0.01 PEC	EPA Control Cost Manual, Various Sections
1		Contingencies	0.03 PEC	EPA Control Cost Manual, Various Sections
				EPA Cost Control Manual, Section 6, Chapter
Total Capital Investment (TCI)	All Equipment		(DC + IC) * 1.4 (retrofit factor)	2, Page 2-49 and Section 6, Chapter 3, Page 3- 41.

Table B-11.2. Annual Cost Equations

Annual Costs	Equipment	Components	Equation	Reference
		Operating Labor - Operator	2hr/shift* 3 shift/day*360 days/yr * \$23.50/hr	EPA Control Cost Manual, Section 6
	Baghouse, Scrubber, RTO	Operating Labor - Supervisor	15% of operator	EPA Control Cost Manual, Section 6
		Maintenance - Labor	1hr/shift* 3 shift/day*360 days/yr * \$29.00/hr	EPA Control Cost Manual, Section 6
		Electricity for fan, did not estimate compressed air cost	Equation 2.10	EPA Control Cost Manual, Pg. 2-32
	Baghouse	Bag Replacement, New Filters + Labor	Vendor estimated \$1/acfm for filters + 24 person hrs/yr maintenance @ \$29/hr	Cost provided by vendor.
		Waste disposal	\$25/ton*lb PM/hr collected*8640 hr/yr * 1 tn/2000 lb	EPA Control Cost Manual, Section 1, Chapter 2
Direct Annual Costs		Water	2.18 gal water/yr/acfm x \$1.41/1000 gal fee	It is estimated that the scrubber would consume 183 gallons of water per day based on water consumed by a similar sized
	Scrubber	Chemical	\$3.00/yr/acfm	Cost estimated by vendor.
		Wastewater Sewer Fee	Not Applicable	sewer that would not be expected to
		Sludge Disposal	Not estimated	
		Electricity - Fan	Equation 2.10	EPA Control Cost Manual, Pg. 2-32
	LNB, ULNB	Operation/Maintenance Cost	Ratio of 2017 costs to 1993 costs.	EPA Technical Bulletin, "Nitrogen Oxides (NOx) Why and How They Are Controlled", EPA/456/F-99-006R
	RTÓ	Natural Gas	"NG Cost For RTO" tab	Hexcel Fiber Lines
		Overhead	60% of sum of operating and maintenance labor	EPA Control Cost Manual, Section 1, Chapter 2
		Administrative charges	2% of TCI	EPA Control Cost Manual, Section 2, Chapter 1, Table 1.13
		Property tax	1% of TCI	EPA Control Cost Manual, Section 2, Chapter 1, Table 1.13
Indirect Annual Costs	All Equipment	Insurance	1% of TCI	EPA Control Cost Manual, Section 2, Chapter 1, Table 1.13
		Capital recovery factor, varies according to estimated equipment life.	20 Years, 7% Interest = 0.09439; 15 Years, 7% Interest = 0.10979 10 Years, 7% Interest = 0.14238	EPA Control Cost Manual, Section 1, Chapter 2, Appendix A, Table A.2
		Capital Recovery	CRF*TCI	EPA Control Cost Manual, Section 2, Chapter 1, Table 1.13

Attachment C

RBLC Tables

Revision 2- May, 2018

FACILITY NAME	PERMIT ISSUANCE DATE	PROCESS NAME	PRIMARY FUEL	THROUGHPUT	THROUGHPUT UNIT	POLLUTANT	CONTROL METHOD DESCRIPTION	EMISSION LIMIT EMISSION LIMIT	1 CASE-BY-CASE BASIS
SGL AUTOMOTIVE CARBON FIBERS	4/13/2015 Carbo	n Fiber Production (Normal Operation) Lines 7-10	electric	1760	tons of carbon fiber per year	Nitrogen Oxides (NOx)		17.9 LB	BACT-PSD
SGL AUTOMOTIVE CARBON FIBER5	4/13/2015 Carbo	n Fiber Production (SCR Bypass Mode)	electric	C	. ,	Nitrogen Oxides (NOx		17.9 LB	BACT-P5D
SGL AUTOMOTIVE CARBON FIBERS	4/13/2015 Carbo	n Fiber Production (Shutdown Mode) Lines 3-6		a		Nitrogen Oxides (NOx	SCR	8.5 LB	OTHER CASE-BY- CASE
SGL AUTOMOTIVE CARBON FIBERS	4/13/2015 Carbo	n Fiber Production (Shutdown Mode) Lines 7-10		C		Nitrogen Oxides (NOx)		17.9 LB	BACT-PSD
SGL AUTOMOTIVE CARBON FIBERS	4/13/2015 Carbo	n fiber Production (RTO Bypass Mode)		0		Nitrogen Oxides (NOx		8.5 LB	BACT-PSD
SGL AUTOMOTIVE CARBON FIBERS	4/13/2015 Carbo	n Fiber Production (Normal Operation) Lines 3-6	none	1760	tons of carbon fiber per year	Nitrogen Oxides (NOx	SCR for Lines 3 - 6. No SCR on lines 7-10	8.5 LB	OTHER CASE-BY- CASE
SGL AUTOMOTIVE CARBON FIBERS	4/13/2015 Carbo	n Fiber Production (SCR Bypass Mode)	electric	0		Particulate matter, filterable < 10 ŵ (FPM10)		1.1 LB	BACT-PSD
SGL AUTOMOTIVE CARBON FIBERS	4/13/2015 Carbo	n Fiber Production (Shutdown Mode) Lines 3-6		٥		Particulate matter, filterable < 10 ŵ (FPM10)		3 LB	BACT-PSD
SGL AUTOMOTIVE CARBON FIBERS	4/13/2015 Carbo	n Fiber Production (Shutdown Mode) Lines 7-10		0		Particulate matter, filterable < 10 µ (FPM10)		2 LB	BACT-PSD
SGL AUTOMOTIVE CARBON FIBERS	4/13/2015 Carbo	n fiber Production (RTO Bypass Mode)		0		Particulate matter, filterable < 10 ŵ (FPM10)		2 LB	BACT-PSD
SGL AUTOMOTIVE CARBON FIBERS	4/13/2015 Carbo	n Fiber Production (Normal Operation) Lines 7-10	electric	1760	tons of carbon fiber per year	Particulate matter, filterable (FPM)		1.1 LB	BACT-PSD
SGL AUTOMOTIVE CARBON FIBER5	4/13/2015 Carbo	Fiber Production (SCR Bypass Mode)	electric	0		Particulate matter, filterable (FPM)		1.1 LB	BACT-PSD
SGL AUTOMOTIVE CARBON FIBERS	4/13/2015 Carbo	Fiber Production (Shutdown Mode) Lines 3-6		0		Particulate matter, filterable (FPM)		1.1 LB	BACT-PSD
SGL AUTOMOTIVE CARBON FIBERS	4/13/2015 Carbo	Fiber Production (Shutdown Mode) Lines 7-10		0		Particulate matter, filterable (FPM)		1.1 LB	BACT-PSD
SGL AUTOMOTIVE CARBON FIBERS	4/13/2015 Carbo	n fiber Production (RTO Bypass Mode)		0		Particulate matter, filterable (FPM)		1.1 LB	BACT-PSD
SGL AUTOMOTIVE CARBON FIBERS	4/13/2015 Carbo	n Fiber Production (Normal Operation) Lines 3-6	nóne	1760	tons of carbon fiber per year	Particulate matter, filterable (FPM)		0	BACT-PSD
SGL AUTOMOTIVE CARBON FIBERS	4/13/2015 Carbo	Fiber Production (Normal Operation) Lines 3-6	none	1760	tons of carbon fiber per year	Particulate matter, total ⁢ 10 ŵ (TPM10)		0	BACT-PSD
SGL AUTOMOTIVE CARBON FIBERS	4/13/2015 Carbo	a Fiber Production (Normal Operation) Lines 7-10	electric	1760	tons of carbon fiber per year	Volatile Organic Compounds (VOC)		1.7 LB	BACT-PSD
SGL AUTOMOTIVE CARBON FIBERS	4/13/2015 Carbon	n Fiber Production (SCR Bypass Mode)	electric	0		Volatile Organic Compounds (VOC)		1.7 LB/H	N/A
SGL AUTOMOTIVE CARBON FIBERS	4/13/2015 Carbon	Fiber Production (Shutdown Mode) Lines 3-6		0		Volatile Organic Compounds (VOC)		7.1 LB	BACT-PSD
SGL AUTOMOTIVE CARBON FIBERS	4/13/2015 Carbon	Fiber Production (Shutdown Mode) Lines 7-10		0		Volatile Organic Compounds (VOC)		7.1 LB	BACT-PSD
SGL AUTOMOTIVE CARBON FIBERS	4/13/2015 Carbon	fiber Production (RTO Bypass Mode)		0		Volatile Organic Compounds (VOC)		8.6 LB	BACT-PSD
SGL AUTOMOTIVE CARBON FIBERS	4/13/2015 Carbo	Fiber Production (Normal Operation) Lines 3-6	none	1760	tons of carbon fiber per year	Volatile Organic Compounds (VOC)		0	BACT-PSD
TORAY CARBON FIBER AMERICA, INC. (CFA)	12/20/2007 BOILE	85	NATURAL GAS	66.6	MMBTU/H each	Nitrogen Oxides (NOx	LOW NOX BURNERS PLUS FLUE GAS RECIRCULATION (FGR)	0.024 LB/MMBTU	BACT-PSD
TORAY CARBON FIBER AMERICA, INC. (CFA)	12/20/2007 CARBO	IN FIBER MANUFACTURING PROCESS (CFA-3) WITH MAL OXIDIZER	NATURAL GAS			Nitrogen Oxides (NOx	LOW NOX BURNERS AND GOOD OPERATING PRACTICES	57.6 LB/H	BACT-PSD
TORAY CARBON FIBER AMERICA, INC. (CFA)	12/20/2007 BOILE	85	NATURAL GAS	66.6	MMBTU/H each	Particulate Matter (PM)	NATURAL GAS-FIRED	0.0077 LB/MMBTU	BACT-PSD
TORAY CARBON FIBER AMERICA, INC. (CFA)	12/20/2007 CARBC THERN	IN FIBER MANUFACTURING PROCESS (CFA-3) WITH MAL OXIDIZER	NATURAL GAS			Particulate Matter (PM)	NATURAL GAS, LOW NDX BURNERS, AND GOOD OPERATING PRACTICES	4.46 LB/H	BACT-PSD
TORAY CARBON FIBER AMERICA, INC. (CFA)	12/20/2007 132,08 VENTE	6 GALLON SOLVENT DELIVERY STORAGE TANK D TO SCRUBBER				Volatile Organic Compounds (VOC)	SCRUBBER TA2-2	95 % REDUCTION	N/A
TORAY CARBON FIBER AMERICA, INC. (CFA)	12/20/2007 211,33 VENTE	8 GALLON ACRYLONITRILE DELIVERY STORAGE TANK D TO SCRUBBER TA2-2				Volatile Organic Compounds (VOC)	SCRUBBER TA2-2	95 % REDUCTION	N/A

FACILITY NAME	PERMIT ISSUANCE DATE	PROCESS NAME	THROUGHPUT	THROUGHPUT UNIT	CONTROL METHOD DESCRIPTION	EMISSION LIMIT 1	CASE-BY-CASE
				Ovens		UNIT	BASIS
		Curing Oven and Cooling Table			The exhaust from the cooling table is routed	LB/TON GLASS	
INWOOD	09/15/2017	Section	6.67	tons per hour	to a wet scrubber.	0.88 (FPM)	BACT-PSD
KENWORTH TRUCK CO.	01/29/2008	DRYING OVENS AND FLASH TUNNES FOR CAB BOOTHS	4.58	MMBTU/H		0.551 LB/H	N/A
NUCOR STEEL LOUISIANA	05/24/2010	SLG-402 - SLAG MILL DRYER STACK	75.4	т/н	BACT is selected to be good combustion practices during the operation of the dryer	0.2 LB/H	BACT-PSD
NUCOR STEEL LOUISIANA	05/24/2010	PCI-101 - PC! Mill Vent	85.1	MMBTU/H	Fabric Filter	0.88 LB/H	BACT-PSD
OWENS CORNING INSULATION SYSTEMS, LLC	05/05/2017	curing oven	0		good operating practices, good combustion practices, stone wool filter, regenerative thermal oxidizer good operating practices, good combustion	0 LB/T	BACT-PSD
OWENS CORNING INSULATION SYSTEMS, LLC	05/05/2017	curing oven	0		practices, stone wool filter, regenerative thermal oxidizer	0 LB/T	BACT-PSD
OWENS CORNING INSULATION SYSTEMS, LLC	05/05/2017	curing oven	0		good compusition practices, good operating practices, stone wool filter, regenerative thermal oxidizer	0 LB/T	BACT-PSD
OWENS CORNING INSULATION SYSTEMS, LLC	05/05/2017	blowing chamber, vertical	0		good operating practices, stone wool filter	0 LB/T	BACT-PSD
OWENS CORNING INSULATION SYSTEMS, LLC OWENS CORNING INSULATION	05/05/2017	blowing chamber, vertical	0		good operating practices, stone wool filter	0 LB/T	BACT-PSD
SYSTEMS, LLC	05/05/2017	blowing chamber, vertical FG-RTO and POWDER OVEN	0		good operating practices, stone wool filter	0 LB/T	BACT-PSD
PLANT	11/02/2017	RTO emissions)	0		Good combustion practices and RTO.	1.68 LB/H	BACT-PSD
Call of the State of State of the	and the local strains	And States and States	HALLAN SI	Dryers		La de la Remaine dontes	100 Bar 10 B. 1.
ADM CORN PROCESSING - CEDAR RAPIDS	06/29/2007	INDIRECT-FIRED DDG5 DRYER	93.7	MMBTU/H		0.015 GR/DSCF	BACT-PSD
ADM CORN PROCESSING - CEDAR RAPIDS	06/29/2007	INDIRECT-FIRED DDGS DRYER	93.7	MMBTU/H		0.015 GR/DSCF	BACT-PSD
JUICE NORTH AMERICA	03/29/2007	HEAT RECOVERY	62.4	MMBTU/H		10 LB/H	BACT-PSD
AVON PARK FACILITY/GARGILL JUICE NORTH AMERICA	03/29/2007	PEEL DRYER WITH WASTE HEAT RECOVERY	62.4	MMBTU/H		10 LB/H	BACT-PSD
BIG ISLAND MINE & REFINERY	03/27/2017	Unit 4 Cooler/Classifier	1138800	tpγ	wet scrubber	4.1 LB/H	BACT-PSD
BIG ISLAND MINE & REFINERY	03/27/2017	Unit 6 Calciner	2102400	tpy	Dry-ESP	35.4 LB/H	BACT-PSD
BIG ISLAND MINE & REFINERY	03/27/2017	Unit 7 Calciner	3328800	tpy	Dry-ESP	40.7 LB/H	BACT-PSD
BIG ISLAND MINE & REFINERY	03/27/2017	Unit 4 Dryer	1138800	tpy	wet scrubber	49.5 LB/H	BACT-PSD
BIG RIVER STEEL LLC	09/18/2013	SMALL HEATERS AND DRYERS SN-05 THROUGH 19	0		COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE	5.2 X10^-4 L8/MMBTU	BACT-PSD

FACILITY NAME	PERMIT ISSUANCE DATE	PROCESS NAME	THROUGHPUT	THROUGHPUT UNIT	CONTROL METHOD DESCRIPTION	EMISSION LIMIT 1	CASE-BY-CASE BASIS
BIG RIVER STEEL LLC	09/18/2013	DRYERS, MGO COATING LINE	38	MMBTU/H	COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE	5.2 X10^-4 LB/MMBTU	BACT-PSD
BIG RIVER STEEL LLC	09/18/2013	SMALL HEATERS AND DRYERS SN-05 THROUGH 19	0		COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE	5.2 X10^-4 LB/MMBTU	BACT-PSD
BIG RIVER STEEL LLC	09/18/2013	DRYERS, MGO COATING LINE	38	MMBTU/H	COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE	5.2 X10^-4 LB/MMBTU	BACT-PSD
BIG RIVER STEEL LLC	09/18/2013	SMALL HEATERS AND DRYERS SN-05 THROUGH 19	0		COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE	S.2 X10^-4 LB/MMBTL	BACT-PSD
BIG RIVER STEEL LLC	09/18/2013	DRYERS, MGO COATING LINE	38	MMBTU/H	COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE	5.2 X10^-4 LB/MMBTU	BACT-PSD
CARBO CERAMICS INC MILLEN FACILITY	04/06/2012	SPRAY DRYER	47	MMBTU/H	BAGHOUSE	0.02 GR/DSCF	BACT-PSD
CARBO CERAMICS INC MILLEN FACILITY	04/06/2012	SPRAY DRYER	47	MMBTU/H	BAGHOUSE	0.0075 GR/DSCF	BACT-PSD
FACILITY	04/06/2012	SPRAY DRYER	47	MMBTU/H	BAGHÓUSE	0.01 GR/DSCF	BACT-PSD
DEGUSSA ENGINEERED CARBONS LP	11/29/2007	CARBON BLACK DRYER UNITS 1 AND 2				6.8 LB/H	BACT-PSD
DUPONT DELISLE FACILITY	03/21/2011	Line 2 Ore Dryer (AB-202)	30	MMBTU/H	replacing baghouses with reverse jet wet scrubber	0.011 GR/DSCF	BACT-PSD
DUPONT DELISLE FACILITY	03/21/2011	Line 1 Oxygen Preheater (AH- 102)	20	MMBTU/H	BACT is good combustion.	0.0026 GR/DSCF	BACT-PSD
DUPONT DELISLE FACILITY	03/21/2011	Line 2 Oxygen Preheater (AH- 202)	20	MMBTU/H	BACT is good combustion.	0.0026 GR/DSCF	BACT-PSD
DUPONT DELISLE FACILITY	03/21/2011	Line 2 Ore Dryer (AB-202)	30	MMBTU/H	replacing baghouses with reverse jet wet scrubber	0.0085 GR/DSCF	BACT-PSD
DUPONT DELISLE FACILITY	03/21/2011	Line 1 Oxygen Preheater (AH- 102)	20	MMBTU/H	BACT is good combustion.	0.0025 GR/DSCF	BACT-PSD
DUPONT DELISLE FACILITY	03/21/2011	Line 2 Oxygen Preheater (AH- 202)	20	ММВТU/Н	BACT is good combustion.	0.002S GR/DSCF	BACT-PSD
DUPONT DELISLE FACILITY	03/21/2011	Line 2 Ore Dryer (AB-202)	30	MMBTU/H	scrubber	0.011 GR/DSCF	BACT-PSD
DUPONT DELISLE FACILITY	03/21/2011	Line 1 Oxygen Preheater (AH- 102)	20	MMBTU/H	BACT is good combustion.	0.0026 GR/DSCF	BACT-PSD
DUPONT DELISLE FACILITY	03/21/2011	Line 2 Oxygen Preheater (AH- 202)	20	MMBTU/H	BACT is good combustion	0.0026 GR/DSCF	BACT-PSD
ENDICOTT CLAY PRODUCTS	04/08/2008	PLANT 3, DRYER 1	8.84	т/н		1.65 LB/H	BACT-PSD
FLAKEBOARD AMERICA LIMITED	- 12/22/2009	FACE PRIMARY DRYER	45	MMBTU/H	GOOD COMBUSTION PRACTICES AND NATURAL GAS AS FUEL	0	BACT-PSD

FACILITY NAME	PERMIT ISSUANCE DATE	PROCESS NAME	THROUGHPUT	THROUGHPUT UNIT	CONTROL METHOD DESCRIPTION	EMISSION LIMIT 1	CASE-BY-CASE BASIS
FLAKEBOARD AMERICA LIMITED BENNETTSVILLE MDF	12/22/2009	CORE PRIMARY DRYER	45 1	MMBTU/H	GOOD COMBUSTION PRACTICES AND NATURAL GAS AS FUEL	0	BACT-PSD
GP ALLENDALE LP	11/25/2008	NATURAL GAS SPACE HEATERS - 14 UNITS (ID 18)	20.89 1	MMBTU/H		0.15 LB/H	BACT-PSD
GP ALLENDALE LP	11/25/2008	HEATERS - 14 UNITS (ID 18)	20.89	ммвти/н		0.15 LB/H	BACT-PSD
GP CLARENDON LP	02/10/2009	NATURAL GAS SPACE HEATERS - 14 UNITS (ID 17) NATURAL GAS SPACE	20.89 1	ммвти/н		0.15 LB/H	BACT-PSD
GP CLARENDON LP	02/10/2009	HEATERS - 14 UNITS (ID 17)	20.89	MMBTU/H		0.15 LB/H	BACT-PSD
GRAIN PROCESSING CORPORATION	12/08/2015	CORN GLUTEN FREE, GLUTEN, MALTODEXTRIN DRYERS	93	ммвти/н	WET SCRUBBER FOLLOWED BY THERMAL OXIDIZER FOR GLUTEN AND CGF DRYERS WET SCRUBBER IN SERIES WITH ESP WET SCRUBBER FOLLOWED BY THERMAL	0.01 GR/DSCF	BACT-PSD
GRAIN PROCESSING CORPORATION	12/08/2015	CORN GLUTEN FREE, GLUTEN, MALTODEXTRIN DRYERS	93	MMBTU/H	OXIDIZER (CGF AND GLUTEN DRYERS) MALTODEXTRIN DRYER - WET SCUBBER IN SERIES WITH WET ESP	0.01 GR/DSCF	BACT-PSD
GRAYLING PARTICLEBOARD	05/09/2017	EUTFL1, EUTFL2 & amp; EUTFL3 in FGTFL (3 Thermally Fused Lamination Lines)	0		Baghouse/fabric filters	0.33 LB/H	BACT-PSD
GRAYLING PARTICLEBOARD	05/09/2017	EUTFLI, EUTFLZ & amp; EUTFL3 in FGTFL (3 Thermally Fused Lamination Lines)	0		Baghouse/fabric filters	0.33 LB/H	BACT-PSD
GRAYLING PARTICLEBOARD	05/09/2017	EUTFL1, EUTFL2 & D (1) EUTFL3 in FGTFL (3 Thermally Fused Lamination Lines) EGDRYFERTO (2 Natural Gas	0		Baghouse/fabric filter	0.33 LB/H	BACT-PSD
GRAYLING PARTICLEBOARD	05/09/2017	Fired Rotary Dryers	139.9	MMBTU/H	Good combustion practices and RTO.	29.1 LB/H	BACT-PSD
GRAYLING PARTICLEBOARD	05/09/2017	FGDRYERRTO (2 Natural Gas Fired Rotary Dryers	139.9	MMBTU/H	Good combustion practices and RTO.	16.55 LB/H	BACT-PSD
GRAYLING PARTICLEBOARD	05/09/2017	FGDRYERRTO (2 Natural Gas Fired Rotary Dryers	139.9	MMBTU/H	Good combustion practices and RTO.	28.4 LB/H	BACT-PSD
GRAYLING PARTICLEBOARD	05/09/2017	FGMTRLHNDL (3 Overs mills EUOVERS1, EUOVERS2, EUOVERS3 in FGMTRLHNDL)	0		Baghouse/Fabric filters	0.61 LB/H	BACT-PSD
GRAYLING PARTICLEBOARD	05/09/2017	FGMTRLHNDL (3 Overs mills EUOVERS1, EUOVERS2, EUOVERS3 in FGMTRLHNDL)	0		Baghouse/Fabric filters	0.61 LB/H	BACT-PSD
GRAYLING PARTICLEBOARD	05/09/2017	FGMTRLHNDL (3 Overs mills EUOVERS1, EUOVERS2, EUOVERS3 in FGMTRLHNDL)	0		Baghouse/Fabric filters	0.61 LB/H	BACT-PSD
GRAYLING PARTICLEBOARD	05/09/2017	EUFINES in FGMTRLHNDL	0		Baghouse/fabric filters	0.03 LB/H	BACT-PSD

t. L

FACILITY NAME	PERMIT ISSUANCE DATE	PROCESS NAME	THROUGHPUT	THROUGHPUT UNIT	CONTROL METHOD DESCRIPTION	EMISSION LIMIT 1	CASE-BY-CASE BASIS
GRAYLING PARTICLEBOARD	05/09/2017	EUFINES in FGMTRI HNDI	0		Baehouse/fabric filters	0.03 LB/H	BACT-PSD
	00,00,201		0				
GRAYLING PARTICLEBOARD	05/09/2017	EUFINES in FGMTRLHNDL	0		Baghouse/fabric filters	0.03 LB/H	BACT-PSD
GRAYLING PARTICLEBOARD	05/09/2017	EUSIFTERS in FGMTRLHNDL	0		Baghouse/fabric filters	0.41 LB/H	BACT-PSD
GRAYLING PARTICLEBOARD	05/09/2017	EUSIFTERS in FGMTRLHNDL	0		Baghouse/fabric filters	0.41 LB/H	BACT-PSD
GRAYLING PARTICLEBOARD	05/09/2017	EUSIFTERS in FGMTRLHNDL	0		Baghouse/fabric filters	0.41 LB/H	BACT-PSD
GRAYLING PARTICLEBOARD	05/09/2017	EUBARKSTG in FGMTRLHNDL	0		Baghouse/fabric filters	0.06 LB/H	BACT-PSD
GRAYLING PARTICLEBOARD	05/09/2017	EUBARKSTG in FGMTRLHNDL	0		Baghouse/fabric filters	0.06 LB/H	BACT-PSD
GRAYLING PARTICLEBOARD	05/09/2017	EUBARKSTG in FGMTRLHNDL	0		Baghouse/fabric filters	0.06 LB/H	BACT-PSD
GRAYLING PARTICLEBOARD	05/09/2017	EUBLENDING in FGBLNDFRM	0		Baghouse/fabric filters	0.41 LB/H	BACT-PSD
GRAYLING PARTICLEBOARD	05/09/2017	EUBLENDING in FGBLNDFRM	0		Baghouse/fabric filters	0.41 LB/H	BACT-PSD
GRAYLING PARTICLEBOARD	05/09/2017	EUBLENDING in FGBLNDFRM	0		Bathouse/fabric filters	0.41 LB/H	BACT-PSD
GRAYLING PARTICLEBOARD	05/09/2017	EUFORMING in FGBLNDFRM	0		Baghouse/fabric filters	1.05 LB/H	BACT-PSD
GRAYLING PARTICLEBOARD	05/09/2017	EUFORMING in FGBLNDFRM	0		Baghouse/fabric filters	1.05B LB/H	BACT-PSD
GRAYLING PARTICLEBOARD	05/09/2017	EUFORMING in FGBLNDFRM	0		Baghouse/fabric filters	1.05 LB/H	BACT-PSD
GRAYLING PARTICLEBOARD	05/09/2017	EUPRESS in FGPRESSCOOL	0		Wet scrubber	12.2 LB/H	BACT-PSD
GRAYLING PARTICLEBOARD	05/09/2017	EUPRESS in FGPRESSCOOL	0		Wet scrubber	2.2 LB/H	BACT-PSD
GRAYLING PARTICLEBOARD	05/09/2017	EUPRESS in FGPRESSCOOL	0		Wet scrubber	2.2 LB/H	BACT-PSD
GRAYLING PARTICLEBOARD	05/09/2017	EUCOOLING in FGPRESSCOOL	0		Wet scrubber	12.2 LB/H	BACT-PSD
GRAYLING PARTICLEBOARD	05/09/2017	EUCOOLING in FGPRESSCOOL	0		Wet scrubber	2.2 LB/H	BACT-PSD
GRAYLING PARTICLEBOARD	05/09/2017	EUCOOLING in FGPRESSCOOL	0		Wet scrubber	2.2 LB/H	BACT-PSD

Table C-2. Search Results for Particulate Control Devices Installed on Natural Gas Fired Ovens, Dryers, and Burners (<300 MMBtu/hr)

FACILITY NAME	PERMIT ISSUANCE DAT	E PROCESS NAME	THROUGHPUT THRO	UGHPUT UNIT CONTROL METHOD DESCRIPTION	EMISSION LIMIT 1 EMISSION LIMIT	1 CASE-BY-CASE BASIS
GRAYLING PARTICLEBOARD	05/09/2017	EUTOH in FGTOH	38 MMBT	U/H Good combustion practices	0.0075 LB/MMBTU	BACT-PSD
GRAYLING PARTICLEBOARD	05/09/2017	EUTOH in FGTOH	38 MMBT	U/H Good combustion practices.	0.0004 LB/MMBTU	BACT-PSD
GRAYLING PARTICLEBOARD	05/09/2017	EUTOH in FGTOH	38 MMBT	U/H Good combustion practices.	0.0005 LB/MMBTU	BACT-PSD
GRAYLING PARTICLEBOARD	05/09/2017	EUFLTOS1 in FGTOH	10.2 MMBT	U/H Good combustion practices	0.0004 LB/MMBTU	BACT-PSD
GRAYLING PARTICLEBOARD	05/09/2017	EUFLTOS1 in FGTOH	10.2 MMBT	U/H Good combustion practices	0.0075 LB/MMBTU	BACT-PSD
GRAYLING PARTICLEBOARD	05/09/2017	EUFLTO51 in FGTOH	10.2 MMBT	U/H Good combustion practices.	0.0005 LB/MMBTU	BACT-PSD
GRAYLING PARTICLEBOARD	05/09/2017	EUFCOS in FGFINISH	0	Baghouse/fabric filters	0.55 LB/H	BACT-PSD
GRAYLING PARTICLEBOARD	05/09/2017	EUFCOS in FGFINISH	0	Baghouse/fabric filters	0.55 LB/H	BACT-PSD
GRAYLING PARTICLEBOARD	05/09/2017	EUFCO5 in FGFINISH	0	Baghouse/Fabric filter	0.55 LB/H	BACT-PSD
GRAYLING PARTICLEBOARD	05/09/2017	EUSANDING in FGFINISH	0	Baghouse/fabric filters	1.43 LB/H	BACT-PSD
GRAYLING PARTICLEBOARD	05/09/2017	EUSANDING in FGFINISH	0	Baghouse/fabric filters	1.43 LB/H	BACT-PSD
GRAYLING PARTICLEBOARD	05/09/2017	EUSANDING in FGFINISH	0	Baghouse/fabric filter	1.43 LB/H	BACT-PSD
GRAYLING PARTICLEBOARD	05/09/2017	EUCTP5AW in FGFINISH	0	Baghouse/fabric filter	0.44 LB/H	BACT-PSD
GRAYLING PARTICLEBOARD	05/09/2017	EUCTPSAW in FGFINISH	0	Baghouse/fabric filters	0.44 LB/H	BACT-PSD
GRAYLING PARTICLEBOARD	05/09/2017	EUCTPSAW in FGFINI5H	0	Baghouse/fabric filter	0.44 LB/H	BACT-PSD
GRAYLING PARTICLEBOARD	05/09/2017	EURMSILO in FGFINISH (Raw material sawdust silo)	0	Baghouse/fabric filters	0.06 LB/H	BACT-PSD
GRAYLING PARTICLEBOARD	05/09/2017	EURMSILO in FGFINISH (Raw material sawdust silo)	0	Baghouse/fabric filters	0.06 LB/H	BACT-PSD
GRAYLING PARTICLEBOARD	05/09/2017	EURMSILO in FGFINISH (Raw material sawdust silo)	0	Baghouse/fabric filters	0.06 LB/H	BACT-PSD
GRAYLING PARTICLEBOARD	05/09/2017	EUPTL1 & EUPTL2 in FGPTL (2 paper treating lines)	3.4 MMB1	U/H Good combustion practices.	0.0075 LB/MMBTU	BACT-PSD
GRAYLING PARTICLEBOARD	05/09/2017	EUPTL1 & EUPTL2 in FGPTL (2 paper treating lines)	3.4 MMB1	U/H Good combustion practices.	0.0004 LB/MMBTU	BACT-PSD

FACILITY NAME	PERMIT ISSUANCE DATE	PROCESS NAME	THROUGHPUT THROUGHPU	T UNIT CONTROL METHOD DESCRIPTION	EMISSION LIMIT 1	CASE-BY-CASE BASIS
GRAYLING PARTICLEBOARD	05/09/2017	EUPTL1 & EUPTL2 in FGPTL (2 paper treating lines)	3.4 MMBTU/H	Good combustion practices	0.0005 LB/MMBTU	BACT-PSD
GRAYLING PARTICLEBOARD	05/09/2017	EU-FLAKERS (7 Green flakers with baghouse, dry ESP and RTO Control) FLI-ELAKERS (7 Green flakers	0	Baghouse, dry ESP, RTO. Bypass of dry ESP and RTO is allowed for up to 460 hours per year. Bachouse dry ESP and RTO. Bypass of dry	1.01 LB/H	BACT-PSD
GRAYLING PARTICLEBOARD	05/09/2017	with baghouse, dry ESP and RTO Control) EU-FLAKERS (7 Green flakers	0	ESP and RTO is allowed up to 460 hours per year. Baghouse, dry ESP, RTO, Bypass of dry ESP	1.01 LB/H	BACT-PSD
GRAYLING PARTICLEBOARD	05/09/2017	with baghouse, dry ESP and RTO Control)	0	and RTO is allowed for up to 460 hours per year.	1.01 LB/H	BACT-PSD
HOMELAND ENERGY SOLUTIONS, LLC	08/26/2011	Two DDGS Dryers A & B/DDGS Cooling Drum/Distillation Equipment	2S0 MMBTU/H	Multicones, Thermal Oxidizer and DDGS Cooling Drum Baghouse	0.0064 GR/DSCF	BACT-PSD
HOMELAND ENERGY SOLUTIONS, LLC	08/26/2011	Two DDGS Dryers C & D/DDGS Cooling Drum/Distillation Equipment	250 MMBTU/H	multiclones, thermal oxidizer and DDGS cooling drum baghouse	0.0094 GR/DSCF	BACT-PSD
HOMELAND ENERGY SOLUTIONS, LLC	08/26/2011	Two DDGS Dryers A & B/DDGS Cooling Drum/Distillation Equipment	250 MMBTU/H	Multiclones/ Thermal Oxidizer / DDGS Cooling Drum Baghouse	0.0064 GR/DSCF	BACT-PSD
HOMELAND ENERGY SOLUTIONS, LLC	08/26/2011	Two DDGS Dryers C & D/DDGS Cooling Drum/Distillation Equipment	250 MMBTU/H	multiclones, thermal oxidizer and DDGS cooling drum baghouse Fabric filter to limit PM10 emissions to 0.02	0.0094 GR/DSCF	BACT-PSD
LAKE CHARLES CHEMICAL COMPLEX ALUMINA UNIT	05/23/2014	Spray Dryer #3 Dust Collector Vent Stack (EQT 1004)	137 MM BTU/HR	gr/osct. Regarding products of compustion, BACT is the exclusive use of natural gas as fuel.	13.38 LB/HR	BACT-PSD
LAKE CHARLES CHEMICAL COMPLEX ALUMINA UNIT	05/23/2014	Spray Dryer #4 Dust Collector Vent Stack (EQT 1005)	98 MM BTU/HR	Fabric filter to limit PM10 emissions to 0.02 gr/dscf. Regarding products of combustion, BACT is the exclusive use of natural gas as fuel. Fabric filter to limit PM2.5 emissions to 0.02	9.71 LB/HR	BACT-PSD
LAKE CHARLES CHEMICAL COMPLEX ALUMINA UNIT	05/23/2014	Spray Dryer #3 Dust Collector Vent Stack (EQT 1004)	137 MM BTU/HR	gr/dscf. Regarding products of combustion, BACT is the exclusive use of natural gas as fuel. Fabric filter to limit PM2.5 emissions to 0.02	13.38 L8/HR	BACT-PSD
LAKE CHARLES CHEMICAL COMPLEX ALUMINA UNIT	05/23/2014	Spray Dryer #4 Dust Collector Vent Stack (EQT 1005)	98 MM BTU/HR	gr/dsci. Regarding products of compusition, BACT is the exclusive use of natural gas as fuel.	9.71 LB/HR	BACT-PSD
MOUNT VERNON MILL	03/25/2010	Line 1 Post-Dryer (S31)	7.7 MMBTU/H		0.0076 LB/MMBTU	BACT-PSD
MOUNT VERNON MILL	03/25/2010	Line 2 Post - Dryer (S32)	7.7 MMBTU/H		0.0076 LB/MMBTU	BACT-PSD
MOUNT VERNON MILL	03/25/2010	Line 3 Post - Dryer (S33)	7.7 MMBTU/H		0.0076 LB/MMBTU	BACT-PSD
MOUNT VERNON MILL	03/25/2010	Line 4 Post - Dryer (S34)	7.7 MMBTU/H		0.0076 LB/MMBTU	BACT-PSD

FACILITY NAME	PERMIT ISSUANCE DATI	PROCESS NAME	THROUGHPUT	THROUGHPUT UNIT	CONTROL METHOD DESCRIPTION		1 CASE-BY-CASE BASIS
NUCOR STEEL LOUISIANA	05/24/2010	SLG-402 - SLAG MILL DRYER STACK	75.4	т/н	BACT is selected to be good combustion practices during the operation of the dryer	0.2 LB/H	BACT-PSD
OHIO RIVER CLEAN FUELS, LLC	11/20/2008	GAS FIRED HEATERS (3)	4	MMBTU/H		0.09 LB/H	BACT-PSD
OHIO RIVER CLEAN FUELS, LLC	11/20/2008	F-T CATALYST ROTARY DRYER	22564 SCF/H G		GOOD COMBUSTION PRACTICES	0.18 LB/H	BACT-PSD
OHIO RIVER CLEAN FUELS, LLC	11/20/2008	COAL OR BIOMASS DRYING LINES (10)	31 MMBTU/H F		PULSE JET BAGHOUSE	0.6 LB/H	BACT-PSD
PYRAMAX CERAMICS, LLC - KING'S M:U FACILITY	01/27/2012	SPRAY DRYERS/PETTETIZERS	75 MMBTU/H F/		FABRIC BAGHOUSE	0.01 GR/DSCF	BACT-PSD
PYRAMAX CERAMICS, LLC - KING'S M:U FACILITY PYRAMAX CERAMICS, LLC -	01/27/2012	SPRAY DRYERS/PETTETIZERS	75 MMBTU/H FA		FABRIC BAGHOUSE	0.01 GR/DSCF	BACT-PSD
KING'S M:U FACILITY	01/27/2012	SPRAY DRYERS/PETTETIZERS	75	MMBTU/H	FABRIC BAGHOUSE	0.006 GR/DSCF	BACT-PSD
SAGOLA MILL	01/31/2008	HEATER			GOOD COMBUSTION PRACTICES	0.17 LB/H	BACT-PSD
SOUTHWEST IOWA RENEWABLE ENERGY	04/19/2007	DDGS DRYERS + DISTILLATION	60	т/н	THERMAL OXIDIZER	9.28 LB/H	BACT-PSD
AMERICAS, INC.	09/19/2008	FIRED)	25	MMBTU/H	WET SCRUBBER	0.0086 GR/DSCF	BACT-PSD
TATE & LYLE INDGREDIENTS AMERICAS, INC. TOLEDO SUPPLIER PARK- PAINT	09/19/2008	STARCH DRYER (DIRECT- FIRED)	25	ммвти/н	WET SCRUBBER CONTROL DEVICE NOT NAMED BUT 98%	0.0086 GR/DSCF	BACT-PSD
SHOP	05/03/2007	PAINT SLUDGE DRYER	7.5	MMBTU/H	CONTROL REQUIRED	1.72 LB/H	BACT-PSD
U.S. STEEL CORP - KEETAC	12/06/2011	DRYING ZONE 1	450	T/PELLETS/H	DRY ELECTROSTATIC PRECIPITATOR	10.5 LB/H	BACT-PSD
U.S. STEEL CORP - KEETAC	12/06/2011	GRATE KILN - DOWN DRAFT DRYING ZONE 1	450	T/PELLETS/H	DRY ELECTROSTATIC PRECIPITATORS	21 LB/H	BACT-PSD
U.S. STEEL CORP - KEETAC	12/06/2011	GRATE KILN - DOWN DRAFT DRYING ZONE 1	450	T/PELLETS/H	DRY ELECTROSTATIC PRECIPITATOR	21 LB/H	BACT-PSD
CHOCOLATE BAYOU STEAM		the state of the s		Burners			
GENERATING (CBSG) STATION	02/17/2017	Combined Cycle Cogeneration	50	MW		6.98 LB/H	BACT-PSD
CHOCOLATE BAYOU STEAM GENERATING (CB5G) STATION	02/17/2017	Combined Cycle Cogeneration	50	MW		6.98 LB/H	BACT-PSD
CHOCOLATE BAYOU STEAM GENERATING (CBSG) STATION	02/17/2017	Combined Cycle Cogeneration	50	MW		6.98 LB/H	BACT-PSD
DANIA BEACH ENERGY CENTER	12/04/2017	boiler	99.8	MMBtu/hr	Clean fuels	0	BACT-PSD
DANIA BEACH ENERGY CENTER	12/04/2017	99.8 MM8tu/hr auxillary boiler	99.8	MMBtu/hr	Clean fuels	0	BACT-PSD

FACILITY NAME	PERMIT ISSUANCE DATE	PROCESS NAME	THROUGHPUT	THROUGHPUT UNIT	CONTROL METHOD DESCRIPTION	EMISSION LIMIT 1	CASE-BY-CASE BASIS
DANIA BEACH ENERGY CENTER	12/04/2017	99.8 MMBtu/hr auxiliary boiler FGTURNBINES (S Simple Cycle	99.8	MMBtu/hr	Clean fuels	0	BACT-PSD
DTE GAS COMPANY - MILFORD COMPRESSOR STATION	03/24/2017	CTs: EUTURBINE1, EUTURBINE2, EUTURBINE3, EUTURBINE4, EUTURBINE5) FGTURNBINES (5 Simple Cycle	10504	НР	Combustion air inlet filter, pipeline quality natural gas and good combustion practices.	0.015 LB/MMBTU	BACT-PSD
DTE GAS COMPANY - MILFORD COMPRESSOR STATION	03/24/2017	CTs: EUTURBINE1, EUTURBINE2, EUTURBINE3, EUTURBINE4, EUTURBINE5)	10504	НР	Combustion air inlet filter, pipeline quality natural gas, and good combustion practices.	0.015 LB/MMBTU	BACT-PSD
DTE GAS COMPANY - MILFORD COMPRESSOR STATION	03/24/2017	FGAUXBOILERS (6 auxiliary boilers EUAUXBOIL2A, EUAUXBOIL3A, EUAUXBOIL2B, EUAUXBOIL3B, EUAUXBOIL2C, EUAUXBOIL3C) FGAUXBOILERS (6 auxiliary	3	MMBTU/H	Good combustion practices and low sulfur fuel (pipeline quality natural gas).	0.52 LB/MMSCF	BACT-PSD
DTE GAS COMPANY - MILFORD COMPRESSOR STATION	03/24/2017	boilers EUAUXBOIL2A, EUAUXBOIL3A, EUAUXBOIL2B, EUAUXBOIL3B, EUAUXBOIL2C, EUAUXBOIL3C)	3	ммвти/н	Good combustion practices and low sulfur fuel (pipeline quality natural gas).	0.52 LB/MMSCF	BACT-PSD
DTE GAS COMPANY - MILFORD COMPRESSOR STATION	03/24/2017	EUN_EM_GEN (Natural gas emergency engine).	205	H/YR	Good combustion practices and low sulfur fuel (pipeline quality natural gas).	0.01 LB/MMBTU	BACT-PSD
DTE GAS COMPANY - MILFORD COMPRESSOR STATION	03/24/2017	EUN_EM_GEN (Natural gas emergency engine).	205	H/YR	Good combustion practices and low sulfur fuel (pipeline quality natural gas).	0.01 LB/MMBTU	BACT-PSD
DUKE ENERGY HANGING ROCK ENERGY	12/18/2012	Turbines (4) (model GE 7FA) Duct Burners Off	172	MW	Burning natural gas in an efficient combustion turbine	15 LB/H	BACT-PSD
DUKE ENERGY HANGING ROCK ENERGY	12/18/2012	Turbines (4) (model GE 7FA) Duct Burners On	172	MW	Burning natural gas in an efficient combustion turbine	19.9 LB/H	BACT-PSD
FILER CITY STATION	11/17/2017	EUAUXBOILER (Auxiliary boiler)	182	MMBTU/H	Good combustion practices	0.005 LB/MMBTU	BACT-PSD
FILER CITY STATION	11/17/2017	EUAUXBOILER (Auxiliary boiler}	182	MMBTU/H	Good combustion practices	0.0075 LB/MMBTU	BACT-PSD
FILER CITY STATION	11/17/2017	EUAUXBOILER (Auxiliary boiler) 11.4 MBF/HR CONTINUOUS DIRECT-FIRED LUMBER DRY	182	MMBTU/H	Good combustion practices	0.0075 LB/MMBTU	BACT-PSD
FULTON SAWMILL	06/08/2017	NATURAL GAS BURNER, & 4 MMBTU/HR NATURAL GAS CONDENSATE EVAPORATOR	11.4	MBF/H			
GAINES COUNTY POWER PLANT	04/28/2017	Simple Cycle Turbine	227.5	MW	Pipeline quality natural gas; limited hours; good combustion practices		

FACILITY NAME	PERMIT ISSUANCE DATE	PROCESS NAME	THROUGHPUT	THROUGHPUT UNIT	CONTROL METHOD DESCRIPTION	EMISSION LIMIT 1	EMISSION LIMIT 1 UNIT	CASE-BY-CASE BASIS
GAINES COUNTY POWER PLANT	04/28/2017	Simple Cycle Turbine	227.5	MW	Pipeline quality natural gas; limited hours; good combustion practices			
GAINES COUNTY POWER PLANT	04/28/2017	Simple Cycle Turbine	227.5	MW	Pipeline quality natural gas; limited hours; good combustion practices			
GAINES COUNTY POWER PLANT	04/28/2017	Combined Cycle Turbine with Heat Recovery Steam Generator, fired Duct Burners, and Steam Turbine Generator	426	ww	Pipeline quality natural gas; good combustion practices			
GAINES COUNTY POWER PLANT	04/28/2017	Combined Cycle Turbine with Heat Recovery Steam Generator, fired Duct Burners, and Steam Turbine Generator	426	MW	Pipeline quality natural gas; good combustion practices			
GAINES COUNTY POWER PLANT	04/28/2017	Combined Cycle Turbine with Heat Recovery Steam Generator, fired Duct Burners, and Steam Turbine Generator	426	MW	Pipeline quality natural gas; good combustion practices			
HESS NEWARK ENERGY CENTER	11/01/2012	Boiler less than 100 MMBtu/hr	51.9	mmcubic ft/year	use of natural gas a clean fuel	0.22 L	B/H	N/A
HESS NEWARK ENERGY CENTER	11/01/2012	Boiler less than 100 MMBtu/hr	51.9	mmcubic ft/year	use of natural gas a clean fuel	0.33 U	в/н	BACT-PSD
HESS NEWARK ENERGY CENTER	11/01/2012	Boiler less than 100 MMBtu/hr	51.9	mmcubic ft/year	use of natural gas a clean fuel	0.33 L	в/н і	N/A
HESS NEWARK ENERGY CENTER	11/01/2012	Combined cylce turbine with duct burner	39463	mmcubic ft/year*	Use of natural gas a clean burning fuel	13.2 L	в/н і	BACT-PSD
HESS NEWARK ENERGY CENTER	11/01/2012	Combined cylce turbine with duct burner Combined cylce turbine with	39463	mmcubic ft/year*	Use of natural gas a clean burning fuel	13.2 Li	з/н і	N/A
HESS NEWARK ENERGY CENTER	11/01/2012	duct burner	39463	mmcubic ft/year*	Use of natural gas a clean burning fuel	7.9 L	3/H M	N/A
HESS NEWARK ENERGY CENTER	11/01/2012	Turbine	39463	MMCubic ft/yr	natural gas a clean burning fuel	6.6 L	3/H M	N/A
HESS NEWARK ENERGY CENTER	11/01/2012	Combined Cycle Combustion Turbine	39463	MMCubic ft/yr	Use of natural gas a clean burning fuel	11 LI	3/H E	BACT-PSD
HESS NEWARK ENERGY CENTER	11/01/2012	Combined Cycle Combustion Turbine	39463	MMCubic ft/yr	Use of Natural Gas a clean burning fuel	11 LI	3/H M	N/A
WORKS - EAST 5TH STREET	12/04/2013	Fuel pre-heater (EUFUELHTR)	3.7	ммвти/н	Good combustion practices.	0.007 LE	S/MMBTU B	BACT-PSD
HOLLAND BOARD OF PUBLIC WORKS - EAST 5TH STREET	12/04/2013	Fuel pre-heater (EUFUELHTR)	3.7	MMBTU/H	Good combustion practices	0.0075 Li	3/MMBTU E	BACT-PSD
HOLLAND BOARD OF PUBLIC WORKS - EAST 5TH STREET	12/04/2013	Fuel pre-heater (EUFUELHTR)	3.7	MMBTU/H	Good combustion pracitces.	0.0075 LF	3/MMBTU B	BACT-PSD

			THROUGHBUT			EMISSION LIMIT 1	CASE-BY-CASE
FACILITY NAME	PERMIT ISSUANCE DATE	E PROCESS NAME	THROUGHPUT	THROUGHPUT UNIT	CONTROL METHOD DESCRIPTION	UNIT	BASIS
HOLLAND BOARD OF PUBLIC WORKS - EAST STH STREET	12/04/2013	Auxiliary Boiler A (EUAUXBOILERA)	55	MMBTU/H	Good combustion practices	0.0018 LB/MMBTU	BACT-PSD
HOLLAND BOARD OF PUBLIC		Auxiliary Boiler A					
WORKS - EAST 5TH STREET	12/04/2013	(EUAUXBOILERA)	55	MMBTU/H	Good combustion practices	0.007 LB/MMBTU	BACT-PSD
HOLLAND BOARD OF PUBLIC		Auxiliary Boiler A					
WORKS - EAST 5TH STREET	12/04/2013	(EUAUXBOILERA)	55	MMBTU/H	Good combustion practices	0.007 LB/MMBTU	BACT-PSD
WORKS - EAST 5TH STREET	12/04/2013	(EUAUXBOILERB)	95	ММВТИ/Н	Good combustion practices	0.0018 LB/MMBTU	BACT-PSD
HOLLAND BOARD OF PUBLIC		Auxiliary Boiler B					
WORKS - EAST STH STREET	12/04/2013	(EUAUXBOILERB)	95	MMBTU/H	Good combustion practices	0.007 LB/MMBTU	BACT-PSD
HOLLAND BOARD OF PUBLIC		Auxiliary Boiler B					
WORKS - EAST STH STREET	12/04/2013	(EUAUXBOILERB)	95	MMBTU/H	Good combustion practices	0.007 LB/MMBTU	BAC1-PSD
WORKS - EAST 5TH STREET	12/04/2013	Emergency Enginenatural gas (EUNGENGINE)	1000	kW	Good combustion practices	0.0001 LB/MMBTU	BACT-PSD
HOLLAND BOARD OF PUBLIC		Emergency Enginenatural					
WORKS - EAST 5TH STREET	12/04/2013	gas (EUNGENGINE)	1000	kW	Good combustion practices	0.01 LB/MMBTU	BACT-PSD
HOLLAND BOARD OF PUBLIC	12/04/2012	Emergency Enginenatural	4000				BACT BED
WORKS - EAST STH STREET	12/04/2013	gas (EUNGENGINE)	1000	ĸw	Good compusition practices	0.01 LB/MINIBIO	BACT-F3D
INDIANA GASIFICATION, LLC	06/27/2012	BURNERS	35	MMBTU/H, EACH	SHALL USE ONLY NATURAL GAS OR SNG.	0.0007 LB/MMBTU	BACT-PSD
		FIVE (S) GASIFIER PREHEAT			USE OF CLEAN BURNING GASEOUS FUEL.		
INDIANA GASIFICATION, LLC	06/27/2012	BURNERS	35	MMBTU/H, EACH	SHALL USE ONLY NATURAL GAS OR SNG.	0.0007 LB/MMBTU	BACT-PSD
	06/27/2012	FIVE (5) GASIFIER PREHEAT	35		USE OF CLEAN BURNING GASEOUS FUEL.	0.0007 LB/MMBTU	BACT-PSD
INDIANA GASIFICATION, ELC	00/2//2012	REGENERATIVE THERMAL		MINDTO/H, EACH	SHALL USE UNLY HATURAL GAS ON SING.	0.0007 ES/INNETO	Und 1 1 55
		OXIDIZER (RTO) ON THE ACID			LISE OF CLEAN BURNING GASEOUS EUE		
INDIANA GASIFICATION, LLC	06/27/2012	(AGR)	38.8	MMBTU/H, EACH	AND GOOD COMBUSTION PRACTICES	0.29 LB/H	BACT-PSD
		REGENERATIVE THERMAL					
		GAS REMOVAL UNIT VENTS			USE OF CLEAN BURNING GASEOUS FUEL		
INDIANA GASIFICATION, LLC	06/27/2012	(AGR)	38.8	MMBTU/H, EACH	AND GOOD COMBUSTION PRACTICES	0.29 LB/H	BACT-PSD
		REGENERATIVE THERMAL OXIDIZER (RTO) ON THE ACID					
		GAS REMOVAL UNIT VENTS			USE OF CLEAN BURNING GASEOUS FUEL		
INDIANA GASIFICATION, LLC	06/27/2012	(AGR)	38.8	MMBTU/H, EACH	AND GOOD COMBUSTION PRACTICES	0.29 LB/H	BACT-PSD
INTERNATIONAL STATION POWER PLANT	12/20/2010	Sigma Thermal Auxiliary Heater (1)	12.5	MMBTU/H	Good Combustion Practices	7.6 LB/MMSCF	BACT-PSD
INTERNATIONAL STATION POWER PLANT	12/20/2010	Sigma Thermal Auxiliary Heater (1)	12.5	MMBTU/H	Good Combustion Practices	7.6 LB/MMSCF	BACT-PSD
INTERNATIONAL STATION		Sigma Thermal Auxiliary					
	12/20/2010	Heater (1)	12.5	MMBTU/H	Good Combustion Practices	7.6 LB/MMSCF	BACT-PSD
POWER PLANT	12/20/2010	Duct Burners (4)	140	MMBTU/H	Good Combustion Practices	7.6 LB/MMSCF	BACT-PSD

FACILITY NAME	PERMIT ISSUANCE DATE	PROCESS NAME	THROUGHPUT	THROUGHPUT UNIT	CONTROL METHOD DESCRIPTION	EMISSION LIMIT 1 EMISSION LIMIT	CASE-BY-CASE BASIS
INTERNATIONAL STATION POWER PLANT	12/20/2010	Duct Burners (4)	14	D MMBTU/H	Good Combustion Practices	7.6 LB/MMSCF	BACT-PSD
INTERNATIONAL STATION POWER PLANT	12/20/2010	Duct Burners (4)	14	D MMBTU/H	Good Combustion Practices	7.6 LB/MMSCF	BACT-PSD
INTERNATIONAL STATION	12/20/2010	GE LM6000PF-25 Turbines (4)	59900 hp ISO		Good Combustion Practices	0.0066 LB/MMBTU	BACT-PSD
INTERNATIONAL STATION POWER PLANT	12/20/2010	GE LM6000PF-25 Turbines (4)	59900 hp ISO G		Good Combustion Practices	0.0066 LB/MMBTU	BACT-PSD
INTERNATIONAL STATION POWER PLANT	12/20/2010	GE LM6000PF-25 Turbines (4)	59900 hp ISO G		Good Combustion Practices	0.0066 LB/MMBTU	BACT-PSD
INWOOD	09/15/2017	Fiber Forming Section	6.6	7 tons per hour	Wet Scrubbers	2.57 PULLED	BACT-PSD
INWOOD	09/15/2017	Glass Melting Furnace ES22	6.6	7 tons per hour	fabric filter using PTEE bags	LB/TON GLASS 0.25 PULLED	BACT-PSD
KLEEN ENERGY SYSTEMS, LLC	02/25/2008	SIEMENS SGT6-5000F COMBUSTION TURBINE #1 AND #2 (NATURAL GAS FIRED) WITH 445 MMBTU/HR NATURAL GAS DUCT BURNER	2.	1 MMCF/H		11 LB/H	BACT-PSD
KNAUF INSULATION GMBH	03/27/2018	Glass melting furnace 602B	30	0 tons of glass per day	baghouse	0.45 LBS/TON OF GLASS	BACT-PSD
KNAUF INSULATION GMBH	03/27/2018	Glass melting furnace 602B	30	0 tons of glass per day	baghouse GOOD DE5IGN AND MONITORING TO	0.45 LBS/TON OF GLASS	BACT-PSD
LAKE CHARLES GASIFICATION	06/22/2009	ACID GAS FLARE	0.2	7 MMBTU/H	ENSURE THE PRESENCE OF A FLAME AT THE FLARE TIP AT ALL THE TIME	0.01 LB/H	BACT-PSD
LAKE CHARLES GASIFICATION	06/22/2009	SHIFT REACTOR STARTUP HEATER	34.	2 MMBTU/H	GOOD DESIGN AND PROPER OPERATION	0.25 LB/H	BACT-PSD
LAKE CHARLES GASIFICATION	06/22/2009	GASIFIER STARTUP PREHEATER BURNERS (5)	3	S MMBTU/H	GOOD DESIGN AND PROPER OPERATION	0.03 LB/H	BACT-PSD
LAKE CHARLES GASIFICATION FACILITY	06/22/2009	THERMAL OXIDIZERS (2)	40.	9 MMBTU/H	NO ADDITIONAL CONTROL	0.3 LB/H	BACT-PSD
LAKE CHARLES GASIFICATION FACILITY	06/22/2009	METHANATION STARTUP HEATERS	\$6.	9 MMBTU/H	GOOD DESIGN AND PROPER OPERATION	0.42 LB/H	BACT-PSD
MEDICAL AREA TOTAL ENERGY PLANT	07/01/2016	Combustion Turbine with Duct Burner	203.	4 MMBTU/H		0.02 LB/MMBTU	BACT-PSD
MEDICAL AREA TOTAL ENERGY PLANT	07/01/2016	Combustion Turbine with Duct Burner	203.	4 MMBTU/H		0.02 LB/MMBTU	BACT-PSD
MIDDLESEX ENERGY CENTER, LL	C 07/19/2016	Combined Cycle Combustion Turbine firing Natural Gas with Duct Burner	400	0 h/yr	COMPLIANCE BY STACK TESTING	18.3 LB/H	BACT-PSD

FACILITY NAME	PERMIT ISSUANCE DATE	PROCESS NAME	THROUGHPUT		CONTROL METHOD DESCRIPTION	EMISSION LIMIT 1	CASE-BY-CASE BASIS
MIDDLESEX ENERGY CENTER, LL	C 07/19/2016	Combined Cycle Combustion Turbine firing Natural Gas with Duct Burner	4000	h/yr	USE OF NATURAL GAS A CLEAN BURNING FUEL	10.4 LB/H	BACT-PSD
MIDDLESEX ENERGY CENTER, LLC	07/19/2016	Combined Cycle Combustion Turbine firing Natural Gas with Duct Burner	4000	h/vr	COMPLIANCE BY STACK TESTING	18.3 LB/H	BACT-PSD
MIDDLESEX ENERGY CENTER, LLC	07/19/2016	AUXILIARY BOILER	4000	H/YR	ህSE OF NATURAL GAS A CLEAN BURNING FUEL	0.181 LB/H	BACT-PSD
MIDDLESEX ENERGY CENTER, LLC	C 07/19/2016	AUXILIARY BOILER	4000	H/YR	USE OF NATURAL GAS A CLEAN BURNING FUEL	0.488 LB/H	BACT-PSD
MIDDLESEX ENERGY CENTER, LLC	07/19/2016	AUXILIARY BOILER	4000	H/YR	USE OF NATURAL GAS A CLEAN BURNING FUEL	0.488 LB/H	BACT-PSD
MIDDLESEX ENERGY CENTER, LLC	07/19/2016	Combined Cycle Combustion Turbine firing Natural Gas without Duct Burner	8040	H/YR	USE OF NATURAL GAS A CLEAN BURNING FUEL	4.4 LB/H	BACT-PSD
MIDDLESEX ENERGY CENTER, LLC	07/19/2016	Combined Cycle Combustion Turbine firing Natural Gas without Duct Burner	8040	H/YR	USE OF NATURAL GAS A CLEAN BURNING FUEL	11.7 LB/H	BACT-PSD
MIDDLESEX ENERGY CENTER, LLC	07/19/2016	Combined Cycle Combustion Turbine firing Natural Gas without Duct Burner STARTUP HEATER EU-002	8040 70	H/YR MMBTU/HR	USE OF NATURAL GAS A CLEAN BURNING FUEL GOOD COMBUSTION PRACTICE	11.7 LB/H 0.13 LB/H	BACT-PSD BACT-PSD
MIDWEST FERTILIZER COMPANY	03/23/2017	STARTUP HEATER EU-002	70	MMBTU/HR	GOOD COMBUSTION PRACTICES	0.522 LB/H	BACT-PSD
MIDWEST FERTILIZER COMPANY LLC MIDWEST FERTILIZER COMPANY	03/23/2017	STARTUP HEATER EU-002 UREA GRANULATION UNIT	70	MMBTU/HR	GOOD COMBUSTION PRACTICES	0.522 LB/H	BACT-PSD
LLC	03/23/2017	(EU-008)	1320	METRIC TON/DAY	WET SCRUBBER	0.163 LB/TON	BACT-PSD
MIDWEST FERTILIZER COMPANY LLC	03/23/2017	UREA GRANULATION UNIT (EU-008)	1320	METRIC TON/DAY	WET SCRUBBER	0.163 LB/TON	BACT-PSD
MIDWEST FERTILIZER COMPANY LLC	03/23/2017	UREA GRANULATION UNIT (EU-008) NATURAL GAS AUXILIARY	1320	METRIC TON/DAY	WET SCRUBBER PROPER DESIGN AND GOOD COMBUSTION	0.163 LB/TON	BACT-PSD
MIDWEST FERTILIZER COMPANY LLC	03/23/2017	BOILERS (EU-012A, EU-012B, EU-012C) NATURAL GAS AUXILIARY	218.6	MMBTU/H	PRACTICES AT ALL TIMES THE BOILERS ARE IN OPERATION. PROPER DESIGN AND GOOD COMBUSTION	1.9 LB/MMCF EACH	BACT-PSD
MIDWEST FERTILIZER COMPANY LLC	03/23/2017	BOILERS (EU-012A, EU-012B, EU-012C) NATURAL GAS AUXILIARY	218.6	MMBTU/H	PRACTICES AT ALL TIMES THE BOILERS ARE IN OPERATION. PROPER DESIGN AND GOOD COMBUSTION	7.6 LB/MMCF EACH	BACT-PSD
MIDWEST FERTILIZER COMPANY	03/23/2017	BOILERS (EU-012A, EU-012B, EU-012C)	218.6	MMBTU/H	PRACTICES AT ALL TIMES THE BOILERS ARE IN OPERATION.	7.6 LB/MMCF EACH	BACT-PSD

FACILITY NAME	PERMIT ISSUANCE DATE	PROCESS NAME	THROUGHPUT	THROUGHPUT UNIT	CONTROL METHOD DESCRIPTION	EMISSION LIMIT	1 EMISSION LIMIT I	CASE-BY-CASE BASIS
MIDWEST FERTILIZER COMPANY LLC MIDWEST FERTILIZER COMPANY	03/23/2017	AMMONIA STORAGE FLARE (EU-016) AMMONIA STORAGE FLARE	1.1			0.007	75 LB/MMBTU	BACT-PSD
LLC	03/23/2017	(EU-016)	1.1	I MMBIU/H		0.001	19 LB/MMBTU	BACT-PSD
MIDWEST FERTILIZER COMPANY LLC MIDWEST FERTILIZER COMPANY	03/23/2017	AMMONIA STORAGE FLARE (EU-016)	1.1	MMBTU/H		0.007	75 LB/MMBTU	BACT-PSD
LLC	03/23/2017	FRONT END FLARE EU-017	1.12	2 MMBTU/H		1.	9 LB/MMCF	BACT-PSD
MIDWEST FERTILIZER COMPANY	03/23/2017	FRONT END FLARE EU-017	1.12	2 MMBTU/H		7.	6 LB/MMCF	BACT-PSD
MIDWEST FERTILIZER COMPANY	03/23/2017	FRONT END FLARE EU-017	1.12	2 MMBTU/H		7.	6 LB/MMCF	BACT-PSD
LLC	03/23/2017	BACK END FLARE (EU-018)	1.12	2 MMBTU/H		0.001	9 LB/MMBTU	BACT-PSD
MIDWEST FERTILIZER COMPANY LLC	03/23/2017	BACK END FLARE (EU-018)	1.12	2 MMBTU/H		0.007	5 LB/MMBTU	BACT-PSD
MIDWEST FERTILIZER COMPANY	03/23/2017	BACK END FLARE (EU-018)	1.12	2 MMBTU/H		0.007	5 LB/MMBTU	BACT-PSD
MOUNDSVILLE COMBINED CYCLE POWER PLANT	11/21/2014	Auxiliary Boiler GALVANIZING LINE BURNERS	100) mmBtu/hr	Use of Natural Gas & Good Combustion Practices	0.	S LB/H LB/MMCF OF NAT	BACT-PSD OTHER CASE-BY-
NUCOR STEEL	02/08/2010	(83 TOTAL)	C)		7.	6 GAS*	CASE
NUCOR STEEL - BERKELEY	05/05/2008	VACUUM DEGASSER BOILER	\$0.21	l mmbtu/h	GOOD COMBUSTION PRACTICES PER MANUFACTURER'S GUIDANCE NATURAL GAS COMBUSTION WITH GOOD	0.007	6 LB/MMBTU	BACT-PSD
NUCOR STEEL - BERKELEY	05/05/2008	TUNNEL FURNACE BURNERS	58	3 MMBTU/H	MANUFACTURER'S GUIDANCE	0.007	6 LB/MMBTU	BACT-PSD
NUCOR STEEL TUSCALOOSA, INC	. 03/09/2017	Electric Arc Furnace	0)		0.005	2 GR/DSCF	BACT-PSD
NUCOR STEEL TUSCALOOSA, INC	. 03/09/2017	Electric Arc Furnace	c)		0.004	9 GR/DSCF	BACT-PSD
NUCOR STEEL TUSCALOOSA, INC	. 03/09/2017	Electric Arc Furnace	0	þ		0.0018	B GR/DSCF	BACT-PSD
NUCOR STEEL TUSCALOOSA, INC	. 03/09/2017	Austenitizing Furnace (40.6 MMBtu/hr) Tempering Furnace (35	c)		0.0076	5 LB/MMBTU	BACT-PSD
NUCOR STEEL TUSCALOOSA, INC	. 03/09/2017	MMBtu/hr)	C)		0.0076	5 LB/MMBTU	BACT-PSD
NUCOR STEEL TUSCALOOSA, INC	. 03/09/2017	Car Bottom Furnaces (45 MMBtu/hr, each)	c)		0.0076	ELB/MMBTU	BACT-PSD
NUCOR STEEL TUSCALOOSA, INC	. 03/09/2017	TK Engergizer Ladle Heater (5 MMBtu/hr)	C)		0.0076	5 LB/MMBTU	BACT-PSD
OREGON CLEAN ENERGY CENTER	8 06/18/2013	Auxillary Boiler	99	9 MMBtu/H	Clean burning fuel, only burning natural gas	0.79) LB/H	BACT-PSD

FACILITY NAME	PERMIT ISSUANCE DATE	PROCESS NAME	THROUGHPUT	THROUGHPUT UNIT	CONTROL METHOD DESCRIPTION		CASE-BY-CASE BASIS
OREGON CLEAN ENERGY CENTER	06/18/2013	2 Combined Cycle Combustion Turbines-Mitsubishi, without duct burners	47917	MMSCF/rolling 12-MO	clean burning fuel, only natural gas	11.3 LB/H	BACT-PSD
OREGON CLEAN ENERGY CENTER	06/18/2013	2 Combined Cycle Combustion Turbines-Mitsubishi, with duct burners 2 Combined Cycle Combustion	47917	MMSCF/rolling 12-MO	clean burning fuel, only natural gas	10.1 LB/H	BACT-PSD
OREGON CLEAN ENERGY CENTER	06/18/2013	Turbines-Siemens, with duct burners	51560	MMSCF/rolling 12-MO	clean burning fuel, only natural gas	14 LB/H	BACT-PSD
OREGON CLEAN ENERGY CENTER	06/18/2013	2 Combined Cycle Combustion Turbines-Siemens, without duct burners	515600	MMSCF/rolling 12- months	clean burning fuel, only natural gas	13.3 LB/H	BACT-PSD
PSEG FOSSIL LLC SEWAREN GENERATING STATION	03/10/2016	Combined Cycle Combustion Turbine with Duct Burner firing natural gas	0		Use of clean burning fuel like natural gas	12 LB/H	BACT-PSD
PSEG FOSSIL LLC SEWAREN GENERATING STATION	03/10/2016	Combined Cycle Combustion Turbine with Duct Burner firing natural gas	0		Use of natural gas a clean burning fuel	22.6 LB/H	BACT-PSD
PSEG FOSSIL LLC SEWAREN GENERATING STATION PSEG FOSSIL LLC SEWAREN GENERATING STATION	03/10/2016 03/10/2016	Combined Cycle Combustion Turbine with Duct Burner firing natural gas Auxiliary Boiler firing natural gas	0 687	MMCFT/YR	Use of natural gas a clean burning fuel Use of natural gas a clean burning	22.6 LB/H 0.26 LB/H	BACT-PSD BACT-PSD
PSEG FOSSIL LLC SEWAREN GENERATING STATION	03/10/2016	Auxiliary Boiler firing natural gas	687	MMCFT/YR	use of natural gas a clean burning fue!	0.4 LB/H	BACT-PSD
PSEG FOSSIL LLC SEWAREN GENERATING STATION	03/10/2016	Auxiliary Boiler firing natural gas	687	MMCFT/YR	use of natural gas a clean burning fuel	0.4 LB/H	BACT-PSD
PSEG FOSSIL LLC SEWAREN GENERATING STATION	03/07/2014	Combined Cycle Combustion Turbine -Siemens turbine without Duct Burner	33691	MMCF/YR	Use of Natural Gas as a clean burning fuel	10.5 LB/H	BACT-PSD
PSEG FOSSIL LLC SEWAREN GENERATING STATION	03/07/2014	Combined Cycle Combustion Turbine -Siemens turbine without Duct Burner	33691	MMCF/YR	USE OF NATURAL GAS A CLEAN BURNING FUEL	13 LB/H	BACT-PSD
PSEG FOSSIL LLC SEWAREN GENERATING STATION	03/07/2014	Combined Cycle Combustion Turbine -Siemens turbine without Duct Burner	33691	MMCF/YR	USE OF NATURAL GAS A CLEAN BURNING FUEL	13 LB/H	OTHER CASE-BY- CASE
PSEG FOSSIL LLC SEWAREN GENERATING STATION	03/07/2014	COMBINED CYCLE COMBUSTION TURBINE WITH DUCT BURNER - SIEMENS	33691	MMCF/YR	Use of natural gas a clean burning fuel	10.6 LB/H	BACT-PSD

FACILITY NAME	PERMIT ISSUANCE DAT	E PROCESS NAME	THROUGHPUT		CONTROL METHOD DESCRIPTION	EMISSION LIMIT 1	CASE-BY-CASE BASIS
P5EG FOSSIL LLC SEWAREN GENERATING STATION	03/07/2014	COMBINED CYCLE COMBUSTION TUR8INE WITH DUCT BURNER - SIEMENS	33691 M	IMCF/YR	Use of natural gas a clean burning fuel	14 LB/H	BACT-PSD
PSEG FOSSIL LLC SEWAREN GENERATING STATION	03/07/2014	COMBINED CYCLE COMBUSTION TURBINE WITH DUCT BURNER - SIEMENS COMBINED CYCLE	33691 M	IMCF/YR	Use of natural gas a clean burning fuel	14 LB/H	OTHER CASE-BY- CASE
PSEG FOSSIL LLC SEWAREN GENERATING STATION	03/07/2014	COMBUSTION TURBINE WITH DUCT BURNER - GENERAL ELECTRIC COMBINED CYCLE	33691 M	IMCF/YR	Use of natural gas only as a clean burning fuel	14.6 LB/H	OTHER CASE-BY- CASE
PSEG FOSSIL LLC SEWAREN GENERATING STATION	03/07/2014	COMBUSTION TURBINE WITH DUCT BURNER - GENERAL ELECTRIC COMBINED CYCLE	33691 M	IMCF/YR	Use of natural gas only as a clean burning fuel	14.6 LB/H	BACT-PSD
PSEG FOSSIL LLC SEWAREN GENERATING STATION	03/07/2014	COMBUSTION TURBINE WITH DUCT BURNER - GENERAL ELECTRIC COMBINED CYCLE COMBINED CYCLE	33691 M	IMCF/YR	Use of Natural Gas a clean burning fue!	9.B LB/H	BACT-PSD
PSEG FOSSIL LLC SEWAREN GENERATING STATION	03/07/2014	GENERAL ELECTRIC	33691 M	IMCF/YR	Use of Natural Gas as a clean burning fuel	8.7 LB/H	BACT-PSD
PSEG FOSSIL LLC SEWAREN GENERATING STATION	03/07/2014	COMBUSTION TURBINE WITHOUT DUCT BURNER - GENERAL ELECTRIC COMBINED CYCLE	33691 M	MCF/YR	Use of Natural Gas as a clean burning fuel	12.7 LB/H	BACT-PSD
PSEG FOSSIL LLC SEWAREN GENERATING STATION	03/07/2014	COMBUSTION TURBINE WITHOUT DUCT BURNER - GENERAL ELECTRIC	33691 M	MCF/YR	Use of natural gas as a clean burning fuel	12.7 LB/H	OTHER CASE-BY- CASE
PSEG FOSSIL LLC SEWAREN GENERATING STATION	03/10/2016	Combined Cycle Combustion Turbine without Duct Burner Firing Natural Gas	28169501 M	MBTU/YR	USE OF NATURAL GAS A CLEAN BURNING FUEL	4.7 LB/H	BACT-PSD
PSEG FOSSIL LLC SEWAREN GENERATING STATION	03/10/2016	Combined Cycle Combustion Turbine without Duct Burner Firing Natural Gas	28169501 M	MBTU/YR	Use of natural gas a clean burning fuel	14.4 LB/H	BACT-PSD
PSEG FOSSIL LLC SEWAREN GENERATING STATION	03/10/2016	Combined Cycle Combustion Turbine without Duct Burner Firing Natural Gas	28169501 M	MBTU/YR	Use of natural gas a clean burning fuel	14.4 LB/H	BACT-PSD
RENAISSANCE POWER LLC	11/01/2013	EU-HEATERSC: Natural gas- fired fuel heater used for heating natural gas prior to combustion in the CTGs. Misc. boilers, furnaces, and heaters	20 M	MBTU/H	Good combustion practices	0.009 LB/MMBTU	8ACT-PSD

ŀ

FACILITY NAME	PERMIT ISSUANCE DATE	PROCESS NAME	THROUGHPUT	THROUGHPUT UNIT	CONTROL METHOD DESCRIPTION	EMISSION LIMIT 1 EMISSION LIMIT	1 CASE-BY-CASE BASIS
RENAISSANCE POWER LLC	11/01/2013	EU-HEATERSC: Natural gas- fired fuel heater used for heating natural gas prior to combustion in the CTGs. Misc. boilers, furnaces, and heaters	20	ммвти/н	Good combustion practices	0.009 LB/MMBTU	BACT-PSD
RENAISSANCE POWER LLC	11/01/2013	EU-HEATERSC: Natural gas- fired fuel heater used for heating natural gas prior to combustion in the CTGs. Misc. boilers, furnaces, and heaters	20	ммвти/н	Good combustion practices	0.009 LB/MMBTU	BACT-PSD
		FG-AUX8OILER1-2; Two (2) natural gas-fired auxiliary			·		BACT DED
RENAISSANCE POWER LLC	11/01/2013	boilers. FG-AUXBOILER1-2; Two (2) natural gas-fired auxiliary	40	ММВТU/Н	Good combustion practices.	0.005 LB/MMBTU	BACT-PSD
RENAISSANCE POWER LLC	11/01/2013	boilers. FG-AUXBOILER1-2; Two (2)	40	ММВТU/Н	Good combustion practices.	0.005 LB/MMBTU	BACT-PSD
RENAISSANCE POWER LLC	11/01/2013	natural gas-fired auxiliary boilers.	40	MMBTU/H	Good combustion practices.	0.005 LB/MMBTU	BACT-PSD
SALEM HARBOR STATION REDEVELOPMENT	01/30/2014	Auxiliary Boiler	80	MMBTU/H		0.005 LB/MMBTU	BACT-PSD
SALEM HARBOR STATION REDEVELOPMENT	01/30/2014	Auxiliary Boiler	80	MMBTU/H	Compliance with NESHAP Subpart A for flare	0.005 LB/MMBTU	BACT-PSD
ST. JAMES METHANOL PLANT	06/30/2017	FL1-13 - Process Flare (EQT0008)	2.17	MMBTU/hr	performance standards. Correct Flare Design and Proper Combustion. Compliance with NESHAP Subpart A for flare	1.41 LB/HR	BACT-PSD
ST. JAMES METHANOL PLANT	06/30/2017	FL1-13 - Process Flare (EQT0008)	2.17	MMBTU/hr	performance standards. Correct Flare Design and Proper Combustion.	1.41 LB/HR	BACT-PSD OTHER CASE-BY-
LP/SUNBURY SES SUNBURY GENERATION	04/01/2013	DEW POINT HEATER	15	MMBTU/H		0.008 LB/MMBTU	CASE OTHER CASE-BY-
LP/SUNBURY SES	04/01/2013	AUXILIARY BOILER (REPOWER) Combined Cycle Combustion Turbine AND DUCT BURNER	106000	MMBTU		0.008 LB/MMBTU	CASE OTHER CASE-BY-
LP/SUNBURY SES	04/01/2013	(3)	2538000	MMBTU/H		0.0088 LB/MMBTU	CASE
TROUTDALE ENERGY CENTER, LLC	03/05/2014	Auxiliary boiler	39.B	MMBTU/H	Good combustion practices; Utilize only natural gas.	0	BACT-PSD
WEST DEPTFORD ENERGY STATION	07/18/2014	Combined Cycle Combustion Turbine without Duct Burner	20282	MMCF/YR	Use of natural gas a clean burning fuel	6 LB/H	BACT-PSD
WEST DEPTFORD ENERGY STATION	07/18/2014	Combined Cycle Combustion Turbine without Duct Burner	20282	MMCF/YR	Use of natural gas a clean burning fuel	10 LB/H	BACT-PSD
WEST DEPTFORD ENERGY	07/18/2014	Combined Cycle Combustion Turbine without Duct Burner	20282	MMCF/YR	Use of natural gas a clean burning fuel	10 LB/H	BACT-PSD

Table C-2. Search Results for Particulate Control Devices Installed on Natural Gas Fired Ovens, Dryers, and Burners (<300 MMBtu/hr)

FACILITY NAME	PERMIT ISSUANCE DATE	PROCESS NAME	THROUGHPUT	THROUGHPUT UNIT	CONTROL METHOD DESCRIPTION	EMISSION LIMIT 1	CASE-BY-CASE BASIS	
WEST DEPTFORD ENERGY STATION	07/18/2014	Combined Cycle Combustion Turbine with Duct Burner	20282	MMCF/YR	Use of Natural gas a clean burning fuel	15.1 LB/H	BACT-PSD	
WEST DEPTFORD ENERGY STATION	07/18/2014	Combined Cycle Combustion Turbine with Duct Burner	20282	MMCF/YR	Use of Natural gas a clean burning fuel	21.55 LB/H	BACT-PSD	
WEST DEPTFORD ENERGY STATION	07/18/2014	Combined Cycle Combustion Turbine with Duct Burner	20282	MMCF/YR	Use of Natural Gas a clean burning fuel	21.55 LB/H	BACT-PSD	
WOODBRIDGE ENERGY CENTER	07/25/2012	boilers less than 100 MMBtu/hr	2000	hours/year	use of Natural gas	0.17 LB/H	OTHER CASE-BY- CASE	
WOODBRIDGE ENERGY CENTER	07/25/2012	Commercial/Institutional size boilers less than 100 MMBtu/hr	2000	hours/year		0.46 LB/H	OTHER CASE-BY- CASE	
WOODBRIDGE ENERGY CENTER	07/25/2012	boilers less than 100 MMBtu/hr	2000	hours/year	Use of Natural gas	0.46 LB/H	OTHER CASE-BY- CASE	
WOODBRIDGE ENERGY CENTER	07/25/2012	Combined Cycle Combustion Turbine with Duct Burner	40297.6	mmcubic ft/year	Good Combustion Practices and use of Natural gas,a clean burning fuel.	8.2 LB/H	OTHER CASE-BY- CASE	
WOODBRIDGE ENERGY CENTER	07/25/2012	Combined Cycle Combustion Turbine with Duct Burner	40297.6	mmcubic ft/year	Good Combustion Practices and use of Natural gas,a clean burning fuel.	19.1 LB/H	BACT-PSD	
WOODBRIDGE ENERGY CENTER	07/25/2012	Combined Cycle Combustion Turbine with Duct Burner	40297.6	mmcubic ft/year	Good Combustion Practices and use of Natural gas,a clean burning fuel.	19.1 LB/H	OTHER CASE-BY- CASE	
WOODBRIDGE ENERGY CENTER	07/25/2012	Combined Cycle Combustion Turbine w/o duct burner	40297.6	mmcubic ft/year	use of natural gas only which is a clean burning fuel	4.8 LB/H	OTHER CASE-BY- CASE	
WOODBRIDGE ENERGY CENTER	07/25/2012	Combined Cycle Combustion Turbine w/o duct burner	40297.6	mmcubic ft/year	Use of Natural gas,a clean burning fuel.	12.1 LB/H	OTHER CASE-BY- CASE	
WOODBRIDGE ENERGY CENTER	07/25/2012	Combined Cycle Combustion Turbine w/o duct burner	40297.6	mmcubic ft/year	use of natural gas only which is a clean burning fuel	12.1 LB/H	OTHER CASE-BY- CASE	
FACILITY NAME	PERMIT ISSUANCE DATE	PROCESS NAME	THROUGHPUT	THROUGHPUT UNIT	CONTROL METHOD DESCRIPTION	EMISSION LIMIT 1	EMISSION LIMIT 1 UNIT	CASE-BY-CASE BASIS
--	-------------------------	---	------------------	---	---	----------------------	--------------------------	-----------------------
	A COM THE AND		1817 N. C. S. C.	Ovens		and the second		
NUCOR STEEL LOUISIANA	05/24/2010	SLG-402 - SLAG MILL DRYER STACK	75.4	4 Т/Н	BACT is to purchase natural gas containing no more than 2000 gr of Sulfur as Hydrogen Sulfide per MM scf.	0.0	2 LB/H	BACT-PSD
NUCOR STEEL LOUISIANA	05/24/2010	PCI-101 - PCI Mill Vent	85.1	1 MMBTU/H	purchase natural gas containing no more than 2000 grains of Sulfur per MM scf	0.0	5 LB/H	BACT-PSD
OWENS CORNING INSULATION SYSTEMS, LLC OWENS CORNING INSULATION	05/05/2017	curing oven	(0	good operating practices	(0 LB/T	BACT-PSD
SYSTEMS, LLC	05/05/2017	blowing chamber, vertical	(Ö	good operating practices		D LB/T	BACT-PSD
			Sector Sector	Dryers		NIR STORE SE		
ADM CORN PROCESSING -		INDIRECT-FIRED DDGS		and a subject of the				
CEDAR RAPIDS	06/29/2007	DRYER SMALL HEATERS AND DRYERS SN-05 THROUGH	93.7	7 MMBTU/H	COMBUSTION OF NATURAL GAS AND GOOD	(3 PPMVD	BACT-PSD
BIG RIVER STEEL LLC	09/18/2013	19 DRYERS, MGO COATING	c	0 COMBUSTION OF NACTICE S.88 LB, COMBUSTION OF NATURAL GAS AND GOOD X1		3 LB/MMBTU X10^-4	BACT-PSD	
BIG RIVER STEEL LLC	09/18/2013	LINE	38	3 MMBTU/H	COMBUSTION PRACTICE FEEDSTOCK OIL WITH NO MORE THAN 3%	5.88	3 LB/MMBTU	BACT-PSD
DEGUSSA ENGINEERED CARBONS LP	11/29/2007	CARBON BLACK DRYER UNITS 1 AND 2 NATURAL GAS SPACE			SULFUR CONTENT. FEEDSTOCK TESTING FOR SULFUR CONTENT, DAILY RECORDS.	290.4	↓LB/H	BACT-PSD
GP ALLENDALE LP	11/25/2008	18) NATURAL GAS SPACE HEATERS - 14 UNITS (ID	20.89	9 MMBTU/H		0.01	L LB/H	BACT-PSD
GP CLARENDON LP	02/10/2009	17)	20.89	9 MMBTU/H		0.03	L LB/H	BACT-PSD
GRAIN PROCESSING CORPORATION	12/08/2015	CORN GLUTEN FREE, GLUTEN, MALTODEXTRIN DRYERS Two DDGS Dryers A &: B/DDGS Cooling	93	3 MMBTU/H	WET SCRUBBERS FOR ALL DRYERS	10) PPMV	BACT-PSD
HOMELAND ENERGY SOLUTIONS, LLC	08/26/2011	Equipment Two DDGS Dryers C & D/DDGS Cooling	250) MMBTU/H		0.02	? LB/MMBTU	BACT-PSD
HOMELAND ENERGY SOLUTIONS, LLC	08/26/2011	Drum/Distillation Equipment	250	MMBTU/H		0.02	ELB/MMBTU	BACT-PSD
LAKE CHARLES CHEMICAL COMPLEX ALUMINA UNIT	05/23/2014	Collector Vent Stack (EQT 1004) Spray Drver #4 Dust	137	7 MM BTU/HR	Use of natural gas with a sulfur content of no more than 0.005 gr/scf (annual average)	8.00	5 LB/HR	BACT-PSD
LAKE CHARLES CHEMICAL COMPLEX ALUMINA UNIT	05/23/2014	Collector Vent Stack (EQT 1005)	98	5 MM BTU/HR	Use of natural gas with a sulfur content of no more than 0.005 gr/scf (annual average)	5.81	L LB/HR	BACT-PSD
MOUNT VERNON MILL	03/25/2010	Line 1 Post-Dryer (\$31)	7.7	/ MMBTU/H		0.0006	i LB/MMBTU	BACT-PSD
MOUNT VERNON MILL	03/25/2010	Line 2 Post - Dryer (S32)	7.7	/ MMBTU/H		0.0006	S LB/MMBTU	BACT-PSD
MOUNT VERNON MILL	03/25/2010	Line 3 Post - Dryer (S33)	7.7	/ MMBTU/H		0.0006	i LB/MMBTU	BACT-PSD
MOUNT VERNON MILL	03/25/2010	Line 4 Post - Dryer (S34)	7.7	/ MMBTU/H	BACT is to purchase natural gas containing no	0.0006 LB/MMBTU		BACT-PSD
NUCOR STEEL LOUISIANA	05/24/2010	SLG-402 - SLAG MILL DRYER STACK	75.4	↓ т/н	more than 2000 gr of Sulfur as Hydrogen Sulfide per MM scf.	0.02	2 LB/H	BACT-PSD

FACILITY NAME	PERMIT ISSUANCE DATE	PROCESS NAME	THROUGHPUT	THROUGHPUT UNIT	CONTROL METHOD DESCRIPTION	EMISSION LIMIT 1	EMISSION LIMIT 1 UNIT	CASE-BY-CASE BASIS
OHIO RIVER CLEAN FUELS, LLC	11/20/2008	GAS FIRED HEATERS (3) F-T CATALYST ROTARY		4 MMBTU/H	GOOD COMBUSTION PRACTICES	0.01	L8/H	BACT-PSD
OHIO RIVER CLEAN FUELS, LLC	11/20/2008		2256	4 SCF/H	GOOD COMBUSTION PRACTICES	0.02	LB/H	BACT-PSD
OHIO RIVER CLEAN FUELS, LLC	11/20/2008	DRYING LINES (10)	3	1 MMBTU/H		0.24	LB/H	BACT-PSD
AMERICAS, INC.	09/19/2008	FIRED)	2	5 MMBTU/H	WET SCRUBBER	0.0001	LB/MMBTU	BACT-PSD
and the state of the state of the			West Part State	Burners	an and a start starting of an extension of the start start	terrand and the	1.1.2 AN 42 MAG	State State
DANIA BEACH ENERGY CENTER	12/04/2017	Two natural gas heaters	9.	9 MMBtu/hr	Clean fuel	2	GRAINS S / 100 SCF	BACT-PSD
DANIA BEACH ENERGY CENTER	12/04/2017	99.8 MMBtu/hr auxiliary boiler	99.	8 MM8tu/hr	Clean fuels	c)	BACT-PSD
DUKE ENERGY HANGING ROCK ENERGY	12/18/2012	Turbines (4) (model GE 7FA) Duct Burners Off	17	2 MW	Burning natural gas in an efficient combustion turbine burning low sulfur fuel	1.2	LB/H	BACT-PSD
DUKE ENERGY HANGING ROCK ENERGY	12/18/2012	Turbines (4) (model GE 7FA) Duct Burners On	17	2 MW	Burning natural gas in an efficient combustion turbine burning low sulfur fuel	1.52	LB/H	BACT-PSD
FULTON SAWMILL	06/08/2017	11.4 MBF/HR CONTINUOUS DIRECT- FIRED LUMBER DRY KILN, 40 MMBTU/HR NATURAL GAS BURNER, & 4 MMBTU/HR NATURAL GAS CONDENSATE EVAPORATOR	11.4	4 MBF/H		c	,	BACT-PSD
GAINES COUNTY POWER PLANT	04/28/2017	Simple Cycle Turbine	227.	5 MW	Pipeline quality natural gas; limited hours; good combustion practices	1.54	GR/100 DSCF	BACT-PSD
		Combined Cycle Turbine with Heat Recovery Steam Generator, fired Duct Burners, and Steam						
GAINES COUNTY POWER PLANT	04/28/2017	Turbine Generator Boiler less than 100	420	5 MW	Pipeline quality natural gas use of natural gas a clean fuel and a low	1.54	GR/100 DSCF	BACT-PSD
HESS NEWARK ENERGY CENTER	11/01/2012	MMBtu/hr Combined cylce turbine	51.9	9 mmcubic ft/year	sulfur fuel	0.08	LB/H	N/A
HESS NEWARK ENERGY CENTER	11/01/2012	with duct burner Combined Cycle	39463	3 mmcubic ft/year*	Use of natural gas, a clean low sulfur fuel	2.5	L8/H	N/A
HESS NEWARK ENERGY CENTER	11/01/2012	Combustion Turbine FIVE (5) GASIFIER	39463	3 MMCubic ft/yr	Use of natural gas a clean low sulfur fuel	2.8	LB/H	N/A
INDIANA GASIFICATION, LLC	06/27/2012	PREHEAT BURNERS SIEMENS SGT6-5000F COMBUSTION TURBINE #1 AND #2 (NATURAL GAS FIRED) WITH 44S MMBTU/HR NATURAL	3:	5 MMBTU/H, EACH	USE OF CLEAN BURNING GASEOUS FUEL	0.0006	lb/mmbtu	BACT-PSD
KLEEN ENERGY SYSTEMS, LLC	02/25/2008	GAS DUCT BURNER	2.:	L MMCF/H		4.9	LB/H	BACT-PSD
FACILITY	06/22/2009	ACID GAS FLARE	0.27	7 MMBTU/H	NO ADDITIONAL CONTROL FUELED BY NATURAL GAS OR SUBSTITUTE	0.01	LB/H	BACT-PSD
FACILITY	06/22/2009	HEATER	34.2	2 MMBTU/H	NATURAL GAS (SNG)	0.02	LB/H	BACT-PSD
LAKE CHARLES GASIFICATION FACILITY	06/22/2009	GASIFIER STARTUP PREHEATER BURNERS (5)	35	5 MM8TU/H	FUELED BY NATURAL GAS OR SUBSTITUTE NATURAL GAS (SNG)	0.02	LB/H	BACT-PSD

FACILITY NAME	PERMIT ISSUANCE DATE	PROCESS NAME	THROUGHPUT	THROUGHPUT UNIT	CONTROL METHOD DESCRIPTION	EMISSION LIMIT 1	EMISSION LIMIT 1 UNIT	L CASE-BY-CASE BASIS
LAKE CHARLES GASIFICATION								
FACILITY	06/22/2009	THERMAL OXIDIZERS (2)	40.9	MMBTU/H	NO ADDITIONAL CONTROL	22.9	2 LB/H	BACT-PSD
LAKE CHARLES GASIFICATION		METHANATION STARTUP			FUELED BY NATURAL GAS OR SUBSTITUTE			
FACILITY	06/22/2009	HEATERS	56.9	MMBTU/H	NATURAL GAS (SNG)	0.0	3 LB/H	BACT-PSD
MEDICAL AREA TOTAL ENERGY		Combustion Turbine with			clean fuels - using natural gas as primary fuel			OTHER CASE-BY-
PLANT	07/01/2016	Duct Burner	203.4	MMBTU/H	and ultra low sulfur diesel as backup fuel.	0.	6 PPMVD@15% O2	CASE
		Combined Cycle						
		Combustion Turbine						
MIDDLESEX ENERGY CENTER,		firing Natural Gas with			USE OF NATURAL GAS A LOW SULFUR FUEL			OTHER CASE-BY-
LLC	07/19/2016	Duct Burner	4000	h/yr	CLEAN FUEL	6.6	4 LB/H	CASE
MIDDLESEX ENERGY CENTER,					USE OF NATURAL GAS A CLEAN BURNING			OTHER CASE-BY-
LLC	07/19/2016	AUXILIARY BOILER	4000	H/YR	LOW SULFUR FUEL	0.12	B LB/H	CASE
		Combined Cycle						
		Combustion Turbine						
MIDDLESEX ENERGY CENTER,		firing Natural Gas without			USE OF NATURAL GAS A CLEAN BURNING			OTHER CASE-BY-
LLC	07/19/2016	Duct Burner	8040	H/YR	LOW SULFUR FUEL	5.6	2	CASE
					NATURAL GAS COMBUSTION WITH GOOD			
		VACUUM DEGASSER			COMBUSTION PRACTICES PER			
NOCOR STEEL - BERKELEY	05/05/2008	BOILER	50.21	MMBTU/H	MANUFACTURER'S GUIDANCE	0.000	6 LB/MMBTU	BACT-PSD
1					NATURAL GAS COMBUSTION WITH GOOD			
NUCOR STEEL REPRELEY	05/05/2009	DUDNEL FURNACE	50			0.000		RACT DOD
NUCOR STEEL TUSCALOOSA	03/03/2008	DONNERS	20	NIND O/ FI	MANOFACTORER'S GOIDANCE	0.000	D LD/ WINNETO	BACI-FSD
INC	03/09/2017	Electric Arc Eurnace	0			0.4	4 IB/TON	BACT-PSD
NUCOR STEEL TUSCALOOSA	05/05/2027	Austenitizing Euroace	0			0.4	1 20/1011	DACTION
INC.	03/09/2017	(40.6 MMBtu/hr)	0			0.000	6 LB/MMBTU	BACT-PSD
NUCOR STEEL TUSCALOOSA,		Tempering Furnace (35	-					
INC.	03/09/2017	MMBtu/hr)	0			0.000	6 LB/MMBTU	BACT-PSD
NUCOR STEEL TUSCALOOSA,		Car Bottom Furnaces (45						
INC.	03/09/2017	MMBtu/hr, each)	0			0.000	6	BACT-PSD
NUCOR STEEL TUSCALOOSA,		TK Engergizer Ladle						
INC.	03/09/2017	Heater (5 MMBtu/hr)	0			0.000	6 LB/MMBTU	BACT-PSD
		2 Combined Cycle						
		Combustion Turbines-						
OREGON CLEAN ENERGY		Mitsubishi, without duct		MMSCF/rolling 12-	low sulfur fuel, only burning natural gas with			
CENTER	06/18/2013	burners	47917	MO	0.5 GR/100 SCF	0.001	4 LB/MMBTU	N/A
		2 Combined Cycle						
		Combustion Turbines-						
OREGON CLEAN ENERGY	05/10/2000	Mitsubishi, with duct		MMSCF/rolling 12-	low sulfur fuel, only burning natural gas with		/	
CENTER	06/18/2013	burners	47917	MO	0.5 GR/100 SCF	0.001	4 LB/MMBTU	N/A
		2 Combined Cycle						
OPECON CLEAN ENERCY		Compussion Turbines-			law suffer first and the second second second			
CENTER	06/19/2012	siemens, with duct	EIECO	MMSCF/rolling 12-	Iow sultur fuel, only burning natural gas with	0.001		NI/A
CENTER	00/18/2015	pumers	21220	MO	0.5 GIV 100 SCF	0.001	+ LD/ MIMBIU	N/A

FACILITY NAME	PERMIT ISSUANCE DATE	PROCESS NAME	THROUGHPUT	THROUGHPUT UNIT	CONTROL METHOD DESCRIPTION	EMISSION	EMISSION LIMIT	1 CASE-BY-CASE BASIS
OREGON CLEAN ENERGY CENTER	06/18/2013	2 Combined Cycle Combustion Turbines- Siemens, without duct burners	S15600 r	MMSCF/rolling 12-	low sulfur fuel, only burning natrual gas with GR/100 SCF	0.0014		N/A
OUTOKUMPU STAINLESS USA,								,
шс	06/13/2017	Electric Arc Furnace Combined Cycle	0			0.375	B/TON	BACT-PSD
PSEG FOSSIL LLC SEWAREN GENERATING STATION	03/10/2016	Combustion Turbine with Duct Burner firing natural gas	0		use of natural gas a low sulfur fuel	10.3	EB/H	OTHER CASE-BY- CASE
GENERATING STATION	03/10/2016	natural gas Combined Cycle Combustion Turbine -	687 M	MMCFT/YR	Use of natural gas a low sulfur fuel	0.12	LB/H	CASE
PSEG FOSSIL LLC SEWAREN GENERATING STATION	03/07/2014	Siemens turbine without Duct Burner COMBINED CYCLE COMBLISTION TURBINE	33691 M	MMCF/YR	USE OF NATURAL GAS A CLEAN BURNING FUEL	5	LB/H	OTHER CASE-BY- CASE
PSEG FOSSIL LLC SEWAREN GENERATING STATION	03/07/2014	WITH DUCT BURNER - SIEMENS COMBINED CYCLE	33691 M	MMCF/YR	Use of natural gas a clean burning fuel	S.1	LB/H	OTHER CASE-BY- CASE
PSEG FOSSIL LLC SEWAREN GENERATING STATION	03/07/2014	WITH DUCT BURNER - GENERAL ELECTRIC	33691 M	MMCF/YR	Use of natural gas only as a clean burning fuel	S.2	LB/H	OTHER CASE-BY- CASE
PSEG FOSSIL LLC SEWAREN GENERATING STATION	03/07/2014	COMBINED CYCLE COMBUSTION TURBINE WITHOUT DUCT BURNER - GENERAL ELECTRIC Combined Cycle Combined Turbine	33691 M	MMCF/YR	Use of Natural gas a low sulfur fuel	4.9	LB/H	OTHER CASE-BY- CASE
PSEG FOSSIL LLC SEWAREN GENERATING STATION SALEM HARBOR STATION	03/10/2016	without Duct Burner Firing Natural Gas	28169501 N	MMBTU/YR	Use of natural gas which is low sulfur fuel	8.5	LB/H	OTHER CASE-BY- CASE
REDEVELOPMENT SUNBURY GENERATION	01/30/2014	Auxiliary Boiler	80 N	MMBTU/H		0.9	PPMVD@3% O2	CASE OTHER CASE-BY-
LP/SUNBURY SES	04/01/2013	DEW POINT HEATER AUXILIARY BOILER	15 M	MMBTU/H		0.003	LB/MMBTU	CASE OTHER CASE-BY-
LP/SUNBURY SES	04/01/2013	(REPOWER)	106000 N	MMBTU		0.003	LB/MMBTU	CASE
SUNBURY GENERATION LP/SUNBURY SES	04/01/2013	Combustion Turbine AND DUCT BURNER (3) Combined Cycle	2538000 N	MMBTU/H		0.0024	LB/MMBTU	OTHER CASE-BY- CASE
WEST DEPTFORD ENERGY STATION	07/18/2014	Combustion Turbine without Duct Burner Combined Cycle	20282 N	MMCF/YR	Use of natural gas a clean burning fuel	4.94	LB/H	BACT-PSD
WEST DEPTFORD ENERGY STATION	07/18/2014	Combustion Turbine with Duct Burner Commercial/Institutional	20282 N	MMCF/YR	Use of natural gas a clean burning fuel	6.56	LB/H	BACT-PSD
WOODBRIDGE ENERGY CENTER	07/25/2012	size bollers less than 100 MMBtu/hr Combined Cycle	2000 h	nours/year	Use of natural gas	0.162	LB/H	OTHER CASE-BY- CASE
WOODBRIDGE ENERGY CENTER	07/25/2012	Combustion Turbine with Duct Burner Combined Cycle	40297.6 n	nmcubic ft/year	Good Combustion Practices and use of Natural gas, a clean burning fuel.	4.9	LB/H	OTHER CASE-BY- CASE
WOODBRIDGE ENERGY CENTER	07/25/2012	Combustion Turbine w/o duct burner	40297.6 n	nmcubic ft/year	Use of only natural gas a clean burning fuel	4.1	LB/H	OTHER CASE-BY- CASE

FACILITY NAME	PERMIT ISSUANCE	PROCESS NAME	THROUGHPUT	THROUGHPUT UNIT	CONTROL METHOD DESCRIPTION	EMISSION LIMIT 1	EMISSION LIMIT	CASE-BY-CASE BASIS
		and the second second second		Ovens		S. Persona		
		1.00					LB/TON GLASS	
INWOOD	09/15/2017	Curing Oven ES25A	6.67	tons per hour	LNB w/ FGR	0.55	PULLED	BACT-PSD
NC COMMUNICATION TECH	01/06/2007	OR INDIRECT	5.4	MMBTU/H	LOW NOX -BURNER	18	S PPMVD@3%O2	BACT-PSD
NUCOR STEEL LOUISIANA	05/24/2010	PCI-101 - PCI Mill Vent	85.1	MMBTU/H	Good combustion practices	5.07	7 LB/H	BACT-PSD
NUCOR STEEL LOUISIANA	05/24/2010	SLG-402 - SLAG MILL DRYER STACK	75.4	т/н	LOW NOX FUEL COMBUSTION	1.34	ŧLB/H	BACT-PSD
OWENS CORNING INSULATION					good operating practices, good combustion			
SYSTEMS, LLC	05/05/2017	curing oven	0		practices, low NOx burners,	C) LB/T	BACT-PSD
OWENS CORNING INSULATION		blowing chamber,					-	
SYSTEMS, LLC	05/05/2017	vertical	0		good operating practices	0) LB/T	BACT-PSD
VOLKSWAGEN GROUP OF AMERICA, CHATTANOOGA OPERATIONS	12/03/2012	CLEARCOAT DRYING OVENS THERMAL OXIDIZER (2)	6.82	MMBTU/H	LOW-NOX BURNERS	3.1	I LB/H	BACT-PSD
VOLKSWAGEN GROUP OF AMERICA, CHATTANOOGA OPERATIONS	10/10/2008	CLEARCOAT DRYING OVENS THERMAL OXIDIZERS (2)	8.19	MMBTU/H	LOW NOX BURNERS	c	2	BACT-PSD
VOLKSWAGEN GROUP OF AMERICA, CHATTANOOGA OPERATIONS	10/10/2008	DRYING OVENS	6.47	ммвти/н	LOW-NOX BURNERS OR EQUIVALENT CONTROL	0.05	S LB/MMBTU	BACT-PSD
VOLKSWAGEN GROUP OF AMERICA, CHATTANOOGA OPERATIONS	10/10/2008	E-COAT DRYING OVEN THERMAL OXIDIZERS (2)	8.87	MMBTU/H	LOW-NOX BURNER	0.05	5 LB/MMBTU	BACT-PSD
VOLKSWAGEN GROUP OF AMERICA, CHATTANOOGA OPERATIONS	12/03/2012	E-COAT DRYING OVEN THERMAL OXIDIZERS (2)	6.82	MMBTU/H	LOW NOX BURNERS	2.52	2 LB/H	BACT-PSD
the second second second second	Sent 2 and the set of the	Salaria de la desta de seres	States and states	Dryers	and the second			
ALLOYS PLANT	10/09/2015	TWO 4.44 MMBTU/HR STRIP DRYERS	4.44	ммвти/н	LOW NOX BURNER	0.07	I LB/MMBTU	OTHER CASE-BY- CASE
ALLOYS PLANT	10/09/2015	TWO 1.37 MMBTU/HR STRIP DRYERS	1.37	MMBTU/H	LOW NOX BURNER	0.07	7 LB/MMBTU	BACT-PSD
BIG ISLAND MINE & REFINERY	03/27/2017	Unit 6 Calciner	2102400	tpy	Low NOx burners with FGR	9.5	i LB/H	BACT-PSD
BIG ISLAND MINE & REFINERY	03/27/2017	Unit 7 Calciner	3328800	tpy	Low NOx burners and FGR	14	4 LB/H	BACT-PSD
BIG ISLAND MINE & REFINERY	03/27/2017	Unit 4 Dryer	1138800	tpy	low nox burners	13.4	ILB/H	BACT-PSD
BIG RIVER STEEL LLC	09/18/2013	SMALL HEATERS AND DRYERS SN-05 THROUGH 19	0		LOW NOX BURNERS COMBUSTION OF CLEAN FUEL GOOD COMBUSTION PRACTICES	0.08	s lb/mmbtu	BACT-PSD
BIG RIVER STEEL LLC	09/18/2013	DRYER5, MGO COATING LINE	38	ммвти/н	LOW NOX BURNERS COMBUSTION OF CLEAN FUEL GOOD COMBUSTION PRACTICES	0.1	1 LB/MMBTU	BACT-PSD

FACILITY NAME	PERMIT ISSUANCE DATE	PROCESS NAME	THROUGHPUT THROU	GHPUT UNIT CONTROL METHOD DESCRIPTION	EMISSION LIMIT 1	EMISSION LIMIT 1 UNIT	CASE-BY-CASE BASIS
BIG RIVER STEEL LLC	09/18/2013	SMALL HEATERS AND DRYERS SN-0S THROUGH 19	0	GOOD OPERATING PRACTICES	0.0002	LB/MMBTU	BACT-PSD
BIG RIVER STEEL LLC	09/18/2013	DRYERS, MGO COATING LINE	38 MMBTU	/H GOOD OPERATING PRACTICES	0.0002	LB/MMBTU	BACT-PSD
CARBO CERAMICS INC MILLEN FACILITY	04/06/2012	SPRAY DRYER	47 MMBTU	/H GOOD COMBUSTION TECHNIQUES. TEST METHOD 7 OR 7E	B.3	LB/H	BACT-PSD
DEGUSSA ENGINEERED CARBONS LP	11/29/2007	CARBON BLACK DRYER UNITS 1 AND 2			56	LB/H	BACT-PSD
FLAKEBOARD AMERICA LIMITED - BENNETTSVILLE MDF	12/22/2009	FACE PRIMARY DRYER	45 MMBTU	/H LOW-NOX BURNERS	0		BACT-PSD
FLAKEBOARD AMERICA LIMITED - BENNETTSVILLE MDF	12/22/2009	CORE PRIMARY DRYER	45 MMBTU	/H LOW-NOX BURNERS	0		BACT-PSD
GERDAU AMERISTEEL WILTON	05/29/2007	NORTH LADLE DRYER	5 MMBTU	/H GOOD COMBUSTION PRACTICES	100	LB/MMCF	BACT-PSD
GERDAU AMERISTEEL WILTON	05/29/2007	SOUTH LADLE DRYERS AND PREHEATERS	5 MMBTU	/H GOOD COMBUSTION CONTROLS	100	LB/MMCF	BACT-PSD
GERDAU AMERISTEEL WILTON	05/29/2007	NORTHWEST LADLE DRYERS	5 MMBTU	/H GOOD COMBUSTION CONTROLS	100	LB/MMCF	BACT-PSD
GP ALLENDALE LP	11/25/2008	NATURAL GAS SPACE HEATERS - 14 UNITS (ID 18)	20.89 MMBTU	/н	1.99	LB/H	BACT-PSD
GP CLARENDON LP	02/10/2009	NATURAL GAS SPACE HEATERS - 14 UNITS (ID 17)	20.89 MMBTU	/н	1.99	LB/H	BACT-PSD
GRAIN PROCESSING CORPORATION	11/23/2011	GLUTEN DRYER NO. 2	30 MMBTU	/H LOW-NOX BURNERS AND FLUE GAS REIRCULATION	0.06	LB/MMBTU	OTHER CASE-BY- CASE
GRAIN PROCESSING CORPORATION	12/08/2015	CORN GLUTEN FREE, GLUTEN, MALTODEXTRIN DRYERS	93 MMBTU	LOW NOX BURNERS WITH FLUE GAS /H RECIRCULATION. STEAM INJECTION FOR GERM DRYER	0.047	LB/MMBTU	BACT-PSD
GRAYLING PARTICLEBOARD	05/09/2017	FGDRYERRTO (2 Natural Gas Fired Rotary Dryers	139.9 MMBTU	Good combustion practices and low NOx /H burners	95	LB/H	BACT-PSD
GRAYLING PARTICLEBOARD	05/09/2017	EUPRESS in FGPRESSCOOL	0	Good design and operation practices.	2.5	LB/H	BACT-PSD
GRAYLING PARTICLEBOARD	05/09/2017	EUCOOLING in FGPRESSCOOL	0	Good design and operation practices.	2.5	LB/H	BACT-PSD
GRAYLING PARTICLEBOARD	05/09/2017	EUTOH in FGTOH	38 MMBTU	/H NOx burners.	0.05	LB/MMBTU	BACT-PSD

	PERMIT ISSUANCE	PROCESS NAME	THROUGHPUT		CONTROL METHOD DESCRIPTION	EMISSION	EMISSION LIMIT	CASE-BY-CASE
	DATE	PROCESSIMAME				LIMIT 1	1 UNIT	BASIS
GRAYLING PARTICLEBOARD	05/09/2017	EUFLTOS1 in FGTOH EUPTL1 & EUPTL2	10.2 M	IMBTU/H	Good design and combustion practices, low NOx burners.	0.05	LB/MMBTU	BACT-PSD
GRAYLING PARTICLEBOARD	05/09/2017	in FGPTL (2 paper treating lines)	3.4 N	імвти/н	Good design and combustion practices, low NOx burners.	0.05	LB/MMBTU	BACT-PSD
LAKE CHARLES CHEMICAL COMPLEX ALUMINA UNIT	05/23/2014	Collector Vent Stack (EQT 1004)	137 N	1M BTU/HR	Low NOx burners	5.2	LB/HR	BACT-PSD
LAKE CHARLES CHEMICAL COMPLEX ALUMINA UNIT	05/23/2014	Spray Dryer #4 Dust Collector Vent Stack (EQT 100S)	98 M	IM BTU/HR	Low NOx burners	3.74	LB/HR	BACT-PSD
MOUNT VERNON MILL	03/25/2010	Line 1 Post-Dryer (S31)	7.7 M	IMBTU/H		0.00	LB/MMBTU	BACT-PSD
MOUNT VERNON MILL	03/25/2010	Line 2 Post - Dryer (532)	7.7 M	імвти/н		0.0	LB/MMBTU	BACT-PSD
MOUNT VERNON MILL	03/25/2010	Line 3 Post - Dryer (S33)	7.7 N	1МВТU/Н		0.00	LB/MMBTU	BACT-PSD
MOUNT VERNON MILL	03/25/2010	Line 4 Post - Dryer (S34)	7.7 M	1МВТU/Н		0.0	LB/MMBTU	BACT-PSD
NC COMMUNICATION TECH	01/06/2007	DRYER OR OVEN, DIRECT OR INDIRECT	S.4 N	имвти/н	LOW NOX -BURNER	11	PPMVD@3%O2	BACT-PSD
NUCOR STEEL LOUISIANA	05/24/2010	SLG-402 - SLAG MILL DRYER STACK	75.4 T/	/н	LOW NOX FUEL COMBUSTION	1.34	LB/H	BACT-PSD
OHIO RIVER CLEAN FUELS, LLC	11/20/2008	GAS FIRED HEATERS (3)	4 M	імвти/н	GOOD COMBUSTION PRACTICES	1.13	LB/H	BACT-PSD
OHIO RIVER CLEAN FUELS, LLC	11/20/2008	F-T CATALYST ROTARY DRYER	22564 50	CF/H	GOOD COMBUSTION PRACTICES	2.20	BLB/H	BACT-PSD
OHIO RIVER CLEAN FUELS, LLC	11/20/2008	COAL OR BIOMASS DRYING LINES (10)	31 M	1MBTU/H	LOW NOX BURNERS	1.32	LB/H	BACT-PSD
PYRAMAX CERAMICS, LLC - KING'S M:U FACILITY	01/27/2012	SPRAY DRYERS/PETTETIZERS	75 M	IMBTU/H	LOW NOX BURNERS AND GOOD COMBUSTION TECHNOLGY/PRACTICE	2.2	i LB/H EA	BACT-PSD
SAGOLA MILL	01/31/2008	NATURAL GAS THERMAL OIL HEATER			GOOD COMBUSTION PRACTICES	2.8	LB/H	BACT-PSD
STEEL DYNAMICS, INC. (SDI) - ENGINEERED BAR **	03/12/2010	PREHEATERS/DRYERS	0		LOW NOX BURNERS	0.	LB/MMBTU OF NOX	OTHER CASE-BY- CASE
TATE & LYLE INDGREDIENTS AMERICAS, INC.	09/19/2008	STARCH DRYER (DIRECT- FIRED)	25 N	имвти/н		0.0	LB/MMBTU	BACT-PSD
	Construction Section			Burners	The second s		A DECKS	Print States
AUBURNDALE CITRUS FACILITY	06/12/2008	COGEN EXETERA TURBINE NO. 1 W/EXISTING DUCT BURNER #1	62.7 N	имвти/н	DRY LOW NOX BURNERS	2	PPMVD	BACT-PSD
AUBURNDALE CITRUS FACILITY	06/12/2008	COGEN SYSTEM TURBINE #2 W/EXISTING DUCT BURNER #2	62.7 N	IMBTU/H	DRY LOW NOX BURNERS	2	5 PPMVD	BACT-PSD

FACILITY NAME	PERMIT ISSUANCE	PROCESS NAME	THROUGHPUT THROUGHPUT UNIT	CONTROL METHOD DESCRIPTION	EMISSION EMISSION LIMIT	CASE-BY-CASE BASIS
DANIA BEACH ENERGY CENTER	12/04/2017	Two natural gas heaters	9.9 MMBtu/hr	Manufacturer certification	0.1 LB/MMBTU	BACT-PSD
DTE GAS COMPANY - MILFORD COMPRESSOR STATION	03/24/2017	FGTURNBINES (5 Simple Cycle CTs: EUTURBINE1, EUTURBINE2, EUTURBINE3, EUTURBINE4, EUTURBINE5)	10504 HP	Dry ultra-low NOx burners.	15 PPM	BACT-PSD
		FGAUXBOILERS (6 auxiliary boilers EUAUXBOIL2A, EUAUXBOIL3A, EUAUXBOIL2B, EUAUXBOIL3B,				
DTE GAS COMPANY - MILFORD COMPRESSOR STATION	03/24/2017	EUAUXBOIL3C, EUAUXBOIL3C)	3 MMBTU/H	Ultra-low NOx burners and good combustion practices.	20 PPM AT 3% O2	BACT-PSD
DTE GAS COMPANY - MILFORD COMPRESSOR STATION	03/24/2017	EUN_EM_GEN (Natural gas emergency engine).	205 H/YR	Low NOx design (turbo charger and after cooler) and good combustion practices.	4 LB/H	BACT-PSD
DUKE ENERGY HANGING ROCK ENERGY	12/18/2012	Turbines (4) (model GE 7FA) Duct Burners Off	172 MW	Dry Low NOx burners and Selective Catalytic Reduction	21.1 LB/H	BACT-PSD
DUKE ENERGY HANGING ROCK ENERGY	12/18/2012	Turbines (4) (model GE 7FA) Duct Burners On	172 MW	Dry Low NOx burners and Selective Catalytic Reduction	27.6 LB/H	BACT-PSD
FILER CITY STATION	11/17/2017	EUAUXBOILER (Auxiliary boiler)	182 MMBTU/H	LNB that incorporate internal (within the burner) FGR and good combustion practices.	0.04 LB/MMBTU	BACT-PSD
		11.4 MBF/HR CONTINUOUS DIRECT- FIRED LUMBER DRY KILN, 40 MMBTU/HR NATURAL GAS BURNER, & amp; 4 MMBTU/HR NATURAL GAS CONDENSATE				
FULTON 5AWMILL	06/08/2017	EVAPORATOR	11.4 MBF/H	Dout ow NOv humans (control), natural das	0	BACT-PSD
GAINES COUNTY POWER PLANT	04/28/2017	Simple Cycle Turbine	227.5 MW	good combustion practices, limited operating hours (prevention)	9 PPMV	BACT-PSD
		Combined Cycle Turbine with Heat Recovery Steam Generator, fired				
GAINES COUNTY POWER PLANT	04/28/2017	Duct Burners, and Steam Turbine Generator	426 MW	Low NOx burners	2 PPMVD	BACT-PSD
GERDAU SAYREVILLE	03/26/2018	Billet Reheat Furnace	1178 MMSCF/YR	Low NOx Burners	0.1 LB/MMBTU	RACT
GROSSMONT HOSPITAL	11/06/2012	Two 29.4 MMBtu/hr Boilers with low NOx burners	0	Low NOx burners	9 PPMVD@3% O2	OTHER CASE-BY- CASE
HESS NEWARK ENERGY CENTER	11/01/2012	Boiler less than 100 MMBtu/hr	51.9 mmcubic ft/year	Low NOx burners and flue gas recirculation	0.01 LB/MMBTU	LAER

FACILITY NAME	PERMIT ISSUANCE DATE	PROCESS NAME	THROUGHPUT		CONTROL METHOD DESCRIPTION	EMISSION LIMIT 1	EMISSION LIMIT 1 UNIT	CASE-BY-CASE BASIS
HESS NEWARK ENERGY CENTER	11/01/2012	Combined cylce turbine with duct burner	39463	mmcubic ft/year*	Seleictive catalytic reduction (SCR) system		2 PPMVD	LAER
HESS NEWARK ENERGY CENTER	11/01/2012	Combined Cycle Combustion Turbine	39463	MMCubic ft/yr	Selective Catalytic Reduction (SCR) System and use of natural gas a clean burning fuel	0.7	S LB/H	LAER
HOLLAND BOARD OF PUBLIC WORKS - EAST 5TH STREET	12/04/2013	Fuei pre-heater (EUFUELHTR)	3.7	MMBTU/H	Good combustion practices.	0.5	S LB/H	BACT-PSD
HOLLAND BOARD OF PUBLIC WORKS - EAST STH STREET	12/04/2013	Auxiliary Boiler A (EUAUXBOILERA)	55	MMBTU/H	Low NOx burners and good combustion practices	0.0	5 LB/MMBTU	BACT-PSD
HOLLAND BOARD OF PUBLIC WORKS - EAST STH STREET	12/04/2013	Auxiliary Boiler B (EUAUXBOILERB)	95	MMBTU/H	Dry low NOx burners, flue gas recirculation and good combustion practices.	0.0	5 lb/mmbtu	BACT-PSD
HOLLAND BOARD OF PUBLIC WORKS - EAST 5TH STREET	12/04/2013	Emergency Engine natural gas (EUNGENGINE)	1000	kW	Good combustion practices		2 G/HP-H	BACT-PSD
INDIANA GASIFICATION, LLC	06/27/2012	FIVE (S) GASIFIER PREHEAT BURNERS	35	MMBTU/H, EACH	GOOD COMBUSTION PRACTICES	0.	1 LB/MMBTU	BACT-PSD
INDIANA GASIFICATION, LLC	06/27/2012	REGENERATIVE THERMAL OXIDIZER (RTO) ON THE ACID GAS REMOVAL UNIT VENTS (AGR)	38.8	MMBTU/H, EACH	LOW NOX PERFORMANCE WITH NATURAL GAS INJECTION SYSTEM	1.9	8 LB/H	BACT-PSD
INTERNATIONAL STATION POWER	12/20/2010	Sigma Thermal Auxiliary Heater (1)	12.5	MMBTU/H	Low NOx Burners and Flue Gas Recirculation	з	2 LB/MMSCF	BACT-PSD
INTERNATIONAL STATION POWER PLANT	12/20/2010	Duct Burners (4)	140	MMBTU/H	Selective Catalytic Reduction		5 PPMDV	BACT-PSD
INTERNATIONAL STATION POWER PLANT	12/20/2010	GE LM6000PF-25 Turbines (4)	59900	hp ISO	Selective Catalytic Reduction and Dry Low NOx Combustion		S PPMDV	BACT-PSD
INWOOD	09/15/2017	Fiber Forming Section	6.67	tons per hour	Good Combustion Practices	0.2	1 PULLED	BACT-PSD
INWOOD	09/15/2017	Glass Melting Furnace ES22	6.67	tons per hour	Oxygen Enrichment and combustion controls (CC)		LB/TON GLASS 3 PULLED	BACT-PSD
KLEEN ENERGY SYSTEMS, LLC	02/25/2008	SIEMENS SGT6-5000F COMBUSTION TURBINE #1 AND #2 (NATURAL GAS FIRED) WITH 445 MMBTU/HR NATURAL GAS DUCT BURNER	2.1	MMCF/H	LOW NOX BURNER AND SELECTIVE CATALYTIC REDUCTION	15	S LB/H	LAER
LAKE CHARLES GASIFICATION	06/22/2009	ACID GAS FLARE	0.27	MMBTU/H	NO ADDITIONAL CONTROL	0.0	5 LB/H	BACT-PSD
LAKE CHARLES GASIFICATION	06/22/2009	SHIFT REACTOR STARTUP HEATER	34.2	MMBTU/H	GOOD DESIGN AND PROPER OPERATION	3.3	S LB/H	BACT-PSD
LAKE CHARLES GASIFICATION	06/22/2009	GASIFIER STARTUP PREHEATER BURNERS (S)	35	MMBTU/H	GOOD DESIGN AND PROPER OPERATION	3.8	5 LB/H	BACT-PSD
LAKE CHARLES GASIFICATION	06/22/2009	THERMAL OXIDIZERS (2)	40.9	MMBTU/H	NO ADDITIONAL CONTROL	2.4	S LB/H	BACT-PSD
LAKE CHARLES GASIFICATION	06/22/2009	METHANATION STARTUP HEATERS	56.9	MMBTU/H	GOOD DESIGN AND PROPER OPERATION	5.5	8 LB/H	BACT-PSD
MEDICAL AREA TOTAL ENERGY PLANT	07/01/2016	Combustion Turbine with Duct Burner	203.4	MMBTU/H	Dry Low NOx Combustor & Selective Catalytic Reduction		2 PPMVD@15% O2	OTHER CASE-BY- CASE

FACILITY NAME	PERMIT ISSUANCE DATE	PROCESS NAME	THROUGHPUT	THROUGHPUT UNIT	CONTROL METHOD DESCRIPTION	EMISSION LIMIT 1	EMISSION LIMIT	CASE-BY-CASE BASIS
MIDDLESEX ENERGY CENTER, LLC	07/19/2016	Combined Cycle Combustion Turbine firing Natural Gas with Duct Burner	4000) h/yr	SELECTIVE CATALYTIC REDUCTION AND DRY LOW NOX	:	2 PPMVD@15%O2	LAER
MIDDLESEX ENERGY CENTER, LLC	07/19/2016	AUXILIARY BOILER	4000) H/YR	Low NOx burners and Flue Gas Recirculation (FGR) and use of natural gas a clean burning fuel	0.97	5 LB/H	LAER
MIDDLESEX ENERGY CENTER, LLC	07/19/2016	Combined Cycle Combustion Turbine firing Natural Gas without Duct Burner	8040) H/YR	Selective Catalytic Reduction System and Dry Low NOx	:	2 PP MVD@ 15%O2	LAER
MIDWEST FERTILIZER COMPANY LLC	03/23/2017	002 NATURAL GAS	70	MMBTU/HR	GOOD COMBUSTION PRACTICES	12.61	1 LB/H	BACT-PSD
MIDWEST FERTILIZER COMPANY LLC	03/23/2017	AUXILIARY BOILER5 (EU- 012A, EU-012B, EU- 012C)	218.6	5 ммвти/н	LOW NOX BURNERS WITH FLUE GAS RECIRCULATION AND GOOD COMBUSTION PRACTICES	20.4	4 LB/MMCF EACH	BACT-PSD
MIDWEST FERTILIZER COMPANY LLC	03/23/2017	AMMONIA STORAGE FLARE (EU-016)	1.1	MMBTU/H		12	5 LB/H	BACT-PSD
MIDWEST FERTILIZER COMPANY LLC	03/23/2017	FRONT END FLARE EU- 017	1.12	MMBTU/H		0.06	B LB/MMBTU	BACT-PSD
MIDWEST FERTILIZER COMPANY LLC	03/23/2017	BACK END FLARE (EU- 018)	1.12	MMBTU/H		0.06	B LB/MMBTU	BACT-PSD
MOUNDSVILLE COMBINED CYCLE POWER PLANT	11/21/2014	Auxiliary Boiler	100) mmBtu/hr	Ultra Low-NOx Burners, Flue-Gas Recirculation, & Good Combustion Practices	:	2 LB/H	BACT-PSD
NUCOR STEEL - BERKELEY	05/05/2008	VACUUM DEGASSER BOILER	S0.21	ММВТИ/Н	ULTRA-LOW NOX NATURAL GAS FIRED BURNERS	0.03	5 LB/MMBTU	BACT-PSD
NUCOR STEEL - BERKELEY	05/05/2008	TUNNEL FURNACE BURNERS	58	8 MMBTU/H	LOW NOX BURNERS	0.:	1 LB/MMBTU	BACT-PSD
NUCOR STEEL DIVISION	11/07/2017	ELECTRIC ARC FURNACE	1350000) TON/YR	BAGHOUSE	0.42	2 LB	BACT-PSD
NUCOR STEEL TUSCALOOSA, INC.	03/09/2017	Electric Arc Furnace	C)		10	5 LB/HR	BACT-PSD
NUCOR STEEL TUSCALOOSA, INC.	03/09/2017	(40.6 MMBtu/hr)	C)	Low NOx Burners	0.19	5 LB/MMBTU	BACT-PSD
NUCOR STEEL TUSCALOOSA, INC.	03/09/2017	Tempering Furnace (35 MMBtu/hr)	C)	Low NOx Burners	0.067	7 LB/MMBTU	BACT-PSD
NUCOR STEEL TUSCALOOSA, INC.	03/09/2017	Car Bottom Furnaces (45 MMBtu/hr, each)	O)	Low NOx Burners	0.067	7 LB/MMBTU	BACT-PSD
NUCOR STEEL TUSCALOOSA, INC.	03/09/2017	TK Engergizer Ladle Heater (5 MMBtu/hr)	C	I		0.1	l lb/mmbtu	BACT-PSD
OREGON CLEAN ENERGY CENTER	06/18/2013	Auxillary Boiler	99	MMBtu/H	low NOx burners and flue gas recirculation	1.98	3 LB/H	BACT-PSD
OREGON CLEAN ENERGY CENTER	06/18/2013	2 Combined Cycle Combustion Turbines- Mitsubishi, without duct burners	47917	, MMSCF/rolling 12- MO	selective catalytic reduction (SCR); dry low NOx combustors; lean fuel technology	22.6	5 LB/H	BACT-PSD
OREGON CLEAN ENERGY CENTER	06/18/2013	2 Combined Cycle Combustion Turbines- Mitsubishi, with duct burners	47917	, MMSCF/rolling 12- MO	selective catalytic reduction (SCR); dry low NOx combustors; lean fuel technology	20.8	3 LB/H	BACT-PSD

FACILITY NAME	PERMIT ISSUANCE DATE	PROCESS NAME	THROUGHPUT	THROUGHPUT UNIT	CONTROL METHOD DESCRIPTION	EMISSION EMISSION LI LIMIT 1 1 UNIT	MIT CASE-BY-CASE BASIS
OREGON CLEAN ENERGY CENTER	06/18/2013	2 Combined Cycle Combustion Turbines- Siemens, with duct burners	51560	MMSCF/rolling 12- MO	selective catalytic reduction (SCR); dry low NOx combustors; lean fuel technology	21 LB/H	BACT-PSD
OREGON CLEAN ENERGY CENTER	06/18/2013	2 Combined Cycle Combustion Turbines- Siemens, without duct burners	515600	MMSCF/rolling 12- months	selective catalytic reduction (SCR); dry low NOx combustors; lean fuel technology	22 LB/H	BACT-PSD
OUTOKUMPU STAINLESS USA, LLC	06/13/2017	Electric Arc Furnace	c)	Direct Evacuation Control	0.6 LB/TON	BACT-PSD
PSEG FOSSIL LLC SEWAREN GENERATING STATION	03/10/2016	Combined Cycle Combustion Turbine with Duct Burner firing natural gas	c)	SCR and use of natural gas a clean burning fuel	2 PPMVD@159	602 LAER
PSEG FOSSIL LLC SEWAREN GENERATING STATION	03/10/2016	Auxiliary Boiler firing natural gas	687	MMCFT/YR	low NOx burners and flue gas recirculation (FGR)	0.8 LB/H	LAER
PSEG FOSSIL LLC SEWAREN GENERATING STATION	03/07/2014	Combined Cycle Combustion Turbine - Siemens turbine without Duct Burner	33691	L MMCF/YR	Selective Catalytic Reduction and Dry Low NOx	2 PPMVD@ 15	6 O2 LAER
PSEG FOSSIL LLC SEWAREN GENERATING STATION	03/07/2014	COMBINED CYCLE COMBUSTION TURBINE WITH DUCT BURNER - SIEMENS	33691	L MMCF/YR	Selective Catalytic Reduction System (SCR)	2 PPMVD	LAER
PSEG FOSSIL LLC SEWAREN GENERATING STATION	03/07/2014	COMBINED CYCLE COMBUSTION TURBINE WITH DUCT BURNER - GENERAL ELECTRIC	33691	L MMCF/YR	Selective Catalytic Reduction Systems(SCR) and Dry Low NOx	2 PPMVD@159	io2 laer
PSEG FOSSIL LLC SEWAREN GENERATING STATION	03/07/2014	COMBINED CYCLE COMBUSTION TURBINE WITHOUT DUCT BURNER - GENERAL ELECTRIC	33691	L MMCF/YR	Selective Catalytic Reduction System (SCR) and Dry Low NOx	2 PPMVD@159	OZ LAER
PSEG FOSSIL LLC SEWAREN GENERATING STATION	03/10/2016	Combined Cycle Combustion Turbine without Duct Burner Firing Natural Gas	28169501	l MMBTU/YR	SELECTIVE CATALYTIC REDUCTION (SCR) SYSTEM	2 PPMVD@159	GO2 LAER
RENAISSANCE POWER LLC	11/01/2013	EU-HEATERSC: Natural gas-fired fuel heater used for heating natural gas prior to combustion in the CTGs. Misc. boilers, furnaces, and heaters	20) MMBTU/H	Good combustion practices	0.15 LB/MMBTU	BACT-PSD
RENAISSANCE POWER LLC	11/01/2013	FG-AUXBOILER1-2; Two (2) natural gas-fired auxiliary boilers.	40	MMBTU/H	Good combustion practices.	0.035 LB/MMBTU	BACT-PSD
SALEM HARBOR STATION REDEVELOPMENT	01/30/2014	Auxiliary Boiler	80	MMBTU/H	ultra low NOx burners	0.011 LB/MMBTU	LAER
ST. JAMES METHANOL PLANT	06/30/2017	FL1-13 - Process Flare (EQT0008)	2.17	7 MMBTU/hr	Compliance with NESHAP Subpart A for flare performance standards. Correct Flare Design and Proper Combustion.	12.82 LB/HR	BACT-PSD

FACILITY NAME	PERMIT ISSUANCE DATE	PROCESS NAME	THROUGHPUT	THROUGHPUT UNIT	CONTROL METHOD DESCRIPTION	EMISSION LIMIT 1	EMISSION LIMIT	CASE-BY-CASE BASIS
SUNBURY GENERATION LP/SUNBURY SES	04/01/2013	DEW POINT HEATER	15	5 MMBTU/H		0.085	LB/MMBTU	OTHER CASE-BY- CASE
SUNBURY GENERATION LP/SUNBURY SES	04/01/2013	AUXILIARY BOILER (REPOWER)	106000) MMBTU		0.036	LB/MMBTU	OTHER CASE-BY- CASE
SUNBURY GENERATION LP/SUNBURY SE5	04/01/2013	Combined Cycle Combustion Turbine AND DUCT BURNER (3)	2538000) MMBTU/H	SCR	2	РРМ	OTHER CASE-BY- CASE
TROUTDALE ENERGY CENTER, LLC	03/05/2014	Auxiliary boiler	39.8	B MMBTU/H	Utilize Low-NOx burners and FGR.	0.035	LB/MMBTU	BACT-PSD
WEST DEPTFORD ENERGY STATION	07/18/2014	Combined Cycle Combustion Turbine without Duct Burner	20282	2 MMCF/YR	Selective Catalytic Reduction System (SCR) and use of natural gas a clean burning fuel	2	PPMVD@15%O2	LAER
WEST DEPTFORD ENERGY STATION	07/18/2014	Combined Cycle Combustion Turbine with Duct Burner	20282	2 MMCF/YR	Selective Catalytic reduction (SCR) and use of natural gas a clean burning fuel	23	LB/H	LAER
WOODBRIDGE ENERGY CENTER	07/25/2012	Commercial/Institutional size boilers less than 100 MMBtu/hr	2000) hours/year	Low NOx burners	0.01	LB/MMBTU	LAER
WOODBRIDGE ENERGY CENTER	07/25/2012	Combined Cycle Combustion Turbine with Duct 8urner	40297.6	5 mmcubic ft/year	Low NOx burners and Selective Catalytic Reduction System	19.8	LB/H	LAER
WOODBRIDGE ENERGY CENTER	07/25/2012	Combined Cycle Combustion Turbine w/o duct burner	40297.6	6 mmcubic ft/year	DLN combustion system with SCR on each of the two combustion turbines and use of only natural gas as fuel.	2	PPMVD	LAER

FACILITY NAME	PERMIT ISSUANCE DATE	PROCESS NAME	THROUGHPUT	THROUGHPUT UNIT	CONTROL METHOD DESCRIPTION	EMISSION	EMISSION LIMIT 1	CASE-BY-CASE
and the groups are going		A ST E LAST STREET	Salar Salar	Ovens		A Section of the		no Secondar
ALLEN FOODS, INC.	01/08/2013	BUN OVEN (048)	8.4	ммвт∪/н	CATALYTIC OXIDIZER	4.	3 LB/H	OTHER CASE-BY- CASE
ALLEN FOODS, INC.	01/08/2013	BREAD OVEN (028)	10.08	ммвти/н	CATALYTIC OXYDIZER	4.	3 LB/H	OTHER CASE-BY- CASE
HEXCEL CORPORATION	11/25/2009	PURGE CURE OVENS 26, 27, 28			2 REGENERATIVE THERMAL OXIDIZERS.	30	0 Т	BACT-PSD
KENWORTH TRUCK CO.	01/29/2008	DRYING OVENS AND FLASH TUNNES FOR CAB BOOTHS	4.58	ммвти/н		9.6	3 LB/H	BACT-PSD
NEWCO METALS, INC.	01/08/2016	THERMAL SCRAP PRE- TREATMENT OVEN EU-01 THROUGH EU-03	2	MMBTU/H	TWO AFTERBURNERS PER OVEN OPERATING IN SERIES	0.	4 LB/T OF SCRAP	OTHER CASE-BY- CASE
NUCOR STEEL LOUISIANA	05 /24/201 0	SLG-402 - SLAG MILL DRYER STACK	75.4	т/н	GOOD COMBUSTION PRACTICES	0.1	S LB/H	BACT-PSD
NUCOR STEEL LOUISIANA	05/24/2010	PCI-101 - PCI Mill Vent	85.1	ммвти/н	good combustion practices	0.5	6 LB/H	BACT-PSD
OWENS CORNING INSULATION SYSTEMS, LLC	05/05/2017	curing oven	0		good operating practices, regenerative thermal oxidizer		O LB/T	BACT-PSD
OWENS CORNING INSULATION SYSTEMS, LLC	05/05/2017	blowing chamber, vertical	0		good operating practices		0 LB/T	BACT-PSD
PERFECTION BAKERIES, INC.	06/30/2016	BREAD BAKING LINE EU01, OVEN EU02, PROOF BOX EU03	66.88	MMBTU/H		7	0 T/12CONSECT MON PERD	OTHER CASE-BY- CASE
PYROLYX USA INDIANA LLC	05/18/2017	PYROLYSIS OVENS	2.39	ммвти/н	THERMAL OXIDIZER	0.7	2 LB/H	OTHER CASE-BY- CASE
SUBARU OF INDIANA AUTOMOTIVE, INC.	12/23/2014	PAINT HEATERS, OVENS	50	ммвти/н		0.00	5 LB/MMBTU	BACT-PSD
SUBARU OF INDIANA AUTOTMOTIVE, INC.	10/4/2012	ED CURING OVEN	6	MMBTU/H	CATALYTIC INCINERATOR	9	0 % DESTRUCTION	BACT-PSD

FACILITY NAME	PERMIT ISSUANCE DATE	PROCESS NAME	THROUGHPUT THROUGHPUT UNIT	CONTROL METHOD DESCRIPTION	EMISSION EMISSION LIMIT	1 CASE-BY-CASE BASIS
SUBARU OF INDIANA AUTOMOTIVE, INC.	02/01/2017	Natural Gas ovens, heaters, comfort heaters ⁢10 MMBtu/hr	10 MMBtu/hr		0.005 LB/MM8TU	BACT-PSD
		Street States and	Dryers		A wat for the left share to	
ADM CORN PROCESSING - CEDAR RAPIDS	06/29/2007	INDIRECT-FIRED DDGS DRYER	93.7 MMBTU/H	ROUTE PROCESS OFF-GASSES THROUGH THE DRYERS COMBUSTION CHAMBER.	98 % REDUCTION	BACT-PSD
ALLOYS PLANT	10/09/2015	TWO 4.44 MMBTU/HR STRIP DRYERS	4.44 MMBTU/H		0.006 LB/MMBTU	OTHER CASE-BY- CASE
ALLOYS PLANT	10/09/2015	TWO 1.37 MMBTU/HR STRIP DRYERS	1.37 MMBTU/H	GCP	0.006 LB/MMBTU	BACT-PSD
AMERICAN PACKAGING CORP.	06/22/2017	Printing presses, corona treaters, dryers, and laminators	60000 CFM	Regenerative thermal oxidizer. 100 % capture based on EPA Method 204 and at least 98% VOC destruction removal efficiency.	0	LAER
AVON PARK FACILITY/GARGILL JUICE NORTH AMERICA	03/29/2007	PEEL DRYER WITH WASTE HEAT RECOVERY	62.4 MMBTU/H	PROCESS IMPROVEMENTS (I.E. CENTRIFUGES, ETC) TO RECOVER MORE CITRUS OIL.	85 %	BACT-PSD
BIG ISLAND MINE & REFINERY	03/27/2017	Unit 4 Cooler/Classifier	1138800 tpy		D	BACT-PSD
BIG ISLAND MINE & REFINERY	03/27/2017	Unit 6 Calciner	2102400 tpy	sound mining practices	0	BACT-PSD
BIG ISLAND MINE & REFINERY	03/27/2017	Unit 7 Calciner	33(8800 tpy	sound mining practices	0	BACT-PSD
BIG RIVER STEEL LLC	09/18/2013	SMALL HEATERS AND DRYERS 5N-05 THROUGH 19	0	COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE	0.0054 LB/MMBTU	BACT-PSD
BIG RIVER STEEL LLC	09/18/2013	DRYERS, MGO COATING LINE	38 MMBTU/H	COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE	0.0054 LB/MMBTU	BACT-PSD
CARBO CERAMICS INC MILLEN FACILITY	04/06/2012	SPRAY DRYER	47 MMBTU/H		6.82 T/YR	BACT-PSD
CUSTOM BLENDERS INDIANA, INC.	07/09/2014	DRYER	10 MMBTU/H		1.75 LB/TON RAW MATERIAL	OTHER CASE-BY- CASE

FACILITY NAME	PERMIT ISSUANCE DATE	PROCESS NAME	THROUGHPUT	THROUGHPUT UNIT	CONTROL METHOD DESCRIPTION	EMISSION LIMIT 1	EMISSION LIMIT 1 UNIT	CASE-BY-CASE BASIS
DEGUSSA ENGINEERED CARBONS LP	11/29/2007	CARBON BLACK DRYER UNITS 1 AND 2				19.5	LB/H	BACT-PSD
FLAKEBOARD AMERICA LIMITED - BENNETTSVILLE MDF	12/22/2009	FACE PRIMARY DRYER	45	MMBTU/H	GOOD COMBUSTION PRACTICES AND NATURAL GAS AS FUEL	o		BACT-PSD
FLAKEBOARD AMERICA LIMITED - BENNETTSVILLE MDF	12/22/2009	CORE PRIMARY DRYER	45	MMBTU/H	GOOD COMBUSTION PRACTICES AND NATURAL GAS AS FUEL	0		BACT-PSD
GP ALLENDALE LP	11/25/2008	NATURAL GAS SPACE HEATERS - 14 UNITS (ID 18)	20.89	MMBTU/H		0.11	LB/H	BACT-PSD
GP CLARENDON LP	02/10/2009	NATURAL GAS SPACE HEATERS - 14 UNITS (ID 17)	20.89	MMBTU/H		0.11	LB/H	BACT-PSD
GRAIN PROCESSING CORPORATION	09/13/2013	STARCH DRYER	30	MMBTU/H		7.7	LB/H	BACT-PSD
GRAIN PROCESSING CORPORATION	09/13/2013	STARCH DRYER	30	MMBTU/H		7.7	LB/H	BACT-PSD
GRAIN PROCESSING CORPORATION	12/08/2015	CORN GLUTEN FREE, GLUTEN, MALTODEXTRIN DRYERS	93	MMBTU/H	THERMAL OXIDIZERS - GERM DRYERS, CGF DRYERS, GLUTEN DRYER MALTODEXTRIN DRYER - WET SCRUBBER	10	PPMV	BACT-PSD
GRAYLING PARTICLEBOARD	05/09/2017	EUTFL1, EUTFL2 & amp; EUTFL3 in FGTFL (3 Thermally Fused Lamination Lines)	0		Good design and operation practices.	0.05	LB/H	BACT-PSD
GRAYLING PARTICLEBOARD	05/09/2017	FGDRYERRTO (2 Natural Gas Fired Rotary Dryers FGMTRLHNDL (3 Overs	139.9	MMBTU/H	Good combustion practices and RTO.	7.1	LB/H	BACT-PSD
GRAYLING PARTICLEBOARD	05/09/2017	mills EUOVERS1, EUOVERS2, EUOVERS3 in FGMTRLHNDL)	0		Good design and operating practices	0.75	LB/H	BACT-PSD
GRAYLING PARTICLEBOARD	05/09/2017	EUFINES in FGMTRLHNDL	0		Good design and operating practices.	1.93	LB/H	BACT-PSD
GRAYLING PARTICLEBOARD	05/09/2017	EUBARKSTG in FGMTRLHNDL	0		Good design and operating practices.	0.55	LB/H	BACT-PSD

FACILITY NAME	PERMIT ISSUANCE DATE	PROCESS NAME	THROUGHPUT THROUGHPUT UNIT	CONTROL METHOD DESCRIPTION	EMISSION EMISSION LIMIT 1 LIMIT 1 UNIT	L CASE-BY-CASE BASIS
GRAYLING PARTICLEBOARD	05/09/2017	EUBLENDING in FGBLNDFRM	0	Good design and operation practices.	2.43 LB/H	BACT-PSD
GRAYLING PARTICLEBOARD	05/09/2017	EUFORMING in FGBLNDFRM	0	Good design and operation practices.	9.34 LB/H	BACT-PSD
GRAYLING PARTICLEBOARD	05/09/2017	EUPRESS in FGPRESSCOOL	0	Good design and operation practices.	49.5 LB/H	BACT-PSD
GRAYLING PARTICLEBOARD	05/09/2017	EUCOOLING in FGPRESSCOOL	0	Good design and operation practices.	49.5 LB/H	BACT-PSD
GRAYLING PARTICLEBOARD	05/09/2017	EUTOH in FGTOH	38 MMBTU/H	Good design and operating/combustion practices.	0.0054 LB/MMBTU	BACT-PSD
GRAYLING PARTICLEBOARD	05/09/2017	EUFLTOS1 in FGTOH	10.2 MMBTU/H	Good design and operating/combustion practices.	0.0054 LB/MMBTU	BACT-PSD
GRAYLING PARTICLEBOARD	05/09/2017	EUFCOS in FGFINISH	0	Good design and operation practices.	1.4 LB/H	BACT-PSD
GRAYLING PARTICLEBOARD	05/09/2017	EUSANDING in FGFINISH	0	Good design and operation practices.	3.32 LB/H	BACT-PSD
GRAYLING PARTICLEBOARD	05/09/2017	EUCTPSAW in FGFINISH	0	Good design and operation practices.	1.4 LB/H	BACT-PSD
GRAYLING PARTICLEBOARD	05/09/2017	EURMSILO in FGFINISH (Raw material sawdust silo)	0	Good design and operation practices.	0.54 LB/H	BACT-PSD
GRAYLING PARTICLEBOARD	05/09/2017	EUPTL1 & EUPTL2 in FGPTL (2 paper treating lines)	3.4 MMBTU/H	Good design and operating practices and low VOC coatings.	4.3 LB/H	BACT-PSD
GRAYLING PARTICLEBOARD	05/09/2017	EU-FLAKERS (7 Green flakers with baghouse, dry ESP and RTO Control)	0	RTO for VOC as well as baghouse and dry ESP. Bypass of RTO is allowed for up to 460 hours per year.	76 LB/H	BACT-PSD
LAKE CHARLES CHEMICAL COMPLEX ALUMINA UNIT	05/23/2014	Spray Dryer #3 Dust Collector Vent Stack (EQT 1004)	137 MM BTU/HR	Limiting the ethanol content of the spray dryer slurry feed streams to no more than 450 parts per million by weight (ppmw) (12 month rolling average)	147.41 LB/HR	BACT-PSD

L

Table C-5. Search Results for VOC Control Devices Installed on Natural Gas Fired Ovens, Dryers, and Burners (<300 MMBtu/hr)

FACILITY NAME	PERMIT ISSUANCE DATE	PROCESS NAME		CONTROL METHOD DESCRIPTION	EMISSION E	MISSION LIMIT 1 UNIT	CASE-BY-CASE BASIS
LAKE CHARLES CHEMICAL COMPLEX ALUMINA UNIT	05/23/2014	Spray Dryer #4 Dust Collector Vent Stack (EQT 1005)	98 MM BTU/HR	Limiting the ethanol content of the spray dryer slurry feed streams to no more than 450 parts per million by weight (ppmw) (12 month rolling average)	98.75 L	B/HR	BACT-PSD
METAL TECHNOLOGIES AUBURN, LLC	08/19/2015	NATURAL GAS-FIRED THERMAL CHIP DRYER	TONS OF METAL CHIPS AND 15 MACHINING OIL PER HOUR	THERMAL OXIDIZER	98 ⁹	6 OVERALL CONTROL	OTHER CASE-BY- CASE
MGPI OF INDIANA	05/11/2015	DDG DRYER (EU-39)	45 MMBTU/H	RTO	1.91 L	в/н	OTHER CASE-BY- CASE
MOUNT VERNON MILL	03/25/2010	Line 1 Post-Dryer (S31)	7.7 MMBTU/H		0.0055 L	B/MMBTU	BACT-PSD
MOUNT VERNON MILL	03/25/2010	Line 2 Post - Dryer (532)	7.7 MMBTU/H		0.0055 1	B.MMBTU	BACT-PSD
MOUNT VERNON MILL	03/25/2010	Line 3 Post - Dryer (S33)	7.7 MMBTU/H		0.0055 L	B/MMBTU	BACT-PSD
MOUNT VERNON MILL	03/25/2010	Line 4 Post - Dryer (S34)	7.7 MMBTU/H		0.0055 L	B/MMBTU	BACT-PSD
NATURALLY RECYCLED PROTEINS OF INDIANA, LLC	08/19/2011	ONE (1) NATURAL GAS DRYER EP1	15 MMBTU/H		7.11 נ	в/н	OTHER CASE-BY- CASE
NATURALLY RECYCLED PROTEINS OF INDIANA, LLC	08/19/2011	ONE (1) NATURAL GAS DRYER EP2	15 MMBTU/H		7.11 เ	в/н	OTHER CASE-BY- CASE
NUCOR STEEL LOUISIANA	05/24/2010	5LG-402 - 5LAG MILL DRYER STACK	75.4 T/H	GOOD COMBUSTION PRACTICES	0.15 เ	В/Н	BACT-PSD
OHIO RIVER CLEAN FUELS, LLC	11/20/2008	GAS FIRED HEATERS (3)	4 MMBTU/H	GOOD COMBUSTION PRACTICES	0.06 1	в/н	BACT-PSD
OHIO RIVER CLEAN FUELS, LLC	11/20/2008	F-T CATALYST ROTARY DRYER	22564 SCF/H	GOOD COMBUSTION PRACTICES	0.12	B/H	BACT-PSD
OHIO RIVER CLEAN FUELS, LLC	11/20/2008	COAL OR BIOMASS DRYING LINES (10)	31 MMBTU/H		0.15	.в/н	BACT-PSD

FACILITY NAME	PERMIT ISSUANCE DATE	PROCESS NAME	THROUGHPUT	THROUGHPUT UNIT	CONTROL METHOD DESCRIPTION	EMISSION LIMIT 1	EMISSION LIMIT 1 UNIT	CASE-RY-CASE
PERDUE GRAIN AND OILSEED, LLC	07/12/2017	(2) Grain Dryers		0		0.2	1 LB/HR	BACT-PSD
PERDUE GRAIN AND OILSEED, LLC	07/12/2017	Soybean Oil Extraction Plant		0		0.15	2 GAL	BACT-PSD
PERDUE GRAIN AND OILSEED, LLC	07/12/2017	(4) 27 MMBtu/hr boilers, Natural gas and No. 2 fuel oi		0		0.	1 LB/HR	BACT-PSD
PYRAMAX CERAMICS, LLC - KING'S M:U FACILITY	01/27/2012	SPRAY DRYERS/PETTETIZERS	7	75 MMBTU/H	Use of Natural Gas and propane as fuel	11.7	8 LB/H	BACT-PSD
SAGOLA MILL	01/31/2008	NATURAL GAS THERMAL OIL HEATER			GOOD COMBUSTION PRACTICES.	0.12	9 LB/H	8ACT-PSD
SOUTHWEST IOWA RENEWABLE ENERGY	04/19/2007	DDGS DRYERS + DISTILLATION	6	50 T/H	THERMAL OXIDIZER 18 MMBTU/HR	5.1	1 LB/H	BACT-PSD
TATE & LYLE INOGREDIENTS AMERICAS, INC.	09/19/2008	STARCH DRYER (DIRECT- FIRED)	:	25 MMBTU/H	WET SCRUBBER	0.00	5 LB/MMBTU	BACT-PSD
TOLEDO SUPPLIER PARK- PAINT SHOP	05/03/2007	PAINT SLUDGE DRYER	7	.5 MMBTU/H	THERMAL OXIDIZER, 7.5MMBTU/H	0.0	l lb/H	LAER
				Burners		1000	1. 1. 1. 1.	14 . L
CHOCOLATE BAYOU STEAM GENERATING (CBSG) STATION	02/17/2017	Combined Cycle Cogeneration	2	50 MW	OXIDATION CATALYST	:	L PPMDV	BACT-PSD
CHOCOLATE BAYOU STEAM GENERATING (CBSG) STATION	02/17/2017	INDUSTRIAL BOILERS		0	GOOD COMBUSTION PRACTICES	0.5	↓LB/H	BACT-PSD
DUKE ENERGY HANGING ROCK ENERGY	12/18/2012	Turbines (4) (model GE 7FA) Duct Burners Off	1	72 MW	Using efficient combustion technology	3.1	2 LB/H	BACT-PSD
DUKE ENERGY HANGING ROCK ENERGY	12/18/2012	Turbines (4) (model GE 7FA) Duct 8urners On	17	72 MW	Using efficient combustion technology	7.:	3 L 8/ H	BACT-PSD

Table C-5. Search Results for VOC Control Devices Installed on Natural Gas Fired Ovens, Dryers, and Burners (<300 MMBtu/hr)

FACILITY NAME	PERMIT ISSUANCE DATE	PROCESS NAME	THROUGHPUT THROUGHPUT UN	NIT CONTROL METHOD DESCRIPTION	EMISSION EMISSION LIMIT 1 LIMIT 1 UNIT	CASE-BY-CASE BASIS
FULTON SAWMILL	06/08/2017	11.4 MBF/HR CONTINUOUS DIRECT- FIRED LUMBER DRY KILN, 40 MMBTU/HR NATURAL GAS BURNER, & 4 MMBTU/HR NATURAL GAS CONDENSATE EVAPORATOR	11.4 M8F/H	BACT DETERMINED AS PROPER KILN OPERATION AND MAINTENANCE PRACTICES	4 LB/MBF	BACT-PSD
GAINES COUNTY POWER PLANT	04/28/2017	Simple Cycle Turbine	227.5 MW	Pipeline quality natural gas; limited hours; good combustion practices	2 PPMVD	BACT-PSD
GAINES COUNTY POWER PLANT	04/28/2017	Combined Cycle Turbine with Heat Recovery Steam Generator, fired Duct Burners, and Steam Turbine Generator	426 MW	Oxidation catalyst and good combustion practices	3.5 PPMVD	BACT-PSD
HESS NEWARK ENERGY CENTER	11/01/2012	Boiler less than 100 MMBtu/hr	51.9 mmcubic ft/year	use of natural gas a clean fuel	0.27 LB/H	LAER
HESS NEWARK ENERGY CENTER	11/01/2012	Combined cylce turbine with duct burner	39463 mmcubic ft/year*	Oxidation catalyst	1 PPMVD	LAER
HESS NEWARK ENERGY CENTER	11/01/2012	Combined Cycle Combustion Turbine	39463 MMCubic ft/yr	Oxidation Catalyst and Good combustion Practices and use of natural gas a clean burning fuel	2.9 LB/H	LAER
HIGHLANDS ENVIROFUELS	09/13/2017	Ethanol Production Process	120000 gallons/day	Liquid scrubber	19.01 LB/HR	BACT-PSD
HOLLAND BOARD OF PUBLIC WORKS - EAST 5TH STREET	12/04/2013	Fuel pre-heater (EUFUELHTR)	3.7 MMBTU/H	Good combustion practices	0.03 LB/H	BACT-PSD
HOLLAND BOARD OF PUBLIC WORKS - EAST STH STREET	12/04/2013	Auxiliary Boiler A (EUAUXBOILERA)	55 MMBTU/H	Good combustion control	0.008 LB/MMBTU	BACT-PSD
HOLLAND BOARD OF PUBLIC WORKS - EAST STH STREET	12/04/2013	Auxiliary Boiler B (EUAUXBOILERB)	95 MM8TU/H	Good combustion practices	0.008 LB/MMBTU	BACT-PSD
HOLLAND BOARD OF PUBLIC WORKS - EAST 5TH STREET	12/04/2013	Emergency Engine natural gas (EUNGENGINE)	1000 kW	Oxidation catalyst and good combustion practices	0.S G/HP-H	BACT-PSD

	PERMIT ISSUANCE DATE	PROCESS NAME	THROUGHPUT THROUGHPUT UNIT	CONTROL METHOD DESCRIPTION	EMISSION EMISSION LIMIT 1	CASE-BY-CASE BASIS
KLEEN ENERGY SYSTEMS, LLC	02/25/2008	SIEMENS SGT6-5000F COMBUSTION TURBINE #1 AND #2 (NATURAL GAS FIRED) WITH 445 MMBTU/HR NATURAL GAS DUCT BURNER	2.1 MMCF/H	SOME REDUCTIONS OF VOC ARE GAINED FROM CO CATALYST BUT ARE NOT GUARANTEED. EMISSION RATES DO NOT INCORPORATE THIS POTENTIAL REDUCTION.	10 LB/H	BACT-PSD
LYONDELL CHEMICAL BAYPORT CHOATE PLANT	06/07/2017	Reactor Furnaces	4131 MM LB/YR	FIRED WITH NATURAL GAS	0.013 LB/MMBTU	LAER
LYONDELL CHEMICAL BAYPORT CHOATE PLANT	06/07/2017	Process Vents	4131 MM LB/YR	Isobutylene absorber 94% DRE VOC for recycle to the process. The VOC-stripped absorber effluent is then routed to the flare, additional 98 % VOC DRE. The estimated combined effect approximately 99.8 % DRE.	0	LAER
LYONDELL CHEMICAL BAYPORT CHOATE PLANT	06/07/2017	MSS	0	preparations for equipment openings, storage tank maintenance, vacuum truck operations; controlled landed roof operations, with off-float emissions routed to flare; pumping process and residual storage vessel liquids to closed vessels; depressurizing and degassing process equipment and storage vessels to below 10000 ppmv concentrations prior to opening to atmosphere; routing to control the exhaust vapors (>100 ppm) from vacuum trucks in service for materials of vapor pressures greater than 0.50 psia; controlled filling vapors at frac tanks (>0.5 psia vapor pressure service) by routing to control; control device maintenance.	0	LAER
LYONDELL CHEMICAL BAYPORT CHOATE PLANT	06/07/2017	FLARE	0	Compliance with 40 CFR 60.18 to demonstrate 98-99.9 wt% VOC DRE	0	LAER
MEDICAL AREA TOTAL ENERGY PLANT	07/01/2016	Combustion Turbine with Duct Burner	203.4 MMBTU/H	Oxidation Catalyst	1.7 PPMVD@15% O2	OTHER CASE-BY- CASE
MIDDLESEX ENERGY CENTER, LLC	07/19/2016	Combined Cycle Combustion Turbine firing Natural Gas with Duct Burner	4000 h/yr	Oxidation Catalyst and good combustion practices	2 PPMVD@15%02	LAER
MIDDLESEX ENERGY CENTER, LLC	07/19/2016	AUXILIARY BOILER	4000 H/YR	USE OF NATURAL GAS A CLEAN BURNING FUEL AND GOOD COMBUSTION PRACTICES	0.488 LB/H	LAER
MIDDLESEX ENERGY CENTER, LLC	07/19/2016	Combined Cycle Combustion Turbine firing Natural Gas without Duct Burner	8040 H/YR	Oxidation catalyst and good combustion practices	1 PPMVD@15%02	LAER

FACILITY NAME	PERMIT ISSUANCE DATE	PROCESS NAME	THROUGHPUT THROUGHPUT UN	NIT CONTROL METHOD DESCRIPTION	EMISSION EMISSION LIMIT 1 LIMIT 1 UNIT	CASE-BY-CASE BASIS
MIDWEST FERTILIZER COMPANY	r 03/23/2017	STARTUP HEATER EU-002	70 MMBTU/HR	GOOD COMBUSTION PRACTICES	0.378 LB/H	BACT-PSD
MIDWEST FERTILIZER COMPANY	03/23/20 1 7	UREA SYNTHESIS PLANT (EU-006)	2640 METRIC TON/DAY	GOOD OPERATIONAL PRACTICES	0	OTHER CASE-BY- CASE
MIDWEST FERTILIZER COMPANY LLC	03/23/2017	NATURAL GAS AUXILIARY BOILERS (EU-012A, EU- 012B, EU-012C)	218.6 MMBTU/H	GOOD COMBUSTION PRACTICES AT ALL TIMES THE BOILERS ARE IN OPERATION	5.5 LB/MMCF EACH	BACT-PSD
MIDWEST FERTILIZER COMPANY	(03/23/2017	AMMONIA STORAGE FLARE (EU-016)	1.1 MMBTU/H		0.0054 LB/MMBTU	BACT-PSD
MIDWEST FERTILIZER COMPANY LLC	/ 03/23/2017	FRONT END FLARE EU- 017	1.12 MMBTU/H		0.0054 LB/MMBTU	BACT-PSD
MIDWEST FERTILIZER COMPANY	03/23/2017	BACK END FLARE (EU- 018)	1.12 MMBTU/H		0.0054 LB/MMBTU	BACT-PSD
MOUNDSVILLE COMBINED CYCLE POWER PLANT	11/21/2014	Auxiliary Boiler	100 mmBtu/hr	Use of Natural Gas & Good Combustion Practices	0.6 LB/H	BACT-PSD
NUCOR STEEL - BERKELEY	05/05/2008	VACUUM DEGASSER BOILER	50.21 MMBTU/H	NATURAL GAS COMBUSTION WITH GOOD COMBUSTION PRACTICES PER MANUFACTURER'S GUIDANCE	0.0026 LB/MMBTU	BACT-PSD
NUCOR STEEL - BERKELEY	05/05/2008	TUNNEL FURNACE BURNERS	58 MMBTU/H	NATURAL GAS COMBUSTION WITH GOOD COMBUSTION PRACTICES PER MANUFACTURER'S GUIDANCE	0.0055 LB/MMBTU	BACT-PSD
NUCOR STEEL TUSCALOOSA, INC.	03/09/2017	Electric Arc Furnace	0		0.13 LB/TON	BACT-PSD
NUCOR STEEL TUSCALOOSA, INC.	03/09/2017	Austenitizing Furnace (40.6 MMBtu/hr)	0		0.00SS LB/MMBTU	BACT-PSD
NUCOR STEEL TUSCALOOSA, INC.	03/09/2017	Tempering Furnace (3S MMBtu/hr)	0		0.0055 LB/MMBTU	BACT-PSD
NUCOR STEEL TUSCALOOSA, INC.	03/09/2017	Car Bottom Furnaces (45 MMBtu/hr, each)	0		0.0055 LB/MMBTU	BACT-PSD

FACILITY NAME	PERMIT ISSUANCE DATE	PROCESS NAME	THROUGHPUT	THROUGHPUT UNIT	CONTROL METHOD DESCRIPTION	EMISSION	EMISSION LIMIT 1 UNIT	CASE-BY-CASE BASIS
NUCOR STEEL TUSCALOOSA, INC.	03/09/2017	TK Engergizer Ladle Heater (5 MMBtu/hr)	c)		0.0055	LB/MMBTU	BACT-PSD
OREGON CLEAN ENERGY CENTER	06/18/2013	Auxillary Boiler	99	MMBtu/H	Good combustion practices and using combustion optimization technologies	0.59	LB/H	BACT-PSD
OREGON CLEAN ENERGY CENTER	06/18/2013	2 Combined Cycle Combustion Turbines- Mitsubishi, without duct burners	47917	, MMSCF/rolling 12- MO	oxidation catalyst	7.9	LB/H	BACT-PSD
OREGON CLEAN ENERGY CENTER	06/18/2013	2 Combined Cycle Combustion Turbines- Mitsubishi, with duct burners	47917	, MMSCF/rolling 12- MO	oxidation catalyst	7.3	LB/H	BACT-PSD
OREGON CLEAN ENERGY CENTER	06/18/2013	2 Combined Cycle Combustion Turbines- Siemens, with duct burners	51560	MMSCF/rolling 12- MO	oxidation catalyst	5.9	LB/H	BACT-PSD
OREGON CLEAN ENERGY CENTER	06/18/2013	2 Combined Cycle Combustion Turbines- Siemens, without duct burners	515600	MMSCF/rolling 12- months	oxidation catalyst	3.9	LB/H	BACT-PSD
PERDUE GRAIN AND OILSEED, LLC	07/12/2017	(2) Grain Dryers	c	1		0.21	LB/HR	BACT-PSD
PERDUE GRAIN AND OILSEED, LLC	07/12/2017	Soybean Oil Extraction Plant	C	1		0.152	GAL	BACT-PSD
PERDUE GRAIN AND OILSEED, LLC	07/12/2017	(4) 27 MMBtu/hr boilers, Natural gas and No. 2 fuel oi Combined Cycle	c	I		0.1	LB/HR	BACT-PSD
PSEG FOSSIL LLC SEWAREN GENERATING STATION	03/10/2016	Combustion Turbine with Duct Burner firing naturał gas	0		Oxidation Catalyst and good combustion practices	2	PPMVD	LAER
PSEG FOSSIL LLC SEWAREN GENERATING STATION	03/10/2016	Auxiliary Boiler firing natural gas	687	MMCFT/YR	Use of good combustion practices and use of natural gas a clean burning fuel	0.32	LB/H	LAER
PSEG FOSSIL LLC SEWAREN GENERATING STATION	03/07/2014	Combined Cycle Combustion Turbine - Siemens turbine without Duct Burner	33691	MMCF/YR	Good Combustion Practices and use of Natural gas as a clean burning fuel	1	PPMVD@ 15%02	LAER
PSEG FOSSIL LLC SEWAREN GENERATING STATION	03/07/2014	COMBINED CYCLE COMBUSTION TURBINE WITH DUCT BURNER - SIEMENS	33691	MMCF/YR	Oxidation catalyst and pollution prevention (use of natural gas a clean burning fuel)	2	PPMVD	LAER

FACILITY NAME	PERMIT ISSUANCE DATE	PROCESS NAME	THROUGHPUT THROUGHPUT UNIT	CONTROL METHOD DESCRIPTION	EMISSION EMISSION LIMIT	CASE-BY-CASE BASIS
PSEG FOSSIL LLC SEWAREN GENERATING STATION	03/07/2014	COMBINED CYCLE COMBUSTION TURBINE WITH DUCT BURNER - GENERAL ELECTRIC	33691 MMCF/YR	CO Oxidation Catalyst and good combustion practices and use natural gas only as a clean burning fuel	2 PPMVD@15%02	LAER
PSEG FOSSIL LLC SEWAREN GENERATING STATION	03/07/2014	COMBINED CYCLE COMBUSTION TURBINE WITHOUT DUCT BURNER - GENERAL ELECTRIC	33691 MMCF/YR	Oxidation Catalyst and use of natural gas a clean burning fuel	1 PP MVD@15% O2	LAER
PSEG FOSSIL LLC SEWAREN GENERATING STATION	03/10/2016	Combined Cycle Combustion Turbine without Duct Burner Firing Natural Gas	28169501 MMBTU/YR	OXIDATION CATALYST AND GOOD COMBUSTION PRACTICES	1 PPMVD@15%02	LAER
RENAISSANCE POWER LLC	11/01/2013	EU-HEATERSC: Natural gas-fired fuel heater used for heating natural gas prior to combustion in the CTGs. Misc. boilers, furnaces, and heaters	20 MMBTU/H	Good combustion practices	0.05 LB/MMBTU	BACT-PSD
RENAISSANCE POWER LLC	11/01/2013	FG-AUXBOILER1-2; Two (2) natural gas-fired auxiliary boilers.	40 MMBTU/H	Good combustion practices.	0.005 LB/MMBTU	BACT-PSD
SALEM HARBOR STATION REDEVELOPMENT	01/30/2014	Auxiliary Boiler	80 MMBTU/H	oxidation catalyst	11.8 PPMVD@3% O2	OTHER CASE-BY- CASE
ST. JAMES METHANOL PLANT	06/30/2017	FL1-13 - Process Flare (EQT0008)	2.17 MMBTU/hr	Compliance with NESHAP Subpart A for flare performance standards. Correct Flare Design and Proper Combustion.	22.08 LB/HR	BACT-PSD
SUNBURY GENERATION LP/SUNBURY SES	04/01/2013	DEW POINT HEATER	15 MMBTU/H		0.006 LB/MMBTU	OTHER CASE-BY- CASE
SUNBURY GENERATION LP/SUNBURY SES	04/01/2013	AUXILIARY BOILER (REPOWER)	106000 MMBTU		0.005 LB/MMBTU	OTHER CASE-BY- CASE
SUNBURY GENERATION LP/SUNBURY SES	04/01/2013	Combined Cycle Combustion Turbine AND DUCT BURNER (3)	2538000 MMBTU/H	Oxidation Catalyst	1 PPM	OTHER CASE-BY- CASE
TROUTDALE ENERGY CENTER, LLC	03/05/2014	Auxiliary boiler	39.8 MMBTU/H	Utilize Low-NOx burners and FGR.	0.005 LB/MMBTU	BACT-PSD
WEST DEPTFORD ENERGY STATION	07/18/2014	Combined Cycle Combustion Turbine without Duct Burner	20282 MMCF/YR	Oxidation catalysts and use of Natural gas a clean burning fuel	0.7 PPMVD215%02	LAER

Table C-5. Search Results for VOC Control Devices Installed on Natural Gas Fired Ovens, Dryers, and Burners (<300 MMBtu/hr)

FACILITY NAME	PERMIT ISSUANCE DATE	PROCESS NAME	THROUGHPUT THROUGHPUT UNIT	CONTROL METHOD DESCRIPTION	EMISSION EMISS	ION LIMIT 1 CASE-BY-CASE
WEST DEPTFORD ENERGY STATION	07/18/2014	Combined Cycle Combustion Turbine with Duct Burner	20282 MMCF/YR	Oxidation catalyst and use of natural gas a clean burning fuel	1 PPMV	D@15%O2 LAER
WOODBRIDGE ENERGY CENTER	07/25/2012	Commercial/Institutional size boilers less than 100 MMBtu/hr	2000 hours/year	Use of Natural Gas	0.14 LB/H	LAER
WOODBRIDGE ENERGY CENTER	07/25/2012	Combined Cycle Combustion Turbine with Duct Burner	40297.6 mmcubic ft/year	oxidation Catalyst and Good Combustion Practices and use of Clean fuel (Natural gas)	2 PPMV	'D LAER
WOODBRIDGE ENERGY CENTER	07/25/2012	Combined Cycle Combustion Turbine w/o duct burner	40297.6 mmcubic ft/year	Oxidation catalyst and good combustion practices, use of natural gas a clean burning fuel	2.9 LB/H	LAER

FACILITY NAME	PERMIT ISSUANCE DATE	PROCESS NAME	THROUGHPUT	THROUGHPUT UNIT	CONTROL METHOD DESCRIPTION	EMISSION LIMIT 1	EMISSION LIMIT 1 UNIT	CASE-BY-CASE BASIS
RUSSELL COMPRESSOR	CA	TERPILLAR G16CM34 8,180 HP						
STATION	3/30/2010 EN	GINES, SN-08 THOUGH SN-10	8180	HP	AMMONIA SLIP MONITORING	0.7	2 LB/H	OTHER CASE-BY-CASE
EL DORADO CHEMICAL	DN	A WEATHERLY NITRIC ACID						
COMPANY	11/18/2013 PL/	ANT # 2	1265	T/D		2.6	4 LB/H	BACT-PSD
GOLD COAST PACKING	3/17/2017 Int	ernal Combustion Engine	881	bhp	Oxidation catalyst		5 PPMVD	OTHER CASE-BY-CASE
TAJIGUAS LANDFILL	8/19/2016 ICE	E Landfill or digested gas fired	1573	bhp		1	5 PPMV	OTHER CASE-BY-CASE
KLEEN ENERGY SYSTEMS,	SIE CO (N/ MM	MENS SGT6-5000F MBUSTION TURBINE #1 AND #2 ATURAL GAS FIRED) WITH 445 MBTU/HR NATURAL GAS DUCT			AMMONIA SLIP EMISSIONS AS A RESULT OF INSTALLATION OF SCR FOR NOX		DDM @ 15 % 03	
LLC	2/25/2008 BU	IRNER	2.1	MMCF/H	CONTROL		2 PPM @ 15 % 02	BACI-PSD
KLEEN ENERGY SYSTEMS, LLC MONTVILLE POWER LLC	SIE CO (OI 2/25/2008 NA 4/6/2010 42	EMENS SGT6-5000F MBUSTION TURBINE #1 AND #2 IL FIRED) WITH 445 MMBTU/HR TURAL GAS DUCT BURNER MW Biomass utility boiler	15119 600	GAL/H MMBTU/H	AMMONIA SLIP EMISSIONS ARE FROM SCR INSTALLED FOR NOX CONTROL	1	5 PPM @ 15 % O2 8 PPM	BACT-PSD OTHER CASE-BY-CASE
							PPMVD @15%	
CPV TOWANTIC, LLC	11/30/2015 Co	mbined Cycle Power Plant	21200000	MMBtu/12 months		:	2 O2 PPMVD @15%	BACT-PSD
CPV TOWANTIC, LLC	11/30/2015 Co	mbined Cycle Power Plant	1720000	gal/ 12 months		!	5 O2 PPMVD @15%	BACT-PSD
CPV TOWANTIC, LLC	11/30/2015 Co	mbined Cycle Power Plant	21200000	MMBtu/yr		:	2 O2 PPMVD @15%	OTHER CASE-BY-CASE
CPV TOWANTIC, LLC	11/30/2015 Co	mbined Cycle Power Plant	1720000	gal/ 12 months		!	5 O2 PPMVD @15%	OTHER CASE-BY-CASE
KILLINGLY ENERGY CENTER	6/30/2017 Na	tural Gas w/o Duct Firing	2969	MMBtu/hr	Good Combustion, Optimization of SCR	:	2 O2 PPMVD @15%	OTHER CASE-BY-CASE
KILLINGLY ENERGY CENTER	6/30/2017 Na	tural Gas w/Duct Firing	2639	MMBtu/hr	Optimization of SCR	:	2 O2 PPMVD @15%	OTHER CASE-BY-CASE
KILLINGLY ENERGY CENTER	6/30/2017 UL	SD w/o Duct Firing	2639	MMBtu/hr	Optimization of SCR	!	5 02	OTHER CASE-BY-CASE
ENERGY, LLC	12/29/2010 Flu	idized Bed Gasification	523.1	MMBtu/hr	Optimization of SNCR	(D PPMVD @ 3%	OTHER CASE-BY-CASE
REFINERY	2/26/2010 HE	ATER 21-H-701			AMMONIA SLIP FROM SCR	10	0 O2 PPMVD @ 3%	RACT
REEINERY	2/26/2010 PA	CKAGE BOILERS (2009)	99.9	MMBtu per hour	AMMONIA SLIP FROM SCR SYSTEM	1	0 02	RACT
VALERO DELAWARE CITY	2, 20, 2010 (A	UDE UNIT VACUUM HEATER 21-					PPMVD @ 3%	
REFINERY	2/26/2010 H-2	2	240	MMBTU/H	AMMONIA SLIP FROM SCR	10	0 02	RACT
NRG ENERGY CENTER	2,20,2020	-	2.0					
DOVER	10/31/2012 UN	NIT 2- KD1	655	MMBTU/H		5.2	9 LB/H	OTHER CASE-BY-CASE
DOTEN	TH	REF NOMINAL 250 MW CTG						
EPI WEST COUNTY ENERGY	(EA	ACH) WITH SUPPLEMENTARY-						
CENTER UNIT 3	7/30/2008 FIR	RED HR5G	2333	MMBTU/H		1	5 PPMVD	BACT-PSD
	30	0 MW COMBINED CYCLE						
CANE ISLAND POWER PARK	9/8/2008 CO	MBUSTION TURBINE	1860	MMBTU/H		1	5 PPMVD	BACT-PSD
OUC CURTIS H. STANTON	30	0 MW COMBINED CYCLE						
ENERGY CENTER	\$/12/2008 CO	MBUSTION TURBINE	1765	MMBTU/H			5 PPMVD	BACT-PSD
HIGHLANDS ETHANOL	19	8 mmBtu/hr Biomass Fueled						
FACILITY	12/10/2009 Bo	iler	198	MMBTU		10	0 PPMVD	BACT-PSD

Table C-6. Search Results for Ammonia Control Devices Installed for a Broad Scope of Industrial Sources

GAINESVILLE RENEWABLE ENERGY CENTER	Biomass bubbling fludized bed 12/28/2010 (BFB) boiler	1358 MMBTU/H	SCR system, proper control equipment operation	10 PPMVD	OTHER CASE-BY-CASE
HIGHLANDS BIOREFINERY AND COGENERATION PLANT	9/23/2011 Biomass Boiler, Emission Unit 002	458.5 MMBTU/H		PPMVD @ 7% 30 OXYGEN PPMVD @ 7%	OTHER CASE-BY-CASE
CLEWISTON MILL	11/29/2016 Boiler No. 9	1077 MMBtu/hr		25 O2 PPMVD @ 7%	BACT-PSD
HIGHLANDS ENVIROFUELS	9/13/2017 Cogeneration Biomass Boiler	458 MMBtu/hr		25 02	BACT-PSD
PLANT	6/30/2017 RV-13 - Reformer Vent (EQT0001)	3148 MM BTU/hr		0	BACT-PSD
PLANT	6/30/2017 B1-13 - Boiler 1 (EQT0003)	350 MM BTU/hr		0	BACT-PSD
	6/30/2017 B2-13 - Boiler 2 (EQT0004)	350 MM BTU/hr		0 PPMVD@15%	BACT-PSD
	1/30/2014 Burner	2449 MMBTU/H		2 O2	OTHER CASE-BY-CASE
ENERGY PLANT	7/1/2016 Burner	203.4 MMBTU/H		2 O2 PPMVD@15%	OTHER CASE-BY-CASE
MIT CENTRAL UTILITY PLANT	6/21/2017 Burner	353 MMBtu/hr	INITIAL STACK TEST USING EPA METHOD	2 02	OTHER CASE-BY-CASE
MATTAWOMAN ENERGY CENTER	2 COMBINED-CYCLE COMBUSTION 11/13/2015 TURBINES	286 MW	CTM-027 OR EQUIVALENT METHOD APPROVED BY MDE-ARMA INITIAL STACK TEST USING EPA METHOD	PPMVD @ 15% 5 O2	OTHER CASE-BY-CASE
KEYS ENERGY CENTER	2 COMBINED-CYCLE COMBUSTION 10/31/2014 TURBINES	235 MW	CTM-027 OR EQUIVALENT METHOD APPROVED BY MDE-ARMA	PPMVD @ 15% 5 O2	OTHER CASE-BY-CASE
MIDDLESEX ENERGY	Turbine firing Natural Gas with		USE OF NATURAL GAS A CLEAN		
CENTER, LLC	7/19/2016 Duct Burner Combined Cycle Combustion	4000 h/yr	BURNING FUEL	27.4 LB/H	OTHER CASE-BY-CASE
MIDDLESEX ENERGY	Turbine firing Natural Gas without		USE OF NATURAL GAS A CLEAN	PPMVD@15%O	
CENTER, LLC	7/19/2016 Duct Burner COMBINED CYCLE COMBUSTION	8040 H/YR	BURNING FUEL	5 2	BACT-PSD
MIDDLESEX ENERGY	TURBINE FIRING ULTRA LOW		USE OF ULSD OIL A CLEAN BURNING		
CENTER, LLC	7/19/2016 SULFUR DISTILLATE OIL FLUIDIZED CATALYTIC CRACKING	720 H/YR LB/H COKE BURN-	FUEL	25.9 LB/H	OTHER CASE-BY-CASE
TOLEDO REFINERY	2/23/2009 UNIT	84200 OFF		5 PPMV	N/A
ROCK ENERGY	12/18/2012 Burners Off	172 MW		28 LB/H	N/A
DUKE ENERGY HANGING ROCK ENERGY	Turbines (4) (model GE 7FA) Duct 12/18/2012 Burners On Condensate Steam Flash Drum (EUD 102 EUG 1 Amongia Plant	172 MW		31.7 LB/H	N/A
PRYOR PLANT CHEMICAL	2/23/2009 4)	80064 lb/h condensate		0.8 LB/H	BACT-PSD
PRYOR PLANT CHEMICAL	2/23/2009 DRUM-AMMONIA PLT 4 GAS FIRED TURBINES (6) (SIMPLE	80 T/H		0.8 LB/H PPMVD@15%	BACT-PSD
DELTA POWER PLANT	1/3/2008 CYCLE) GAS FIRED TURBINES (60	11240 GAL/H		5 O2 PPMVD@15%	Other Case-by-Case
DELTA POWER PLANT	1/3/2008 (COMBINED CYCLE) EPI ENERGY UNIT & amo: FIBER	11240 GAL/H		5 02	Other Case-by-Case
CLARION BOARDS, INC	9/9/2009 DRYING SYSTEM	141 MMBTU/H		10 PPMVD	Other Case-by-Case

Table C-6. Search Results for Ammonia Control Devices Installed for a Broad Scope of Industrial Sources

1	COMBUSTION TURBINE, DUAL				
YORK GENERATION FACILITY	3/1/2012 FUEL, T01 and T02 (2 Units)	634 MMBTU/H		S PPM	OTHER CASE-BY-CASE
MOXIE LIBERTY LLC/ASYLUM	Combined-cycle Turbines (2) -				
POWER PL T	10/10/2012 Natural gas fired	3277 MMBTU/H		5 PPMVD	OTHER CASE-BY-CASE
JOHNSON MATTHEY					
INC/CATALYTIC SYSTEMS DIV	6/1/2012 AMMONIA SCRUBBER (DEVON III)	0		10 PPMVD	OTHER CASE-BY-CASE
ALTOONA GTL					
LLC/GILBERTON	1/16/2013 CONVECTION REFORMERS	0	SCR	5 PPMVD	N/A
SUNBURY GENERATION	Combined Cycle Combustion				
LP/SUNBURY SES	4/1/2013 Turbine AND DUCT BURNER (3)	2538000 MMBTU/H		5 PPMVD	OTHER CASE-BY-CASE
HICKORY RUN ENERGY					
STATION	4/23/2013 COMBINED CYCLE UNITS #1 and #2	3.4 MMCF/HR		110.2 TPY	OTHER CASE-BY-CASE
BERKS HOLLOW ENERGY	Turbine, Combined Cycle, #1 and				
ASSOCILC/ONTELAUNEE	12/17/2013 #2	3046 MMBTU/H		5 PPMVD	BACT-PSD
FUTURE POWER PA/GOOD	Turbine, COMBINED CYCLE UNIT				
SPRINGS NGCC FACILITY	3/4/2014 (Siemens 5000)	2267 MMBTU/H		72.5 TPY	BACT-PSD
SHELL CHEM	3) 4/2021 (Sterriers 2000)				
				PPMDV @ 3%	
AFFALACHIA/FETROCHEMIC	6/18/2015 Ethane Cracking Eurnace	620 MMBTU/HR		10 02	OTHER CASE-BY-CASE
	0/10/2019 Ethane eraeking Farmace	020		PPMDV @ 15%	
	12/23/2015 Auxillary Boiler	13 31 MMBtu/br		5 02	BACT-PSD
CINIESSOF		10.01 //////////////////////////////////			
ENERGY ANSWERS ARECIRO					
DI LERTO RICO RENEWABLE	Two Identical Municipal Solid				
	A/10/2014 Waste Combustors Units	2106 tons per day		10 PPMVD@7%02	BACT-PSD
		2100 tons per day			
GENCO LLC	5/12/2009 COMBUSTION TUBBINE	6 MW		20 PPMV	BACT-PSD
GENCO, LLC	5/12/2009 COMBOSTION TORBINE	0 1111	CAREEUL CONTROL OF AMMONIA		
			INJECTION AND OPERATING		
			PARAMETERS WILL BE MAINTAINED TO		
			CONTROL AMMONIA SUP IN THE HRSG		
			EVHALIST STREAM TO LEVELS NOT		
			POLLING BASIS AND 7 PPM//D ON AN		
BOSQUE COUNTY POWER		170 8418/		7 PPMVD	BACT-PSD
	2/2//2009 ELECTRICAL GENERATION		ANNOAL AVERAGE.		BACT-PSD
COLETO CREEK UNIT 2	S/3/2010 Coal-fired Boller Unit 2	6670 MIMBTO/H		TOFFIAIAD	DACISO
	10/26/2000 Minor first Poiler	GOD MARADIN /		15 PPMV	BACT-PSD
LUFKIN GENERATING PLANT	10/26/2009 Wood-fired Boller		Audio Visual and allfactory inspections	15111014	DACTION
			for ammonia is included in the permit		
MCKEE REFINERY			Ammonia dianago from SCP is limited to		
HYDROGEN PRODUCTION			Annionia suppage from SCK is innited to	10 DRMAV	OTHER CASE BY CASE
UNIT	12/30/2010 Hydrogen Production Unit Furnace	355.65 MMBTU/H	10 ppmv at 5% oxygen.		OTHER CASE-BT-CASE
TENASKA TRAILBLAZER					
ENERGY CENTER	12/30/2010 Coal-fired Boller	8307 MIMBTO/H		10 PPININD	BACIFID
THOMAS C. FERGUSON		200 1 114	h		
POWER PLANT	9/1/2011 Natural gas-fired turbines	390 MW	best management practices	/ PPIVIVU	DACI-POU
FGE TEXAS POWER I AND		000 T 1 844		7 00141/0	
FGE TEXAS POWER II	3/24/2014 Alstom Turbine	230.7 MW	AVU, good combustion practices	/ PPMVU	BACI-PSU
1			Heaters have low NOX burners with		
			Selective Catalytic Reduction (SCR).		
			Ammonia slip is 10 ppmvd in the slip	10.0010/0	
PROJECT JUMBO	12/1/2014 Heat Transfer Fluid (HTF) Heaters	141.82 MMBTU/H	stream from SCR	10 PPMVD	BACI-PSU

Table C-6. Search Results for Ammonia Control Devices Installed for a Broad Scope of Industrial Sources

			Scrubber with 85% removal efficiency is used to control ammonia from the		
PROJECT JUMBO	12/1/2014 Storage Tanks	0	storage tank vents	0.02 HOURLY	BACT-PSD
			ammonia emissions from SCR are		
			minimized by limiting NH3 slip to 15		
			ppmvd (1-hr average) and 10 ppmvd		
OLEFINS PLANT	8/8/2014 Steam Boilers	0	(annual average)	15 PPMVD	BACT-PSD
			NH3 emissions are minimized by limiting		
	Cracking Furnaces and PDH		NH3 slip to 15 popmvd (1-hr avg) and 10		
OLEFINS PLANT	8/8/2014 Reactors	0	ppmvd (annual)	15 PPMVD	BACT-PSD
GALENA PARK TERMINAL	6/12/2013 Heaters	129 MMBTU/H	ammonia slip will be less than 10 ppmv	10 PPMV	OTHER CASE-BY-CASE
ETHYLENE PRODUCTION					
PLANT	3/27/2014 Cracking Furnaces	0	ammonia is emitted from the SCR	10 PPMVD	BACT-PSD
			Ammonia emissions are minimized with		
1			good management practices of the SCR		
	Turbines for Steam and Electricity	05000 - 5 (1)	so that ammonia slip to maximum 10	10.001.0.0	
UTILITIES TURBINES	8/8/2014 Generation	35000 LB/H.	ppmvd at 15% oxygen	10 PPMVD	BACT-PSD
		<u>^</u>	Audio, visual and offactory inspection	•	D 4 07 000
UTILITIES TORBINES	8/8/2014 Fugitives	0	Annual of the first of the second of the sec	0	BACI-PSU
CELANIESE CLEAD LAKE			to 10 ppmy at 2weight percent everyon		
CELANESE CLEAR LAKE	0/15/2012 Bafarman	0	do to ppmv at sweight percent oxygen,	10 001414	DACT DCD
PLANT	9/16/2013 Reformer	0	ually	TO PPINIA	BACI-PSD
	12/20/2012 Boilers	0	anniona sip non Sex is innited to 10		BACT DED
	12/20/2013 Bollers	0	Using an ammonia CEM to monitor the	TO FRIMA	BACT-PSU
SUSTAINABLE ENERGY			level of ammonia clin and adjust as		
PROJECT	4/19/2013 Wood Fired Boiler	464 MMBTU/H	necessary to remain below the limit	10 PPM @ 7% 02	OTHER CASE-BY-CASE
CHEVENNE PRAIRIE	4/15/2015 4/000 11/00 00101	404 101010/11	necessary to remain below the limit.	PPMV AT 15%	
GENERATING STATION	8/28/2012 Simple Cycle Turbine (EP03)	40 MW		10 02	OTHER CASE-BY-CASE
CHEVENNE PRAIRIE	-, (,				
GENERATING STATION	8/28/2012 Combined Cycle Turbine (EP01)	40 MW		10 PPM AT 15% O2	OTHER CASE-BY-CASE
CHEYENNE PRAIRIE				PPMV AT 15%	
GENERATING STATION	8/28/2012 Combined Cycle Turbine (EP02)	40 MW		10 02	OTHER CASE-BY-CASE
CHEYENNE PRAIRIE				PPMV AT 15%	
GENERATING STATION	8/28/2012 5imple Cycle Trubine (EP04)	40 MW		10 02	OTHER CASE-BY-CASE
CHEYENNE PRAIRIE				PPMV AT 15%	
GENERATING STATION	8/28/2012 Simple Cycle Turbine (EP05)	40 MW		10 02	OTHER CASE-BY-CASE

Attachment D

May 29, 2015 Letter to UDAQ RE: Supplemental Responses – BACT for Oxidation Ovens of Proposed New Fiberlines 15 and 16 Modification of AO DAQE-AN113860023-15 to Add Carbon Fiber Lines 15 and 16

Revision 2- May, 2018

Via email: nmeli@utah.gov

May 29, 2015

Mr. Nando Meli Environmental Engineer Utah Department of Air Quality Division of Air Quality P.O. Box 144820 Salt Lake City, Utah 84114-482

RE: Supplemental Responses – BACT for Oxidation Ovens of Proposed New Carbon Fiberlines 15 and 16 Modification of AO DAQE-AN113860023-15 to Add Carbon Fiber Lines 15 and 16 UDAQ Project No. N113860024 Hexcel Corporation's West Valley City Plant

Dear Mr. Meli:

Per your email request on May 8, 2015 and subsequent discussions on May 12, 2015, Hexcel would like to submit this supplemental response providing justification for Best Available Control Technology (BACT) for the oxidation ovens. On January 20, 2015, Hexcel submitted a Notice of Intent (NOI) to the Utah Department of Air Quality (UDAQ) to construct and operate two new carbon fiber lines (Fiber Lines #15 and #16). As a part of the NOI review process, on May 12, 2015, UDAQ requested that Hexcel provide justification why 9 ppm of the oxides of nitrogen (NO_x) emission level is not the BACT for the oxidation ovens. This letter provides supplemental information on the January 2015 submitted BACT (i.e., Low NOx Burners [LNB]) determination for the oxidation ovens as well as justification for economical infeasibility for installing ultra-low NOx burners (ULNB), which may reduce NO_x emissions to 9 ppm level.

BACKGROUND

The first step in carbon fiber manufacturing is stabilization with oxidation ovens fired by natural gas. Natural gas combustion emissions from the oxidation ovens are routed to separate stacks designed to capture and vent the combustion emissions while process emissions from the stabilization process itself are routed to Regenerative Thermal Oxidizer (RTO)/baghouse control system. In the January 2015 NOI, Hexcel proposed to install four (4) low temperature oxidation ovens per fiberline, each with two (2) heated zones per oven for a total of eight (8) zones at a rated capacity of 1.35 MMBtu/hr. In Table G-1 of the January 2015 NOI, Hexcel proposed the following BACT for the oxidation ovens.

Process	Pollutants	Proposed BACT				
Oxidizer Ovens (4 ovens for Fiberline 15, 4 ovens for Fiberline 16); Two Stacks Per Oven (Stack Ids 15-01A – 15-04B for Line 15 and 16-01A – 16-04B for Line 16) Combustion Emissions Only						
	NO _X ,	Low NO _X Burners				
Eight (8) - 1.35 MMBtu/hr Oxidation	VOC, PM10, PM2.5, SO2	Burning of Natural Gas Only				
Ovens	СО	Good Combustion Practices				
		Burning of Natural Gas Only				

Table G-1 of January 2015 NOI Application: Summary of Selected BACT for Ox-Ovens

Mr. Nando, UDAQ - Page 2 May 29, 2015

As shown above, Hexcel proposed to minimize NO_X emissions by installing LNB and emissions from the oxidation ovens were calculated and approved by UDAQ using a LNB controlled emission factor of 50 lb $NO_X/MMscf^1$. Implementation of LNB technology has been shown to reduce NO_X emissions by 50% compared with standard burners².

UDAQ has already reviewed and approved all the emission calculations, air quality impact analyses, and offset requirements.³ NO_x emissions from the oxidation ovens were calculated using a LNB controlled emission factor (as previously stated). Air quality impacts and offset requirements have been determined using LNB.

Page G-6 of the January 2015 NOI application provided justification for the BACT:

"Since there is no precedent established for incorporating further add-on controls on these combustion units and proposed emissions and heat ratings are very low, a full five step – top down BACT evaluation is not conducted for the combustion ovens. Firing of natural gas only and installation of low NO_X burners in the ovens is determined to be BACT for the oxidizer ovens."

Page G-5 of the January 2015 NOI application also listed following justification. However, this variation of LNB, which is commonly known as ULNB, was not selected as a BACT for the oxidation ovens.

"A LNB provides a stable flame that has several different zones. There are many variations on the LNB theme of reducing NO_X that can produce more than 80% Destruction Removal Efficiency (DRE). Emission rates of NO_X have been shown to be met as low as 9 ppm_y. This can be one of the least expensive pollution prevention technologies that results in a high DRE.⁴"

Above justification may have caused some confusion whether the selected LNB can meet the 9 ppm level or not. As a part of the NOI review process, on May 12, 2015, UDAQ requested Hexcel to provide justification why 9 ppm of NO_x emission level is not the BACT for the oxidation ovens. This letter provides supplemental information on selected BACT (i.e., LNB) for the oxidation ovens as well as justification for economical infeasibility for installing ULNB, which may reduce NO_x emissions to 9 ppm level.

An ULNB incorporates an LNB with an additional system such as flue gas recirculation to further reduce NO_x. ULNBs provide a stable flame that has several different zones. Remainder of this letter discusses why ULNB is not a feasible option for the oxidation ovens.

BACT FOR THE OXIDATION OVENS

In order to evaluate whether it is feasible to install ULNB to achieve a 9 ppm emission level, Hexcel performed a detailed economic feasibility analysis. This analysis was performed using the United States Environmental Protection Agency (U.S. EPA) memorandum dated December 1, 1987 for a "top-down" BACT analysis.⁵ Attachment A provides a detailed analysis of the feasibility of installing ULNB on the oxidation ovens of the proposed carbon fiberlines 15 and 16. A summary of the analysis is provided below in Table 1.

¹ U.S. EPA AP-42 Tables 1.4-1 and 1.4-2.

² AP-42 Table 1.4-1 – Emission Factors for Nitrogen Oxides (NO_X) and Carbon Monoxide (CO) from Natural Gas Combustion. Comparison of uncontrolled emissions from a small boiler (100 lb/10⁶ scf) to controlled Low-NO_X burner emissions from a small boiler (50 lb/10⁶ scf). [1-50/100

^{= 50%]}

³ May 2015 - draft Source Plant Review for the proposed fiberlines.

⁴ OAQPS, Technical Bulletin, Nitrogen Oxides (NOx) Why and How are They Controlled, EPA/456/F-99-006R (http://www.epa.gov/ttn/catc/dir1/fnoxdoc.pdf); November 1999

⁵ U.S. EPA, Office of Air and Radiation. Memorandum from J.C. Potter to the Regional Administrators. Washington, D.C. December 1, 1987.

Capital Cost	
Total Capital Investment	\$1,407,000
Annual Cost	
Total Direct Annual Cost	\$46,710
Total Indirect Annual Cost	\$214,309
Total Cost ULNB	
Total Annual Cost	\$261,019
Total Tons Pollutants Removed	5.45
Total Cost/Ton Pollutants Removed	\$47,890

Table 1. ULNB Cost Analysis Summary for NO_x Control for All Oxidation Ovens of Fiberlines 15 and 16

Based on the economic impacts, the cost effectiveness of ULNB is estimated to be approximately \$47,890 per ton of NO_x removed. The costs associated with ULNB are excessive, and will result in an undue economic burden to Hexcel. Therefore, ULNB is not considered as the top BACT option for the oxidation ovens for the proposed carbon fiberlines 15 and 16. Therefore, LNB remains as the selected BACT for the oxidation ovens and there are no changes to the January 2015 submitted BACT determination for the oxidation ovens.

Please note that 2.73 tons of NO_x removed per line (or 5.45 tons total for both lines) is based on the final approved NO_x emission rates for the oxidation ovens. The NOI contained a total of 2 tons of NO_x from the oxidation ovens per fiberline controlled by LNB, which was calculated using estimated natural gas throughput of 80.15 MMscf for the oxidation ovens for each fiberline and an emission factor of 50 lb NO_x/MMscf for small (< 100 MMBtu) boilers with LNB. This emission factor was based on U.S. EPA AP-42 Table 1.4-1. Uncontrolled NO_x emissions of 4.01 tpy for the oxidation ovens at each line can be calculated using an emission factor of 100 lb NO_x/MMscf (US EPA AP-42 Table 1.4-1. Similarly, ULNB controlled emission rates of 1.28 tpy can be calculated using 32 lb NO_x/MMscf emission factor or a total of 2.73 tons NO_x removed by ULNB per line (4.01 – (32*80.15)/2000) = 2.73 tons per line or 5.45 tons for both lines).⁶

Please note that Hexcel provided a similar methodology for economic infeasibility of installing LNB or ULNB on all the existing older carbon fiberlines as a part of PM_{2.5} State Implementation Plan (SIP) development. NO_x combustion emissions from the oxidation ovens of the newer carbon fiberlines 13 and 14 and proposed carbon fiberlines 15 and 16 are controlled by LNB not ULNB. ULNB has been determined to be an economically infeasible control options for all the fiberlines. Approval order for recently constructed carbon fiberlines 13 and 14 also provided similar justification and used LNB controlled emission rates for the oxidation ovens. As well as to best of our knowledge, there is no vendor who would provide us guarantee at 9 ppm emission level from the oxidation ovens.

The January 2015 air quality impact analysis of NO_x for the carbon fiberlines 15 and 16 is based on LNB controlled oxidation ovens at 50 lb of $NO_x/MMscf$ emission factor, which is not at a 9 ppm emission level or with ULNB control. In order to demonstrate compliance with the applicable 1-hour NO_2 National Ambient Air Quality Standards (NAAQS), Hexcel will spend more than \$1 MM to increase the heights of various carbon fiberline legacy stacks based on the 50 lb $NO_x/MMscf$ emission factor. If these ovens were to provide 9 ppm emission level, Hexcel would have used 32 lb of $NO_x/MMscf$ emission factor and thus would have avoided this additional expenditure of raising stack heights. Additionally, if Hexcel were to have used a ULNB controlled emission rate in the NOI application, it would have reduced the offset obligations, and corresponding expense, for the proposed project.

⁶ Hexcel's SIP Responses to UDAQ on August 7, 2013.

Mr. Nando, UDAQ - Page 4 May 29, 2015

CONCLUSIONS

- 1. Approved NO_x emission rates for the oxidation ovens of the proposed carbon fiberlines 15 and 16 are based on an emission factor of 50 lb of NOx/MMscf, which is a controlled emission factor with LNB not ULNB.
- The January 2015 submitted and approved NO_x emission calculations, air quality modeling analysis for 1hour NAAQS compliance, and offset requirements are all based on LNB controlled emission rates not ULNB or 9 ppm level emission rate.
- 3. As discussed in this supplemental response letter, ULNB is an economically infeasible control option for the oxidation ovens and this determination is also consistent with all the previous SIP submittals and approvals by UDAQ. To best of our knowledge, there is no control technology vendor who could provide us a guarantee of 9 ppm emission level from the oxidation ovens.
- 4. As discussed in the NOI and supplemental responses, LNB continues to represent the BACT for oxidation ovens.
- 5. Therefore, there are no changes to the January 2015 BACT determination for the oxidation ovens. Previously submitted BACT determination for the oxidation ovens is still representative of the top BACT option for the oxidation ovens.

If you have any questions or comments about the information presented in this letter, please do not hesitate to call me at (801) 508-8583 or Vineet Masuraha of Trinity Consultants at (949) 567-9880.

Sincerely,

- hhl

Bryan Wheeler Environmental Engineer Hexcel Corporation

Cc: Vineet Masuraha, Trinity Consultants, Inc.

Attachment A. Economic Infeasibility Justification for ULNB for Oxidation Ovens

Table A: Ultra Low NO_X Burner Annualized Cost Estimate for NO_X Control

Table A.1. 2015 Vendor Estimated Ultra Low NOx Burner Costs

Capacity	Basic Equipment Cost*	Total Installed Cost *	\$/MMBtu
750,000 BTU/hr	\$18,375	\$52,500	\$70,000
2.7 MMBtu/hr	\$26,250	\$78,750	\$29,167
13 MMBtu/hr	\$73,500	\$210,000	\$16,154

Table A.Z. Hexcel	Burner Count		
Hexcel Line No.	Equipment <=750,000 BTU/br	Equipment > 0.75 MMBtu/hr and <=2.7 MMBtu/hr	Equipment > 2.7 MMBTU and <=13 MMBtu/hr
15	0	8	0
16	0	8	0

The basic equipment and installed cost of a Low NC Burner from Western Combustion Engineering on 11/28/11. Costs have been adjusted for 2015 using CPI of 1.0:

http://www.bls.gov/data/inflation_calculator.htn

Table A.3. Annualized Ultra Low-NOx Burner Cost Per Proposed New Carbon Fiberline

			Hexcel Line No.	
Parameter	Equation ^b	Total Value	15	16
Direct Costs				
Purchased equipment costs	200	5 (3 0 m00		
Total Purchased Equipment Cost (Burners)	PEC '	\$420,000	\$210,000	\$210,000
Installation Costs				
Total Direct Installation Cost	DIC *	\$840,000	\$420,000	\$420,000
Total Direct Costs (TDC)	PEC + DIC	\$1,260,000	\$630,000	\$630,000
Indirect Installation Costs				
Engineering	0.10 PEC	\$42,000	\$21,000	\$21,000
Construction & field expenses	0.10 PEC	\$42,000	\$21,000	\$21,000
Contractor fees	0.10 PEC	\$42,000	\$21,000	\$21,000
Start-up	0.01 PEC	\$4,200	\$2,100	\$2,100
Performance test	0.01 PEC	\$4,200	\$2,100	\$2,100
Contingencies	0.03 PEC	\$12,600	\$6,300	\$6,300
Total Indirect Costs, IC	0.35 PEC	\$147,000	\$73,500	\$73,500
TOTAL CAPITAL INVESTMENT (20155)	(DC + IC)	\$1,407,000	\$703,500	\$703,500
Annual Cost Summary				
Total Direct Annual Cost				
Operation/Maintenance Cost ^a	DAC	\$46,710	\$23,355	\$23,355
Indirect Annual Costs				
	Labor Ratio *		0.1163	0.1163
Overhead	60% of sum of operating and maintenance labo	\$3,259	\$1,629	\$1,629
Administrative charges	2% of TCI	\$28,140	\$14,070	\$14,070
Property tax	1% of TCI	\$14,070	\$7,035	\$7,035
Insurance	1% of TC1	\$14,070	\$7,035	\$7,035
Capital recovery factor	15 Years, 7% Interest	-	0.11	0.11
Capital Recovery	CRF*TC1	\$154,770	\$77,385	\$77,385
Fotal Indirect Annual Costs	Total	\$214,309	\$107,154	\$107,154
FOTAL ANNUAL COST		\$261,019	\$130,509	\$130,509
Pollutant Removed		5.45	2.73	2.73
Cost per ton of NO _x Removed		\$47,890	\$47,890	\$47,890

Notes:

^b Unless otherwise noted, equations are taken from U.S. Environmental Protection Agency, EPA Air Pollution Control Cost manual, Sixth Edition. EPA/452/B-02-001, January 2002.

⁶ Email correspondence between Chris Paul (Western Combustion Engineering) and John Falcetti (Trinity) on November 28, 2011.

* EPA Technical Bulletin, Nitrogen Oxides (NOx) Why and How They Are Controlled, EPA/456F-99-0068 (http://epa.gov/ttu/cate/dirl/fhoxdoe.pdf). November 1999. Operational costs obtained from Table 14 - Costs of NOx Controls, multiplied by a

ratio of 2011 capital costs to 1993 capital costs, to estimate 2011 operational costs.

Maximum estimated 1993 Capital Cost (\$/MMBtu) \$8,300

Maximum estimated 1993 Operational Cost (\$/MMBtu) \$1,500

Estimated 2015 Operational Cost (5/MMBtu) \$2,919.37 = \$16,154/58,300 * \$1,500 (mid-range (for 13 MMBtu/hr burner) estimated 2015 \$MMBtu was used for the calculation). *Ratio of operation and Maintenance labor costs to total operation and maintenance costs from a similar control device listed in OAQPS manu:

¹Office of Air Quality Planning and Standards (OAQPS). EPA Air Pollution Control Cost Manual, Sixth Edition, Sec 6. Chpt 2, Table 2.9. EPA 452-B-02-001 (http://www.epa.gov/ttn/cate/products.html#cccinfo), Mussatti and Hemmer, July 2002.

Attachment E

April 30, 2014 Letter to UDAQ RE: PM2.5 SIP RACT-Responses to Request for Additional Information

Revision 2- May, 2018

_

April 30, 2014

Ms. Camron Harry

Utah Department of Air Quality Division of Air Quality P.O. Box 144820 Salt Lake City, Utah 84114-482

RE: PM_{2.5} SIP RACT – Responses to Request for Additional Information Hexcel Corporation's West Valley City Plant

This letter is to serve as the Hexcel facility's response to the Utah Department of Air Quality's (UDAQ's) letter regarding "PM_{2.5} State Implementation Plan (SIP) Process - Next Steps" dated March 13, 2014.

As mentioned in UDAQ's letter, a D.C. Circuit Court of Appeals ruling found that the Environmental Protection Agency (EPA) erred in requiring states to develop their SIPs based on Subpart I, Part D, Title I of the Clean Air Act (CAA). Rather the SIP is required to be implemented in accordance with Subpart 4 of CAA which pertains specifically to PM_{2.5}. In subsequent rule making EPA required states, such as Utah, to incorporate elements of its PM_{2.5} SIP into Subpart 4 as moderate-area attainment status. Elements of Subpart 4 of the PM_{2.5} SIP are necessary to be demonstrated by UDAQ no later than December 31, 2014.

Accordingly, UDAQ is requesting additional information from sources to implement the SIP for adopting and implementing Reasonable Achievable Control Measures (RACM/RACT). The two Reasonably Available Control Technology (RACT) related issues UDAQ has requested include: 1) start-up/shutdown emission controls; and 2) the expeditious implementation of RACT. To address these comments, UDAQ is requesting a response by May 1st, 2014. The enclosed letter contains Hexcel's response to UDAQ's request.

Background

On December 4, 2013, the Utah Air Quality Board adopted Sections 11, 12, and 13 of the Salt Lake PM _{2.5} SIP into the Utah Administrative Code. In Section 12 of UDAQ's PM_{2.5} SIP, the Hexcel facility located at 6800 West 5400 South, West Valley City, Salt Lake County, Utah is a listed source, with RACT/Best Available Control Technology (BACT) listed conditions. Specifically, UDAQ's PM_{2.5} SIP states the following for Hexcel in Part H.12 for the Salt Lake non-attainment area.

Hexcel Corporation: Salt Lake Operations

- i. The following limits shall not be exceeded for Fiber Lines 2-8, 10-16, the Pilot Plant, and Matrix Operations:
 - A. 4.42 MMscf of natural gas consumed per day.
 - B. 0.061 MM pounds of carbon fiber produced per day.
 - C. Compliance with each limit shall be determined by the following methods:

- I. Natural gas consumption shall be determined by examination of natural gas billing records for the plant.
- II. Fiber production shall be determined by examination of plant production records.
- III. Records of consumption and production shall be kept on a daily basis for all periods when the plant is in operation.

As detailed in the following paragraphs, Hexcel performed the following analysis for its RACT submittal.

Hexcel's RACT Submittal

Hexcel submitted a RACT PM_{2.5} Analysis to UDAQ on January 12, 2012, and an addendum on August 7, 2013. In this analysis, all potential control technologies where evaluated for technical feasibility and cost effectiveness for each emission unit. In addition to direct PM_{2.5}, the following potential precursors were addressed in the RACT PM_{2.5} Analysis submitted to UDAQ:

- Sulfur Dioxide (SO₂);
- > Oxides of Nitrogen (NOx);
- > Volatile Organic Compounds (VOCs);
- Carbon Monoxide (CO);
- Ammonia (NH₃); and
- Particulate Matter with diameter less than 10 microns (PM₁₀).

The following methods were utilized to identify potential control technologies for these pollutants:

- Researching the RACT/BACT/Lowest Achievable Emission Rate (LAER) Clearinghouse (RBLC) database¹,
- Reviewing RACT and BACT implemented by other regulatory agencies and located in PM_{2.5} nonattainment areas,
- > Applying previous engineering experience,
- > Reviewing and discussions with air pollution control equipment vendors, and/or
- > Reviewing available literature.

This RACT analysis demonstrated that no additional controls beyond existing controls were technically and economically feasible for the emission sources as part of the PM_{2.5} SIP. This RACT analysis identified controls for the Hexcel West Valley City facility.

UDAQ's PM2.5 SIP Requests

UDAQ's March 13, 2014 letter specifically requires the following requests be addressed to meet Subpart 4 of Title I Part D of the CAA.

- 1. A recommendation for startup/shutdown controls for RACT-listed equipment at your facility. The limits can be process-based or numeric-based. As part of your response, provide documentation that the recommended control is the best available control of startup/shutdown emissions from each applicable point source.
- 2. Identification of the earliest date that the RACT controls required by the SIP can be implemented. Supporting information that addresses all stages of construction, including

¹ U.S. EPA Technology Transfer Network Clean Air Technology Center – RACT/BACT/LAER Clearinghouse, http://cfpub.epa.gov/rblc/index.cfm?action=Search.BasicSearch&lang=en

planning, acquisition, installation and implementation must support the identified RACT implementation date.

The following sections provides Hexcel's response to UDAQ's requests.

Startup/Shutdown Emissions Controls for RACT Listed Equipment

Plant operations are divided into two manufacturing processes: carbon fiber and composites (pre-preg) manufacturing operations. The RACT analysis listed all the equipment associated with these operations. As a part of this request, an evaluation of the start-up/shutdown emission controls has been provided for Hexcel's processes including Fiber Lines 2, 3, 4, 5-7, 8, 10, 11, 12, 13, and 14 and pre-preg operations which manufacture solvated resins and perform solvated resin impregnation. Hexcel's response has been developed to answer each of the questions in UDAQ's March 13, 2014 letter and follow the guidance provided by Ms. Camron Harry in our conference call on April 2, 2014.

The following analysis provides a description of the available controls, best operational practices, and Hexcel's procedures including those above and beyond the Approval Order (AO) requirements to eliminate or prevent emissions during startup/shutdown. The startup/shutdown emissions from miscellaneous sources such as, boilers, matrix incinerators, HVAC systems, and emergency generators are not included in this response as they are less than 5 tons per year annually and are not applicable.

To characterize startup for the carbon fiber lines, it is Hexcel's standard operating procedure to not start processing product until desired operating conditions have been achieved. Therefore, for the fiber line operations, the startup sequence begins prior to the input or while passing of polyacrylonitrile (PAN) through the first oxidation oven. For the pre-preg operations the procedure is the desired operating condition is achieved prior to passing prep-preg through the system. Similarly, shutdown of the system is conducted at a time which no product is running through the fiber lines or pre-preg processes. Therefore, during start-up and shutdown of the carbon fiber lines, small amounts of process related emissions are expected but are accounted for as "normal process emissions" not startup emissions. All of these emissions have already been accounted as part of Hexcel's normal emissions and are permitted as a part of facility-wide process or natural gas emission/consumption limits. Hexcel currently accounts for emissions during startup/shutdown of equipment and accounts for them on the monthly Approval Order emission estimates as well as reports them to UDAQ when it submits the required formal emissions inventory. The following table summarizes emissions during start-up/shutdown from each of the processes.

Process ²	Combustion or Process Emissions	S/S Emissions	RACT Control	Startup/Shutdown Procedure	Excess Emissions
Oxidation Ovens 5-7, 8, 10, 11, and 12	Combustion	Natural Gas Emissions	NG Combustion and Good Operating Practices	Bring ovens to temperature prior to introducing PAN or while PAN is being introduced to Oxidation oven 1 /discontinue PAN throughput prior to reducing temperature	No Except Malfunction
	Process	None			

Table 1 - Start-up/Shutdown (S/S) Emissions

² Fiber Lines 2, 3 and 4 are electric; therefore, not included.

Process ²	Combustion or Process Emissions	S/S Emissions	RACT Control	Startup/Shutdown Procedure	Excess Emissions	
Oxidation Ovens 13 and 14	Combustion	Natural Gas Emissions	Low NOx Burners	Bring ovens to temperature prior to introducing PAN or while PAN is being introduced to Oxidation oven 1/discontinue PAN throughput prior to reducing temperature	No Except Malfunction	
	Process	None				
Low-Temperature Furnaces 5-7, 8, 10, 11, and 12	Combustion	Natural Gas Emissions	Fume Incinerator	Bring Fume Incinerators to temperature specification prior to fiber passing through them	No Except Malfunction	
	Process	None				
Low-Temperature Furnaces 13 and 14	Combustion	Natural Gas Emissions	RTO	Bring RTO to temperature specification prior to fiber passing through furnace	No Except Malfunction	
	Process	None				
High- Temperature Furnaces 5-7, 8, 10, 11, and 12	Combustion	Natural Gas Emissions	Burner Boxes	Ignite Burner Boxes prior to fiber passing through furnace	No Except Malfunction	
	Process	None				
High-Temperature Furnaces 13 and 14	Combustion	Natural Gas Emissions	RTO	Bring RTO to temperature specification prior to fiber passing through furnace	No Except Malfunction	
	Process	None				
Fiber Lines 13 and 14	Combustion	Naturai Gas	RTO	Bring RTO to temperature specification prior to fiber passing through furnace	No Except Malfunction	
Surface Treatment Equipment	Process	Ammonia, Water Vapor	Good Operating Practices	Emissions are captured in hood upon fiber passing through surface treatment.	No Except Malfunction	
Sizing Application & Drying Equipment for Two (2) Lines	Process	Xylene, Water Vapor	Good Operating Practices	Emissions are captured in hood upon fiber passing through surface treatment.	No Except Malfunction	
Pre-preg	Combustion	Natural Gas	Thermal Oxidizers	Thermal oxidizer tower must be brought to temperature prior to operation of the pre-preg process	No Except Malfunction	
	Process	None				

A detailed description startup procedures and controls for each Fiber Line process is in the following section.

Fiber Lines Startup Procedures and Controls

Fiber Lines Oxidation Ovens

The fiber line process is a continuous process, which polyacrylonitrile (PAN) fibers are converted into carbon fiber. The initial step of the fiber line process is stabilization (i.e., oxidation) in which PAN is pulled off spools and fed into a series of moderate temperature (225°C - 300°C) ovens. The four oxidation ovens on Fiber Lines 5-7, 8, 10, -14 are gas fired and equipped with low NO_x burners, whereas Fiber Lines 2, 3, and 4 are electric. Fiber Lines 13 and 14 are gas fired and will be also equipped with low NO_x burners.

During startup, the ovens are brought to temperature prior to initiating PAN to pass through the process. It is critical for optimal processing of PAN for all systems to be at normal operating conditions to result in a desired fiber product. To compress the time of startup, Hexcel brings the four oxidation ovens to temperature in sequence within 2 hours while introducing PAN to oxidation oven 1. The NO_x generated during start-up of the gas fired ovens will be minimal as most of the NO_x in this process is thermally generated. During start-up of a cold oven, NO_x emissions tend to be lower because of lower oven temperatures and excess ambient air.³ CO emissions are also not typically higher than normal operations upon startup because the residence time in Hexcel's ovens are adequate to keep it to a minimum. Hexcel's procedure during startup of gas fired Oxidation Ovens to prevent excess emissions is as follows:

> Bring four Oxidation Ovens to temperature in sequence. Each oven is brought to temperature specification prior to PAN being passed through it or while PAN is being introduced to oxidation oven 1.

Therefore emissions are anticipated to be similar or less than normal operations or emissions . Emissions are accounted for with the natural gas startup.

Low Temperature Carbonization Furnace

The second step of the carbon fiber process is carbonization. This step is broken into two phases. The first phase, tar removal, occurs within a furnace through which the fiber continuously passes, commonly called the low temperature furnace. The tar removal step takes place in an electrically heated furnace at temperatures ranging from 300°C - 800°C. The tar removal phase not only removes unwanted elements from the molecular structure, but also plays a key role in further aligning the polymer chain. Process emissions generated from the tar removal phase are primarily HCN, other VOCs and particulates. The emissions from the low temperature carbonization furnaces are controlled by a dedicated fume incinerator for Fiber Lines 2, 3, 4, 5-7, 8, 10, 11 and 12. Fiber Lines 13 and 14 are controlled by a Regenerative Thermal Oxidizer (RTO) and baghouse. The following is a description of the low temperature carbonization furnace specific to the fiber lines at the Hexcel facility.

Fiber Lines 2, 3, 4, and 5

Fume incinerators are used for the abatement of emissions from the low temperature ovens on Fiber Lines 2, 3, 4, and 5. During startup of the fiber lines, Hexcel maintains an internal procedure to bring the fume incinerator online and brought to temperature prior to fiber passing through the low temperature ovens. The fume incinerators are maintained above the following temperature prior to starting the fiber line process:

> A minimum temperature of 1,400 °F;

³ Controlling Emissions During Cold Furnace Start-up, February 2007, Chemical Engineering Progress (CEP), Copy Right of American Institute of chemical Engineers (AIChE). Reprinted by John Zink Company,

Fiber Lines 6, 7, 8, 10, 11, and 12

Fume incinerators are used for the abatement of emissions from the low temperature ovens on Fiber Lines 6, 7, 8, 10, 11 and 12. Hexcel's internal procedure is to bring the fume incinerator online and brought to temperature prior to fiber passing through the low temperature furnance. The following parameters for the incinerator are maintained within the indicated ranges prior to starting the fiber line process:

- Meet permitted temperature limits of 1,400 °F minimum and 1,700 °F maximum;
- > Percent excess O2 is 6% minimum.

The fume incinerators on Fiber Lines 2, 3, 4 and 5 maintain a residence time of 0.5 seconds and the fume incinerators on Fiber Lines 6, 7, 8, 10, 11 and 12 are operated with a minimum residence time of 1.0 second at the maximum temperature and flow rate as addressed in Hexcel's Approval Order (AO). Since the residence time is a design basis of the fume incinerators and is a calculated value, it is not verified upon each startup.

Fiber Lines 13 and 14

Fiber lines 13 and 14 are currently under construction. These fiber lines will be controlled by an RTO followed by a baghouse. Upon installation, the RTO and baghouse dedicated to these lines for the control of emissions from oxidation ovens and low temperature and high temperature furnaces will be operational prior to fiber passing through the ovens. The RTO will utilize natural gas for start-up until there is sufficient solvents for combustion, at which time it switches over to solvents. Specifically, the following parameters will be verified on the RTO and baghouse prior to starting the fiber line processes:

- > RTO: Read excess O₂ between 0 and 10%.
- > Baghouse: 0.5 inches of water pressure drop.⁴

In summary, Hexcel's internal procedures require the fume incinerators be brought on-line and at permitted temperature prior to initiating operation of Fiber Lines 2, 3, 4, 5 – 7, 8, 10, 11, and 12. Similarly with Fiber lines 13 and 14 the associated RTO and baghouse will made operational with use of natural gas to bring it to temperature prior to initiating the fiber line process. Therefore, there will be no excess emissions during startup because emissions from natural gas combustion will not be any greater than normal operations or emissions already permitted by UDAQ.

High Temperature Carbonization Furnaces

The second phase of the carbonization process is a high temperature furnace which fiber is passed through a furnace at 1,200°C to 1,450°C. The high temperature phase is necessary to promote crystalline structure growth of molecules and to remove the non-carbon components from the polymer rings. This phase of carbonization evolves primarily HCN, other VOC emissions and particulates. A burner box is dedicated to each high temperature furnace on Fiber Lines 2, 3, 4, 5-7, 8, and 10 - 14. Emissions will be routed to a dedicated RTO and baghouse for Fiber Lines 13 and 14. Hexcel maintains the following procedures for startup of the High Temperature Carbonization Furnace on Fiber Lines 2, 3, 4, 5-7, 8, and 10 - 14:

Ignite the burner box dedicated to the fiber line prior to passing fiber through the high temperature furnace.

Additionally, for Fiber Lines 13 and 14 which are controlled by an RTO and baghouse Hexcel maintains a procedure for startup as follows:

⁴ Note; A baghouse pressure drop of 0.5 inches of water can be maintained. However, when bags are replaced in the baghouse, a cake needs to form on the bags prior to achieving the 0.5 inches of pressure drop. Consequently, the 0.5 inches of water will not be achieved upon the initial startup with new bags.

Start operations of the RTO with natural gas prior to passing fiber through the oxidation ovens, and low and high temperature furnaces on Fiber Lines 13 and 14.

As a result of Hexcel's procedures to ignite the burner boxes and start the RTO and baghouse prior to fiber being passed through high temperature carbonization furnaces, there will be no excess emissions because emissions from natural gas during start-up of the fiber lines will be similar or less than normal operations or emissions already permitted by UDAQ.

Surface Treatment Equipment and Ammonium Bicarbonate/RO Water Mix Rooms

Good operating practices are employed by Hexcel for the startup of Surface Treatment Equipment and Ammonium Bicarbonate/RO Water mix rooms for both startup and normal operations. There are no control equipment for these operations. It does not have any add-on controls. Based on good operating procedures, there is not anticipated to be any excess emissions during to startup of these processes compared to normal operations.

Fiber Lines Shutdown Procedures

For shut down, Hexcel follows an internal procedure to discontinue passing fiber through the process prior to control devices being shut down. The shutdown procedures for the previously discussed processes in the fiber lines include shutting off or cooling down process equipment prior to pollution control equipment. Specifically the following is conducted:

- > PAN fiber throughput will discontinue.
- > Oxidation ovens will be shut down. Natural gas will discontinue being fed to oxidation ovens in Fiber Lines 5-7, 8, and 10 - 14 and electric will be shut off to oxidation ovens in Fiber Lines 2, 3, and 4.
- Low temperature furnaces will discontinue fiber passing through them prior to the fume incinerator being cooled down for Fiber Lines 2, 3, 4, 5-7, 8, and 10 - 14.
- > High temperature furnaces will discontinue fiber passing through them prior to the flame being distinguished in the burner box on fiber lines 2, 3, 4, 5-7, 8, and 10 14.
- > Good operating practices are employed by Hexcel for the shutdown from Surface Treatment Equipment and Ammonium Bicarbonate/RO Water mix rooms. Consequently, excess emissions are not anticipated from shutdown operations compared to normal operations.
- > The Fiber Lines 13 and 14 will discontinue fiber passing through them at the same time the RTO will be shut off. The baghouse will be turned off after discontinuing fiber passing through process.

Since pollution control equipment will shut down after or at the same time as fiber line processes, Hexcel anticipates no excess emissions because there is no difference in emissions during shutdown as with normal operations.

Pre-Preg Process Startup Procedure and Controls

The Hexcel facility has three solvent coating towers equipped with thermal oxidizers and resin mixing equipment in Building #2478. The products manufactured with the towers are woven fabrics (fiberglass, carbon, Kevlar, quartz, etc.) that have been coated and impregnated with a variety of engineered thermosetting resins (epoxies, polyesters, polyimides, etc.). Once fabrics have been impregnated with resin they are referred to as pre-pregs. The solvent coating operation consists of two distinct phases, the manufacture of solvated formulary resins and application of the manufactured resins to the woven fabrics. Solvated resin manufacture consists of combining formulary resins with solvents in portable mix operations. The mixers are ventilated to the tower. The solvated resin impregnation is accomplished by pumping the mixed resin into a dip tank located at the bottom of each solvent coater tower. The woven

fabric is introduced and immersed in the dip tank. Once through the dip tank the resin impregnated fabric is passed through a vertically heated oven (referred to as the tower) that evaporates the solvent from the resin. The solvent handling and drying assembly are enclosed and under negative pressure. This ensures capture of all evaporated solvent in the tower where they are directed to a thermal oxidizer.

Upon startup, the thermal oxidizer is fueled by natural gas to bring the drying oven to temperature. Once in operation the thermal oxidizer is fueled by both natural gas and solvent fumes. Since the thermal oxidizing towers are an integral part of the process for solvated resin impregnation, it must be brought to temperature prior to operation. The thermal oxidizer incinerators are to be maintained above the following specifications prior to starting the solvent coating process:

> A minimum temperature of 1,450 °F.

Since the tower must be brought to temperature prior to operation of the pre-preg process, there is no difference emissions during the startup of the pre-preg process from normal operations.

Maintenance

To ensure that Hexcel's process operations and control devices are maintained to minimize emissions during start-up/shut down Hexcel implements rigorous maintenance practices, follows regulatory standards, and adheres to ISO 14001 procedures. A description of these maintenance practices are described in the following sections.

Hexcel maintains the following daily inspections to ensure abatement equipment is operating properly. These practices are above and beyond established regulatory requirements.

- > Visual confirmation of a flame in fume incinerators.
- > Visual confirmation of a flame in burner boxes.
- > Temperature readings are observed and recorded.
- > O2 levels are monitored and recorded.

Signs and labels of operating parameters are included on all the abatement equipment readouts. Additionally, an environmental compliance tag is attached to abatement equipment notifying observers if anything is out of specification. In the event of parameters being observed out of range, the Environmental Engineer and Maintenance Department are to be notified immediately.

As required by Hexcel's AO, the following maintenance is conducted on instruments of the fume incinerators and RTO.

Fume Incinerators

Hexcel performs the following calibrations associated with the fume incinerators:

Every 180 days:

> Thermocouples calibrated in accordance with 40 CR 60, Appendix A, Method 2, paragraph 6.3 and 10.31 or use a K type thermocouple; ⁵and

⁵ Condition II.B.1.g of AO - DAQE-AN111860021-13

> O2 Monitors calibrated in accordance with manufacture's standard.6

RTO

Upon startup of Fiber Lines 13 and 14, Hexcel will calibrate the following instruments associated with the RTOs:

- > Every 180 days O₂ Monitors will be calibrated in accordance with manufacture's standard.⁷
- > At least annually, baghouse pressure drop monitoring devices will be calibrated according to manufacturer's standards.⁸

Oxidation Ovens

Hexcel maintains the burners on the oxidation ovens which includes inspection and cleaning to ensure good combustion practices are employed. Maintenance is performed periodically and tracked in the facility's maintenance work order system.

Additionally, Hexcel's natural gas fired oxidation ovens are subject to the requirements of 40 CFR 63, Subpart DDDDD (Boiler Maximum Achievable Control Technology [MACT]).

The applicable ovens are subject to the following work practice standards and requirements, which ensures Hexcel maintains good combustion practices⁹:

- 1. Natural gas fired process heaters rated greater than 5 MMBTU/hr but less than 10 MMBTU/hr require tune-ups every 2 years to demonstrate continuous compliance.
- 2. Natural gas fired process heaters rated less than or equal to 5 MMBTU/hr require tune-ups every 5 years.
- 3. A Compliance Report will be submitted every 2 years covering the 2 year period from January 1 to December 31. The initial compliance report will be postmarked/submitted by January 31st, 2016. Subsequent compliance reports will be postmarked/submitted every 2 years by January 31st following the end of the reporting period.
- 4. An existing process heater located at a major source facility must have a one-time energy assessment performed by a qualified energy assessor. An energy assessment completed on or after January 1, 2008, that meets or is amended to meet the energy assessment requirements in Table 3 of the regulation, satisfies the energy assessment requirement.
- 5. Hexcel maintains Boiler MACT work practice standards, reports and maintenance records for a minimum of 5 years.

ISO 14001 Environmental Management System Procedures - ECRs

As a part of ISO 14001 procedures, Hexcel has implemented and maintains a rigorous system of training, inspections and reporting at the Facility that ensures compliance with the all the applicable emission standards and limits.

The environmental engineer and staff ensure that all employees are properly trained to do the required monitoring to maintain compliance with the facility AO and other environmental requirements. The staff environmental engineer requires that at least one employee conduct daily inspections of all operations. During these inspections, the employee will observe any opacity events, as well as other non-conforming environmental conditions, and report them.

⁶ Conditions IIB.3.d, II.B.4.a, and IIB.5.b of AO - DAQE-AN111860021-13

⁷ Conditions II.B.6.a and II.B.7.a of AO - DAQE-AN111860021-13

⁸ Condition II.B.6.b of AO - DAQE-AN111860021-13

^{9 40} CFR 63, Subpart DDDDD

To complement these inspections, Hexcel maintains an Environmental Control Record (ECR) system. The ECR system helps Hexcel to efficiently identify, respond and correct any deviations or non-normal emissions events as well as other environmental incidents. A thorough investigation will be conducted for each concern or nonconformance in order to determine viability of concern or any impacts. Appropriate actions will be identified, taken, and documented on the ECR form to mitigate all concerns or impacts resulting from each nonconformance.

The ECR system essentially is a Nonconformance and Corrective/Preventative Action Plan that is part of their overall Environmental Management System Procedure. Please note that the ECR itself does not constitute an excess emission event. The ECR is just an internal procedure to track all deviations and corrective actions. Once an ECR is initiated, the Environmental Engineer determines whether to notify UDAQ with an Unavoidable Breakdown or Permit Exceedance report or not.

Timeline for Implementation of RACT

The Hexcel facility is not required to install additional controls as part of the RACT on Fiber Lines 2-8 and 10-14. Therefore, RACT requirements are not associated with a timeline per SIP Section IX.H.12 (i). Based on the discussion with Cameron Harry of UDAQ, Hexcel is not required to identify the earliest date that the RACT controls required by the SIP can to be implemented.

Hexcel is in the process of preparing an application for the addition of Fiber lines 15 and 16. UDAQ requested Hexcel provide an estimate of timing for submittal of the application and commencement of construction of Fiber lines 15 and 16. Accordingly, Hexcel anticipates the following timelines for these actions:

- Submittal of the application Third quarter 2014
- > Commencement of Construction First quarter 2015

Hexcel intends to meet the requirements of Section IX.H.12 (i) upon startup of Fiber lines 15 and 16.

Hexcel appreciates the opportunity to work with UDAQ in the implementation of its PM2.5 SIP and will be available to answer any further questions or provide information required.

If you have any questions or comments about the information presented in this letter, please do not hesitate to call me at (801) 508-8011.

Sincerely,

Shannon Storrud Environmental Engineer Hexcel Corporation