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PM2.5 SIP EVALUATION REPORT 
PacifiCorp Energy – Lake Side Power Plant 

 
 
1.0 Introduction  
 

The following is part of the Technical Support Documentation for Section IX, Part H.13 of the 
Utah SIP; to address the Provo/Orem PM2.5 Nonattainment Area.  This document specifically 
serves as an evaluation of the PacifiCorp Energy operated Lake Side Power Plant. 

 
1.1 Facility Identification 
 

Name:  Lake Side Power Plant 
Address:  1825 N Pioneer Lane, Vineyard, Utah, Utah County 
Owner/Operator:  PacifiCorp Energy 
UTM coordinates:  4,464,500 m Northing, 436,000 m Easting, Zone 12 

 
1.2 Facility Process Summary 
 

The Lake Side Power Plant (LSPP) is a natural gas-fired electric generating plant 
consisting of four combined-cycle turbines, four heat recovery steam generators with duct 
burners, two auxiliary boilers, two cooling towers, one dew point heater, two diesel-fired 
emergency generators, and one diesel-fired fire pump. The plant is located in Utah 
County, which is part of the Provo, Utah PM2.5 nonattainment area. 
 
The plant is a Phase II acid rain source and a major source for PM10/PM2.5, NOx, CO, 
VOC, HAP and GHG emissions.  The source (Block #1) was originally permitted as a 
PSD source and a PM10 non-attainment area major source.  When Block #2 was added in 
2011, this modification was permitted as a PSD major modification, as well as a PM10 
nonattainment area major modification.  Therefore, analysis of LAER was required on 
both occasions for the facility’s PM10 and NOx emissions; analysis of BACT was 
required for all other emissions.   
 
At the time of installation for both Block #1 and Block #2, BACT/LAER for the turbines 
was dry low-NOx burners, SCR and oxidation catalysts.  The auxiliary boilers were fitted 
with dry low-NOx burners.  The diesel equipment is required to operate on ultra-low 
sulfur diesel.  The cooling towers have high-efficiency drift elimination. 

 
1.3 Facility Criteria Air Pollutant Emissions Sources 
 

The source consists of the following emission units: 
 
One (1) natural gas-fired, dry low-NOx, combined-cycle turbine – CT #1 
One (1) natural gas-fired, dry low-NOx, combined-cycle turbine – CT #2 
One (1) natural gas-fired, dry low-NOx, combined-cycle turbine – CT #3 
One (1) natural gas-fired, dry low-NOx, combined-cycle turbine – CT #4 
One heat recovery steam generator, low-NOx duct burner, 184 MMBtu/hr – HRSG #1 
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One heat recovery steam generator, low-NOx duct burner, 184 MMBtu/hr – HRSG #2 
One heat recovery steam generator, low-NOx duct burner, 400 MMBtu/hr – HRSG #3 
One heat recovery steam generator, low-NOx duct burner, 400 MMBtu/hr – HRSG #4 
Two (2) selective catalytic reduction systems with ammonia injection – Block #1 SCR 
Two (2) selective catalytic reduction systems with ammonia injection – Block #2 SCR 
Two (2) CO oxidation catalysts – Block #1 OxyCat 
Two (2) CO oxidation catalysts – Block #2 OxyCat 
One (1) natural gas-fired 62.765 MMBtu/hr auxiliary boiler – Aux Boiler #1 
One (1) natural gas-fired 57.6 MMBtu/hr auxiliary boiler – Aux Boiler #2 
Two (2) 1,500 hp emergency diesel generators – Em Gen #1, #2 
One (1) 4.76 MMBtu/hr diesel-fired fuel dew point heater – Heater #1 
One (1) 290 hp diesel-fired fire pump – Pump #1 
Cooling Towers #1, #2 
 

1.4 Facility 2014 Baseline Actual Emissions and Current PTE 
 

In 2014, LSPP’s baseline actual emissions were determined to be the following (in tons per year): 
 
Table 1: Actual Emissions 

Pollutant Actual Emissions (Tons/Year) 
PM2.5 56.5 
SO2 10.3 
NOx 238.6 
VOC 
NH3 

37.4 
147.1 

 
The current PTE values for LSPP, as established by the most recent AO issued to the source 
(DAQE-AN130310012-15) are as follows: 
 
Table 2: Current Potential to Emit 

Pollutant Potential to Emit (Tons/Year) 
PM2.5 215.4 
SO2 55.6 
NOx 280.9 
VOC 
NH3 

169.7 
* 

* No allowable emissions or PTE were ever determined for this facility 
 
 

2.0 Modeled Emission Values   
 

A full explanation of how the modeling inputs are determined can be found elsewhere.  However, 
a shortened explanation is provided here for context. 
 
The base year for all modeling was set as 2014, as this is the most recent year in which a 
complete annual emissions inventory was submitted from each source.  Each source’s submission 
was then verified (QA-QC) – checking for condensable particulates, ammonia (NH3) emissions, 
and calculation methodologies.  Once the quality-checked 2014 inventory had been prepared, a 
set of projection year inventories was generated.  Individual inventories were generated for each 
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projection year: 2017, 2019, 2020, 2023, 2024, and 2026.  If necessary, the first projection year, 
2017, was adjusted to account for any changes in equipment between 2014 and 2017.  For new 
equipment not previously listed or included in the source’s inventory, actual emissions were 
assumed to be 90% of its individual PTE. 
 
While some sources were adjusted by “growing” the 2014 inventory by REMI growth factors; 
other sources were held to zero growth.  This decision was largely based on source type, and how 
each source type operates.  Utility sources (for example) are not likely to experience a growth in 
sales or related production.  They operate based on large-scale power demand and the needs of 
the entire system.   
 
For the LSPP, a summary of the modified emission totals for 2017 are shown below in Table 3.  
Updated values with growth applied would then propagate through for each of the subsequent 
projection years. 
 
Table 3: Modeled Emission Values (Plant-Wide) 

Pollutant 2017 Projected Actual Emissions (Tons/Year) 
PM2.5 58.4 
SO2 10.6 
NOx 246.7 
VOC 
NH3 

38.6 
152.1 

* For the LSPP, no additional changes in equipment took place between 2014 and 2017 – 
aside from a change in an emergency generator – this had a minimal impact on emissions. 

 
Finally, the effects of BACT were then applied during the appropriate projection year.  BACT 
applied between 2014 and 2017, was previously taken into account during the 2017 adjustment 
shown above.  For future BACT, meaning those items expected to be coming online between 
today and the regulatory attainment date (December 31, 2019), the effects of those changes would 
be applied during the 2019 projection year.  This is included in the notes attached to the 
appropriate emission inventory model input spreadsheet. 
 

3.0 BACT Selection Methodology 
 
The general procedure for identifying and selecting BACT is through use of a process commonly 
referred to as the “top-down” BACT analysis.  The top-down process consists of five steps which 
consecutively identify control measures, and gradually eliminate less effective or infeasible 
options until only the best option remains.  This process is performed for each emission unit and 
each pollutant of concern.  The five steps are as follows: 
 
1. Identify All Existing and Potential Emission Control Technologies: UDAQ evaluated various 

resources to identify the various controls and emission rates.  These include, but are not 
limited to: federal regulations, Utah regulations, regulations of other states, the RBLC, 
recently issued permits, and emission unit vendors. 

  
2. Eliminate Technically Infeasible Options: Any control options determined to be technically 

infeasible are eliminated in this step.  This includes eliminating those options with physical or 
technological problems that cannot be overcome, as well as eliminating those options that 
cannot be installed in the projected attainment timeframe.   
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3. Evaluate Control Effectiveness of Remaining Control Technologies: The remaining control 
options are ranked in the third step of the BACT analysis.  Combinations of various controls 
are also included.   

 
4. Evaluate Most Effective Controls and Document Results: The fourth step of the BACT 

analysis evaluates the economic feasibility of the highest ranked options.  This evaluation 
includes energy, environmental, and economic impacts of the control option. 

 
5. Selection of BACT: The fifth step in the BACT analysis selects the “best” option.  This step 

also includes the necessary justification to support the UDAQ’s decision.   
 
Should a particular step reduce the available options to zero (0), no additional analysis is 
required.  Similarly, if the most effective control option is already installed, no further analysis is 
needed. 
 

4.0 BACT for Combustion Turbines and HRSGs 
 
The four combustion turbines (CTs) are each operated as combined-cycle units fired exclusively 
on pipeline quality natural gas. Although the HRSGs at Block #2 are designed with significantly 
more duct firing, the general function of both power blocks is identical. The CT provides primary 
power generation by spinning a generator directly. The excess heat is captured by the HRSG and 
the steam spins a steam turbine/generator for additional power generation. Supplemental heat can 
be supplied by duct firing in the HRSG. 
 
Although identified as separate units, each CT and associated HRSG vent through a single stack 
and emissions from both units are controlled simultaneously with the same equipment. Since all 
four CT/HRSG combinations operate identically, UDAQ has chosen to treat these as a single 
group for purposes of the BACT analysis. 

 
Following the emissions correction procedure outlined above in Section 2.0, emissions from all 
four CT/HRSGs were as follows: 
 
PM2.5 = 55.84 tons 
SO2 = 10.28 tons 
NOx = 199.67 tons 
VOC = 36.02 tons 
NH3 = 150.54 tons 
 
The calculations are shown on the projection emission spreadsheet.  
 

4.1 PM2.5 
 
4.1.1 Available Control Technology 

 
Controls for particulate emissions fall into one of three groups: pre-combustion controls, which 
seek to eliminate contaminants in the inlet air prior to the combustion chamber; combustion 
controls, such as specific burners or combustion design; and post-combustion controls, such as 
electrostatic precipitators or baghouses. 
 
The identified controls are as follows: 
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Inlet air filters: primarily used to filter out small particulate matter in the inlet air to protect the 
combustion turbine.  These filters can be static or self-cleaning, with the self-cleaning type 
requiring less maintenance. 
 
Good combustion practice: this is nothing but properly operating the combustion turbines with 
the correct ratio of air to fuel in order to maximize combustion and minimize unburned fuel. 
 
Clean burning fuels: includes the use of inherently low emitting fuels like natural gas.   
 
Specific burner and/or combustion chamber design: the more efficiently a turbine is able to 
operate, the less pollution it will generate for a given amount of fuel combusted (or, to be more 
precise); as less fuel will be required to generate the same amount of power.  This option includes 
both the use of high efficiency turbines, as well as inherently lower emitting burners such as dry 
low-NOx (DLN) combustors. 
 
Add-on particulate controls: this final option includes traditional “add-on” control systems such 
as baghouses or electrostatic precipitators.  These types of controls would be installed post 
combustion, and prior to the emissions exiting the stack. 
 

4.1.2 Evaluation of Technical Feasibility of Available Controls 
 
Post-combustion particulate controls such as baghouses and electrostatic precipitators have not 
been demonstrated in practice for use on combustion turbines.  There are multiple factors that 
combine to eliminate these types of controls from consideration.  1) Combustion turbine 
particulate emissions have a small aerodynamic diameter – typically on the order of 1 micron or 
less – which makes the use of most direct physical capture systems problematic. 2) Natural gas-
fired turbines generate little in the way of particulate emissions; yet also have high volume 
exhaust flows. This combination results in a low concentration of PM in the exhaust. 3) Post-
combustion controls have difficulty operating efficiently or effectively in low concentration 
environments.  Baghouse-style filtration systems rely on the buildup of a filter cake of captured 
particulates to enhance capture efficiency, while scrubbing systems require a reasonable 
particulate concentration in order to operate efficiently.  Electrostatic precipitators can operate in 
low concentration conditions, but also suffer efficiency problems.  In addition, a search was 
conducted for the use of ESPs with natural gas-fired turbines and no results were found. A single 
article which discussed a bench-scale experiment was found, but no commercially available 
results. The UDAQ was unable to identify any combustion turbines fired on gaseous fuels using 
post combustion controls for the control of particulate emissions.  Post-combustion controls are 
therefore technically infeasible and removed from additional consideration. 
 
All of the remaining control options are considered technically feasible and require additional 
evaluation. 
 

4.1.3 Evaluation and Ranking of Technically Feasible Controls 
 
The remaining control options under consideration are not mutually exclusive.  A single high-
efficiency combustion turbine can be operated with inlet air filters and using good combustion 
practices.  The turbine can be fired exclusively on natural gas as the sole fuel source, and use 
DLN combustors. Thus, the remaining controls do not need to be ranked – rather they need to be 
combined and considered as a group. 
 
All of the remaining control options can be combined into this group (effectively: “high 
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efficiency combustion”), so no further evaluation under step 3 is required. 
 

4.1.4 Further Evaluation of Most Effective Controls 
 
As the combustion turbines at this facility are already utilizing these controls, no adverse 
economic, environmental or energy costs will result.   
 

4.1.5 Selection of BACT controls 
 
The LSPP is already employing inlet air filters, DLN combustors, and pipeline quality natural gas 
as fuel as BACT control options.  Utah rules R307-401-4(1) & (2) require that all sources 
maintain and operate any equipment, including associated air pollution control equipment, in a 
manner consistent with good air pollution control practice for minimizing emissions (good 
combustion practices). Thus, each of the identified control options is already in place and 
operating at the facility.   
 
Currently, the LSPP has limits of 10.8 lb of PM2.5/hr each for turbines #1 and #2 (Block #1), and 
14.0 lb of PM2.5/hr each for turbines #3 and #4 (Block #2).  While both of these limits have a 30-
day averaging period, no additional reductions in particulate emissions would be possible without 
a complete redesign of the combustion turbine and HRSG system; which would include the 
installation of newer, more efficient turbines.  Such a redesign would involve a significant capital 
expenditure and would ultimately prove to be economically infeasible.  Even then, there is no 
guarantee that particulate emissions would decrease, as combustion turbine design has not 
improved or changed significantly since the last major change at the plant in 2011.  Therefore, 
UDAQ recommends that the existing controls be accepted as BACT for control of particulate 
emissions from the combustion turbines. 
 

4.2 SO2 
 
Emissions of SO2 (and H2SO4 as well) are directly a function of the amount of sulfur present in 
the fuel.  As the fuel is burned, the fuel-bound sulfur is oxidized to SO2 (some H2SO4 is also 
formed). 
 

4.2.1 Available Control Technology 
 
Most sulfur control technologies require the use of some sort of acid reducing agent such as a 
lime slurry or limestone injection. This leads to residual solid or liquid waste which requires 
subsequent disposal. The remaining add-on control techniques rely on the post-combustion 
control of emissions of particulates and allowing any residual sulfur to be captured with the 
particulate. A second option would be to reduce the amount of sulfur present in the fuel, thus 
eliminating the source of the SO2.   
 

4.2.2 Evaluation of Technical Feasibility of Available Controls 
 
Neither of the possible control options is technically feasible.  With all the combustion turbines 
being fired on natural gas, the amount of fuel-bound sulfur is inherently quite low.  UDAQ has 
been unable to locate any technologies to further reduce the amount of sulfur present in pipeline 
quality natural gas.   
 
Post-combustion desulfurization systems, such as limestone injection or dry-lime scrubbing, are 
typically designed for exhaust streams with much higher SO2 (and acid gas) concentrations than 
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those found with combustion turbines fired on natural gas.  The low concentration leads to 
lowered control efficiencies.  Effective control then requires longer residence times, longer 
exhaust stream runs, lowered exhaust temperatures, and worsened emission dispersal upon 
release.   
 

4.2.3 Evaluation and Ranking of Technically Feasible Controls 
 
No additional controls have been identified as being technically feasible, beyond the existing 
baseline control of burning only pipeline quality natural gas.  Therefore, no evaluation or ranking 
is possible.  The existing control option remains the only viable option. 
 

4.2.4 Further Evaluation of Most Effective Controls 
 
As no additional controls have been determined to be technically feasible, no evaluation of 
economics, energy consumption or adverse environmental impacts is possible. 
 

4.2.5 Selection of BACT 
 
No additional controls or control techniques are required. Combustion of pipeline quality natural 
gas as fuel for control of SO2 emissions is recommended as BACT. 
 
Given the relatively small amount of SO2 estimated to be coming from the CT/HRSGs (10.28 
tons/year), no limits have been set for these units.  The use of only pipeline quality natural gas as 
fuel represents a work practice standard rather than a measureable quantity restriction (such as a 
production limit) or other quantifiable limitation (such as an emission limitation). 
 

4.3 NOx 
 
NOx, or oxides of nitrogen, are formed from the combustion of fuel in the turbine.  There are 
three mechanisms for the formation of NOx: fuel NOx, which is the oxidation of the nitrogen 
bound in the fuel; thermal NOx, or the oxidation of the nitrogen (N2) present in the combustion air 
itself; and prompt NOx, which is formed from the combination of combustion air nitrogen (N2) 
with various partially-combusted intermediary products derived from the fuel.  For combustion 
within the turbines, fuel NOx and thermal NOx are the major contributors, with prompt NOx 
contributing slightly only in the initial stages of combustion.  All three processes are temperature 
dependent – combustion temperatures below 2700ºF greatly inhibit NOx formation. 
 

4.3.1 Available Control Technology 
 
The following technologies have been identified as potential control methodologies for control of 
NOx emissions: good combustion practices; low emission combustion (LEC); selective non-
catalytic reduction (SNCR), the injection of ammonia or urea directly into the late stages of the 
combustion zone; selective catalytic reduction (SCR); and EMx™ (previously known as 
SCONOx™).    
 
In the SCR process, a reducing agent, such as aqueous ammonia, is introduced into the turbine’s 
exhaust, upstream of a metal or ceramic catalyst. As the exhaust gas mixture passes through the 
catalyst bed, the reducing agent selectively reduces the nitrogen oxide compounds present in the 
exhaust to produce elemental nitrogen (N2) and water (H2O). Ammonia is the most commonly 
used reducing agent. Adequate mixing of ammonia in the exhaust gas and control of the amount 
of ammonia injected (based on the inlet NOx concentration) are critical to obtaining the required 
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reduction. For the SCR system to operate properly, the exhaust gas must maintain minimum O2 
concentrations and remain within a specified temperature range (typically between 480ºF and 
800ºF with the most effective range being between 580°F and 650°F), with the range dictated by 
the type of catalyst. Exhaust gas temperatures greater than the upper limit (850°F) will pass the 
NOx and unreacted ammonia through the catalyst. The most widely used catalysts are vanadium, 
platinum, titanium, or zeolite compounds impregnated on metallic or ceramic substrates in a plate 
of honeycomb configuration. The catalyst life expectancy is typically 3 to 6 years, at which time 
the vendor can recycle the catalyst to minimize waste. 
 
The EMx™ system uses a coated oxidation catalyst installed in the flue gas to remove both NOx 
and CO without a reagent such as ammonia. The NO emissions are oxidized to NO2 and then 
absorbed onto the catalyst. A dilute hydrogen gas is passed through the catalyst periodically to 
de-absorb the NO2 from the catalyst and reduce it to N2 prior to exit from the stack. EMx™ 
prefers an operating temperature range between 500°F and 700°F. The catalyst uses a potassium 
carbonate coating that reacts to form potassium nitrates and nitrites on the surface of the catalyst. 
When all of the carbonate absorber coating on the surface of the catalyst has reacted to form 
nitrogen compounds, NO2 is no longer absorbed, and the catalyst must be regenerated. Dampers 
are used to isolate a portion of the catalyst for regeneration. The regeneration gas consists of 
steam, carbon dioxide, and a dilute concentration of hydrogen. The regeneration gas is passed 
through the isolated portion of the catalyst while the remaining catalyst stays in contact with the 
flue gas. After the isolated portion has been regenerated, the next set of dampers close to isolate 
and regenerate the next portion of the catalyst. This cycle repeats continuously. At any one time, 
four oxidation/absorption cycles are occurring and one regeneration cycle is occurring. 
 
Two additional post-combustion control systems were also identified as being potentially 
applicable: 
 
Linde’s LoTOx™ technology uses ozone injection to oxidize NO and NO2 to N2O which is 
highly soluble and easier to remove through the use of another control device such as a wet 
scrubber.  UDAQ has seen and permitted the application of this technology in combination with a 
wet gas scrubber for emission control at a petroleum refinery.   
 
Enviroscrub’s Pahlmann™ Process is a sorbent-based control system which functions similarly to 
a dry scrubber.  In this system, Pahlmanite (a manganese dioxide sorbent) is injected into the 
exhaust stream for NOx removal and then collected in a particulate control device like a 
baghouse.  The sorbent is then regenerated in an aqueous process, filtered and dried, and is then 
ready for reinjection.  The wastewater is sent offsite for disposal. 

 
4.3.2 Evaluation of Technical Feasibility of Available Controls 

 
All of the identified control options are potentially technically feasible; however some additional 
explanation is warranted: 
 
In the case of LEC, more than one variant of combustor design exists:   
 
• Dry-low-NOx: The modern, dry low-NOx (DLN) combustor is typically a three-staged, lean, 

premixed design, which utilizes a central diffusion flame for stabilization. The lean, premixed 
approach burns a lean fuel-to-air mixture for a lower combustion flame temperature resulting 
in lower thermal NOx formation. The combustor operates with one of the lean premixed 
stages and the diffusion pilot at lower loads and the other stages at higher loads. This 
provides efficient combustion at lower temperatures, throughout the combustor-loading 
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regime. The dry low-NOx combustor reduces NOx emissions by up to approximately 87 
percent over a conventional combustor. 

• Catalytic combustors: These combustors use a flameless catalytic combustion module to 
initiate the combustion process, followed by a more traditional combustion process 
downstream of the catalyst.  This two-stage process lowers the overall combustion 
temperature. 

• Xonon Cool Combustion®: Catalytica Energy Systems’ Xonon Cool Combustion® System is 
a specific type of catalytic combustion process, and often mentioned independently in control 
technology reviews.  In practical application, however, it functions similarly to other catalytic 
combustors.  

 
Along with these types of burner designs, another pre-combustion process – water or steam 
injection – can also be used to lower the combustion temperature.  Depending on the amount of 
water or steam used, this process can also increase  both the maximum and actual power output of 
the turbine – by allowing more fuel to be burned without overheating, and by increasing the 
density of the exhaust flow through the turbine.  However, water and steam injection tend to 
reduce combustion efficiency, prevent complete combustion leading to an increase in CO and 
VOC emissions, and are of limited effectiveness in combined cycle systems (turbine/HRSG 
systems) where the lowered temperature and increased specific heat of the turbine exhaust gas 
directly results in an increased need for duct firing in the HRSG unit. 
 
Neither the LoTOx™ nor Pahlmann™ processes are determined to be technically feasible.  While 
the LoTOx™ system is technically feasible from a mere engineering standpoint, it suffers from 
two flaws.  It has not yet reached the commercial stage for large scale, combined-cycle, 
combustion turbines; and it requires the use of a second control system, such as a wet gas 
scrubber, for final removal of the N2O.  In the application of LoTOx™ UDAQ has previously 
permitted, the system was included as an additional module to a wet gas scrubber designed for 
removal of SO2 and other acid gases.  Achieving additional NOx removal at relatively low cost 
(on a $/ton basis) was the ideal fit for this technology.  However, requiring the addition of another 
control system for final pollutant removal, especially where the secondary system does not add to 
emission reduction of other pollutants, demonstrates that LoTOx™ is not yet technically feasible.  
Similarly, the Pahlmann™ Process also requires the addition of: a baghouse for particulate 
removal (for capture of the sorbent), an aqueous sorbent regeneration process, and a wastewater 
treatment/disposal process.  While the technology does show promise for control of multiple 
pollutants, it was not intended for control of only the NOx emissions from gas-fired turbines and 
is not commercially available for such units.  Both processes are eliminated from further 
consideration. 
 
The other control options (SNCR, SCR, good combustion practices, and burner design) are all 
technically feasible. 
 

4.3.3 Evaluation and Ranking of Technically Feasible BACT Controls 
 
The combustion turbines installed at the Lake Side facility are GE Frame 7FAs, which are built 
around a dry-low-NOx combustor. Each turbine is connected to a heat recovery steam generator, 
also equipped with low-NOx duct burners. Finally, each turbine/HRSG pair is further controlled 
by a SCR system (using ammonia injection). 
 
The use of additional pre-combustion controls is not technically feasible at the LSPP, regardless 
of the type of combustion technology chosen.  As discussed in the previous section, the reduction 
in exhaust temperature and increased specific heat greatly increase the need for duct firing in the 
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HRSG – a much less efficient process for generating power.  Since pre-combustion controls are 
not being installed for NOx reduction, the type of combustor is not limited by this consideration.  
Instead, the combustor type can be selected based on effectiveness and availability. 
 
As mentioned above, the turbines installed at the LSPP are all based around a dry-low-NOx 
combustor.  This particular system is a lean pre-mix burner design, which uses a combination of 
staged combustion and differing fuel-air mixing for each combustion stage to both lower the 
combustion temperature and still allow for complete combustion.  Xonon does not currently 
represent an available control technology for any large turbine.  While a joint venture agreement 
was in place with General Electric (GE) to eventually develop Xonon as original equipment 
manufacturer and retrofit equipment for the entire GE turbine line, GE does not currently offer a 
Xonon combustor option for 7FA or any other large industrial turbine. An Application for 
Certification approved by CEC for the Pastoria Energy Facility Project (December 20, 2000) 
proposed to install Xonon on F-Class Turbines, however, Xonon was determined not to be 
technically feasible and the plant was constructed using DLN burners and SCR. The NOx 
emission limit proposed for the Pastoria Project was being evaluated under LAER criteria. 
DLN/SCR was proposed as the back-up control technology in the event that the Xonon 
technology proved infeasible. Currently Catalytica Energy Systems is only marketing Xonon 
technology for gas turbines within the 1 to 15 MW size range. Hence, at this time, Xonon does 
not represent a currently available control technology for the LSPP.  Furthermore, the Xonon 
system is only guaranteeing 3 ppm for a NOx emission rate.  The NOx emissions on both Block #1 
and Block #2 are limited by the most recently issued AO to 2 ppm CT/HRSGs stack (both limits 
on a 3-hour average at steady state operation). 
 
In comparing SNCR and SCR, two factors come into play – the hypothetical effectiveness of 
control, and whether either system will work more effectively in the specific design at LSPP.  In 
this case, all of the SNCR designs available, ranging from simple ammonia/urea injection in the 
main combustion zone through Fuel Tech’s NOxOUT™ process, all require an exhaust gas 
temperature somewhere between 1600ºF and 2100ºF for most effective conversion of NOx to N2.  
SCR systems, on the other hand, use a catalyst to lower this effective temperature range down to 
between 480ºF and 800ºF.   
 
All four turbines at the LSPP are configured in combined cycle operation, with a single 
combustion turbine paired with a matching heat recovery steam generator or HRSG.  These 
HRSGs can receive supplemental heat from additional “duct burners” but are primarily heated 
passively only from the exhaust heat out of the paired turbine (also known as a waste heat boiler 
configuration).  The exhaust gas temperature after exiting the HRSG is most commonly between 
650ºF and 800ºF with the maximum exhaust temperature less than 1100ºF.  Therefore, the only 
remaining control technology is the use of SCR in conjunction with DLN combustors. 
 

4.3.4 Further Evaluation of Most Effective Controls 
 
As all of the remaining control technologies are in place and operational at the LSPP, no 
additional evaluation is required. 
 

4.3.5 Selection of BACT Controls 
 
Retention of the existing SCR systems for each of the CT/HRSGs to control NOx emissions is 
recommended as BACT.  Emission limits of 2.0 ppmdv on a 3-hr basis were established in the 
most recently issued NSR permit for the facility, and these emission limits were carried forward 
into the moderate PM2.5 SIP as lb/hr limitations as follows: 
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SIP Section IX.H.13.d. 
i. Block #1 Turbine/HRSG Stacks: 

A. Emissions of NOx shall not exceed 14.9 lb/hr on a 3-hr average basis 
B. Compliance with the above conditions shall be demonstrated as follows: 

I. NOx monitoring shall be through use of a CEM as outlined in IX.H.11.f 
ii. Block #2 Turbine/HRSG Stacks: 

A. Emissions of NOx shall not exceed 18.1 lb/hr on a 3-hr average basis 
B. Compliance with the above conditions shall be demonstrated as follows: 

I. NOx monitoring shall be through use of a CEM as outlined in IX.H.11.f 
 
These same emission limits should be retained with the retention of the existing controls as 
BACT. 
 

4.4 VOC 
 
VOC emissions are the result of unburned hydrocarbons formed during incomplete combustion.  
To some degree the formation of VOCs is dependent on combustion system design, choice of 
fuel, combustion temperature (itself dependent on equipment design and operating practices), and 
operating practices (which can control the air-to-fuel ratio, timing, temperature, and other 
factors). 
 

4.4.1 Available Control Technology 
 
Control techniques are divided into two groups: Post-combustion controls, and everything else - 
which includes pre-combustion controls, as well as equipment design and good operating 
practices. 
 
Only one type of post combustion control has been identified by UDAQ - the use of oxidation 
catalysts. An oxidation catalyst is similar in design and operation to a catalytic control system on 
a passenger vehicle, in that an inline, self-regenerating, catalyst system is placed within the 
exhaust stream prior to the final stack, so that emissions of both VOC and CO can be further 
oxidized to CO2 and water. Oxidation of VOC can approach efficiencies of 70%, depending on 
initial concentrations and stack characteristics.  All four CT/HRSGs at the Lake Side facility have 
oxidation catalysts installed as these were required as CO/VOC BACT as part of the requirements 
of the PSD construction permits (UDAQ issued AOs) to initially construct and operate the 
turbines.  The use of oxidation catalysts is thus considered the base case for comparison purposes. 
 
One specialized example of oxidation catalyst, EMxTM, has been used to oxidize and remove both 
NOx and VOC.  The system uses a platinum-based catalyst coated with potassium carbonate 
(K2CO3), and unlike SCR systems, does not require the use of a reagent (such as ammonia) for 
NOx control (see Section 4.3 NOx Control above). 
 
The other available control techniques include the use of: 
1. Properly designed combustion chambers/combustors 
2. Good combustion practices 
3. The Xonon catalytic combustion system 

 
Currently, properly designed combustion turbines utilize “lean combustion” – where a large 
amount of excess combustion air is provided.  This cools the overall flame temperature, and also 
ensures good air/fuel mixing and complete combustion of the fuel.  The most effective 
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combustor/burner design is known as the dry low-NOx (DLN) combustor.  DLN burners act as a 
miniature version of the main combustion chamber, by varying the flow of fuel and combustion 
air to different nozzles during different turbine operating modes, the burner can maintain a lean 
combustion process at all operating conditions. 
 
Good combustion practices include only using pipeline quality natural gas as fuel, maintaining 
high combustion efficiencies, maintaining proper air-to-fuel ratios, and conducting proper 
maintenance. 
 
Catalytica Energy Systems’ Xonon Cool Combustion® (Xonon) system improves the combustion 
process by lowering the peak combustion temperature to reduce the formation of NOx while also 
providing further control of CO and unburned hydrocarbon emissions that other NOx control 
technologies (such as water injection and DLN) cannot provide. The Xonon system uses catalysts 
within the combustion chamber to oxidize the majority of the air-fuel mixture rather than burning 
the mixture with a flame.  The burners are designed with a high degree of variability in fuel and 
air mixing, while still operating as lean combustors, so VOC emissions are minimized. 
 

4.4.2 Evaluation of Technical Feasibility of Available Controls 
 
The use of post-combustion oxidation catalysts is technically feasible as they are already installed 
and operational at the LSPP.   
 
Good combustion practices, and the use of a DLN (lean combustor and burner design) combustor 
are similarly technically feasible and also currently in use at LSPP. 
 
The EMxTM process can, in theory, be applied to combustion turbines of any size category; 
however, commercial experience with the process has not been applied to turbines greater than 50 
MW in size.  UDAQ conducted a search and was unable to find any commercial applications of 
EMxTM on large base-load units similar to those at the LSPP.  EMxTM equipped turbines also 
experience larger pressure drops than other oxidation catalyst-equipped units. 
 
Xonon does not currently represent an available control technology for any large turbine.  While a 
joint venture agreement was in place with General Electric (GE) to eventually develop Xonon as 
original and retrofit equipment for the entire GE turbine line, GE does not currently offer a 
Xonon combustor option for any large industrial turbine. An Application for Certification 
approved by California Energy Commission (CEC) for the Pastoria Energy Facility Project 
(December 20, 2000) proposed to install Xonon on F-Class Turbines, however, Xonon was 
determined not to be technically feasible and the plant was constructed using DLN burners and 
SCR. Currently Catalytica Energy Systems is only marketing Xonon technology for gas turbines 
within the 1 to 15 MW size range. Hence, at this time, Xonon does not represent a currently 
available control technology for the LSPP.  
 

4.4.3 Evaluation and Ranking of Technically Feasible Controls 
 
The LSPP turbines have all the remaining control options (good combustion practices, DLN 
combustors, lean combustion, and oxidation catalysts) as existing controls.  There is no need to 
rank these controls on control effectiveness. 
 

4.4.4 Further Evaluation of Most Effective Controls 
 

Further evaluation of the existing controls is not required.  All technically available control 
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options are in place and operational at the LSPP.   
 
4.4.5 Selection of BACT 

 
Retention of the existing control systems (good combustion practices, DLN combustors, lean 
combustion, and oxidation catalysts) for control of VOC emissions is recommended as BACT.   
 
In the most recent AO DAQE-AN130310012-15 issued for the LSPP, the oxidation catalysts 
installed on the CT/HRSGs on Block #1 lower the CO emission rate down to 3 ppm and 14.1 
lbs/hr per turbine/HRSG stack (both limits on a 3-hour average at steady state operation). While 
there is no specific VOC emission limit, it is assumed that VOC emissions on a ppm basis are 
similar to CO emissions.  This is validated by the emission limitations that were added later for 
Block #2 (Block #1 was originally permitted in 2004, the permit limitations on Block #1 were 
rolled over into the 2011 permit which authorized construction and operation of Block #2. The 
oxidation catalysts on Block #2 have specific VOC limits (listed in the construction permit) of 2.8 
ppmvd from each turbine/HRSG stack; again on a 3-hour average basis.  The emission limits on 
CO are the same as for Block #1: 3.0 ppmvd (on a 3-hour average).  The limitations on VOC and 
CO were not brought forward into the moderate PM2.5 SIP, as emissions of NOx were determined 
to be the limiting factor on turbine operation. 
 

4.5 Startup and Shutdown 
 

Operation of a natural gas-fired combustion turbine requires periods of startup and shutdown.  
These events are a normal part of power plant operation, but as they result in NOx emission rates 
that are both highly variable and with values typically greater than during normal (steady-state) 
operation.  The reason for higher NOx emissions is that the emission control systems are not fully 
functioning during startup and shutdown periods.  The DLN combustors require a minimum 
operating rate in order to achieve the highest level of efficiency.  At lower firing rates the pre-
mixing capabilities of the burner design are not fully utilized – leading to partial combustion, or 
the turbine’s firing controls self-adjusting to improve combustion control while losing emission 
control.  At the same time, the catalyst in the SCR control system will be too cold to be effective.  
Normally, the catalysts will heated to a minimum operating temperature before the system is even 
brought online to avoid thermal shock and premature degradation of the catalysts.  Since these 
periods of startup and shutdown can even be defined as the period when no emission controls are 
operating, such as is the case with LSPP, the easiest way to minimize emissions is simply to limit 
the total number and total duration of these events.   
 
The LSPP is somewhat unique, in that it operates as something of a hybrid power plant.  The 
plant has far more total operating hours than a peaking plant such as a typical municipal power 
plant, but it also experiences more startups and shutdowns than a typical baseload unit such as a 
coal-fired boiler.  Averaging between 4500 and 5200 operating hours per year, each turbine will 
experience several startup/shutdown events in a given rolling 12-month period. 
 
UDAQ did search for alternative control options during startup and shutdown periods, but was 
unable to find any viable alternatives.  The turbines are already fired on clean gaseous fuel, and 
already use a modern DLN combustor.  Using an alternative, lower efficiency control for NOx 
control – such as SNCR – during startup or shutdown is plagued by the same problems as the 
steady-state case (operating temperature, infrastructure, secondary control system) only these 
become exaggerated the more that the operating rate drops towards zero. 
 
Since no catalytic control options can be used until a viable operating temperature has been 
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reached, and simply injecting ammonia or urea would be similarly ineffective, the simplest 
solution remains limiting the frequency and duration of startup and shutdown events.  Frequency 
of startup and shutdown is a function of power demand, equipment maintenance, and operator 
work experience to adjust event timing and load balance.  Event duration can be adjusted by 
several factors: including the above work practices, manufacturer’s specifications and 
recommendations, and the use of auxiliary boilers to supply heat to the HRSG, steam turbines and 
SCR systems while the main turbines are in startup mode.  BACT for the auxiliary boilers is 
discussed in a separate section of this document. 
 
Beyond these work practice techniques, there are no other technically feasible control methods to 
reduce emissions during periods of startup or shutdown.  For the LSPP, startup is defined as the 
period beginning with turbine initial firing until the unit stabilizes at the NOx emission limits of 
2.0 ppmvd and CO emission limits of 3.0 ppmvd (each at 15% O2).  Shutdown is defined as the 
period beginning with the initiation of turbine shutdown sequence and ending with the cessation 
of firing of the gas turbine engine.  There are specific limitations for startup and shutdown events 
established in the moderate PM2.5 SIP as follows: 
 
SIP Section IX.H.13.d. 
iii. Startup / Shutdown Limitations: 

A. Block #1: 
I. Startup and shutdown events shall not exceed 613.5 hours per turbine per 12-month 
rolling period. 
II. Total startup and shutdown events shall not exceed 14 hours per turbine in any one 
calendar day. 
III. Cumulative short-term transient load excursions shall not exceed 160 hours per 12-
month rolling period. 
IV. During periods of transient load conditions, NOx emissions from the Block #1 
Catalytic-controlled Turbine/HRSG Stacks shall not exceed 25 ppmvd at 15% O2. 

 
B. Block #2: 

I. Startup and shutdown events shall not exceed 553.6 hours per turbine per 12-month 
rolling period. 
II. Total startup and shutdown events shall not exceed 8 hours per turbine in any one 
calendar day. 
III. Cumulative short-term transient load excursions shall not exceed 160 hours per 12-
month rolling period. 
IV. During periods of transient load conditions, NOx emissions from the Block #2 
Catalytic-controlled Turbine/HRSG Stacks shall not exceed 25 ppmvd at 15% O2. 

 
C. Definitions: 

I. Startup is defined as the period beginning with turbine initial firing until the unit meets 
the lb/hr emission limits listed in IX.H.13.d.i and ii above. 
II. Shutdown is defined as the period beginning with the initiation of turbine shutdown 
sequence and ending with the cessation of firing of the gas turbine engine. 
III. Transient load conditions are those periods, not to exceed four consecutive 15-minute 
periods, when the 15-minute average NOx concentration exceeds 2.0 ppmv dry @ 15% 
O2. Transient load conditions consist of the following: 

1. Initiation/shutdown of combustion turbine inlet air-cooling. 
2. Rapid combustion turbine load changes. 
3. Initiation/shutdown of HRSG duct burners. 
4. Provision of Ancillary Services and Automatic Generation Control. 
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IV. For purposes of this subsection a “day” is defined as a period of 24-hours 
commencing at midnight and ending at the following midnight. 

 
It is the recommendation of this review that these limitations be retained as BACM. 
 

5.0 BACT for Auxiliary Boilers and Dew Point Heater 
 

There are two auxiliary boilers at the LSPP.  The first, installed at Block #1, is rated at 62.8 
MMBtu/hr.  The second is installed at Block #2, and is rated at 57.6 MMBtu/hr.  Both are fired 
on pipeline quality natural gas.  The purpose of the auxiliary boilers is to provide steam to preheat 
the steam lines and steam turbine, purge the HRSG, and provide heat to warm the SCR catalyst 
while the main turbine is in startup mode.  A single turbine at each block is started up at once, 
although both Block #1 and Block #2 can be started simultaneously. 
 
There is also a single fuel dew point heater, fired on pipeline quality natural gas and rated at 4.76 
MMBtu/hr.  This unit is currently out of service and is not expected to be operated in the future.  
The unit was installed in case of excessively low temperatures which might affect the fuel lines to 
the combustion turbines, but several years of operational experience have not demonstrated a 
need for this unit.   
 
As with the combustion turbines, the primary pollutants of concern remain NOx and condensable 
PM2.5.  As all three units are fired on pipeline quality natural gas, no available controls have been 
identified for further reducing emissions of SO2.  See Section 4.2 for further discussion on SO2 
control options. 
 

5.1 PM2.5 
 
5.1.1 Available Control Technology 

 
As with the combustion turbines, controls for particulate emissions fall into one of three groups: 
pre-combustion controls, which seek to eliminate contaminants in the inlet air prior to the boiler; 
combustion controls, such as specific burners or combustion design; and post-combustion 
controls, such as electrostatic precipitators or baghouses. 
 
The identified controls are as follows: 
 
Inlet air filters: primarily used to filter out small particulate matter in the inlet air.  These filters 
are of far less use on the auxiliary boilers than on the combustion turbines.  The boilers are fired 
at or near atmospheric pressure with low inlet and outlet gas velocities, using only pipeline 
quality natural gas.  The chance of burner plugging, or other damage to internal components is 
essentially zero. 
 
Good combustion practice: this is nothing but properly operating the boilers with the correct ratio 
of air to fuel in order to maximize combustion and minimize unburned fuel. 
 
Clean burning fuels: includes the use of inherently low emitting fuels like natural gas.   
 
Specific burner and/or combustion chamber design: the more efficiently a boiler is able to 
operate, the less pollution it will generate for a given amount of fuel combusted.  Primarily this 
includes low-NOx burners, ultra-low-NOx burners, and staged fuel combustion with overfire air 
injection.  For particulate control in natural gas combustion, there is little to no difference 
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between the various burner designs or configurations as the degree of complete combustion is the 
ultimate deciding factor in particulate control. 
 
Add-on particulate controls: this final option includes traditional “add-on” control systems such 
as baghouses or electrostatic precipitators.  These types of controls would be installed post 
combustion, and prior to the emissions exiting the stack. 
 

5.1.2 Evaluation of Technical Feasibility of Available Controls 
 
With the low risk of damage to the boiler or dew point heater components by firing exclusively 
on pipeline quality natural gas, the use of inlet particulate filters is not technically feasible.  While 
some filtration of inlet air would occur, these filters would result in essentially zero reduction in 
particulate emissions given the low inlet flow rates to the boilers.  Additional ductwork, fans and 
control equipment would also be required. 
 
The use of clean burning fuels, good combustion controls, and proper burner design are all 
technically feasible. 
 
As with the combustion turbines, the use of add-on post-combustion particulate controls – such as 
baghouse filtration, scrubbers, or ESPs – is not technically feasible.  Given the low concentration 
of particulate matter in the exhaust stream, and the generally low levels of particulate matter 
being generated from natural gas combustion, add-on controls are simply not effective or 
available for boilers or direct fired heaters of these size ratings. 
 

5.1.3 Evaluation and Ranking of Technically Feasible Controls 
 
The auxiliary boilers and dew point heater have all the remaining control options (good 
combustion practices, proper burner design, and clean burning fuel) as existing controls.  There is 
no need to rank these controls on control effectiveness. 
 

5.1.4 Further Evaluation of Most Effective Controls 
 

Further evaluation of the existing controls is not required.  All technically available control 
options are in place and operational at the LSPP.   

 
5.1.5 Selection of BACT/BACM 

 
Retention of the existing particulate controls should remain as BACM.  There are no specific 
PM2.5 emission limitations on auxiliary boiler #1, although there is a PM10 limit of 0.01 
lb/MMBtu on a 3-hr average basis.  The PM10 limit does include the condensable fraction.  
Auxiliary boiler #2 does have a PM10/PM2.5 limit, which is the same as boiler #1 at 0.01 
lb/MMBtu on a 3-hr average basis.  This limit also includes the condensable fraction.  Both of 
these limits are found in AO DAQE-AN130310012-15 issued to the source, but are not present 
in the moderate PM2.5 SIP.  As the control techniques are primarily work practices or are inherent 
in the design of the boiler, they are considered BACM rather than BACT.  Therefore, inclusion of 
a specific emission limitation is not necessary.   
 
The fuel dew point heater is not limited in either the NSR permit or the PM2.5 SIP as this unit was 
determined to be too small to warrant an emission limitation given both the expected frequency of 
use and the expected total level of emissions. 
 



 
 

17 
 

5.2 NOx 
 
5.2.1 Available Controls 
 

For control of NOx emissions from the auxiliary boilers there are more combustion (burner 
design) options available than were discussed under the turbine section above.  Beside the two 
inherent options of clean burning fuels and good combustion practices, there are four different 
combustion techniques: low-NOx burners, ultra-low-NOx burners with internal flue gas 
recirculation, staged air/fuel combustion (aka overfire air injection) and external flue gas 
recirculation.  Although no catalytic combustion techniques were identified as being available 
(such as the Xonon option available for some smaller combustion turbines), the same post-
combustion control options can be applied: SNCR, SCR, EMx™, LoTOx™, Pahlmann™, and 
NOxOUT™ are all available control options that could be applied to the auxiliary boilers. 
 
Although also an atmospheric pressure direct fired heater similar in design to the auxiliary 
boilers, the fuel dew point heater is much smaller in total input heating value.  This greatly limits 
the available control options that could be applied to the unit.  Most post-combustion controls are 
not available as the unit is simply too small and no commercially available controls of these types 
are marketed as add-on controls.  Similarly, different burner types are not usually available either, 
as the units are commercially sold as packages with only one burner option.  Therefore, the fuel 
dew point heater will not be further discussed, as UDAQ was unable to find different control 
options for a unit of this size. 

 
5.2.2 Evaluation of Technical Feasibility of Available Controls 

 
None of the available post-combustion controls has been identified as technically feasible.  
Neither EMx™ or LoTOx™ has been demonstrated in practice on industrial boilers of this type.  
LoTOx™ still requires additional pollutant control systems to remove the N2O which impose 
additional infrastructure for little to no additional pollutant removal.  The Pahlmann™ system 
requires also requires the addition of a baghouse or other particulate control system, aqueous 
sorbent regeneration system, and additional wastewater treatment and disposal.   This system has 
not been demonstrated in practice on natural gas-fired equipment, especially on smaller industrial 
boilers.   
 
The effectiveness of any catalytic control system requires that the catalyst, and therefore the 
exhaust stream to be treated, fall within a fairly narrow temperature range.  The auxiliary boilers 
are designed to operate during periods of startup of the combustion turbines – primarily when the 
associated HRSGs and SCR units are below typical operating temperature.  While the boiler is 
brought up to full load operation initially, normal protocol is then to level off operations to a 
lower level just to maintain steam loads and provide a steady heat flow to those units.  The 
auxiliary boilers are not production units; they simply supplement steam during startup of the 
combustion turbine in order to shorten the duration of that turbine’s startup period.  Stack testing 
of each auxiliary boiler during normal operation showed an average temperature of the exhaust 
gases at 279ºF for boiler #1 and 317ºF for boiler #2.  These values are well below the effective 
range of any SCR system currently available.  The same is true for any SNCR system, including 
the NOxOUT™ system, which require even higher exhaust gas temperatures (1600ºF to 2100ºF) 
to be effective. 
 
Therefore, all post-combustion control techniques were eliminated from further consideration.  
All combustion related (burner design or combustion technique) remain as technically feasible 
options. 



 
 

18 
 

 
5.2.3 Evaluation and Ranking of Technically Feasible Controls 

 
For the remaining control options the following table shows the expected ranking and degree of 
emission control: 
 
Table 5.2 NOx Control Options 
 

Control Technology Emissions (lb/MMBtu) Emissions (ppm @ 3% O2) 
ULNB 0.0085 – 0.011 7.0 – 9.0 
LNB with FGR 0.011 – 0.020 9.0 – 16.5 
LNB with GCP 0.036 29.7 
LNB 0.070 57.8 
FGR 0.20 165.2 
Staged combustion (OFA) 0.25 206.5 
GCP with conv. burners 0.30 247.8 
 
The top control option identified is ultra-low-NOx burners (ULNB), followed by low-NOx burners 
with external flue-gas recirculation.  The existing configuration at the LSPP has both boilers 
equipped as LNB with FGR and permitted emission rates of 0.017 lb/MMBtu (approximately 15 
ppm) – required under AO DAQE-AN130310012-15.  All control options other than ULNB 
and the existing controls are eliminated from further consideration as no additional improvement 
could be gained. 
 

5.2.4 Further Evaluation of Most Effective Controls 
 

A review of recently issued projects; using the RACT/BACT/LAER Clearinghouse, perusal of 
other states permitting and SIP actions, and UDAQ’s own permitting and SIP actions, for natural 
gas-fired boilers less than 100 MMBtu/hr, yields emission rates for NOx that range between 0.010 
and 0.14 lb/MMBtu.  Two boilers just larger than 100 MMBtu/hr (specifically 108 MMBtu/hr) 
were permitted at 9 ppm in 2014, and have demonstrated some difficulty in maintaining 
emissions at or below that limit.   
 
While both the San Joaquin Air Pollution Control District and Bay Area Air Quality Management 
District consider lower emission values as “demonstrated in practice” and “technologically 
feasible” – both of those areas are located at or near sea level.  The effect that the difference in 
elevation makes in NOx emissions, boiler combustion tuning, NOx/CO/CO2 emission ratios, and 
boiler power/steam output, can be quite substantial – an adjustment of as much as 4% per 1,000 
feet of elevation.  Thus, emission rates of 7 ppm and 9 ppm are not considered to be demonstrated 
in practice or even necessarily technically feasible at this time. 
 
Stack tests of the auxiliary boilers at the LSPP resulted in average emission rates of 0.013 
lb/MMBtu for boiler #1 and 0.009 lb/MMBtu for boiler #2.  The source has submitted a cost 
analysis for replacing the existing low-NOx burners and FGR system with new ultra-low-NOx 
burners (ULNB) with an expected emission rate of 0.009 lb/MMBtu.  The anticipated annualized 
cost is approximately $56,000 per boiler, with an anticipated reduction in NOx emissions of just 
1.1 tons per rolling 12-months (again, per boiler).  This yields an expected cost effectiveness of 
$51,000/ton.  UDAQ does not consider this to be economically feasible, especially given the total 
amount of reductions gained. 
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5.2.5 Selection of BACT/BACM 
 
Retention of the existing low-NOx burners with FGR systems on the auxiliary boilers is 
recommended as BACT.  The existing emission limits on the auxiliary boilers of 0.017 
lb/MMBtu on a 3-hr average basis are also recommended as BACT.  The fuel dew point heater is 
not expected to remain in service, thus no changes are recommended for this unit.   
 

5.3 VOC 
 
As with combustion turbines, VOC emissions in boilers and other atmospheric pressure-fired 
heaters are the result of unburned hydrocarbons formed during incomplete combustion.  The 
formation of VOCs is dependent on combustion system design, choice of fuel, combustion 
temperature, and operating practices. 
 

5.3.1 Available Control Technology 
 
Available control techniques are: pre-combustion controls, equipment design, good operating 
practices, thermal oxidation and oxidation catalysts. 
 
Most oxidation catalysts are designed to control VOCs and CO.  The exhaust gas stream is sent 
through the catalyst “bed”, which consists of a honeycomb shaped substrate material that is 
coated with the catalyst.  The gas stream needs to be relatively particulate-free to prevent fouling 
of the catalyst.  Oxidation catalysts do not use additional reagent chemicals like SCR systems. 
 
One specific oxidation catalyst, EMxTM, has been used to oxidize and remove both NOx and 
VOC.  The system uses a platinum-based catalyst coated with potassium carbonate (K2CO3) – see 
the section on NOx control for turbines, Section 4.3, for additional information. 
 
Good combustion practices include using pipeline quality natural gas as fuel, maintaining high 
combustion efficiencies, maintaining proper air-to-fuel ratios, and conducting proper 
maintenance. 
 
Thermal oxidation is the use of a secondary combustion process to, in essence, burn off the 
remaining unburned VOCs (oxidize) into CO2 and water vapor.  This process also oxidizes CO; 
although it requires a separate combustion chamber, burner, and heat exchanger. 
 

5.3.2 Evaluation of Technical Feasibility of Available Controls 
 
None of the post-combustion controls have proven to be technically feasible for application to 
either the auxiliary boilers or the fuel dew point heater.   
 
Catalytic oxidation has been applied successfully to both combustion turbines and internal 
combustion engines.  Auxiliary boilers, being atmospherically fired, have a much lower 
concentration of VOCs and CO in the exhaust gas stream, due to the larger volume of combustion 
air present in the gas stream.  A search of the RBLC, as well as recently issued permits, has 
identified no examples of oxidation catalysts being employed as controls for either boilers of less 
than 100 MMBtu/hr heat input or a direct-fired heater similar to the fuel dew point heater. 
 
Thermal oxidation also requires a higher concentration of VOCs and CO than is typically present 
in the auxiliary boiler exhaust.  The average exhaust gas temperature would also require a high 
degree of supplemental heat input to be added in the thermal combustor to raise the exhaust gas 
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above the thermal oxidation temperature of 1500ºF.  As with catalytic oxidation, no examples 
were identified of application of thermal oxidizers to boilers or heaters similar to those at the 
LSPP. 
 
All other options having been eliminated, only good combustion practices and proper equipment 
design remain as viable control technologies.  
 

5.3.3 Evaluation and Ranking of Technically Feasible Controls 
 
Good combustion practices for the auxiliary boilers and fuel dew point heater are the continued 
use of pipeline quality natural gas as fuel, adjustment of combustion flame temperature and 
combustion residence time, proper fuel-air mixing and adequate turbulence in the flue gas.  As 
none of these practices are contradictory, there is no need to rank these controls.  All can be 
performed in concert. 
 

5.3.4 Further Evaluation of Most Effective Controls 
 

Further evaluation of the existing controls is not required.  All technically available control 
options are in place and operational at the LSPP auxiliary boilers. The boilers have been designed 
with proper burner systems; while combustion controls adjust for flame temperatures to ensure 
high VOC destruction (flame temps above 1800ºF) while minimizing NOx (flame temps below 
2100ºF).  Auxiliary boiler #2 has an emission limit on VOC of 0.006 lb/MMBtu (3-hour average) 
set in the most recent NSR permit (boiler #1 is not limited on VOC emissions).  A search of the 
RBLC was made for recently issued permits, with emission limits ranging from 0.00171 to 0.006 
lb VOC/MMBtu.   
 
While lower emission rates are possible, as demonstrated by the review of the RBLC, these are 
for boilers three to ten years newer in design (boiler #2 at LSPP was installed in 2011, boiler #1 
in 2007).  Upgrading to match the higher performance seen via the records search would require 
replacement of the burners.  While no direct cost analysis was supplied by the company for this 
scenario, the cost breakdown would be the same as for replacing the burner for NOx reduction.  
Only the expected reduction in VOC emissions would change.  Based on the emissions from the 
2014 inventory, the expected reduction in VOC emissions could be as much as 2.94 tons per year 
– assuming a reduction from 0.006 lb VOC/MMBtu to 0.002 lb VOC/MMBtu (as a retrofit 
application).  This yields a cost per ton value of $111,318 / 2.94 = $37,863/ton of VOC.  This is 
not economically feasible. 

 
5.3.5 Selection of BACT 

 
Retention of the existing control systems (good combustion practices and proper equipment 
design) for control of VOC emissions is recommended as BACT.  There are no existing VOC 
limitations in the PM2.5 moderate SIP for the auxiliary boilers.  It is recommended that this remain 
the case as no specific control equipment is being installed that requires monitoring.  Good 
combustion practices such as maintenance of flame temperature can remain a condition of AO 
DAQE-AN130310012-15 without requiring SIP-level monitoring, given the expected low level 
(less than 5 tons per rolling 12-month period) of VOC emissions expected from both auxiliary 
boilers combined.   
 
As the fuel dew point heater is not expected to be operated in the future, no additional controls, 

                                                 
1 There is a lower limit, but it is not demonstrated in practice, and was not considered at this time. 
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limits or monitoring are required. 
 

6.0 BACT for the Internal Combustion Engines 
 
The LSPP operates three internal combustion engines, all for emergency purposes, and all fired 
on diesel fuel.  Generators #1 and #2 are 1500 horsepower (hp) engines designed to supply power 
to the turbine buildings – to supply power to safely shut down the turbine systems in the event of 
a loss of main electrical power.  The third engine, a 290 hp unit, is an emergency fire pump, 
which will supply fire water in the event of a fire at the facility. 
 
Diesel engines are classified as compression ignition engines.  Air is drawn into the cylinder on 
the first down-stroke of the piston, compressed and heated during the first up-stroke, where fuel is 
injected under pressure.  The fuel and heated air spontaneously ignite pushing the piston down 
(power stroke), and as the piston rises the exhaust gases are ejected.  Then the cycle begins again. 
 
Diesel fuel contains inherently more sulfur than natural gas, although recent strides in the 
development of low-sulfur diesel have improved (reduced) this difference.  The use of diesel fuel 
also results in higher levels of filterable particulate emissions in the form of soot (carbon) and 
liquid-phase hydrocarbons versus natural gas.  However, the convenience of diesel fuel-fired 
emergency equipment – portability, ability to operate without gaseous fuel supplies or pressurized 
fuel tanks, quick starting capability, and general ease of operation and maintenance, ensure that 
this type of equipment will remain in use despite the somewhat higher levels of emissions. 
 

6.1 PM2.5 
 
Particulate emissions from the diesel-fired engines are primarily in the PM2.5 or smaller range.  
This is the result of incompletely combusted hydrocarbons condensing into fine liquid droplets, as 
well as some elemental carbon which condenses into small particles (soot). 
 

6.1.1 Available Control Technology 
 
The available controls for reduction of particulates from diesel engines are good combustion 
practices, use of low sulfur fuels, diesel particulate filters, and diesel oxidation catalysts. 
 
Good combustion practices:  by increasing the efficiency of combustion, the less residual, 
unburned, hydrocarbons will remain to condense into particulate matter.  Primarily this consists 
of following the manufacturer’s operation and maintenance manuals which detail best practices. 
 
Low sulfur fuels: limiting the sulfur content of the fuel, through the use of ultra-low sulfur diesel, 
prevents the formation of sulfates in the exhaust gases.  Gaseous sulfates condense easily into fine 
particulates which contribute to diesel particulate emissions. 
 
Diesel particulate filters (DPF):  an add-on control device which filters out particulates from the 
exhaust stream prior to their release to the atmosphere.  These primarily trap elemental carbon, by 
passing the exhaust gases through a porous substrate similar to a catalyst bed which physically 
captures the soot.  After a period of time, the DPF is regenerated to burn off the soot.  This can be 
done electrically or with microwaves (active DPFs), by replacing the DPF’s substrate (cartridge 
units), or through additional fuel injection (passive DPFs) which simply raises the exhaust 
temperature briefly.  Most DPF systems also include an oxidation catalyst component which 
removes the condensable hydrocarbon fraction (see below) and may be listed as DOC/DPF units. 
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Diesel oxidation catalysts:  although primarily designed to control VOC and CO emissions, some 
oxidation catalysts are designed to also control particulate emissions.  Since a large component of 
diesel particulate emissions are unburned hydrocarbons which can condense into liquid-phase 
droplets in the exhaust stream, a catalytic system which combusts VOCs can also combust these 
other hydrocarbons.   
 

6.1.2 Evaluation of Technical Feasibility of Available Controls 
 
All of the control options identified are technically feasible. Good combustion practices and the 
use of ultra-low sulfur diesel are considered the baseline for evaluation of these controls.  It is 
assumed that good combustion practices will always be the baseline – unless additional add-on 
controls are present at a particular installation.  And as of June 1, 2010, only ultra-low sulfur 
diesel was available for use in equipment of this type (40 CFR 60.4207, 40 CFR 80.510). 
 

6.1.3 Evaluation and Ranking of Technically Feasible Controls 
 
For control of particulate emissions, DPFs are the most effective control, capable of achieving 
above 80% additional removal of diesel-based particulates beyond the baseline.  The use of 
oxidation catalysts at 30% additional control comes in second. 
 

6.1.4 Further Evaluation of Most Effective Controls 
 

The source has provided a cost effectiveness breakdown for installation of DPFs on the three 
diesel engines at the LSPP.  Given the allowed run times of 50 hours per year for operation and 
maintenance (40 CFR 60 Subpart IIII) and the expected emissions from the engines, installation 
of DPFs would be at an average cost effectiveness of $1.2 million/ton removed (this value also 
includes an expected 85% reduction in both PM2.5 and VOC emissions as explained under section 
6.1.1).  This is not cost effective.  Although emergency standby engines have been identified with 
DPFs installed (primarily in California), the installation of DPFs do not appear to have been 
installed to meet PM2.5 NAAQS compliance but for other issues such as odor reduction through 
control of VOCs. 
 
Oxidation catalysts are somewhat less effective in removal of particulate emissions than DPFs, 
but have the added benefit of also controlling VOCs and CO.  For purposes of this review, the 
economic analysis must also include the reduction in VOCs possible through use of an oxidation 
catalyst.  The source did not directly provide this information, but did provide an economic 
analysis for installation of oxidation catalysts for VOC control alone.  The control cost is 
approximately the same as for DPFs, at $1.4 million/ton PM2.5+VOC removed.  Thus the 
installation of oxidation catalysts is also not cost effective. 

 
6.1.5 Selection of BACT 

 
Retention of the existing control systems (good combustion practices and use of ultra-low sulfur 
diesel) for control of particulate emissions is recommended as BACT.  Given the infrequent 
expected use of the emergency diesel-fired equipment, no emission limits are recommended, and 
no monitoring is necessary.  Existing work-practice standards should suffice to minimize 
emissions. 
 

6.2 NOx 
 

6.2.1 Available Control Technology 
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The available controls for reduction of NOx emissions from diesel engines are: specific 
combustion practices (ignition timing retard, air-to-fuel ratio adjustment, and derating), SCR, 
non-selective catalytic reduction (NSCR), and NOx absorption systems (Lean NOx Traps). 
 
Ignition timing retard: reduces NOx formation by delaying the injection of fuel to a later period 
within the power stroke.  This reduces the flame temperature because the compressed air volume 
has expanded and therefore cooled slightly. 
 
Air-to-fuel ratio adjustment: since diesel engines are inherently lean-burn engines, they combust 
with excess oxygen and higher combustion temperatures.  By adjusting the amount of combustion 
air (thus making the mixture more rich), the less oxygen is available for combustion, and the 
cooler the flame temperature.   
 
Derating: simply restricting the engine to lower than normal power output levels, the less fuel is 
required and the lower the average flame temperature. 
 
SCR: SCR works the same for diesel engines as for combustion turbines.  A catalyst bed is used 
to reduce NOx to N2 and water, with either ammonia or urea used as a reagent to jump start the 
process. 
 
NSCR: nonselective catalytic reduction is similar to SCR in that a catalyst is used to remove NOx 
emissions; but is designed specifically for rich burn IC engines run fuel rich or near 
stoichiometric conditions.  Otherwise they are similar to SCR. 
 

6.2.2 Evaluation of Technical Feasibility of Available Controls 
 
NSCR systems are not technically feasible as they are essentially SCR systems but for use on rich 
burn engines.  As the engines employed at the LSPP are inherently lean burn engines, NSCR is 
eliminated from further consideration. 
 
NOx absorber systems are also eliminated as these systems are still experimental and do not 
represent commercially available proven technology.   
 
The other control options are all technically feasible options and will be evaluated further. 
 

6.2.3 Evaluation and Ranking of Technically Feasible Controls 
 
For control of NOx emissions, SCR represents the highest level of possible control.  While 
various combustion controls options can reduce NOx emissions by at most 50%, the use of SCR 
can reduce emissions between 70 to 90%. 
 

6.2.4 Further Evaluation of Most Effective Controls 
 

The addition of SCR for emergency standby equipment poses several considerations.  1) The 
catalyst still requires the use of a reagent, either ammonia or urea.  This leads to some degree of 
ammonia slip – which will be discussed further in a separate section.  2) Either chemical has 
inherent difficulties associated with storage and use: liquid ammonia is quite hazardous; while 
urea can crystalize when not in use for long periods, such as when employed with emergency 
equipment only operated for infrequent maintenance/testing.  3) SCR systems require minimum 
operating temperatures for effective use, which can be difficult to achieve during short 



 
 

24 
 

maintenance/testing cycles.  4)  Cost effectiveness can be quite poor.  For the LSPP emergency 
equipment, the source submitted a control cost effectiveness analysis for installation of SCR 
systems on each of the three engines.  Given the infrequent maintenance and testing hours of 
operation allowed under 40 CFR 60, Subpart IIII, the source calculated a control cost 
effectiveness of approximately $230,000/ton NOx removed.  This is not cost effective. 

 
6.2.5 Selection of BACT 

 
There are few applications of SCR systems on diesel-fired emergency engines rated at or near 
1,250 hp.  While technically feasible, these systems are not cost effective.  The recommendation 
for this facility is to adhere to good combustion practices and continue to limit the operation of 
the engines during non-emergency situations.  As this represents a work practice standard, no 
emission limitations are required, and no monitoring is necessary. 
 

6.3 VOC 
 

6.3.1 Available Control Technology 
 
The available controls for reduction of particulates from diesel engines are good combustion 
practices, diesel particulate filters, and diesel oxidation catalysts. 
 
Good combustion practices:  by increasing the efficiency of combustion, the less residual, 
unburned, hydrocarbons will remain to condense into particulate matter.  Primarily this consists 
of following the manufacturer’s operation and maintenance manuals which detail best practices. 
 
Diesel particulate filters (DPF):  an add-on control device which filters out particulates from the 
exhaust stream prior to their release to the atmosphere.  However, most DPF systems also include 
an oxidation catalyst component which removes the condensable hydrocarbon fraction.  They are 
considered as a separate category from diesel oxidation catalysts, since their costs of control are 
different, being designed primarily for particulate control. 
 
Diesel oxidation catalysts (DOC):  these systems control VOC and CO emissions using a catalyst 
which promotes further oxidation of unburned components by lowering the necessary combustion 
temperature.  Although some diesel oxidation catalysts can also remove particulates by promoting 
combustion of condensable liquid hydrocarbons, these are a separate category from DPF systems, 
since they are designed to control VOCs and CO primarily, and typically do not have a filtration 
component for removing soot. 
 

6.3.2 Evaluation of Technical Feasibility of Available Controls 
 
All of the control options identified are technically feasible. Good combustion practices are 
considered the baseline for evaluation of these controls.  It is assumed that good combustion 
practices will always be the baseline – unless additional add-on controls are present at a particular 
installation. 
 

6.3.3 Evaluation and Ranking of Technically Feasible Controls 
 
For control of particulate emissions, both types of add-on controls (DPF and DOC) are capable of 
achieving above 95% additional removal of VOCs beyond the baseline. 
 

6.3.4 Further Evaluation of Most Effective Controls 
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The source has provided a cost effectiveness breakdown for installation of DOCs on the three 
diesel engines at the LSPP, however, this cost analysis only included the reduction of VOC 
emissions and did not include the additional reduction of PM2.5 emissions (see Section 6.1.4 
above for details).  With the inclusion of the additional emission reduction taken into account, the 
cost effectiveness of adding DOCs drops to $1.4 million/ton removed.  Better than originally 
calculated, but still not cost effective.  The cost for installing DPFs was also calculated by the 
source (again, see Section 6.1.4 for details) and would be at an average cost effectiveness of $1.2 
million/ton removed.  This is also not cost effective.   

 
6.3.5 Selection of BACT 

 
Retention of the existing control systems (good combustion practices and use of ultra-low sulfur 
diesel) for control of VOC emissions is recommended as BACT.  Given the infrequent expected 
use of the emergency diesel-fired equipment, no emission limits are recommended, and no 
monitoring is necessary.  Existing work-practice standards should suffice to minimize emissions. 
 

7.0 Consideration of Ammonia 
 
There is only one source of emissions of ammonia at the LSPP.  The SCR units used to control 
emissions of NOx from the combustion turbines and HRSGs use ammonia injection to reduce 
NOx to N2 and water.  The catalyst serves to lower the reaction temperature required and helps 
speed the process. Ideally, a stoichiometric amount of ammonia would be added – just enough to 
fully reduce the amount of NOx present in the exhaust stream.  However, some amount of 
ammonia will always pass through the process unreacted; and since the process possesses some 
degree of variability, a small amount of additional ammonia is added to account for minor 
fluctuations.  The ammonia which passes through the process unreacted and exits in the exhaust 
stream is termed “slip” (sometimes “ammonia slip”).  The amount varies from facility to facility, 
but ranges from almost zero to as high as 30 ppm in poorly controlled systems.  Also, as catalyst 
systems degrade over time, the degree of ammonia slip will gradually increase as increasing 
amounts of ammonia are added to maintain NOx reduction performance. 
 
The unreacted ammonia can be treated as a PM2.5 precursor.  Although currently not being 
considered as a precursor pollutant in Utah’s PM2.5 Serious SIP, the source’s BACT analysis did 
include an analysis of BACT for ammonia emissions, which is being included here for 
completeness. 
 

7.1 Available Control Technology 
 
There is only one control technique considered available for ammonia emissions.  Monitoring of 
ammonia slip emissions and setting a “not to exceed” emission rate limitation.  This allows for 
setting up a feedback process where the source can adjust ammonia injection rates based on both 
parameters: NOx emission reduction levels and ammonia slip levels.  Should catalyst activity, 
over time, degrade to the point where both parameters cannot be met, then the SCR catalyst 
should be replaced. 
 

7.2 Evaluation of Technical Feasibility of Available Controls 
 
This represents a work practice standard, and is inherently technically feasible. 
 

7.3 Evaluation and Ranking of Technically Feasible Controls 
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A review of recently issued permits for SCR units at large combustion turbine installations 
reveals NH4 emission limits ranging between 2.0 ppm and 5.0 ppm.  Permits issued during the 
same time period as the LSPP construction permits for Block #1 and Block #2 routinely had NH4 
emission limits between 7 ppm and 10 ppm. 
 

7.4 Further Evaluation of Most Effective Controls 
 

The source has not provided a cost effectiveness breakdown for upgrading the ammonia injection 
system at the LSPP so that a new limitation of 5 ppm could be established.  This is not an easy 
task, as it is not as simple as merely upgrading the injection system.  An entire SCR upgrade 
might be required to guarantee that the SCR unit itself was still operating with required removal 
efficiency at the tighter ammonia injection levels.  Increased monitoring would also be required. 
 
However, should this be required, ammonia emissions, currently estimated at 147.04 tons per 
year, could be reduced to 73.52 tons. 

 
7.5 Selection of BACT 

 
Given the difficulty in redesigning a new SCR system for control of a pollutant not currently 
listed as a precursor pollutant, and the expected high cost for this process, no change in ammonia 
slip requirements is recommended at this time.  Retention of the existing ammonia slip design 
parameter of 10 ppm as a limitation is recommended as BACT.  This limit is based on the LSPP’s 
existing SCR catalyst system which is designed with an “end of life” ammonia slip of 10 ppmvdc.  
Existing work-practice standards should suffice to minimize emissions. 

 
8.0 Cooling Towers 

 
The LSPP uses two cooling towers to eliminate heat from the power production processes.  
Cooling tower #1, which operates with Block #1, is a 10 cell tower with drift elimination; while 
cooling tower #2 (on Block #2) has 16 cells, also with drift elimination.  As the water cools in the 
tower, some of it exits the tower as mist (aka drift).  Cooling towers are a source of PM2.5 
emissions as the escaping water contains dissolved solids which condense to form particulate 
matter as the water evaporates. 
 

8.1 Available Control Technology 
 
There are four available control options for control of PM2.5 from cooling towers: 
 
1) Use of dry cooling heat exchanger units; 
2) High efficiency drift eliminators; 
3) Limitation on total dissolved solids (TDS) in the circulating water; and 
4) A combination of drift eliminator efficiency and TDS limit. 
 

8.2 Evaluation of Technical Feasibility of Available Controls 
 
The source submitted that the use of dry cooling was technically infeasible.  However, UDAQ 
disagrees with this finding as dry cooling technology has been employed at other combustion 
turbine plants and submitted for consideration in other permitting actions presented to UDAQ.  
However, the reasons presented by the source for consideration of technical infeasibility, which 
were primarily economic, are considered valid by UDAQ for analysis in Section 8.4 – Further 
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Evaluation.  Thus, all control options are considered technically feasible.   
 

8.3 Evaluation and Ranking of Technically Feasible Controls 
 
The use of dry cooling would virtually eliminate drift, and represents the highest level of control 
at an efficiency rating of 99+%.  The remaining controls options are as follows:  combination of 
high efficiency drift eliminators and TDS limit, the use of high efficiency drift eliminators alone, 
and the setting of a TDS limit alone. 
 

8.4 Further Evaluation of Most Effective Controls 
 

The elimination of the existing cooling tower process at the LSPP and replacing it with a dry 
cooling system would represent a significant capital cost as well as several overall process design 
changes.  While an exact cost analysis was not provided, the cost effectiveness can be estimated.  
The total of PM2.5 emissions from the cooling towers prior to any change is approximately 16 
tons per year.  Under the assumption that dry cooling would eliminate all PM2.5 emissions from 
the towers, this value would drop to zero.  The source did supply a cost estimate merely to 
upgrade the drift eliminators from low efficiency to high efficiency, an adjustment far less 
involved than replacing the entire system.  Even using this as the base cost and merely doubling it 
(an overly conservative estimate), would bring the estimated annual cost to $3.16 million.  
Dividing by the tons reduced, the best case cost effectiveness is $198,000/ton PM2.5.  This is not a 
cost effective option.   
 
The provided cost analysis for upgrading the drift eliminators showed their cost effectiveness to 
be approximately $124,000 to $140,000/ton PM2.5 reduced.  This is also not an effective option. 
 
Experimental analysis of the circulation water available at the LSPP site has shown that no TDS 
limitation is required.  The existing drift eliminators meet the drift limitation established in the 
most recent NSR permit issued to the source, and additional water treatment makes little 
difference in overall PM2.5 emissions. 

 
8.5 Selection of BACT 

 
As neither replacement of the cooling system, nor upgrading the drift eliminators is economically 
feasible, retention of the existing control system is recommended as BACT.  Establishment of a 
TDS limitation in the circulation water is not required.  No specific SIP limitation or monitoring 
is necessary as existing work practice standards should suffice to minimize emissions. 

 
9.0 Additional Feasible Measures and Most Stringent Measures 
 
9.1 Extension of SIP Analysis Timeframe 
 

As outlined in 40 CFR 51.1003(b)(2)(iii): 
 
If the state(s) submits to the EPA a request for a Serious area attainment date extension 
simultaneous with the Serious area attainment plan due under paragraph (b)(1) of this section, 
such a plan shall meet the most stringent measure (MSM) requirements set forth at § 51.1010(b) 
in addition to the BACM and BACT and additional feasible measure requirements set forth at § 
51.1010(a). 
 
Thus, with the potential for an extension of the SIP regulatory attainment date from December 31, 



 
 

28 
 

2019 to December 31, 2024, the SIP must consider the application of both Additional Feasible 
Measures (AFM) and Most Stringent Measures (MSM).   
 

9.2 Additional Feasible Measures at the LSPP 
 

As defined in Subpart Z, AFM is any control measure that otherwise meets the definition of “best 
available control measure” (BACM) but can only be implemented in whole or in part beginning 4 
years after the date of reclassification of an area as Serious and no later than the statutory 
attainment date for the area.  The Provo Nonattainment Area was reclassified as Serious on June 
9, 2017.  Therefore, any viable control measures that could only be implemented in whole or in 
part beginning 6/9/2021 (4 years after the date of reclassification) are classified as AFM.   
 
After a review of the available control measures described throughout this evaluation report, 
UDAQ was unable to identify any additional control measures that were eliminated from BACT 
consideration due to extended construction or implementation periods.  Although there are some 
instances where technologies or control systems were removed from further consideration based 
on a lack of commercial or technological development, such as EMx™ or NOx absorber systems, 
there is no evidence to suggest that these systems will become viable for application merely by 
waiting 4 years.  In addition, existing BACT controls on the emitting units where these alternative 
controls might have been applied will achieve the same or potentially greater levels of emission 
reduction; thus rendering the hypothetical discussion moot. 
 

9.3 Most Stringent Measures at the LSPP 
 

As defined in Subpart Z, MSM is defined as: 
 
… any permanent and enforceable control measure that achieves the most stringent emissions 
reductions in direct PM2.5 emissions and/or emissions of PM2.5 plan precursors from among those 
control measures which are either included in the SIP for any other NAAQS, or have been 
achieved in practice in any state, and that can feasibly be implemented in the relevant PM2.5 
NAAQS nonattainment area. 
 
This is further refined and clarified in 40 CFR 51.1010(b), to include the following Steps: 
 
Step 1) The state shall identify the most stringent measures for reducing direct PM2.5 and PM2.5 

plan precursors adopted into any SIP or used in practice to control emissions in any state. 
Step 2) The state shall reconsider and reassess any measures previously rejected by the state 

during the development of any previous Moderate area or Serious area attainment plan 
control strategy for the area. 

Step 3) The state may make a demonstration that a measure identified is not technologically or 
economically feasible to implement in whole or in part by 5 years after the applicable 
attainment date for the area, and may eliminate such whole or partial measure from 
further consideration. 

Step 4) Except as provided in Step 3), the state shall adopt and implement all control measures 
identified under Steps 1) and 2) that collectively shall achieve attainment as expeditiously 
as practicable, but no later than 5 years after the applicable attainment date for the area. 

 
9.3.1 Step 1 – Identification of MSM 
 

For purposes of this evaluation report UDAQ has identified for consideration the most stringent 
methods of control for each emission unit and pollutant of concern (PM2.5 or PM2.5 precursor) 
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emitted at the LSPP.  A summary is provided in the following table: 
 
Table: Most Stringent Controls by Emission Unit 

Emission Unit Pollutant Most Stringent Control Method 
 
Combustion Turbine/HRSG 

PM2.5 inlet air filters, DLN combustors, natural gas, GCP 
SO2 use of natural gas 
NOx SCR w/ ammonia injection 
VOC GCP, DLN, lean combustion, oxidation catalysts 
SU/SD work practice standards 

 
Auxiliary Boilers/Dew Point Heater 

PM2.5 GCP, proper burner design, natural gas 
SO2 use of natural gas 
NOx ULNB w/ integral FGR 
VOC upgraded higher efficiency design/burner replacement 

 
Emergency Standby Engines 

PM2.5 DOC/DPF units 
SO2 use of ULSD 
NOx SCR with urea injection 
VOC DOC/DPF units 

Ammonia NH4 redesigned SCR w/ improved NH4 injection 
Cooling Towers PM2.5 dry cooling system 

 
The above listed controls represent the most stringent level of control identified from all other 
state SIPs or permitting actions, but do not necessarily represent the final choice of MSM.  That is 
determined in Step 4. 
 

9.3.2 Step 2 – Reconsideration of Previous SIP Measures 
 

Utah has previously issued a SIP to address the moderate PM2.5 nonattainment areas of Logan, 
Salt Lake City, and Provo.  The SIP was issued in parts: with the section devoted to the Logan 
nonattainment area being found at SIP Section IX.A.23, Salt Lake City at Section IX.A.21, and 
Provo/Orem at Section IX.A.22.  Finally, the Emission Limits and Operating Practices for Large 
Stationary Sources, which includes the application of RACT at those sources, can be found in the 
SIP at Section IX Part H. Limits and practices specific to PM2.5 may be found in subsections 11, 
12, and 13 of Part H. 
 
Accompanying Section IX Part H was a Technical Support Document (TSD) that included 
multiple evaluation reports similar to this document for each large stationary source identified 
and listed in each nonattainment area.  UDAQ conducted a review of those measures included in 
each previous evaluation report which contained emitting units which were at all similar to those 
installed and operating at the LSPP.   
 
There were several technologies that had been eliminated from further consideration at some 
point during many of the previous reviews.  Some emitting units were considered too small, or 
emissions too insignificant to merit further consideration at that time.  The cost effectiveness 
considerations may have been set at too low a threshold (a question of cost in RACT versus 
BACT).  And many cases of technology being technically infeasible for application – such as 
applying catalyst controls to infrequently used emitting units which may never reach an operating 
temperature where use of the catalyst becomes viable and effective. 
 
In all but one case, these rejected control technologies were already brought forward and re-
evaluated using updated information (more recent permits, emission rates and cost information) 
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by the LSPP in its BACT analysis report.  The one case which was not reconsidered was the 
deferment of VOC controls for the wastewater treatment systems at four Salt Lake City area 
refineries.  This issue does not apply to the LSPP, as there is no wastewater treatment system 
located at the facility, and no VOC-laden water of any sort needs to be treated.  Thus, there are no 
additional technologies identified in Step 2. 
 

9.3.3 Step 3 – Demonstration of Feasibility 
 

A control technology or control strategy can be eliminated as MSM if the state demonstrates that 
it is either technically or economically infeasible. 
 
This demonstration of infeasibility must adhere to the criteria outlined under §51.1010(b)(3), in 
summary: 
 
1) When evaluating technological feasibility, the state may consider factors including but not 

limited to a source's processes and operating procedures, raw materials, plant layout, and 
potential environmental or energy impacts 

2) When evaluating the economic feasibility of a potential control measure, the state may 
consider capital costs, operating and maintenance costs, and cost effectiveness of the 
measure. 

3) The SIP shall include a detailed written justification for the elimination of any potential 
control measure on the basis of technological or economic infeasibility. 

 
This evaluation report serves as written justification of technological or economic 
feasibility/infeasibility for each control measure outlined herein.  Where applicable, the most 
effective control option was selected, unless specifically eliminated for technological or 
economical infeasibility.  Expanding on the previous table, the following additional information 
is provided: 
 
Table: Feasibility Determination 

Emission Unit Pollutant MSM Previously Identified Is Method Feasible? 
 
Turbines 
HRSGs 

PM2.5 inlet air filters, DLN, natural gas, GCP Yes 
SO2 use of natural gas Yes 
NOx SCR w/ ammonia injection Yes 
VOC GCP, DLN, oxidation catalysts Yes 
SU/SD work practice standards Yes 

 
Auxiliary 
Boilers 

PM2.5 GCP, proper burner design, natural gas Yes 
SO2 use of natural gas Yes 
NOx ULNB w/ integral FGR No, high cost 
VOC upgraded design/burner replacement No, high cost 

 
IC Engines 

PM2.5 DOC/DPF units No, high cost 
SO2 use of ULSD Yes 
NOx SCR with urea injection No, high cost 
VOC DOC/DPF units No, high cost 

Ammonia NH4 redesigned SCR, improved NH4 system No, high cost 
Cooling Towers PM2.5 dry cooling system No, high cost 

 
Approximately half of the entries in the above table were determined to be feasible on both a 
technology and economic basis.  In each of those cases, the control technique listed represents 
BACT/BACM as well as MSM, so no changes need to take place if implementation of MSM 
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becomes a requirement.  For the remaining entries, a more detailed analysis is required. 
 
Auxiliary boilers NOx control: The installation of ultra-low-NOx burners (ULNB) with integral 
flue gas recirculation (FGR) was determined to be economically infeasible for boilers of this size 
and emission rate.  Upgrading to this level of control is technically feasible, but could only be 
accomplished at a cost effectiveness of $50,600/ton.  This is considered outside the normal range 
of economic feasibility.  The total tonnage reduced would be between 2 and 3 tons per year.  The 
next best level of control is already installed on the emitting units, but could theoretically be 
paired with a tighter emission limit.  However, the tighter emission limits found in recently issued 
permits have not been demonstrated in practice at the higher elevation of the LSPP.  This 
represents a technological infeasibility constraint.  The existing BACT evaluation should also 
serve as MSM.  Should the installation of MSM be required at a future date due to monitored 
nonattainment concerns, this issue can be revisited. 
 
Auxiliary Boilers VOC control: The only identified control mechanism beyond good combustion 
practices is to replace the burners and/or boilers themselves with a more efficient design that 
achieves a greater efficiency rating.  With emissions of VOCs less than 1/2 the total emissions of 
NOx, the total cost effectiveness of replacing the burners is approximately $100,000/ton.  This is 
outside the range of economic feasibility.   
 
Emergency Diesel Engines PM2.5 and VOC control: Installation of a diesel particulate filter with 
integrated diesel oxidation catalyst system is technologically feasible, and have been installed and 
in use in several locations – primarily in California and Maine.  Installation of this type of system 
would have a high annualized cost leading to a poor cost effectiveness rating – given the rather 
low frequency of operation (primarily for testing and maintenance), and associated low level of 
emissions.  Cost effectiveness is estimated at $1.2 million/ton, although both particulates and 
VOC emissions would be controlled.  This is not economically feasible for MSM consideration. 
 
Emergency Diesel Engines NOx control: The use of SCR with urea injection (which is preferred 
over liquid ammonia for smaller emitting units) was identified as the top control option.  
However, this control technique has both technical and economic issues which eliminate it from 
consideration as MSM.  Given the short periods of operation of the engines, the ability of the 
engine exhaust to heat the reduction catalyst to an effective temperature is extremely limited.  The 
capability of the control system to effectively function is severely hampered.  The annualized cost 
is also quite high for the expected amount of emissions controlled, yielding a cost effectiveness of 
$230,000/ton.  This is not economically feasible, and when combined with the technical 
challenges, eliminates the use of SCR as MSM. 
 
Ammonia Considerations: Presently, UDAQ may yet determine, as part of the Provo SIP, that 
ammonia is not a precursor pollutant for PM2.5 for each of the PM2.5 nonattainment areas.  
Therefore, this section (and previous Section 7 of this document) may be removed from this 
document before final publication.  However, at the present time, only a single control technique 
has been identified for reducing the amount of ammonia emissions released from the LSPP.  
Given that all of the ammonia is released as slip from the SCR units controlling the combustion 
turbine/HRSGs, reducing ammonia emissions requires reducing ammonia slip.  This requires, at 
minimum, a redesign of the ammonia injection system on the existing SCR, and most likely a 
redesign of the SCR itself, in order to improve the efficiency of NOx removal with less ammonia 
injection.  Less ammonia added, yields less ammonia slip.  A redesigned SCR, in whole or in 
part, has not been investigated as of the publication of this document, but most likely fall outside 
both the economic and technological consideration windows.  The cost per ton is likely to be 
extremely high, but is unknown at this time, and no additional benefit to NOx emissions will be 
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gained.  Design, timed long term shut-down of the four turbines – likely in stages – ordering of 
materials, construction, testing, shake down, and demonstration is then likely to fall outside the 
regulatory attainment window.  This renders the change infeasible from both perspectives. 
 
Cooling Towers PM2.5 controls:  The use of a dry cooling system is technologically feasible, but 
is not economically feasible.  UDAQ has received several permit applications for dry cooled 
processes including at least two for turbine power plant projects.  While the facilities were 
ultimately never built, the technology is sound from a technical point of view and has not been 
disputed by the source.  [The source’s BACT analysis does include an argument as to technical 
infeasibility, but this argument is primarily based on economic infeasibility concerns and should 
have been eliminated on that basis by the source.  See Section 8 of this document for further 
details.]  Economically, the source provided an analysis for replacing the drift eliminators in the 
existing cooling towers with high efficiency drift eliminators; a project presumably less costly 
than replacing the entire cooling tower with a new dry cooling system.  Replacement of the drift 
eliminators had a cost effectiveness of approximately $130,000/ton, which is not cost effective, 
while completely eliminating the cooling towers would only eliminate an additional four (4) tons 
of PM2.5 per year, with an even higher cost effectiveness rating.  Both options have been 
eliminated as MSM. 
 

10.0 New PM2.5 SIP – General Requirements 
 

The general requirements for all listed sources are found in SIP Subsection IX.H.11.  These serve 
as a means of consolidating all commonly used and often repeated requirements into a central 
location for consistency and ease of reference.  As specifically stated in subsection IX.H.11.a 
below, these general requirements apply to all sources subsequently listed in either IX.H.12 (Salt 
Lake City) or IX.H.13 (Provo), and are in addition to (and in most cases supplemental to) any 
source-specific requirements found within those two subsections.   

 
10.1 Monitoring, Recordkeeping and Reporting 
 

As stated above, the general requirements IX.H.11.a through IX.H.11.f primarily serve as 
declaratory or clarifying conditions, and do not impose compliance provisions themselves.  
Rather, they outline the scope of the conditions which follow in the source specific requirements 
of IX.H.12 and IX.H.13.  
 
For example, most of the conditions in those subsections include some form of short-term 
emission limit.  This limitation also includes a compliance demonstration methodology – stack 
test, CEM, visible opacity reading, etc.  In order to ensure consistency in compliance 
demonstrations and avoid unnecessary repetition, all common monitoring language has been 
consolidated under IX.H.11.e and IX.H.11.f.  Similarly, all common recordkeeping and reporting 
provisions have been consolidated under IX.H.11.c. 

 
10.2 Discussion of Attainment Demonstration 
 

As is discussed above in Items 10.0 and 10.1, these are general conditions and have few if any 
specific limitations and requirements.  Their inclusion here serves three purposes.  1. They act as 
a framework upon which the other requirements can build.  2. They demonstrate a prevention of 
backsliding.  By establishing the same or functionally equivalent general requirements as were 
included in both the original PM10 and the moderate PM2.5 SIP, this demonstrates both that the 
original requirements have been considered, and either retained or updated/replaced as required.  
3. When a general requirement has been removed, careful consideration was given as to its 
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specific need, and whether its retention would in any way aid in the demonstration of attainment 
with the 24-hr standard.  If no argument can be made in that regard, the requirement was simply 
removed. 

 
11.0 New PM2.5 SIP – LSPP Specific Requirements 
 

The LSPP specific conditions in Section IX.H.13 address those limitations and requirements that 
apply only to the LSPP Power Plant in particular. 
 
IX.H.13.b.i This condition lists the specific requirements applicable to Block #1 

Turbine/HRSG Stacks. 
 
Subparagraph A:  Emissions of NOx shall not exceed 14.9 lb/hr on a 3-hr basis. 
Subparagraph B:  Compliance with the above conditions shall be demonstrated as follows: 

I. NOx monitoring shall be through use of a CEM as outlined in IX.H.11.f 
 
IX.H.13.b.ii This condition lists the specific requirements applicable to Block #2 

Turbine/HRSG Stacks. 
 
Subparagraph A:  Emissions of NOx shall not exceed 18.1 lb/hr on a 3-hr basis. 
Subparagraph B:  Compliance with the above conditions shall be demonstrated as follows: 

I. NOx monitoring shall be through use of a CEM as outlined in IX.H.11.f 
 
IX.H.13.b.iii This condition lists the startup/shutdown emission minimization plan 

requirements applicable to all three combustion turbines.  The requirement also 
includes a definition of startup, shutdown, and a limit on total hours of operation 
(2) in startup or shutdown mode, per turbine, per day.   

 
Subparagraph A:  Limits applicable to Block #1 – total starts and shut down not to exceed 14 
hours per day per turbine, total NOx emissions from the Block #1 Turbine/HRSG Stacks shall not 
exceed 25 ppmvd at 15% O2. 
Subparagraph B:  Limits applicable to Block #2 – total starts and shut down not to exceed 8 hours 
per day per turbine, total NOx emissions from the Block #2 Turbine/HRSG Stacks shall not 
exceed 25 ppmvd at 15% O2. 
Subparagraph C:  Definitions – Startup, shutdown, transient load conditions, and a definition of 
operating day. 
 

11.1 Monitoring, Recordkeeping and Reporting 
 

Monitoring for IX.H.13.b.i.A is specifically outlined in IX.H.13.b.i.B; while IX.H.13.b.ii.A is 
addressed in IX.H.13.b.ii.B.  NOx monitoring is addressed by CEM.  CEM monitoring 
requirements are found in IX.H.11.f.  Recordkeeping is subject to the requirements of IX.H.11.c 
and IX.H.11.f. 

 
11.2 Discussion of Attainment Demonstration 
 

LSPP is primarily a source of direct PM2.5, NOx and VOC emissions.  When the LSPP was 
originally authorized for construction, and again during the 2011 expansion to install Block #2, 
the owner/operator PacifiCorp Energy was required to produce and use emission offset credits as 
outlined under R307-403-5(1)(b).   
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Specifically, as both the initial installation and the expansion were both larger than the 50 ton per 
year threshold listed in that rule, the offset credits needed to be obtained at a ratio of 1.2:1.  These 
offset credits also satisfied the emission offsetting requirement of 40 CFR 51.165(a)(9)(i).  The 
emission offset credits used were generated from the closure of the Geneva Steel plant (emission 
credit pedigree available upon request), a source listed in both the original SIP and the Utah 
County updated SIP (issued July 6, 2005).  Therefore, the emission increase associated with the 
installation of the LSPP was already included in the background emissions of the airshed and at a 
greater emissions ratio.  In addition, during the establishment of the pedigree for the emission 
offset credits used for both projects, a specific ratio of PM2.5 was determined for the particulate 
emission credits – based upon a combination of emission factors, direct emission testing and 
CEM data - all obtained from the Geneva Steel facility. 
 
There are no specific limitations on PM2.5 emissions.  Although the PTE estimates would suggest 
that particulate (both PM10 and PM2.5) emissions are similar to NOx emissions on a lb/hr basis, 
recent testing and inventory reporting have demonstrated this assumption to be incorrect.  The 
original particulate limits were based on manufacturer’s guarantees, which were set much higher 
than required.  Operational experience has demonstrated that actual particulate emissions are 
approximately one-fourth (1/4th) of original estimates.  Given this updated information, annual 
particulate PTE for the LSPP is likely no greater than 75 tpy; much less than the originally 
estimated 215.4 tpy.  Similarly, daily emissions would be expected to max out around 0.2 tons.  
This value is for all four combustion turbines including emissions from operating in 
startup/shutdown mode. 
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