

trinityconsultants.com



July 26, 2017

Mr. John Jenks Environmental Engineer Utah Division of Air Quality 195 North 1950 West P. O. Box 144820 Salt Lake City, Utah 84114-4820 Document Date: 07/26/2017

DAQ-2017-011661

RE: Addendum - Best Available Control Measure Analyses for HollyFrontier's Woods Cross Refinery

Dear Mr. Jenks:

Please find in this addendum to the Best Available Control Measure (BACM) Analyses prepared for HollyFrontier's Woods Cross Refinery the additional information requested by the Utah Division of Air Quality (UDAQ) on June 28, 2017. In this request, three areas were indicated where additional information was needed. These areas were: (1) economics and selection of BACM; (2) lack of additional feasible measures/most stringent measures, and (3) individual issues.

#### Economics and Individual Issues

The economic evaluations presented in the BACM analysis for HollyFrontier were based on potential to emit (PTE) emissions for refinery sources utilizing permit conditions, permit emission factors and permit limitations. The quantities of emission reductions provided in the analyses were based on the estimated control that would be achieved with the application of a control technology (such as more efficient burners or add-on devices) and the difference between the current PTE emissions without that control technology and future estimated emissions after the application of a control technology. Since detailed engineering designs and associated vendor costs for plant modifications that would be needed for the application of a control technology were not available, due to the short response time, generalized control efficiencies, obtained from published literature and EPA guidance were used to estimate the potential control efficiencies or emission reductions that are associated with the application of a control technology.

Cost estimates that were provided in the BACM analyses were based on information obtained from vendors, economic information provided by HollyFrontier from the purchase and installation of similar equipment, or information as found in EPA guidance documentation. The \$/ton threshold that was used by HollyFrontier to indicate whether the application of a control technology was economically feasible ranged from \$15,000 to \$20,000 depending on pollutant and emission unit.

Per UDAQ's additional information request to HollyFrontier, replacement costs for the emergency engines were obtained from Wheeler Machinery and the economic viability of replacing Tier 2 or older equipment with newer Tier 3 or 4 diesel engines was examined. Per Wheeler Machinery, the estimated cost to replace a 200HP or 400HP engine with a newer engine was \$75,000 and \$115,000, respectively. This cost is for equipment only and doesn't include engineering or installation costs. The economic viability analysis for replacing Tier 2 or older diesel engines at HollyFrontier is presented in Attachment 1. According to the analysis in Attachment 1, it would be not be economically viable for HollyFrontier to replace existing engines with Tier 3 or Tier 4 engines.

In order to further clarify the BACM and economic analysis for heater controls, as stated in HollyFrontier's BACM analyses, the application of low  $NO_x$  burners (LNB) or ultra low  $NO_x$  burners (ULNB) on existing units (6H1, 6H2, 6H3, 7H1, 7H2, 7H3, 9H1, 9H2, 10H1, 11H1, and 13H1) was not technically possible due to space limitations in the firebox, lower heat duty, and a longer flame. In addition, in order to use a selective catalytic reduction (SCR) system on process heaters at HollyFrontier, the refinery would need to replace all naturally draft heaters with mechanical draft heaters. Only 6H1 is mechanically drafted.

The economic feasibility of converting the above list of heaters to mechanical draft and then reducing  $NO_x$  emissions through the addition of SCR was examined. The cost guidance information provided in EPA-453/R-93-034 Alternative Control Techniques Document- $NO_x$  Emissions from Process Heaters (Revised) was used for this analysis. The 1991 capital costs were escalated to average 2017 dollars using the Chemical Engineering plant index. The results of this analysis are presented in Table 1 and in Attachment 2.

Table 1 Economic Viability to Convert Natural Draft to Mechanical Draft Process Heaters with Application of SCR

| Unit             | Rating<br>MMBtu/hr | \$/ton NO <sub>x</sub> |
|------------------|--------------------|------------------------|
| 6H1 <sup>1</sup> | 54.7               | \$<br>80,097           |
| 6H2              | 12.0               | \$<br>170,826          |
| 6H3              | 37.7               | \$<br>107,763          |
| 7H1              | 4.4                | \$<br>255,031          |
| 7H3              | 33.3               | \$<br>113,666          |
| 9H1              | 8.1                | \$<br>199,858          |
| 9H2              | 4.1                | \$<br>262,329          |
| 10H1             | 13.2               | \$<br>164,447          |
| 11H1             | 24.2               | \$<br>129,106          |
| 13H1             | 6.5                | \$<br>218,220          |

<sup>&</sup>lt;sup>1</sup> Application of SCR only.

The results of Table 1 indicate that it is not economically feasible to convert the listed process heaters from natural draft and then apply a SCR to reduce  $NO_x$  emissions. Thus, for technical and economic reasons, no control technology modifications are proposed by HollyFrontier on these units.

## Lack of Additional Feasible Measures/Most Stringent Measures

In the UDAQ's original request for BACM/BACT, the January letter indicated that "Should the area not be able to meet the PM<sub>2.5</sub> standards by the statutory Serous Area attainment date (December 31, 2019), whether by modeled prediction or actual ambient monitoring, the standard of control measure feasibility would rise once more to what are called Most Stringent Measures (MSM)". In HollyFrontier's BACM analyses, most stringent measures (MSM) were identified and included in the selection of BACM. However, at this time, HollyFrontier does not believe that providing additional MSM analysis is appropriate since nonattainment has not been demonstrated/modeled.

#### Other Individual Issues

Presented in Attachment 3 are the monitoring recommendations and emission limitations for emission sources at HollyFrontier.

If you have any questions or concerns regarding the information in this letter, please feel free to contact HollyFrontier.

Sincerely,

MSI TRINITY CONSULTANTS

Linda Conger

**Managing Consultant** 

CL:\lec\\\MSI\_SERVER\_2012\msi\_server\CONFIDENTIAL PROJECTS\HollyFrontier\Woods Cross\174501.0025 17-25 Holly Refining BACM Analysis\04 Report\Addendum\BACM Addendum HollyFrontier.docx

# ATTACHMENT 1

**Economic Viability Analysis for Diesel Engine Replacement** 

#### Cost to Replace Tier 2 or older Emergency Diesel Engines with Tier 4 Units HollyFrontier Woods Cross Refinery

|                                                |       |        |        |    |           | Uncontrolled (Tier 1) |            | Unco    | Uncontrolled (Tier 4) Emission Reduc |            |         |                                          | ction      | cion Cost Effectiveness |    |                   |                 |              |
|------------------------------------------------|-------|--------|--------|----|-----------|-----------------------|------------|---------|--------------------------------------|------------|---------|------------------------------------------|------------|-------------------------|----|-------------------|-----------------|--------------|
|                                                | Year  | Rating | Rating | Re | placement | PM <sub>2.5</sub> PTE | $NO_X$ PTE | VOC PTE | PM <sub>2.5</sub> PTE                | $NO_X$ PTE | VOC PTE | $\mathrm{PM}_{\mathrm{2.5}}\mathrm{PTE}$ | $NO_X$ PTE | VOC PTE                 |    | (\$               | (ton)           |              |
| Diesel Emergency Equipment                     | Built | (HP)   | (KW)   |    | Cost      | TPY                   | TPY        | TPY     | TPY                                  | TPY        | TPY     | TPY                                      | TPY        | TPY                     |    | PM <sub>2.5</sub> | NO <sub>x</sub> | voc          |
| 224 HP (water well #3)                         | 2002  | 224.0  | 167.0  | \$ | 75,000    | 0.0049                | 0.085      | 0.0123  | 0.0002                               | 0.004      | 0.00172 | 0.005                                    | 0.081      | 0.011                   | \$ | 15,812,110 \$     | 922,373         | \$ 7,078,677 |
| 393 HP Fire Pump #1                            | 1982  | 393.0  | 293.1  | \$ | 115,000   | 0.0086                | 0.149      | 0.0216  | 0.0003                               | 0.006      | 0.00303 | 0.008                                    | 0.143      | 0.019                   | \$ | 13,819,167 \$     | 806,118         | \$ 6,186,488 |
| 393 HP Fire Pump #2                            | 1982  | 393.0  | 293.1  | \$ | 115,000   | 0.0086                | 0.149      | 0.0216  | 0.0003                               | 0.006      | 0.00303 | 0.008                                    | 0.143      | 0.019                   | \$ | 13,819,167 \$     | 806,118         | \$ 6,186,488 |
| 220 HP plant air backup compressor #1          | 1997  | 220.0  | 164.1  | \$ | 75,000    | 0.0048                | 0.083      | 0.0121  | 0.0002                               | 0.004      | 0.00169 | 0.005                                    | 0.080      | 0.010                   | \$ | 16,099,603 \$     | 939,144         | \$ 7,207,380 |
| 220 HP plant air backup compressor #2          | 1997  | 220.0  | 164.1  | \$ | 75,000    | 0.0048                | 0.083      | 0.0121  | 0.0002                               | 0.004      | 0.00169 | 0.005                                    | 0.080      | 0.010                   | \$ | 16,099,603 \$     | 939,144         | \$ 7,207,380 |
| 220 HP plant air backup compressor #3          | <2000 | 220.0  | 164.1  | \$ | 75,000    | 0.0048                | 0.083      | 0.0121  | 0.0002                               | 0.004      | 0.00169 | 0.005                                    | 0.080      | 0.010                   | \$ | 16,099,603 \$     | 939,144         | \$ 7,207,380 |
| 380 HP diesel generator (central control room) | 1997  | 380.0  | 283.4  | \$ | 115,000   | 0.0084                | 0.144      | 0.0209  | 0.0003                               | 0.006      | 0.00293 | 0.008                                    | 0.138      | 0.018                   | \$ | 14,291,928 \$     | 833,696         | \$ 6,398,131 |

#### Assumptions:

Cost estimate for engine only provided by Wheeler Machinery. Cost does not include engineering or installation costs. PTE emissions based on 50 operating hours per year and Title V permit application

## ATTACHMENT 2

Economic Viability to Convert Natural Draft to Mechanical Draft Process Heaters with Application of SCR

#### HollyFrontier BACM Analysis - Cost to Convert from Natural Draft to Mechanical Draft

|                            |                                     |          |       | Cost to Convert from ND to MD                      |                     |                               |                  |           |                         |                              |                      |
|----------------------------|-------------------------------------|----------|-------|----------------------------------------------------|---------------------|-------------------------------|------------------|-----------|-------------------------|------------------------------|----------------------|
| HollyFrontier<br>Source ID | Source Description                  | MMBtu/hr | GJ/hr | Capital Cost to<br>Convert from ND<br>to MD 1991\$ | Capital Cost 2017\$ | Capital<br>Recovery<br>Factor | Capital Recovery | O&M Cost  | Total<br>Annual<br>Cost | SCR Capitol<br>Cost (1991\$) | SCR Cost<br>(2017\$) |
| 6H1                        | Reformer Reheat Furnace             | 54.7     | 57.7  | 243,313.6                                          | 416,247.8           | 0.131                         | 54,725.67        | 11,446.81 | 66,172.49               | 1,481,294                    | 2,534,117            |
| 6H2                        | Prefractionator Reboiler Heater     | 12.0     | 12.7  | 97,922.6                                           | 167,520.6           | 0.131                         | 22,024.57        | 4,606.82  | 26,631.39               | 595,141                      | 1,018,135            |
| 6H3                        | Reformer Reheat Furnace             | 37.7     | 39.8  | 194,616.1                                          | 332,938.8           | 0.131                         | 43,772.72        | 9,155.82  | 52,928.53               | 1,184,212                    | 2,025,886            |
| 7H1                        | HF Alkylation Regeneration Furnace  | 4.4      | 4.6   | 53,634.7                                           | 91,755.3            | 0.131                         | 12,063.42        | 2,523.27  | 14,586.69               | 325,754                      | 557,283              |
| 7H3                        | HF Alkylation Depropanizer Reboiler | 33.3     | 35.1  | 180,651.1                                          | 309,048.1           | 0.131                         | 40,631.72        | 8,498.82  | 49,130.55               | 1,099,065                    | 1,880,221            |
| 9H1                        | DHDS Reactor Charge Heater          | 8.1      | 8.5   | 77,350.8                                           | 132,327.6           | 0.131                         | 17,397.61        | 3,639.01  | 21,036.62               | 469,974                      | 804,005              |
| 9H2                        | DHDS Stripper Reboiler              | 4.1      | 4.3   | 51,409.6                                           | 87,948.8            | 0.131                         | 11,562.96        | 2,418.59  | 13,981.55               | 312,228                      | 534,143              |
| 10H1                       | Asphalt Mix Heater                  | 13.2     | 13.9  | 103,685.6                                          | 177,379.7           | 0.131                         | 23,320.78        | 4,877.94  | 28,198.72               | 630,217                      | 1,078,140            |
| 11H1                       | SRGP Depentanizer Reboiler          | 24.2     | 25.5  | 149,163.7                                          | 255,181.3           | 0.131                         | 33,549.64        | 7,017.48  | 40,567.13               | 907,166                      | 1,551,931            |
| 13H1                       | Isomerization Reactor Feed Furnace  | 6.5      | 6.9   | 67,783.2                                           | 115,959.8           | 0.131                         | 15,245.68        | 3,188.90  | 18,434.57               | 411,781                      | 704,453              |

#### Assumptions:

Cost estimates based on guidance as found in EPA-453/R-93-034, Alternative Control Techniques Document - NOx Emissions from Process Heaters (Revised)

Capitol Cost model for ND-to-MD conversion is: TIC =  $21350 (HQ)^0.6$  where HQ is heater capacity in GJ/hr.

Capitol recovery based on pretax marginal rate of return (10 percent) and equipment economic life of 15 years

Maintenace costs associated with ND-to-MD Conversion are estimated as 2.75 percent of the ND-to-MD capitol cost

#### HollyFrontier Costs to Upgrade Process Heaters to Mechanical Draft then Add SCR

| Unit | Rating   | Baseline Emis | sion Factor           | SCR Emissi |                       |               |
|------|----------|---------------|-----------------------|------------|-----------------------|---------------|
|      | MMBtu/hr | (lb/MMBtu)    | NO <sub>x</sub> (TPY) | (lb/MMBtu) | NO <sub>x</sub> (TPY) | \$/ton        |
| 6H1  | 54.7     | 0.098         | 23.49                 | 0.025      | 5.87                  | \$<br>80,097  |
| 6H2  | 12.0     | 0.098         | 5.15                  | 0.025      | 1.29                  | \$<br>170,826 |
| 6H3  | 37.7     | 0.098         | 16.19                 | 0.025      | 4.05                  | \$<br>107,763 |
| 7H1  | 4.4      | 0.098         | 1.89                  | 0.025      | 0.47                  | \$<br>255,031 |
| 7H3  | 33.3     | 0.098         | 14.30                 | 0.025      | 3.57                  | \$<br>113,666 |
| 9H1  | 8.1      | 0.098         | 3.48                  | 0.025      | 0.87                  | \$<br>199,858 |
| 9H2  | 4.1      | 0.098         | 1.76                  | 0.025      | 0.44                  | \$<br>262,329 |
| 10H1 | 13.2     | 0.098         | 5.67                  | 0.025      | 1.42                  | \$<br>164,447 |
| 11H1 | 24.2     | 0.098         | 10.39                 | 0.025      | 2.60                  | \$<br>129,106 |
| 13H1 | 6.5      | 0.098         | 2.79                  | 0.025      | 0.70                  | \$<br>218,220 |

#### Assumptions:

Cost estimates based on methodologies found in EPA-453/R-93-034 Alternative Control Techniques Document - NOx emissions from Process Heaters (Revised)
Convert from natural draft to mechanical draft
Cost includes addition of SCR

## $\mathrm{NO_x}$ Cost Analysis to Upgrade Process Heaters and Add SCR - 6H1

|                                                                 |          | MD/SCR                 | Factor                          | Basis for Cost                |
|-----------------------------------------------------------------|----------|------------------------|---------------------------------|-------------------------------|
|                                                                 |          | Upgrade                |                                 | and Factor                    |
| Direct Costs:                                                   |          |                        |                                 |                               |
| Puchased Equipment:                                             |          |                        |                                 |                               |
| Primary and Auxiliary Equipment (PE)                            | \$       | 2,534,117              | Include co                      | osts add SCR since MD already |
| Sales Tax                                                       | \$       | 152,047                | 6% of PE                        | OTC-LADCO 2008                |
| Freight                                                         | \$       | 126,706                | 5% of PE                        | OTC-LADCO 2008                |
| Total Purchased Equipment Cost (PEC)                            | \$       | 2,812,870              |                                 |                               |
| Direct Installation                                             |          |                        |                                 |                               |
| Electrical, Piping, Insulation and Ductwork                     | \$       | 1,125,148              | 40% of PEC                      | OTC-LADCO 2008                |
| Total Direct Installation (DI)                                  | \$       | 1,125,148              |                                 |                               |
| Total Direct Cost (DC)                                          | \$       | 3,938,018              |                                 |                               |
| Indirect Installation Costs                                     |          |                        |                                 |                               |
| Engineering and Project Management,                             | 1        |                        |                                 |                               |
| Construction and Field Expenses, Contractor                     |          |                        |                                 |                               |
| Fees, Startup Expenses, Performance Tests,                      |          |                        |                                 |                               |
| Contingencies                                                   | \$       | 1,715,851              | 61% of PEC                      | OTC-LADCO 2008                |
| Total Indirect Cost                                             | \$       | 1,715,851              |                                 |                               |
| Total Installed Cost (TIC)                                      | \$       | 5,653,868              |                                 |                               |
| NO <sub>x</sub> Emissions Before Control, lb/MMBtu              | ٦        | 0.098                  |                                 |                               |
| NO <sub>x</sub> Emissions Before Control, tn/yr                 |          | 23.48                  |                                 |                               |
| NO <sub>x</sub> Emissions After Control, lb/MMBtu               |          | 0.0245                 |                                 |                               |
| Control Efficiency (%)                                          |          | 75                     |                                 |                               |
| NO <sub>x</sub> Emissions After Control, tn/yr                  |          | 5.87                   |                                 |                               |
| NO <sub>x</sub> Emission Reduction, tn/yr                       |          | 17.61                  |                                 |                               |
| Annual Casta Character (Director Indiana)                       |          |                        |                                 |                               |
| Annual Costs, \$/year (Direct + Indirect)  Direct Costs         |          |                        |                                 |                               |
| Operating Labor                                                 | \$       | 160 616                | 3% of capitol (                 | cost                          |
| Raw materials                                                   | \$       | 109,010                | 370 Of Capitor                  |                               |
| Replacement Parts                                               | \$       | 169 616                | 3% of capitol (                 | rost                          |
| Total Direct Costs, \$/year                                     | \$       | 339,232                | 370 Of Capitor                  | 2031                          |
| Indianat Costs                                                  |          |                        |                                 |                               |
| Indirect Costs Overhead                                         | \$       | 101 770                | 60% of labors                   | L costs                       |
| Overhead Tayor Insurance and Administration                     | \$       |                        | 60% of labor of 4% of total ins |                               |
| Taxes, Insurance, and Administration Capitol Recovery           | \$       |                        | 10%, 15 years                   |                               |
|                                                                 | \$<br>\$ |                        | 10/0, 13 years                  | , CM1314/                     |
| Total Indirect Costs, \$/year Total Annual Cost                 | \$       | 1,071,238<br>1,410,471 |                                 |                               |
| Cost Effectiveness, \$ per ton NO <sub>x</sub> reduction        | +        |                        |                                 |                               |
| cost effectiveness, $\varphi$ per ton NO <sub>x</sub> reduction | \$       | 80,096.82              |                                 |                               |

#### **Assumptions:**

## $\mathrm{NO_x}$ Cost Analysis to Upgrade Process Heaters to MD then Add SCR - 6H2

|                                                          | MD/SCR   |                          | Factor           | Basis for Cost                  |  |  |  |
|----------------------------------------------------------|----------|--------------------------|------------------|---------------------------------|--|--|--|
|                                                          |          | Upgrade                  |                  | and Factor                      |  |  |  |
| Direct Costs:                                            |          |                          |                  |                                 |  |  |  |
| Puchased Equipment:                                      |          |                          |                  |                                 |  |  |  |
| Primary and Auxiliary Equipment (PE)                     | \$       | 1,185,656                | Include cos      | ts to convert to MD and add SCR |  |  |  |
| Sales Tax                                                | \$       | 71,139                   | 6% of PE         | OTC-LADCO 2008                  |  |  |  |
| Freight                                                  | \$       | 59,283                   | 5% of PE         | OTC-LADCO 2008                  |  |  |  |
| Total Purchased Equipment Cost (PEC)                     | \$       | 1,316,078                |                  |                                 |  |  |  |
| Direct Installation                                      |          |                          |                  |                                 |  |  |  |
| Electrical, Piping, Insulation and Ductwork              | \$       | 526,431                  | 40% of PEC       | OTC-LADCO 2008                  |  |  |  |
| Total Direct Installation (DI)                           | \$       | 526,431                  |                  |                                 |  |  |  |
| Total Direct Cost (DC)                                   | \$       | 1,842,509                |                  |                                 |  |  |  |
| Indirect Installation Costs                              |          |                          |                  |                                 |  |  |  |
| Engineering and Project Management,                      |          |                          |                  |                                 |  |  |  |
| Construction and Field Expenses, Contractor              |          |                          |                  |                                 |  |  |  |
| Fees, Startup Expenses, Performance Tests,               |          |                          |                  |                                 |  |  |  |
| Contingencies                                            | \$       | 802,808                  | 61% of PEC       | OTC-LADCO 2008                  |  |  |  |
| Total Indirect Cost                                      | \$       | 802,808                  | 01/0 011 20      | 0.10 12 12 00 1200              |  |  |  |
|                                                          | Ť        | <u> </u>                 |                  |                                 |  |  |  |
| Total Installed Cost (TIC)                               | \$       | 2,645,317                |                  |                                 |  |  |  |
| NO <sub>x</sub> Emissions Before Control, lb/MMBtu       |          | 0.098                    |                  |                                 |  |  |  |
| NO <sub>x</sub> Emissions Before Control, tn/yr          |          | 5.15                     |                  |                                 |  |  |  |
| NO <sub>x</sub> Emissions After Control, lb/MMBtu        |          | 0.025                    |                  |                                 |  |  |  |
| Control Efficiency (%)                                   |          | 75                       |                  |                                 |  |  |  |
| NO <sub>x</sub> Emissions After Control, tn/yr           |          | 1.29                     |                  |                                 |  |  |  |
| NO <sub>x</sub> Emission Reduction, tn/yr                |          | 3.86                     |                  |                                 |  |  |  |
|                                                          |          |                          |                  |                                 |  |  |  |
| Annual Costs, \$/year (Direct + Indirect)                | -        |                          |                  |                                 |  |  |  |
| Direct Costs                                             | <u>,</u> | 70.260                   | 20/ -f:          |                                 |  |  |  |
| Operating Labor                                          | \$<br>\$ | 79,360                   | 3% of capitol of | COST                            |  |  |  |
| Raw materials                                            | \$       | 70.260                   | 3% of capitol of |                                 |  |  |  |
| Replacement Parts  Total Direct Costs, \$/year           | \$       | 79,360<br><b>158,719</b> | 5% Of Capitor (  | l                               |  |  |  |
| Total Direct Costs, 3/ year                              | Ş        | 150,/15                  |                  |                                 |  |  |  |
| Indirect Costs                                           |          |                          |                  |                                 |  |  |  |
| Overhead                                                 | \$       |                          | 60% of labor of  |                                 |  |  |  |
| Taxes, Insurance, and Administration                     | \$       | •                        | 4% of total ins  |                                 |  |  |  |
| Capitol Recovery                                         | \$       |                          | 10%, 15 years    | , CRF13147                      |  |  |  |
| Total Indirect Costs, \$/year                            | \$       | 501,208                  |                  |                                 |  |  |  |
| Total Annual Cost                                        | \$       | 659,927                  |                  |                                 |  |  |  |
| Cost Effectiveness, \$ per ton NO <sub>x</sub> reduction | \$       | 170,825.76               |                  |                                 |  |  |  |

## Assumptions:

## $\mathrm{NO_x}$ Cost Analysis to Upgrade Process Heaters to MD then Add SCR - 6H3

|                                                          | MD/SCR                                           |            | Factor           | Basis for Cost                   |
|----------------------------------------------------------|--------------------------------------------------|------------|------------------|----------------------------------|
|                                                          |                                                  | Upgrade    |                  | and Factor                       |
| Direct Costs:                                            |                                                  |            |                  |                                  |
| Puchased Equipment:                                      |                                                  |            |                  |                                  |
| Primary and Auxiliary Equipment (PE)                     | \$                                               | 2,349,825  | Include cos      | its to convert to MD and add SCR |
| Sales Tax                                                | \$                                               | 140,990    | 6% of PE         | OTC-LADCO 2008                   |
| Freight                                                  | \$                                               | 117,491    | 5% of PE         | OTC-LADCO 2008                   |
| Total Purchased Equipment Cost (PEC)                     | \$                                               | 2,608,306  |                  |                                  |
| Direct Installation                                      |                                                  |            |                  |                                  |
| Electrical, Piping, Insulation and Ductwork              | \$                                               | 1,043,322  | 40% of PEC       | OTC-LADCO 2008                   |
| Total Direct Installation (DI)                           | \$                                               | 1,043,322  |                  |                                  |
| Total Direct Cost (DC)                                   | \$                                               | 3,651,628  |                  |                                  |
| Indirect Installation Costs                              |                                                  |            |                  |                                  |
| Engineering and Project Management,                      | 1                                                |            |                  |                                  |
| Construction and Field Expenses, Contractor              |                                                  |            |                  |                                  |
| Fees, Startup Expenses, Performance Tests,               |                                                  |            |                  |                                  |
| Contingencies                                            | \$                                               | 1,591,067  | 61% of PEC       | OTC-LADCO 2008                   |
| Total Indirect Cost                                      | \$                                               | 1,591,067  |                  |                                  |
| Total Installed Cost (TIC)                               | \$                                               | 5,242,695  |                  |                                  |
| NO <sub>x</sub> Emissions Before Control, lb/MMBtu       | <del>                                     </del> | 0.098      |                  |                                  |
| NO <sub>x</sub> Emissions Before Control, tn/yr          |                                                  | 16.18      |                  |                                  |
| NO <sub>x</sub> Emissions After Control, lb/MMBtu        |                                                  | 0.025      |                  |                                  |
| Control Efficiency (%)                                   |                                                  | 75         |                  |                                  |
| NO <sub>x</sub> Emissions After Control, tn/yr           |                                                  | 4.05       |                  |                                  |
| NO <sub>x</sub> Emission Reduction, tn/yr                |                                                  | 12.14      |                  |                                  |
| Annual Costs, \$/year (Direct + Indirect)                |                                                  |            |                  |                                  |
| Direct Costs                                             |                                                  |            |                  |                                  |
| Operating Labor                                          | \$                                               | 157,281    | 3% of capitol of | l<br>rost                        |
| Raw materials                                            | ς                                                | -          | 370 Of Capitor   |                                  |
| Replacement Parts                                        | \$                                               | 157,281    | 3% of capitol of | cost                             |
| Total Direct Costs, \$/year                              | \$                                               | 314,562    | o, o o o oup ito |                                  |
| Indianat Costs                                           | 1                                                |            |                  |                                  |
| Indirect Costs Overhead                                  | ۲.                                               | 04.200     | 600/ of labar -  | l                                |
|                                                          | \$                                               |            | 60% of labor of  |                                  |
| Taxes, Insurance, and Administration                     | \$                                               |            | 4% of total ins  |                                  |
| Capitol Recovery                                         | \$<br><b>\$</b>                                  | 689,257    | 10%, 15 years    | , CNF1314/                       |
| Total Indirect Costs, \$/year                            | \$                                               | 993,333    |                  |                                  |
| Total Annual Cost                                        | _                                                | 1,307,895  |                  |                                  |
| Cost Effectiveness, \$ per ton NO <sub>x</sub> reduction | \$                                               | 107,763.10 |                  |                                  |

## **Assumptions:**

## $\mathrm{NO_x}$ Cost Analysis to Upgrade Process Heaters to MD then Add SCR - 7H1

|                                                          | L   | MD/SCR     | Factor           | Basis for Cost                   |
|----------------------------------------------------------|-----|------------|------------------|----------------------------------|
|                                                          |     | Upgrade    |                  | and Factor                       |
| Direct Costs:                                            |     |            |                  |                                  |
| Puchased Equipment:                                      |     |            |                  |                                  |
| Primary and Auxiliary Equipment (PE)                     | \$  | 649,038    | Include cos      | its to convert to MD and add SCR |
| Sales Tax                                                | \$  | 38,942     | 6% of PE         | OTC-LADCO 2008                   |
| Freight                                                  | \$  | 32,452     | 5% of PE         | OTC-LADCO 2008                   |
| Total Purchased Equipment Cost (PEC)                     | \$  | 720,432    |                  |                                  |
| Direct Installation                                      |     |            |                  |                                  |
| Electrical, Piping, Insulation and Ductwork              | \$  | 288,173    | 40% of PEC       | OTC-LADCO 2008                   |
| Total Direct Installation (DI)                           | \$  | 288,173    |                  |                                  |
| Total Direct Cost (DC)                                   | \$  | 1,008,605  |                  |                                  |
| Indirect Installation Costs                              |     |            |                  |                                  |
| Engineering and Project Management,                      |     |            |                  |                                  |
| Construction and Field Expenses, Contractor              |     |            |                  |                                  |
| Fees, Startup Expenses, Performance Tests,               |     |            |                  |                                  |
| Contingencies                                            | \$  | 439,464    | 61% of PEC       | OTC-LADCO 2008                   |
| Total Indirect Cost                                      | \$  | 439,464    |                  |                                  |
| Total Installed Cost (TIC)                               | \$  | 1,448,069  |                  |                                  |
| NO <sub>x</sub> Emissions Before Control, lb/MMBtu       | Ť   | 0.098      |                  |                                  |
| NO <sub>x</sub> Emissions Before Control, tn/yr          |     | 1.89       |                  |                                  |
| NO <sub>x</sub> Emissions After Control, lb/MMBtu        |     | 0.025      |                  |                                  |
| Control Efficiency (%)                                   |     | 75         |                  |                                  |
| NO <sub>x</sub> Emissions After Control, tn/yr           |     | 0.47       |                  |                                  |
| NO <sub>x</sub> Emission Reduction, tn/yr                |     | 1.42       |                  |                                  |
|                                                          |     |            |                  |                                  |
| Annual Costs, \$/year (Direct + Indirect)  Direct Costs  |     |            |                  |                                  |
| Operating Labor                                          | \$  | 12 112     | 3% of capitol of | l cost                           |
| Raw materials                                            | ς ς | 43,442     | 3% of capitor (  |                                  |
| Replacement Parts                                        | \$  | 43,442     | 3% of capitol (  | Cost                             |
| Total Direct Costs, \$/year                              | \$  | 86,884     | 370 Of Capitor   |                                  |
| Total Direct Costs, 57 year                              | 7   | 00,004     |                  |                                  |
| Indirect Costs                                           |     |            |                  |                                  |
| Overhead                                                 | \$  |            | 60% of labor of  |                                  |
| Taxes, Insurance, and Administration                     | \$  |            | 4% of total ins  |                                  |
| Capitol Recovery                                         | \$  | 190,378    | 10%, 15 years    | , CRF13147                       |
| Total Indirect Costs, \$/year                            | \$  | 274,366    |                  |                                  |
| Total Annual Cost                                        | \$  | 361,250    |                  |                                  |
| Cost Effectiveness, \$ per ton NO <sub>x</sub> reduction | \$  | 255,031.23 |                  |                                  |

## Assumptions:

## $\mathrm{NO_x}$ Cost Analysis to Upgrade Process Heaters to MD then Add SCR - 7H3

|                                                          |    | MD/SCR     | Factor           | Basis for Cost                 |
|----------------------------------------------------------|----|------------|------------------|--------------------------------|
|                                                          |    | Upgrade    |                  | and Factor                     |
| Direct Costs:                                            |    |            |                  |                                |
| Puchased Equipment:                                      |    |            |                  |                                |
| Primary and Auxiliary Equipment (PE)                     | \$ | 2,189,269  | Include cost     | s to convert to MD and add SCR |
| Sales Tax                                                | \$ | 131,356    | 6% of PE         | OTC-LADCO 2008                 |
| Freight                                                  | \$ | 109,463    | 5% of PE         | OTC-LADCO 2008                 |
| Total Purchased Equipment Cost (PEC)                     | \$ | 2,430,089  |                  |                                |
| Direct Installation                                      |    |            |                  |                                |
| Electrical, Piping, Insulation and Ductwork              | \$ | 972,035    | 40% of PEC       | OTC-LADCO 2008                 |
| Total Direct Installation (DI)                           | \$ | 972,035    |                  |                                |
| Total Direct Cost (DC)                                   | \$ | 3,402,124  |                  |                                |
| Indirect Installation Costs                              |    |            |                  |                                |
| Engineering and Project Management,                      | +  |            |                  |                                |
| Construction and Field Expenses, Contractor              |    |            |                  |                                |
| Fees, Startup Expenses, Performance Tests,               |    |            |                  |                                |
| Contingencies                                            | \$ | 1,482,354  | 61% of PEC       | OTC-LADCO 2008                 |
| Total Indirect Cost                                      | \$ | 1,482,354  |                  |                                |
| Total Installed Cost (TIC)                               | \$ | 4,884,478  |                  |                                |
| NO <sub>x</sub> Emissions Before Control, lb/MMBtu       | +  | 0.098      |                  |                                |
| NO <sub>x</sub> Emissions Before Control, tn/yr          |    | 14.29      |                  |                                |
| NO <sub>x</sub> Emissions After Control, lb/MMBtu        |    | 0.025      |                  |                                |
| Control Efficiency (%)                                   |    | 75         |                  |                                |
| NO <sub>x</sub> Emissions After Control, tn/yr           |    | 3.57       |                  |                                |
| NO <sub>x</sub> Emission Reduction, tn/yr                |    | 10.72      |                  |                                |
| Annual Costs, \$/year (Direct + Indirect)                |    |            |                  |                                |
| Direct Costs                                             |    |            |                  |                                |
| Operating Labor                                          | \$ | 146.534    | 3% of capitol of | cost                           |
| Raw materials                                            | \$ | -          |                  |                                |
| Replacement Parts                                        | \$ | 146,534    | 3% of capitol of | cost                           |
| Total Direct Costs, \$/year                              | \$ | 293,069    | ·                |                                |
| Indirect Costs                                           |    |            |                  |                                |
| Overhead                                                 | \$ | 87.921     | 60% of labor of  | costs                          |
| Taxes, Insurance, and Administration                     | \$ |            | 4% of total ins  |                                |
| Capitol Recovery                                         | \$ |            | 10%, 15 years    |                                |
| Total Indirect Costs, \$/year                            | \$ | 925,462    | , = ,====        |                                |
| Total Annual Cost                                        | \$ | 1,218,531  |                  |                                |
| Cost Effectiveness, \$ per ton NO <sub>x</sub> reduction | _  | 113,666.06 |                  |                                |
|                                                          |    |            |                  |                                |

## **Assumptions:**

## $\mathrm{NO_x}$ Cost Analysis to Upgrade Process Heaters to MD then Add SCR - 9H1

|                                                          | MD/SCR |            | Factor           | Basis for Cost                  |
|----------------------------------------------------------|--------|------------|------------------|---------------------------------|
|                                                          |        | Upgrade    |                  | and Factor                      |
| Direct Costs:                                            |        |            |                  |                                 |
| Puchased Equipment:                                      |        |            |                  |                                 |
| Primary and Auxiliary Equipment (PE)                     | \$     | 936,333    | Include cost     | ts to convert to MD and add SCR |
| Sales Tax                                                | \$     | 56,180     | 6% of PE         | OTC-LADCO 2008                  |
| Freight                                                  | \$     | 46,817     | 5% of PE         | OTC-LADCO 2008                  |
| Total Purchased Equipment Cost (PEC)                     | \$     | 1,039,330  |                  |                                 |
| Direct Installation                                      |        |            |                  |                                 |
| Electrical, Piping, Insulation and Ductwork              | \$     | 415,732    | 40% of PEC       | OTC-LADCO 2008                  |
| Total Direct Installation (DI)                           | \$     | 415,732    |                  |                                 |
| Total Direct Cost (DC)                                   | \$     | 1,455,061  |                  |                                 |
| Indirect Installation Costs                              |        |            |                  |                                 |
| Engineering and Project Management,                      |        |            |                  |                                 |
| Construction and Field Expenses, Contractor              |        |            |                  |                                 |
| Fees, Startup Expenses, Performance Tests,               |        |            |                  |                                 |
| Contingencies                                            | \$     | 633,991    | 61% of PEC       | OTC-LADCO 2008                  |
| Total Indirect Cost                                      | \$     | 633,991    |                  |                                 |
| Total Installed Cost (TIC)                               | \$     | 2,089,053  |                  |                                 |
| NO <sub>x</sub> Emissions Before Control, lb/MMBtu       | Ť      | 0.098      |                  |                                 |
| NO <sub>x</sub> Emissions Before Control, tn/yr          |        | 3.48       |                  |                                 |
| NO <sub>x</sub> Emissions After Control, lb/MMBtu        |        | 0.025      |                  |                                 |
| Control Efficiency (%)                                   |        | 75         |                  |                                 |
| NO <sub>x</sub> Emissions After Control, tn/yr           |        | 0.87       |                  |                                 |
| NO <sub>x</sub> Emission Reduction, tn/yr                |        | 2.61       |                  |                                 |
| Annual Costs, \$/year (Direct + Indirect)                | -      |            |                  |                                 |
| Direct Costs                                             |        |            |                  |                                 |
| Operating Labor                                          | \$     | 62 672     | 3% of capitol of | cost                            |
| Raw materials                                            | \$     | -          | 2.00. Supitor (  |                                 |
| Replacement Parts                                        | \$     | 62,672     | 3% of capitol of | cost                            |
| Total Direct Costs, \$/year                              | \$     | 125,343    | '                |                                 |
| Indirect Costs                                           | +      |            |                  |                                 |
| Overhead                                                 | \$     | 37,603     | 60% of labor of  | osts                            |
| Taxes, Insurance, and Administration                     | \$     | •          | 4% of total ins  |                                 |
| Capitol Recovery                                         | \$     | 274,648    | 10%, 15 years,   |                                 |
| Total Indirect Costs, \$/year                            | \$     | 395,813    | ,,, = ,==        | -                               |
| Total Annual Cost                                        | \$     | 521,156    |                  |                                 |
| Cost Effectiveness, \$ per ton NO <sub>x</sub> reduction | \$     | 199,857.86 |                  |                                 |
|                                                          |        |            |                  |                                 |

## **Assumptions:**

## $\mathrm{NO_x}$ Cost Analysis to Upgrade Process Heaters to MD then Add SCR - 9H2

|                                                          |     | MD/SCR     | Factor             | Basis for Cost                  |  |
|----------------------------------------------------------|-----|------------|--------------------|---------------------------------|--|
|                                                          |     | Upgrade    |                    | and Factor                      |  |
| Direct Costs:                                            |     |            |                    |                                 |  |
| Puchased Equipment:                                      |     |            |                    |                                 |  |
| Primary and Auxiliary Equipment (PE)                     | \$  | 622,092    | Include cos        | ts to convert to MD and add SCR |  |
| Sales Tax                                                | \$  | 37,326     | 6% of PE           | OTC-LADCO 2008                  |  |
| Freight                                                  | \$  | 31,105     | 5% of PE           | OTC-LADCO 2008                  |  |
| Total Purchased Equipment Cost (PEC)                     | \$  | 690,522    |                    |                                 |  |
| Direct Installation                                      |     |            |                    |                                 |  |
| Electrical, Piping, Insulation and Ductwork              | \$  | 276,209    | 40% of PEC         | OTC-LADCO 2008                  |  |
| Total Direct Installation (DI)                           | \$  | 276,209    |                    |                                 |  |
| Total Direct Cost (DC)                                   | \$  | 966,731    |                    |                                 |  |
| Indirect Installation Costs                              |     |            |                    |                                 |  |
| Engineering and Project Management,                      |     |            |                    |                                 |  |
| Construction and Field Expenses, Contractor              |     |            |                    |                                 |  |
| Fees, Startup Expenses, Performance Tests,               |     |            |                    |                                 |  |
| Contingencies                                            | \$  | 421,218    | 61% of PEC         | OTC-LADCO 2008                  |  |
| Total Indirect Cost                                      | \$  | 421,218    | 01/00::10          | 0.0 1.0 00 1000                 |  |
|                                                          | , · | ,          |                    |                                 |  |
| Total Installed Cost (TIC)                               | \$  | 1,387,949  |                    |                                 |  |
| NO <sub>x</sub> Emissions Before Control, lb/MMBtu       |     | 0.098      |                    |                                 |  |
| NO <sub>x</sub> Emissions Before Control, tn/yr          |     | 1.76       |                    |                                 |  |
| NO <sub>x</sub> Emissions After Control, lb/MMBtu        |     | 0.025      |                    |                                 |  |
| Control Efficiency (%)                                   |     | 75         |                    |                                 |  |
| NO <sub>x</sub> Emissions After Control, tn/yr           |     | 0.44       |                    |                                 |  |
| NO <sub>x</sub> Emission Reduction, tn/yr                |     | 1.32       |                    |                                 |  |
| Annual Costs, \$/year (Direct + Indirect)                |     |            |                    |                                 |  |
| Direct Costs                                             |     |            |                    |                                 |  |
| Operating Labor                                          | \$  | 41.638     | 3% of capitol of   | cost                            |  |
| Raw materials                                            | \$  | -          | z, c c. supitor    |                                 |  |
| Replacement Parts                                        | \$  | 41,638     | 3% of capitol of   | cost                            |  |
| Total Direct Costs, \$/year                              | \$  | 83,277     |                    |                                 |  |
|                                                          |     |            |                    |                                 |  |
| Indirect Costs                                           |     |            |                    |                                 |  |
| Overhead                                                 | \$  |            | 60% of labor costs |                                 |  |
| Taxes, Insurance, and Administration                     | \$  |            | 4% of total ins    |                                 |  |
| Capitol Recovery                                         | \$  | •          | 10%, 15 years,     | , CRF13147                      |  |
| Total Indirect Costs, \$/year                            | \$  | 262,975    |                    |                                 |  |
| Total Annual Cost                                        | \$  | 346,252    |                    |                                 |  |
| Cost Effectiveness, \$ per ton NO <sub>x</sub> reduction | \$  | 262,329.22 |                    |                                 |  |

## **Assumptions:**

## $\mathrm{NO_x}$ Cost Analysis to Upgrade Process Heaters to MD then Add SCR - 10H1

|                                                          | MD/SCR   |                | Factor           | Basis for Cost                   |
|----------------------------------------------------------|----------|----------------|------------------|----------------------------------|
|                                                          |          | Upgrade        |                  | and Factor                       |
| Direct Costs:                                            |          |                |                  |                                  |
| Puchased Equipment:                                      |          |                |                  |                                  |
| Primary and Auxiliary Equipment (PE)                     | \$       | 1,255,520      | Include co       | sts to convert to MD and add SCR |
| Sales Tax                                                | \$       | 75,331         | 6% of PE         | OTC-LADCO 2008                   |
| Freight                                                  | \$       | 62,776         | 5% of PE         | OTC-LADCO 2008                   |
| Total Purchased Equipment Cost (PEC)                     | \$       | 1,393,627      |                  |                                  |
| 2: !! .:                                                 | -        |                |                  |                                  |
| Direct Installation                                      | <u> </u> | FF7 4F4        | 400/ -f DEC      | OTC   A DCO 2000                 |
| Electrical, Piping, Insulation and Ductwork              | \$       | 557,451        | 40% of PEC       | OTC-LADCO 2008                   |
| Total Direct Installation (DI)                           | \$       | 557,451        |                  |                                  |
| Total Direct Cost (DC)                                   | \$       | 1,951,078      |                  |                                  |
| Indirect Installation Costs                              |          |                |                  |                                  |
| Engineering and Project Management,                      |          |                |                  |                                  |
| Construction and Field Expenses, Contractor              |          |                |                  |                                  |
| Fees, Startup Expenses, Performance Tests,               |          |                |                  |                                  |
| Contingencies                                            | \$       | 850,113        | 61% of PEC       | OTC-LADCO 2008                   |
| Total Indirect Cost                                      | \$       | 850,113        |                  |                                  |
|                                                          |          |                |                  |                                  |
| Total Installed Cost (TIC)                               | \$       | 2,801,191      |                  |                                  |
| NO <sub>x</sub> Emissions Before Control, lb/MMBtu       |          | 0.098          |                  |                                  |
| NO <sub>x</sub> Emissions Before Control, tn/yr          |          | 5.67           |                  |                                  |
| NO <sub>x</sub> Emissions After Control, lb/MMBtu        |          | 0.025          |                  |                                  |
| Control Efficiency (%)                                   |          | 75             |                  |                                  |
| NO <sub>x</sub> Emissions After Control, tn/yr           |          | 1.42           |                  |                                  |
| NO <sub>x</sub> Emission Reduction, tn/yr                |          | 4.25           |                  |                                  |
|                                                          |          |                |                  |                                  |
| Annual Costs, \$/year (Direct + Indirect)                |          |                |                  |                                  |
| Direct Costs                                             |          |                |                  |                                  |
| Operating Labor                                          | \$       | 84,036         | 3% of capitol of | cost                             |
| Raw materials                                            | \$       | -              |                  |                                  |
| Replacement Parts                                        | \$       |                | 3% of capitol of | cost                             |
| Total Direct Costs, \$/year                              | \$       | 168,071        |                  |                                  |
| Indirect Costs                                           | +        |                |                  |                                  |
| Overhead                                                 | \$       | 50 <i>4</i> 21 | 60% of labor of  | l<br>rosts                       |
| Taxes, Insurance, and Administration                     | \$       | -              | 4% of total ins  |                                  |
| Capitol Recovery                                         | \$       | -              | 10%, 15 years    |                                  |
| Total Indirect Costs, \$/year                            | \$       | 530,742        | 2070, 20 years   | ,                                |
| Total Annual Cost                                        | \$       | 698,813        |                  |                                  |
| Cost Effectiveness, \$ per ton NO <sub>x</sub> reduction | -1       | 164,446.87     |                  |                                  |
| χ του στο του σχ του σχ του στο του σχ                   | ۲        |                |                  |                                  |

## **Assumptions:**

## $\mathrm{NO_x}$ Cost Analysis to Upgrade Process Heaters to MD then Add SCR - 11H1

|                                                          | MD/SCR |            | Factor                                  | Basis for Cost                   |  |
|----------------------------------------------------------|--------|------------|-----------------------------------------|----------------------------------|--|
|                                                          |        | Upgrade    |                                         | and Factor                       |  |
| Direct Costs:                                            |        |            |                                         |                                  |  |
| Puchased Equipment:                                      |        |            |                                         |                                  |  |
| Primary and Auxiliary Equipment (PE)                     | \$     | 1,807,112  | Include cos                             | its to convert to MD and add SCR |  |
| Sales Tax                                                | \$     | 108,427    | 6% of PE                                | OTC-LADCO 2008                   |  |
| Freight                                                  | \$     | 90,356     | 5% of PE                                | OTC-LADCO 2008                   |  |
| Total Purchased Equipment Cost (PEC)                     | \$     | 2,005,894  |                                         |                                  |  |
| Direct Installation                                      |        |            |                                         |                                  |  |
| Electrical, Piping, Insulation and Ductwork              | \$     | 802,358    | 40% of PEC                              | OTC-LADCO 2008                   |  |
| Total Direct Installation (DI)                           | \$     | 802,358    |                                         |                                  |  |
| Total Direct Cost (DC)                                   | \$     | 2,808,252  |                                         |                                  |  |
| Indirect Installation Costs                              |        |            |                                         |                                  |  |
| Engineering and Project Management,                      |        |            |                                         |                                  |  |
| Construction and Field Expenses, Contractor              |        |            |                                         |                                  |  |
| Fees, Startup Expenses, Performance Tests,               |        |            |                                         |                                  |  |
| Contingencies                                            | \$     | 1,223,596  | 61% of PEC                              | OTC-LADCO 2008                   |  |
| Total Indirect Cost                                      | \$     | 1,223,596  |                                         |                                  |  |
| Total Installed Cost (TIC)                               | \$     | 4,031,848  |                                         |                                  |  |
| NO <sub>x</sub> Emissions Before Control, lb/MMBtu       |        | 0.098      |                                         |                                  |  |
| NO <sub>x</sub> Emissions Before Control, tn/yr          |        | 10.39      |                                         |                                  |  |
| NO <sub>x</sub> Emissions After Control, lb/MMBtu        |        | 0.025      |                                         |                                  |  |
| Control Efficiency (%)                                   |        | 75         |                                         |                                  |  |
| NO <sub>x</sub> Emissions After Control, tn/yr           |        | 2.60       |                                         |                                  |  |
| NO <sub>x</sub> Emission Reduction, tn/yr                |        | 7.79       |                                         |                                  |  |
| Annual Costs, \$/year (Direct + Indirect)                |        |            |                                         |                                  |  |
| Direct Costs                                             | 1      |            |                                         |                                  |  |
| Operating Labor                                          | \$     | 120.955    | 3% of capitol of                        | cost                             |  |
| Raw materials                                            | \$     | -          | 2,00.0000000000000000000000000000000000 |                                  |  |
| Replacement Parts                                        | \$     | 120,955    | 3% of capitol of                        | cost                             |  |
| Total Direct Costs, \$/year                              | \$     | 241,911    |                                         |                                  |  |
| Indirect Costs                                           |        |            |                                         |                                  |  |
| Overhead                                                 | \$     | 72,573     | 60% of labor c                          | osts                             |  |
| Taxes, Insurance, and Administration                     | \$     |            | 4% of total ins                         |                                  |  |
| Capitol Recovery                                         | \$     |            | 10%, 15 years,                          |                                  |  |
| Total Indirect Costs, \$/year                            | \$     | 763,914    | ,, = ,=====                             | -                                |  |
| Total Annual Cost                                        | \$     | 1,005,825  |                                         |                                  |  |
| Cost Effectiveness, \$ per ton NO <sub>x</sub> reduction | \$     | 129,105.76 |                                         |                                  |  |

## **Assumptions:**

## $\mathrm{NO_x}$ Cost Analysis to Upgrade Process Heaters to MD then Add SCR - 13H1

|                                                          | MD/SCR  |            | Factor                     | Basis for Cost                   |  |
|----------------------------------------------------------|---------|------------|----------------------------|----------------------------------|--|
|                                                          | Upgrade |            |                            | and Factor                       |  |
| Direct Costs:                                            |         |            |                            |                                  |  |
| Puchased Equipment:                                      |         |            |                            |                                  |  |
| Primary and Auxiliary Equipment (PE)                     | \$      | 820,413    | Include co                 | sts to convert to MD and add SCR |  |
| Sales Tax                                                | \$      | 49,225     | 6% of PE                   | OTC-LADCO 2008                   |  |
| Freight                                                  | \$      | 41,021     | 5% of PE                   | OTC-LADCO 2008                   |  |
| Total Purchased Equipment Cost (PEC)                     | \$      | 910,658    |                            |                                  |  |
| Direct Installation                                      |         |            |                            |                                  |  |
| Electrical, Piping, Insulation and Ductwork              | \$      | 364,263    | 40% of PEC                 | OTC-LADCO 2008                   |  |
| Total Direct Installation (DI)                           | \$      | 364,263    |                            |                                  |  |
| Total Direct Cost (DC)                                   | \$      | 1,274,922  |                            |                                  |  |
| Indirect Installation Costs                              |         |            |                            |                                  |  |
| Engineering and Project Management,                      |         |            |                            |                                  |  |
| Construction and Field Expenses, Contractor              |         |            |                            |                                  |  |
| Fees, Startup Expenses, Performance Tests,               |         |            |                            |                                  |  |
| Contingencies                                            | \$      | 555,502    | 61% of PEC                 | OTC-LADCO 2008                   |  |
| Total Indirect Cost                                      | \$      | 555,502    |                            |                                  |  |
| Total Installed Cost (TIC)                               | \$      | 1,830,423  |                            |                                  |  |
| NO <sub>x</sub> Emissions Before Control, lb/MMBtu       |         | 0.098      |                            |                                  |  |
| NO <sub>x</sub> Emissions Before Control, tn/yr          |         | 2.79       |                            |                                  |  |
| NO <sub>x</sub> Emissions After Control, lb/MMBtu        |         | 0.025      |                            |                                  |  |
| Control Efficiency (%)                                   |         | 75         |                            |                                  |  |
| NO <sub>x</sub> Emissions After Control, tn/yr           |         | 0.70       |                            |                                  |  |
| NO <sub>x</sub> Emission Reduction, tn/yr                |         | 2.09       |                            |                                  |  |
| Annual Costs, \$/year (Direct + Indirect)                | -       |            |                            |                                  |  |
| Direct Costs                                             |         |            |                            |                                  |  |
| Operating Labor                                          | \$      | 54 913     | 3% of capitol (            | L<br>Cost                        |  |
| Raw materials                                            | \$      |            | 2.00.0000000               | T                                |  |
| Replacement Parts                                        | \$      | 54.913     | 3% of capitol (            | cost                             |  |
| Total Direct Costs, \$/year                              | \$      | 109,825    |                            |                                  |  |
| Indirect Costs                                           | +       |            |                            |                                  |  |
| Overhead                                                 | \$      | 32.948     | 60% of labor of            | costs                            |  |
| Taxes, Insurance, and Administration                     |         |            | 4% of total installed cost |                                  |  |
| Capitol Recovery                                         | \$      |            | 5 10%, 15 years, CRF13147  |                                  |  |
| Total Indirect Costs, \$/year                            | \$      | 346,810    | 3.2, 20 10010              | ,                                |  |
| Total Annual Cost                                        | \$      | 456,636    |                            |                                  |  |
| Cost Effectiveness, \$ per ton NO <sub>x</sub> reduction |         | 218,220.27 |                            |                                  |  |
| <del></del>                                              |         |            |                            |                                  |  |

## **Assumptions:**

# ATTACHMENT 3

**Monitoring Recommendations and Emission Limitations** 

| March   Col.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Emissions Unit                   | Parameter        | Immary of Allowable Limits and Monitoring Require         | Monitoring  | Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------|-----------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| State   Vic.   Story   pure conscious average at 198 (s)   sin and   Story   pure conscious average at 198 (s)   sin and   Story   pure conscious average at 198 (s)   sin and   Story   sin and   s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Lillissions offit                | Parameter        | Allowable Limit                                           |             | Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CO   SOO promise analyses are say at 8 Pg. 1 has not good to the promise of the Company of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Unit 4 - FCCU                    | VOC              | Allowable Little                                          | прргоден    | Must comply with LDAR program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| March   Marc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |                  | ≤500 ppmv one-hour average at 0% 0 <sub>2</sub> 1-hr avg. | CEMS        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  |                  |                                                           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| See protection of See See See See See See See See See Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                  | - 4              |                                                           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Section of 2006 per 7-day colling overage   CRSS   Section   CRSS   Section   CRSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | $SO_2$           |                                                           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  | -                | ≤50 ppmdv at 0% O <sub>2</sub> per 7-day rolling average  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| March Complete   CDS   CDS   CDS   CDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  |                  |                                                           | Stack Test, |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ## Section of the content of the con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  | $PM_{10}$        | 0.50 lb/1000 lb coke burned                               | COMS/AMP    | Stack test no later than October 31 of each year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Special Content   Special Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4H1 - FCC Feed Heater            | Opacity          |                                                           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Social Contemporaries   Soci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |                  |                                                           |             | CEMS located at plant fuel gas mix drum/header                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Solid   Soli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4V82 FCC Scrubber                |                  |                                                           | COMS        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Unit 1 - Catalytic Reforming bit with Charge feature Charge featur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  |                  |                                                           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| High High Heather Charge Heater    Part   Pa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Unit 6 Catalytic Deforming       | $SO_2$           | 17.7 tons per year                                        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Self-Reformer Channer Betweet Plans    Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans   Plans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  | 1100             |                                                           |             | W . I SIVEAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |                  | 100/                                                      |             | Must comply with LDAK program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Heaver He                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | on 1-Reformer Charge heater      |                  | 10%                                                       |             | DM emissions based on 7.65 lb DM /MMscf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| April   Proceedings   Process   Pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |                  | <60 npm (annual average)                                  | CEMS        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Digital   Digi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6H2 - Prefractionator Reboiler   | 1125             | 200 ppin (annua average)                                  | GEMS        | one of the state o |
| PM_s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Heater                           | Opacity          | 10%                                                       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Hart 7 - Alkylation Unit PM 2 Hart 7 - Alkylation Unit PM 2 Hart 7 - Alkylation Unit PM 2 Hart 7 - Alkylation Unit PM 3 Hart 11 - Malystone Regeneration PM 3 Hart 11 - Malystone Regeneration PM 3 Hart 12 - Malystone Regeneration PM 3 Hart 13 - Malystone Regeneration PM 3 Hart 14 - Alkylation Unit PM 3 Hart 15 - Alkylation Digregamizer Rebouler PM 3 Hart 15 - Alkylation Digregamizer Rebouler PM 4 Hart 15 - Chude Unit PM 4 Hart 17 - Alkylation Digregamizer Rebouler PM 4 Hart 18 - Chude Unit PM 4 Hart 19 - Distillate PM 4 Hart 19 - Distillate PM 4 Hart 19 - Distillate PM 5 Hart 19 - Distillate PM 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  |                  |                                                           |             | PM <sub>10</sub> emissions based on 7.65 lb PM <sub>10</sub> /MMscf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| PM, genesions based on 7.65 ib PM, //Moded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                  | ≤60 ppm (annual average)                                  | CEMS        | CEMS located at plant fuel gas mix drum/header                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PM, genesions based on 7.65 ib PM, //Moded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                  |                                                           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Hair 7 - Alkylation Unit 171 - 181 Alkylation Unit 171 - 181 Alkylation Engeneration 172 - 181 Alkylation Deproparater Netwolser 173 - 185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6H3 - Reformer Reheater Furnace  |                  | 10%                                                       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Unit 7 - Alkylation Unit PH. 11-18 Alkylation Regeneration Purnace PH. 12-18 Alkylation Regeneration PH. 13-18 Alkylation Regeneration PH. 14-18 Alkylation Regeneration PH. 15-18 Alkylation Ph. 15-18 Alkylation PH. 15-18 Alkylation Regeneration PH. 15-18 Alkylation PH. 18-18 Alky                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  |                  |                                                           | am. / -     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PH. 14 Hz Alsylation Regeneration   Phd.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Harite II Allandari II i         |                  | ≤60 ppm (annual average)                                  | CEMS        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Figure 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  | VOC              |                                                           |             | Must comply with LDAK program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| PH.1 + FAllylation Depropanier  PH.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  | Opacity          | 1004                                                      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| H3. HF Alkylation Depropanier Reboiler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ruindle                          |                  | 10 /0                                                     |             | PM <sub>10</sub> emissions based on 7.65 lb PM <sub>10</sub> /MMscf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| PM: 1 HR Alphaten Depropanier Reboiler  Unit 8 - Crude Unit  1872 - Crude Pursace  1873 - Wo C  1874 - Wo C  1874 - Wo C  1875 - Wo C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  |                  | <60 npm (annual average)                                  | CEMS        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Phosphate   Phos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7H3 - HF Alkylation Depropanizer | 1125             | 200 ppin (annua average)                                  | CEMS        | only rocated at plant faci gas mix aram/ neader                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Unit 8 - Crude Unit  1812 - Crude Furnace  1812 - Crude Furnace  1812 - Crude Furnace  1813 - Crude Furnace  1814 - Crude Furnace  1815 - Crude Furnace  1815 - Crude Furnace  1816 - Crude Furnace  1817 - Opacity  1815 - Month Milks 3-hour average  1816 - Month Milks 3-hour average  1811 - Milks 3-hour average  1811 - Milks 3-hour average  1812 - Opacity  1813 - Sopper (annual average)  1814 - Milks 3-hour average  1815 - Opacity  1816 - Opacity  1816 - Opacity  1817 - Opacity  1818 - Opaci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Reboiler                         | Opacity          | 10%                                                       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Unit 9 - Distillate   PM_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  |                  |                                                           |             | PM <sub>10</sub> emissions based on 7.65 lb PM <sub>10</sub> /MMscf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Digit 1 - Solvent   Digi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |                  | ≤60 ppm (annual average)                                  | CEMS        | CEMS located at plant fuel gas mix drum/header                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PM   NO   NO   HJMMBtu 3-hour average   CEMS   CE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Unit 8 - Crude Unit              | VOC              |                                                           |             | Must comply with LDAR program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Unit 9 - Distillate Hydrosulfurization Unit  Woc  Distillate Hydrosulfurization Unit  Woc  Distillate Hydrosulfurization Unit  Distillate Hydrosulfurization Unit  Distillate Hydrosulfurization HyS  Distillate Hydrosulfurization HyS  Distillate HyB  Disti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8H2 - Crude Furnace              | Opacity          | 10%                                                       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Unit 9 - Distrillate Hydrosculfurization Unit  His-DibDS Reactor Charge Heater Diby PM <sub>19</sub> His-Dibb Stripper Reboiler His-Dibb Stripper Reboiler Diby PM <sub>19</sub> His-Dibb Stripper Reboiler Diby PM <sub>19</sub> His-Dibb Stripper Reboiler His-Dibb Stripper Reboiler Dibit 1 - Solvent Deasphalting Unit Deasphalting Unit Dibit 1 - Solvent Deasphalting Unit Dibit 1 - Solvent Deasphalting Unit Dibit 1 - Solvent Deasphalting Unit Dibit 2 - Hot Oil Furnace Dibit 2 - Hot Oil Furnace Dibit 3 - Bord Dibit 4 - Bord Dibit 4 - Bord Dibit 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  | $PM_{10}$        | 0.00051 lb/MMBtu                                          |             | Stack test no later than October 31 of each year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Unit 1 - Solvent  Deachy Phys Hg Possitifier Hg Pos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  | $NO_x$           | 0.04 lb/MMBtu 3-hour average                              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Hydrosulfurization Unit  Hi-DHDS Reactor Charge Heater Opacity PM <sub>10</sub> Hi-DHDS Stripper Reboiler Opacity PM <sub>10</sub> Hi-DHDS Stripper Reboiler PM <sub>10</sub> Hi-DHDS Stripper Reboiler PM <sub>10</sub> Hi-DHDS Repair No. Opacity PM <sub>10</sub> Hi-DHDS Responder PM <sub>10</sub> NO. Opacity PM <sub>10</sub> Hi-DHDS Responder PM <sub>10</sub> Hi-DHDS Responder PM <sub>10</sub> NO. Opacity PM <sub>10</sub> NO. Opacity PM <sub>10</sub> NO. Opacity PM <sub>10</sub> NO. Opacity PM <sub>10</sub> Hi-DHDS Responder PM <sub>10</sub> NO. Opacity PM <sub>10</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  | H <sub>2</sub> S | ≤60 ppm (annual average)                                  | CEMS        | CEMS located at plant fuel gas mix drum/header                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Hi-DHDS Reactor Charge Heater Hi-S His Dipolity Philip His Stripper Reboiler Hi-S His Dipolity Philip His Sopper (CEMS of the His Dipolity Philip His Dipolity Philip His Sopper (CEMS of the His Dipolity Philip His Dipolity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  |                  |                                                           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PM <sub>10</sub>   FS   So part   PM <sub>10</sub>   FS   So part   PM <sub>10</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hydrosulfurization Unit          | VOC              |                                                           |             | Must comply with LDAR program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| PM <sub>10</sub>   FS   So part   PM <sub>10</sub>   FS   So part   PM <sub>10</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                  |                                                           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| H2-DHDS Stripper Reboiler Opacity PM <sub>10</sub> Unit 10 - Solvent Deasphalting Unit Unit 1 - Solvent Deasphalting Unit Unit 1 - Solvent Opacity PM <sub>10</sub> NO <sub>8</sub> NO <sub>8</sub> NO <sub>8</sub> Opacity PM <sub>10</sub> NO <sub>8</sub> NO <sub></sub>                                                                                           | 9H1-DHDS Reactor Charge Heater   |                  | 10%                                                       |             | DM amissions based on 7.65 lb DM /MMosf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ### Deaphalting Unit Unit 10 - Solvent Deaphalting Unit Opacity PM <sub>10</sub> H,S Sol ppm (annual average)  VC Opacity PM <sub>10</sub> H,S Sol ppm (annual average)  CEMS CEMS located at plant fuel gas mix drum/header  Must comply with LDAR program  Unit 11 - Straight Run Gas Plant NO Opacity PM <sub>10</sub> H,S Sol ppm (annual average)  Unit 11 - Straight Run Gas Plant VC Opacity PM <sub>10</sub> H,S Sol ppm (annual average)  Uoc Opacity PM <sub>10</sub> H,S Sol ppm (annual average) CEMS CEMS located at plant fuel gas mix drum/header  CEMS Stack test no later than October 31 of each year Stack test performed every 3 years CEMS CEMS located at plant fuel gas mix drum/header  Unit 11 - Straight Run Gas Plant VC Opacity PM <sub>10</sub> H,S Sol ppm (annual average)  Unit 12 - Naphtha Hydrodesulphurization Unit VC  Unit 13 - Isomerization Unit 1311: Isomerization Reactor Feed Furnace Opacity PM <sub>10</sub> Opacity PM <sub>10</sub> Opacity PM <sub>10</sub> Sol ppm (annual average)  Unit 13 - Isomerization Reactor Feed Furnace Opacity PM <sub>10</sub> Opacity PM <sub>10</sub> Sol ppm (annual average)  Unit 14 - Amine Treatment Unit VOC Sulfur Sol ppm (annual average)  Unit 15 - Sulfur Recovery Unit VOC Sulfur Sol ppm (annual average)  Unit 16 - Amine Treatment Unit VOC Sulfur Sol ppm (annual average)  Unit 16 - Amine Treatment Unit VOC Sulfur Sol ppm (annual average)  Unit 16 - Amine Treatment Unit VOC Sulfur Sol ppm (annual average)  Unit 16 - Amine Treatment Unit VOC Sulfur Sol ppm (annual average)  Unit 16 - Amine Treatment Unit VOC Sulfur Sol ppm (annual average)  Unit 16 - Amine Treatment Unit VOC Sulfur Sol ppm (annual average)  Unit 17 - Sulfur Recovery Unit VOC Sulfur Sol ppm (annual average)  Unit 18 - Sulfur Recovery Unit VOC Sulfur Sol ppm (annual average)  CEMS CEMS CEMS CEMS CEMS CEMS CEMS CEMS CEMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                  |                  | c60 npm (annual avorage)                                  | CEMS        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Unit 10 - Solvent Deasphalting Unit Unit 10 - Solvent Deasphalting Unit Unit 11 - Solvent Deasphalt Mix Heater Unit 12 - Hot Oil Furnace PM <sub>10</sub> | QH2-DHDS Stripper Rehailer       |                  | ** *                                                      | CEMS        | CEMS located at plant fuel gas mix drum/neader                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Unit 10 - Solvent Deasphalting Unit Unit 10 - Solvent Deasphalting Unit Unit 1 - Asphalt Mix Heater PMin PMin PMin No No No No No No No H;S Solopm (annual average)  Unit 11 - Straight Run Gas Plant PMin His Solopm (annual average)  Unit 11 - Straight Run Gas Plant Unit 12 - Naphtha Hydrodesulphurization Unit Unit 13 - Somerization Unit 13H1 - Isomerization Reactor Feed Furnace  Unit 16 - Amine Treatment Unit Unit 17 - Sulfur Recovery Unit  VOC Sulfur Solop pm (annual average)  Solop pm (annual average)  Solop pm (annual average)  CEMS CEMS located at plant fuel gas mix drum/header  Stack test performed every 3 years CEMS located at plant fuel gas mix drum/header  CEMS Stack test performed every 3 years CEMS located at plant fuel gas mix drum/header  Must comply with LDAR program  CEMS CEMS located at plant fuel gas mix drum/header  CEMS CEMS located at plant fuel gas mix drum/header  Must comply with LDAR program  Must comply with LDAR program  Must comply with LDAR program  CEMS located at plant fuel gas mix drum/header  CEMS located at plant fuel gas mix drum/header  CEMS located at plant fuel gas mix drum/header  Must comply with LDAR program  Must comply with LDAR program  COMPlant located at plant fue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7112-D11D3 3tt ipper Reboller    |                  | 10 /0                                                     |             | PM <sub>10</sub> emissions based on 7.65 lb PM <sub>10</sub> /MMscf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Unit 10 - Solvent Deasphalting Unit U0H1 - Asphalt Mix Heater  Opacity PMio H;S Opacity PMio No No No No H;S Solop m (annual average) Ocems No H;S Solop m (annual average) No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |                  | ≤60 ppm (annual average)                                  | CEMS        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Deasphalting Unit 10H1 - Asphalt Mix Heater 10H2 - Hot Oil Furnace 10H2 - Hot Oil Furnace 10H3 - Mount of PM <sub>10</sub> 10H5 - Mount of PM <sub>10</sub> 10H6 - Mount of PM <sub>10</sub> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Unit 10 - Solvent                | 2-               | C C C C C C C C C C C C C C C C C C C                     |             | , , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 10H2 - Hot Oil Furnace  Opacity PM <sub>10</sub> H <sub>2</sub> S S60 ppm (annual average) CEMS CEMS located at plant fuel gas mix drum/header Stack test no later than October 31 of each year Stack test performed every 3 years CEMS located at plant fuel gas mix drum/header CEMS located at plant fuel gas mix drum/header  CEMS located at plant fuel gas mix drum/header  CEMS located at plant fuel gas mix drum/header  Must comply with LDAR program  Must comply with LDAR program  CEMS located at plant fuel gas mix drum/header  Must comply with LDAR program  Must comply with LDAR program  Must comply with LDAR program  CEMS located at plant fuel gas mix drum/header  Must comply with LDAR program  Must comply with LDAR program  CEMS located at plant fuel gas mix drum/header  Must comply with LDAR program  CEMS located at plant fuel gas mix drum/header  Must comply with LDAR program  CEMS located at plant fuel gas mix drum/header  Must comply with LDAR program  CEMS located at plant fuel gas mix drum/header  CEMS located at plant fuel gas mix drum/header  CEMS located at plant fuel gas mix drum/header  PM <sub>10</sub> emissions based on 7.65 lb PM <sub>10</sub> /MMscf  CEMS located at plant fuel gas mix drum/header  Must comply with LDAR program  Must comply with LDAR program  Must comply with LDAR program  CEMS located at plant fuel gas mix drum/header  CEMS located at plant fuel gas mix drum/header  CEMS located at plant fuel gas mix drum/header  Must comply with LDAR program  Must comply with LDAR program  Must comply with LDAR p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Deasphalting Unit                | VOC              |                                                           |             | Must comply with LDAR program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| PM <sub>10</sub>   H <sub>2</sub> S   \$60 ppm (annual average)   CEMS   CEMS located at plant fuel gas mix drum/header   Stack test no later than October 31 of each year   Stack test performed every 3 years   CEMS located at plant fuel gas mix drum/header   CEMS located at plant fuel gas mix drum/hea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10H1 - Asphalt Mix Heater        |                  | 10%                                                       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10H2 - Hot Oil Furnace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  |                  |                                                           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PM <sub>10</sub>   NO <sub>2</sub>   0.00051 lb/MMBtu   CEMS   Stack test no later than October 31 of each year   Stack test performed every 3 years   CEMS   Stack test performed every 3 years   CEMS   Stack test performed every 3 years   CEMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  | H <sub>2</sub> S | ≤60 ppm (annual average)                                  | CEMS        | CEMS located at plant fuel gas mix drum/header                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Unit 11 - Straight Run Gas Plant PM10 H2S S60 ppm (annual average) SCEMS CEMS In Stack test performed every 3 years CEMS In Interpretation PM10 Must comply with LDAR program Must comply with LDAR program  Must comply with LDAR program  CEMS In PM10 PM10 PM10 PM10 PM10 PM10 Must comply with LDAR program  CEMS Interpretation based on 7.65 lb PM10/MMscf CEMS Interpretation PM10 Must comply with LDAR program  CEMS Interpretation PM10 Must comply with LDAR program  CEMS Interpretation PM10 PM10 NO, H2S Stack test performed every 3 years Stack test performed every 3 years Stack test performed every 3 years CEMS Interpretation PM10 CEMS Interpretation PM10 CEMS Interpretation PM10 CEMS Interpretation PM10 PM10 PM10 PM10 PM10 PM10 PM10 PM10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10H2 - Hot Oil Furnace           | Opacity          |                                                           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Unit 11 - Straight Run Gas Plant PM10 H2S S60 ppm (annual average) SCEMS CEMS In Stack test performed every 3 years CEMS In Interpretation PM10 Must comply with LDAR program Must comply with LDAR program  Must comply with LDAR program  CEMS In PM10 PM10 PM10 PM10 PM10 PM10 Must comply with LDAR program  CEMS Interpretation based on 7.65 lb PM10/MMscf CEMS Interpretation PM10 Must comply with LDAR program  CEMS Interpretation PM10 Must comply with LDAR program  CEMS Interpretation PM10 PM10 NO, H2S Stack test performed every 3 years Stack test performed every 3 years Stack test performed every 3 years CEMS Interpretation PM10 CEMS Interpretation PM10 CEMS Interpretation PM10 CEMS Interpretation PM10 PM10 PM10 PM10 PM10 PM10 PM10 PM10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                  | $PM_{10}$        |                                                           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Unit 11 - Straight Run Gas Plant  VOC  VOC  VOC  VOC  VOC  VOC  VOC  VO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  | $NO_x$           | · -                                                       |             | * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Plant Unit 13- Isomerization Unit 13H1 - Smore Feed Furnace Feed Furnace Unit 16 - Amine Treatment Unit Unit Unit Unit Unit Unit Suffer Feed Furnace Unit 17 - Sulfur Recovery Unit Unit Unit Unit Unit Unit Unit Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  | $H_2S$           | ≤60 ppm (annual average)                                  | CEMS        | CEMS located at plant fuel gas mix drum/header                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 11H1 - SRGP Depentanizer Reboiler  Opacity PM <sub>10</sub> H <sub>2</sub> S  660 ppm (annual average)  CEMS  CEMS located at plant fuel gas mix drum/header  Must comply with LDAR program  PM <sub>10</sub> emissions based on 7.65 lb PM <sub>10</sub> /MMscf  CEMS located at plant fuel gas mix drum/header  Must comply with LDAR program  PM <sub>10</sub> emissions based on 7.65 lb PM <sub>10</sub> /MMscf  Stack test performed every 3 years  CEMS located at plant fuel gas mix drum/header  PM <sub>10</sub> emissions based on 7.65 lb PM <sub>10</sub> /MMscf  Stack test performed every 3 years  CEMS located at plant fuel gas mix drum/header  VOC  Unit 13 - I somerization Unit 13H1 - I somerization Reactor Feed Furnace  Opacity PM <sub>10</sub> H <sub>2</sub> S  60 ppm (annual average)  CEMS  CEMS located at plant fuel gas mix drum/header  PM <sub>10</sub> emissions based on 7.65 lb PM <sub>10</sub> /MMscf  CEMS located at plant fuel gas mix drum/header  PM <sub>10</sub> emissions based on 7.65 lb PM <sub>10</sub> /MMscf  CEMS located at plant fuel gas mix drum/header  PM <sub>10</sub> emissions based on 7.65 lb PM <sub>10</sub> /MMscf  CEMS located at plant fuel gas mix drum/header  PM <sub>10</sub> emissions based on 7.65 lb PM <sub>10</sub> /MMscf  CEMS located at plant fuel gas mix drum/header  PM <sub>10</sub> emissions based on 7.65 lb PM <sub>10</sub> /Mmscf  CEMS located at plant fuel gas mix drum/header  PM <sub>10</sub> emissions based on 7.65 lb PM <sub>10</sub> /Mmscf  CEMS located at plant fuel gas mix drum/header  PM <sub>10</sub> emissions based on 7.65 lb PM <sub>10</sub> /Mmscf  CEMS located at plant fuel gas mix drum/header  PM <sub>10</sub> emissions based on 7.65 lb PM <sub>10</sub> /Mmscf  CEMS located at plant fuel gas mix drum/header  PM <sub>10</sub> emissions based on 7.65 lb PM <sub>10</sub> /Mmscf  CEMS located at plant fuel gas mix drum/header  PM <sub>10</sub> emissions based on 7.65 lb PM <sub>10</sub> /Mmscf  CEMS located at plant fuel gas mix drum/header  PM <sub>10</sub> emissions based on 7.65 lb PM <sub>10</sub> /Mmscf  CEMS located at plant fuel gas mix drum/header  PM <sub>10</sub> emissions based on 7.65 lb PM <sub>10</sub> /Mmscf  CEMS located at plant fuel gas mix drum/header  CEMS located at plant fuel gas mix drum/header                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Unit 11 - Straight Run Gas       |                  |                                                           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Reboiler  Opacity PM <sub>10</sub> H <sub>2</sub> S  s60 ppm (annual average)  CEMS  CEMS  CEMS located at plant fuel gas mix drum/header  Must comply with LDAR program  Opacity PM <sub>10</sub> NO <sub>x</sub> Opacity PM <sub>10</sub> NO <sub>x</sub> Opacity PM <sub>10</sub> NO <sub>x</sub> H <sub>2</sub> S  s60 ppm (annual average)  CEMS  CEMS located at plant fuel gas mix drum/header  Must comply with LDAR program  CEMS  CEMS located at plant fuel gas mix drum/header  Must comply with LDAR program  CEMS located at plant fuel gas mix drum/header  Must comply with LDAR program  CEMS located at plant fuel gas mix drum/header  CEMS located at plant fuel gas mix drum/header  Must comply with LDAR program  CEMS located at plant fuel gas mix drum/header                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Plant                            | VOC              |                                                           |             | Must comply with LDAR program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Unit 12- Naphtha Hydrodesulphurization Unit Unit 12- Naphtha Hydrodesulphurization Unit Unit 12- NHDS Reactor Charge Furnace  Opacity PM10 NO NO H2S  S60 ppm (annual average)  Opacity PM10 NO NO NO H2S  S60 ppm (annual average)  Opacity PM10 NO NO NO H2S  S60 ppm (annual average)  Opacity PM10 NO NO H2S  S60 ppm (annual average)  CEMS  CEMS  Opacity PM10 NO NO CEMS  CEMS  CEMS located at plant fuel gas mix drum/header  PM10 emissions based on 7.65 lb PM10/MMscf Stack test performed every 3 years CEMS located at plant fuel gas mix drum/header  CEMS  CEMS located at plant fuel gas mix drum/header  Opacity PM10 H2S  S60 ppm (annual average)  CEMS  CEMS located at plant fuel gas mix drum/header  CEMS located at plant fuel gas mix drum/header  Opacity PM10 H2S  S60 ppm (annual average)  CEMS  CEMS located at plant fuel gas mix drum/header  Must comply with LDAR program  Must comply with LDAR program  Gompliance based on flow rate and H2S concentration in the feed and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  | Ome = ! !        | 100/                                                      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Unit 12- Naphtha Hydrodesulphurization Unit 12H1 - NHDS Reactor Charge Furnace  Opacity PM <sub>10</sub> NO <sub>x</sub> Opacity H <sub>2</sub> S <ol> <li>Opacity PM<sub>10</sub> NO<sub>x</sub> H<sub>2</sub>S</li> <li>Opacity PM<sub>10</sub> H<sub>2</sub>S</li> <li>Opacity</li></ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Redoller                         |                  | 10%                                                       |             | DM emissions based on 7.45 lb DM /MMass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Unit 12- Naphtha Hydrodesulphurization Unit Unit U2H - NHDS Reactor Charge Furnace Opacity PM <sub>10</sub> NO <sub>x</sub> 0.10 lb/MMBtu 3-hour average H <sub>2</sub> S 560 ppm (annual average) CEMS Opacity PM <sub>10</sub> H <sub>2</sub> S Sack test performed every 3 years CEMS located at plant fuel gas mix drum/header  Unit 13- Isomerization Unit 13H1 - Isomerization Reactor Feed Furnace Opacity PM <sub>10</sub> H <sub>2</sub> S S60 ppm (annual average) CEMS CEMS CEMS located at plant fuel gas mix drum/header  PM <sub>10</sub> emissions based on 7.65 lb PM <sub>10</sub> /MMscf CEMS located at plant fuel gas mix drum/header  PM <sub>10</sub> emissions based on 7.65 lb PM <sub>10</sub> /MMscf CEMS located at plant fuel gas mix drum/header  PM <sub>10</sub> emissions based on 7.65 lb PM <sub>10</sub> /MMscf CEMS located at plant fuel gas mix drum/header  Unit 16- Amine Treatment Unit Unit 17- Sulfur Recovery Unit  VOC Sulfur S20 long tons per day  Compliance based on flow rate and H <sub>2</sub> S concentration in the feed and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  |                  | c60 nnm (annual average)                                  | CEMC        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Hydrodesulphurization Unit  VOC  VOC  Opacity PM <sub>10</sub> NO <sub>x</sub> O,10 lb/MMBtu 3-hour average \$\frac{60}{19} \text{ pm} \text{ (annual average)} \text{ CEMS} \text{ CEMS located at plant fuel gas mix drum/header} \text{ Unit 13 - Isomerization Unit 13 - Isomerization Reactor Feed Furnace  Opacity PM <sub>10</sub> NO <sub>x</sub> O,10 lb/MMBtu 3-hour average \$\frac{60}{19} \text{ pm} \text{ (annual average)} \text{ CEMS} \text{ CEMS located at plant fuel gas mix drum/header} \text{ CEMS located at plant fuel gas mix drum/header} \text{ Unit 14 - Amine Treatment Unit 17 - Sulfur Recovery Unit  VOC  Sulfur  \$\frac{20}{100} \text{ long tons per day} \text{ CEMS compliance based on 7.65 lb PM\$_{10} / MMscf} \text{ CEMS located at plant fuel gas mix drum/header} \text{ Must comply with LDAR program} \text{ CEMS located at plant fuel gas mix drum/header} \text{ Must comply with LDAR program} \text{ CEMS located at plant fuel gas mix drum/header} \text{ CEMS located at plant fuel gas mix drum/header} \text{ CEMS located at plant fuel gas mix drum/header} \text{ CEMS located at plant fuel gas mix drum/header} \text{ CEMS located at plant fuel gas mix drum/header} \text{ Must comply with LDAR program} \text{ Compliance based on flow rate and H\$_2S concentration in the feed and } \text{ Compliance based on flow rate and H\$_2S concentration in the feed and } \text{ Compliance based on flow rate and H\$_2S concentration in the feed and } \text{ Compliance based on flow rate and H\$_2S concentration in the feed and } \text{ Compliance based on flow rate and H\$_2S concentration in the feed and } \text{ Compliance based on flow rate and H\$_2S concentration in the feed and } \text{ Compliance based on flow rate and H\$_2S concentration in the feed and } \text{ Compliance based on flow rate and H\$_2S concentration in the feed and } \text{ Compliance based on flow rate and H\$_2S concentration in the feed and } \text{ Compliance based on flow rate and H\$_2S concentration in the feed and }  Compliance based on flow rate and H\$_2S concentration in the fee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Unit 12. Nanhtha                 | п25              | 200 ppin (annuai average)                                 | CEM2        | GENTS TO CALCULAT PLAINT LUCY GAS THIX UTUIN/ HEADER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Unit 13 - Isomerization Unit 13Hnore Feed Furnace  Unit 14 - Amine Treatment Unit Unit 17 - Sulfur Recovery Unit  Unit 17 - Sulfur Recovery Unit  Unit 18 - Isomerization Charge  Sulfur  VOC  Sulfur  Sulfur  Sulfur  Substitute  Unit 19 - Amine Treatment Unit  VOC  Sulfur  Sulfur  Sulfur  Substitute  Substitute  Substitute  Substitute  Must comply with LDAR program  Compliance based on flow rate and H <sub>2</sub> S concentration in the feed and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  |                  |                                                           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12H1 - NHDS Reactor Charge Furnace  Opacity PM <sub>10</sub> NO <sub>x</sub> 0.10 lb/MMBtu 3-hour average Stack test performed every 3 years CEMS CEMS CEMS located at plant fuel gas mix drum/header  Unit 13 - Isomerization Unit 13H1 - Isomerization Reactor Feed Furnace Opacity PM <sub>10</sub> H <sub>2</sub> S Se0 ppm (annual average)  Unit 16 - Amine Treatment Unit Unit 17 - Sulfur Recovery Unit  VOC Sulfur Sulfur Sulfur Sezo long tons per day  Opacity PM <sub>10</sub> H <sub>2</sub> S Se0 ppm (annual average)  CEMS CEMS CEMS located at plant fuel gas mix drum/header  CEMS CEMS located at plant fuel gas mix drum/header  Must comply with LDAR program  Compliance based on flow rate and H <sub>2</sub> S concentration in the feed and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  | VOC              |                                                           |             | Must comply with LDAP program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Furnace  Opacity PM10 NOx 0.10 lb/MMBtu 3-hour average H2S <60 ppm (annual average)  CEMS  CEMS  CEMS located at plant fuel gas mix drum/header  Unit 13 - Isomerization Unit 13Hp 1- Isomerization Reactor Feed Furnace  Opacity PM10 H2S  Feed Furnace  Opacity PM10 H2S  Feed Furnace  Opacity PM10 H2S  Feed purpace  Opacity PM10 Must comply with LDAR program  Must comply with LDAR program  Compliance based on flow rate and H2S concentration in the feed and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                  | VUC              |                                                           |             | inust comply with EDAK program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  | Onacity          | 10%                                                       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NO <sub>x</sub>   H <sub>2</sub> S   s60 ppm (annual average)   CEMS   Stack test performed every 3 years                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  |                  | /-                                                        |             | PM <sub>10</sub> emissions based on 7.65 lb PM <sub>10</sub> /MMscf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Unit 13 - Isomerization Unit 13H - Isomerization Reactor Feed Furnace  Opacity PM <sub>10</sub> H <sub>2</sub> S  560 ppm (annual average)  CEMS  CEMS located at plant fuel gas mix drum/header  PM <sub>10</sub> emissions based on 7.65 lb PM <sub>10</sub> /MMscf  CEMS located at plant fuel gas mix drum/header  PM <sub>10</sub> emissions based on 7.65 lb PM <sub>10</sub> /MMscf  CEMS located at plant fuel gas mix drum/header  CEMS located at plant fuel gas mix drum/header  VOC  Sulfur  VOC Sulfur  Sulfur Selong tons per day  Compliance based on flow rate and H <sub>2</sub> S concentration in the feed and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  |                  | 0.10 lb/MMBtu 3-hour average                              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Unit 13 - Isomerization Unit 13H1 - Isomerization Reactor Feed Furnace  Opacity PM <sub>10</sub> H <sub>2</sub> S  60 ppm (annual average)  Unit 16 - Amine Treatment Unit VOC Unit 17 - Sulfur Recovery Unit  VOC Sulfur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  |                  |                                                           | CEMS        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 13H1 - Isomerization Reactor Feed Furnace  Opacity PM10 H2S  60 ppm (annual average)  CEMS  CEMS Isocated at plant fuel gas mix drum/header  Unit 17 - Sulfur Recovery Unit  VOC Sulfur  Compliance based on 7.65 lb PM10/MMscf  CEMS  CEMS  CEMS Isocated at plant fuel gas mix drum/header  Must comply with LDAR program  Compliance based on flow rate and H2S concentration in the feed and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  | 2-               |                                                           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 13H1 - Isomerization Reactor Feed Furnace  Opacity PM10 H2S  60 ppm (annual average)  CEMS  CEMS Isocated at plant fuel gas mix drum/header  Unit 17 - Sulfur Recovery Unit  VOC Sulfur  Compliance based on 7.65 lb PM10/MMscf  CEMS  CEMS  CEMS Isocated at plant fuel gas mix drum/header  Must comply with LDAR program  Compliance based on flow rate and H2S concentration in the feed and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Unit 13 - Isomerization Unit     | VOC              |                                                           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Feed Furnace  Opacity PM10 PM10 H2S  Se0 ppm (annual average)  Opacity PM10 H2S  Se0 ppm (annual average)  CEMS  CEMS  CEMS located at plant fuel gas mix drum/header  Must comply with LDAR program  VOC Sulfur  VOC Sulfur  Sulfur  Se0 long tons per day  Compliance based on flow rate and H2S concentration in the feed and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13H1 - Isomerization Reactor     |                  |                                                           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Unit 16 - Amine Treatment Unit 17 - Sulfur Recovery Unit  VOC  Sulfur  Sulfur  VOC  Sulfur  Sulfur  VOC  Sulfur  Sulf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Feed Furnace                     |                  | 10%                                                       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Unit 16 - Amine Treatment Unit VOC Unit 17 - Sulfur Recovery Unit VOC Sulfur  \$\frac{1}{20}\$ long tons per day  Wast comply with LDAR program  Must comply with LDAR program  Compliance based on flow rate and H2S concentration in the feed and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                  |                  |                                                           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Unit VOC Unit 17 - Sulfur Recovery Unit  VOC Sulfur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  | $H_2S$           | ≤60 ppm (annual average)                                  | CEMS        | CEMS located at plant fuel gas mix drum/header                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Unit 17 - Sulfur Recovery Unit  VOC Sulfur  ≤20 long tons per day  Compliance based on flow rate and H₂S concentration in the feed and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Unit 16 - Amine Treatment        |                  |                                                           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Unit  VOC Sulfur  Sul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Unit                             | VOC              |                                                           |             | Must comply with LDAR program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Sulfur ≤20 long tons per day  Compliance based on flow rate and H₂S concentration in the feed and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Unit 17 - Sulfur Recovery        |                  |                                                           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Compliance based on flow rate and H <sub>2</sub> S concentration in the feed and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Unit                             | VOC              |                                                           |             | Must comply with LDAR program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  | Sulfur           | ≤20 long tons per day                                     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sulfur 95% recovery on a 30-day average except during SSM SO <sub>2</sub> CEMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  |                  | 000                                                       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  | Sulfur           | 95% recovery on a 30-day average except during SSM        |             | SO <sub>2</sub> CEMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

| Emissions Unit                           | Parameter                   | mmary of Allowable Limits and Monitoring Require         | Monitoring | Comment                                                       |
|------------------------------------------|-----------------------------|----------------------------------------------------------|------------|---------------------------------------------------------------|
| Zimosiono Cint                           | i di dilictei               | Allowable Limit                                          | Approach   | Comment                                                       |
|                                          | Sulfur                      | ≤1.6 tn/day except during SSM                            | I I        |                                                               |
|                                          | SO <sub>2</sub> , TRS, Temp | , , , , , , , , , , , , , , , , , , , ,                  | CEMS, CPMS |                                                               |
| Unit 18 - Sour Water                     | -,                          |                                                          |            |                                                               |
| Stripping Unit                           | VOC                         |                                                          |            | Must comply with LDAR program                                 |
| Unit 19 - Distillate                     |                             |                                                          |            |                                                               |
| Hydrodesulferization                     |                             |                                                          |            |                                                               |
| Treatment                                | VOC                         |                                                          |            | Must comply with LDAR program                                 |
| 19H1 - DHT Reactor Charge<br>Heater      | Opacity                     | 10%                                                      |            |                                                               |
| lieatei                                  | PM <sub>10</sub>            | 0.00051 lb/MMBtu                                         |            |                                                               |
|                                          | H <sub>2</sub> S            | ≤60 ppm (annual average)                                 | CEMS       | CEMS located at plant fuel gas mix drum/header                |
| Unit 20 - Gas Oil                        | 2-                          | 3.77                                                     |            | , , , , , , , , , , , , , , , , , , , ,                       |
| Hydrocracking Unit                       | VOC                         |                                                          |            | Must comply with LDAR program                                 |
| 20H1-Reactor Charge Heater               | Opacity                     | 10%                                                      |            |                                                               |
|                                          | PM <sub>10</sub>            | 0.00051 lb/MMBtu                                         |            | Stack test no later than October 31 of each year              |
|                                          | H <sub>2</sub> S            | ≤60 ppm (annual average)                                 | CEMS       | CEMS located at plant fuel gas mix drum/header                |
| 20H2-Fractionator Charge Heater          | Opacity                     | 10%                                                      |            |                                                               |
| 20112-1 factionator charge freater       | PM <sub>10</sub>            | 0.00051 lb/MMBtu                                         |            | Stack test no later than October 31 of each year              |
|                                          | H <sub>2</sub> S            | ≤60 ppm (annual average)                                 | CEMS       | CEMS located at plant fuel gas mix drum/header                |
|                                          | -                           | (                                                        |            |                                                               |
| 20H3-Fractionator Charge Heater          | Opacity                     | 10%                                                      |            |                                                               |
|                                          | PM <sub>10</sub>            | 0.00051 lb/MMBtu                                         | OF MO      | Stack test no later than October 31 of each year              |
|                                          | NO <sub>x</sub>             | 0.04 lb/MMBtu 3-hour average                             | CEMS       | Stack test performed every 3 years                            |
| Unit 21 - NaSH Sour Gas                  | H <sub>2</sub> S            | ≤60 ppm (annual average)                                 | CEMS       | CEMS located at plant fuel gas mix drum/header                |
| Treatment Unit                           | VOC                         |                                                          |            | Must comply with LDAR program                                 |
| Unit 22 - Sour Water                     | VOC                         |                                                          |            |                                                               |
| Stripper/Ammonia                         |                             |                                                          |            |                                                               |
| Stripping Unit                           | VOC                         |                                                          |            | Must comply with LDAR program                                 |
| Unti 23 - Benzene                        |                             |                                                          |            |                                                               |
| Saturation Unit                          | VOC                         |                                                          |            | Must comply with LDAR program                                 |
| 23H1-Reformate Splitter Reboiler         |                             |                                                          |            |                                                               |
| Heater                                   | Opacity                     | 10%                                                      |            |                                                               |
|                                          | PM <sub>10</sub>            | 0.00051 lb/MMBtu                                         |            | Stack test no later than October 31 of each year              |
| Unit 24- Crude Unit                      | H₂S<br>VOC                  | ≤60 ppm (annual average)                                 |            | Most sound a stal I DAD and sound                             |
| 24H1 - Crude Unit Furnace                | Opacity                     | 10%                                                      |            | Must comply with LDAR program                                 |
| 24111 - Grude Ollit Furliace             | PM <sub>10</sub>            | 0.00051 lb/MMBtu                                         |            | Stack test no later than October 31 of each year              |
|                                          | NO <sub>x</sub>             | 0.04 lb/MMBtu 3-hour average                             | CEMS       | Stack test performed every 3 years                            |
|                                          | H <sub>2</sub> S            | ≤60 ppm (annual average)                                 | CEMS       | CEMS located at plant fuel gas mix drum/header                |
| Unit 25 - FCCU                           | VOC                         |                                                          |            | Must comply with LDAR program                                 |
|                                          | $NO_x$                      | ≤40 ppmdv at 0% O₂ per 365-day rolling average           | CEMS       |                                                               |
|                                          |                             | ≤80 ppmdv at 0% O <sub>2</sub> per 7-day rolling average | CEMS       |                                                               |
|                                          | SO <sub>2</sub>             | ≤25 ppmdv at 0% O₂ per 365-day rolling average           | CEMS       |                                                               |
|                                          |                             | ≤50 ppmdv at 0% O₂ per 7-day rolling average             | CEMS       |                                                               |
| 25114 FCC F 1 11 1 1                     | PM <sub>10</sub>            | 0.50 lb/1000 lb coke burned                              | Stack Test | Stack test no later than October 31 of each year              |
| 25H1 - FCC Feed Heater                   | Opacity<br>PM <sub>10</sub> | 10%<br>0.00051 lb/MMBtu                                  |            |                                                               |
|                                          | NO <sub>x</sub>             | 0.04 lb/MMBtu 3-hour average                             |            | Stack test performed every 3 years                            |
|                                          | H <sub>2</sub> S            | ≤60 ppm (annual average)                                 |            | static test performed every 5 years                           |
| 25FCC Scrubber                           | Opacity                     | 15%                                                      |            |                                                               |
|                                          | $SO_2$                      | 0.05 tons per day                                        |            |                                                               |
|                                          | SO <sub>2</sub>             | 17.7 tons per year                                       |            |                                                               |
|                                          | PM <sub>10</sub>            | 0.30 lb/1000 lb coke burned                              |            | Stack test no later than October 31 of each year              |
|                                          | Flow                        |                                                          | Flow meter |                                                               |
| Unit 26 - Poly Gasoline Unit             | VOC                         |                                                          |            | Must comply with LDAR program                                 |
| Unit 27 -                                | 100                         |                                                          |            |                                                               |
| Hydrocracker/Hydroisom                   |                             |                                                          |            |                                                               |
| Unit                                     | VOC                         |                                                          |            | Must comply with LDAR program                                 |
| 27H1 - Reactor Charge Heater             | Opacity                     | 10%                                                      |            |                                                               |
|                                          | $PM_{10}$                   | 0.00051 lb/MMBtu                                         |            | Stack test no later than October 31 of each year              |
|                                          | NO <sub>x</sub>             | 0.02 lb/MMBtu 3-hour average                             |            | Stack test performed every 3 years                            |
|                                          | NO <sub>x</sub>             | 40 ppmv or 0.04 lb/MMBtu (30-day rolling average)        | CEMS       | NO <sub>X</sub> CEMS or Excess O <sub>2</sub> operating curve |
| Unit 28 - Sour Water                     | H <sub>2</sub> S            | ≤60 ppm (annual average)                                 | CEMS       | CEMS located at plant fuel gas mix drum/header                |
| Stripping Unit                           | VOC                         |                                                          |            | Must comply with LDAR program                                 |
| Unit 30 - Hydrogen Plant                 | VOC                         |                                                          |            | Must comply with LDAR program  Must comply with LDAR program  |
| 30H1 - Hydrogen Reformer Feed            | VOC                         |                                                          |            |                                                               |
| Furnace                                  | Opacity                     | 10%                                                      |            |                                                               |
|                                          | $PM_{10}$                   | 0.00051 lb/MMBtu                                         |            | Stack test no later than October 31 of each year              |
|                                          | NO <sub>x</sub>             | 0.02 lb/MMBtu 3-hour average                             |            | Stack test performed every 3 years                            |
|                                          | NO <sub>x</sub>             | 40 ppmv or 0.04 lb/MMBtu (30-day rolling average)        | CEMS       |                                                               |
| 20H2 Hudroger Beformer F                 | H <sub>2</sub> S            | ≤60 ppm (annual average)                                 | CEMS       | CEMS located at plant fuel gas mix drum/header                |
| 30H2 - Hydrogen Reformer Feed<br>Furnace | Opacity                     | 10%                                                      |            |                                                               |
|                                          | PM <sub>10</sub>            | 0.00051 lb/MMBtu                                         |            | Stack test no later than October 31 of each year              |
|                                          | NO <sub>x</sub>             | 0.02 lb/MMBtu 3-hour average                             |            | Stack test performed every 3 years                            |
|                                          | $NO_x$                      | 40 ppmv or 0.04 lb/MMBtu (30-day rolling average)        | CEMS       |                                                               |
|                                          | H <sub>2</sub> S            | ≤60 ppm (annual average)                                 | CEMS       | CEMS located at plant fuel gas mix drum/header                |
| Unit 33 - Vacuum Unit                    | VOC                         |                                                          |            | Must comply with LDAR program                                 |
| 33H1 - Vacuum Furnace Heater             | Onacity                     | 10%                                                      |            | Air preheater package installed (II.B.11.c)                   |
| 33111 - vacuum rumate meater             | Opacity                     | 10 /0                                                    | l          | All preneater package installed (II.D.11.0)                   |

| Emissions Unit                                      |                                          | mmary of Allowable Limits and Monitoring Require          |                        |                                                                                                                    |
|-----------------------------------------------------|------------------------------------------|-----------------------------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------|
| Emissions Unit                                      | Parameter                                | Allowable Limit                                           | Monitoring<br>Approach | Comment                                                                                                            |
|                                                     | $PM_{10}$                                | 0.00051 lb/MMBtu                                          |                        | Stack test no later than October 31 of each year                                                                   |
|                                                     | $NO_x$                                   | 0.02 lb/MMBtu 3-hour average                              |                        | Stack test performed every 3 years                                                                                 |
|                                                     | NO <sub>x</sub>                          | 40 ppmv or 0.04 lb/MMBtu (30-day rolling average)         | CEMS<br>CEMS           | CEMC leasted at plant first gas min draw /headen                                                                   |
| Unit 45 - Asphalt Storage                           | H <sub>2</sub> S<br>VOC                  | ≤60 ppm (annual average)                                  | CEMS                   | CEMS located at plant fuel gas mix drum/header Must comply with LDAR program                                       |
| Unit 51 - Steam Systems                             | VOC                                      |                                                           |                        | Must comply with LDAR program                                                                                      |
| Boiler #4                                           | Opacity                                  | 10%                                                       |                        |                                                                                                                    |
| 2 3 45                                              | HAPS                                     | 100/                                                      |                        | Work practice standards                                                                                            |
| Boiler #5                                           | Opacity<br>NO <sub>x</sub>               | 10%<br>0.03 lb/MMBtu 3-hour average                       |                        | Stack test performed every 3 years                                                                                 |
| Boiler #8                                           | Opacity                                  | 10%                                                       |                        | stack test performed every 5 years                                                                                 |
|                                                     | $PM_{10}$                                | 0.00051 lb/MMBtu                                          |                        | Stack test no later than October 31 of each year                                                                   |
|                                                     | NO <sub>x</sub>                          | 0.02 lb/MMBtu 3-hour average                              |                        | Stack test performed every 3 years                                                                                 |
| Boiler #9                                           | H <sub>2</sub> S<br>Opacity              | ≤60 ppm (annual average)<br>10%                           |                        |                                                                                                                    |
| Bollet #7                                           | PM <sub>10</sub>                         | 0.00051 lb/MMBtu                                          |                        | Stack test no later than October 31 of each year                                                                   |
|                                                     | $NO_x$                                   | 0.02 lb/MMBtu 3-hour average                              |                        | Stack test performed every 3 years                                                                                 |
|                                                     | H <sub>2</sub> S                         | ≤60 ppm (annual average)                                  |                        |                                                                                                                    |
| Boiler #10                                          | Opacity                                  | 10%<br>0.00051 lb/MMBtu                                   |                        | Stack test no later than October 31 of each year                                                                   |
|                                                     | $PM_{10}$ $NO_x$                         | 0.02 lb/MMBtu 3-hour average                              |                        | Stack test no later than october 51 of each year Stack test performed every 3 years                                |
|                                                     | H <sub>2</sub> S                         | ≤60 ppm (annual average)                                  |                        | Sacretist personment every o years                                                                                 |
| Boiler #11                                          | Opacity                                  | 10%                                                       |                        |                                                                                                                    |
|                                                     | PM <sub>10</sub>                         | 0.00051 lb/MMBtu                                          |                        | Stack test no later than October 31 of each year                                                                   |
|                                                     | NO <sub>x</sub><br>VOC                   | 0.02 lb/MMBtu 3-hour average<br>0.004 lb/MMBtu            |                        | Stack test performed every 3 years<br>Stack test performed every 3 years                                           |
|                                                     | H <sub>2</sub> S                         | ≤60 ppm (annual average)                                  |                        | Stack test perior med every 3 years                                                                                |
| Unit 56 - Wastewater                                | 20                                       | FF (                                                      | Method 21, flow        | Monitored at intervals no greater than 20 percent of the design carbon                                             |
| Treatment                                           | VOC                                      | 500 ppm (above background)                                | indicator              | replacement interval                                                                                               |
|                                                     | VOC                                      | 500 ppm (above background)                                | Method 21              | Semiannual inspections                                                                                             |
|                                                     | NO.                                      |                                                           | Visual                 | Manufacturalization                                                                                                |
|                                                     | VOC                                      |                                                           | inspections<br>Visual  | Monthly visual inspections                                                                                         |
|                                                     | VOC                                      |                                                           | inspections            | Semiannual visual inspections                                                                                      |
| Unit 66 - Flares                                    | Opacity                                  | 20%                                                       | _                      | •                                                                                                                  |
| 66-1                                                | H <sub>2</sub> S, SO <sub>2</sub> , flow | 162 ppm (3-hr average), 500 lbs SO2 (24-hr rolling aver   |                        | South Flare -flow meters and gas combustion monitors install on gas                                                |
| 66-2                                                | H <sub>2</sub> S, SO <sub>2</sub> , flow | 162 ppm (3-hr average), 500 lbs SO2 (24-hr rolling aver   | CEMS                   | North Flare - flow meters and gas combustion monitors installed on gas                                             |
| Unit 68 - Tank Farm<br>68H2 - North In-Tank Asphalt | VOC                                      |                                                           |                        | Must comply with LDAR Requirements                                                                                 |
| Heater                                              | Opacity                                  | 10%                                                       |                        |                                                                                                                    |
|                                                     | H <sub>2</sub> S                         | ≤60 ppm (annual average)                                  |                        |                                                                                                                    |
| 68H3 - North In-Tank Asphalt                        | Ongoitus                                 | 100/                                                      |                        |                                                                                                                    |
| Heater                                              | Opacity<br>H <sub>2</sub> S              | 10%<br>≤60 ppm (annual average)                           |                        |                                                                                                                    |
| 68H4 - North In-Tank Asphalt                        | 2-                                       | (a. a.                      |                        |                                                                                                                    |
| Heater                                              | Opacity                                  | 10%                                                       |                        |                                                                                                                    |
| 68H5 - North In-Tank Asphalt                        | H <sub>2</sub> S                         | ≤60 ppm (annual average)                                  |                        |                                                                                                                    |
| Heater                                              | Opacity                                  | 10%                                                       |                        |                                                                                                                    |
|                                                     | H <sub>2</sub> S                         | ≤60 ppm (annual average)                                  |                        |                                                                                                                    |
| 68H6 - North In-Tank Asphalt                        |                                          | 100/                                                      |                        |                                                                                                                    |
| Heater                                              | Opacity<br>NO <sub>x</sub>               | 10%<br>0.098 lb/MMBtu 3-hour average                      |                        | Stack test performed every 3 years                                                                                 |
|                                                     | H <sub>2</sub> S                         | ≤60 ppm (annual average)                                  |                        | Sacretist personment every o years                                                                                 |
| 68H7 - North In-Tank Asphalt                        |                                          |                                                           |                        |                                                                                                                    |
| Heater                                              | Opacity                                  | 10%                                                       |                        | Stack test performed every 2 years                                                                                 |
|                                                     | NO <sub>x</sub><br>H <sub>2</sub> S      | 0.098 lb/MMBtu 3-hour average<br>≤60 ppm (annual average) |                        | Stack test performed every 3 years                                                                                 |
| 68H10 - North In-Tank Asphalt                       | 20                                       |                                                           |                        |                                                                                                                    |
| Heater                                              | Opacity                                  | 10%                                                       |                        |                                                                                                                    |
|                                                     | NO <sub>x</sub>                          | 0.098 lb/MMBtu 3-hour average                             |                        | Stack test performed every 3 years                                                                                 |
| 68H11 - North In-Tank Asphalt                       | H <sub>2</sub> S                         | ≤60 ppm (annual average)                                  |                        |                                                                                                                    |
| Heater                                              | Opacity                                  | 10%                                                       |                        |                                                                                                                    |
|                                                     | NO <sub>x</sub>                          | 0.098 lb/MMBtu 3-hour average                             |                        | Stack test performed every 3 years                                                                                 |
| 69H12 - North In Tank Asakak                        | H <sub>2</sub> S                         | ≤60 ppm (annual average)                                  |                        |                                                                                                                    |
| 68H12 - North In-Tank Asphalt<br>Heater             | Opacity                                  | 10%                                                       |                        |                                                                                                                    |
|                                                     | NO <sub>x</sub>                          | 0.098 lb/MMBtu 3-hour average                             |                        | Stack test performed every 3 years                                                                                 |
| (OVIAO N1 1                                         | $H_2S$                                   | ≤60 ppm (annual average)                                  |                        |                                                                                                                    |
| 68H13 - North In-Tank Asphalt<br>Heater             | Opacity                                  | 10%                                                       |                        |                                                                                                                    |
| Treater                                             | NO <sub>x</sub>                          | 0.098 lb/MMBtu 3-hour average                             |                        | Stack test performed every 3 years                                                                                 |
|                                                     | H <sub>2</sub> S                         | ≤60 ppm (annual average)                                  |                        |                                                                                                                    |
| Tanks 145 and 146                                   |                                          | Tanks equipped with floating roofs                        |                        |                                                                                                                    |
| Tanks 85, 86, 87, 88, 89, 90, 91,                   |                                          |                                                           |                        | Duoducto stared have TVD : 0.75 and add at                                                                         |
| 92, 93, 94, 95, 96, 97, 98, 99, 159,<br>323         |                                          |                                                           |                        | Products stored have TVP > 0.75 psia and <11.1 psia. Tanks 85, 98, and 323 equipped with IFR. Tank 159 stores NGL. |
|                                                     |                                          | 0% (except fot 15-minute period in 24-hours for line      |                        | ozo equipped with it is falls 137 stores itali.                                                                    |
| Tank 79                                             | Opacity                                  | clearing                                                  |                        |                                                                                                                    |
| East Tank Farm Portable                             |                                          | 1,100 hours per rolling 12-month period, sulfur           |                        |                                                                                                                    |
| Generator<br>Unit 87:                               |                                          | content ≤0.0015 % by weight                               |                        | R307-401-8                                                                                                         |
| Unit 87:<br>Loading/Unloading                       | VOC                                      |                                                           |                        | Must comply with LDAR Requirements                                                                                 |
| Louding/ Omodumg                                    | VUC                                      | 600 hours total rolling 12-month period, sulfur content   |                        | Prose comply with LDAK Requirements                                                                                |
|                                                     |                                          | ≤0.0015% by weight                                        | l                      | Testing and Maintenace only                                                                                        |
| Emergency Diesel Engines                            |                                          |                                                           |                        |                                                                                                                    |

| Emissions Unit                          | Parameter | ,                                                           | Monitoring | Comment |
|-----------------------------------------|-----------|-------------------------------------------------------------|------------|---------|
|                                         |           | Allowable Limit                                             | Approach   |         |
| Emergency Natural Gas                   |           |                                                             |            |         |
| Engines                                 |           |                                                             |            |         |
| SO <sub>2</sub> Emissions (all sources) |           | 110.3 tons per rolling 12-month period<br>0.31 tons per day |            |         |
| SO <sub>2</sub> Emissions (All sources  |           |                                                             |            |         |
| except 4V82 FCC and                     |           |                                                             |            |         |
| 25FCC)                                  |           | 0.21 tons per day                                           |            |         |
|                                         |           | 74.9 tons per year                                          |            |         |
| PM <sub>10</sub> All Sources            |           | 100.3 tons per rolling 12-month period                      |            |         |
| PM <sub>10</sub> Combustion Sources     |           | 47.5 tons per rolling 12-month period<br>0.13 tons per day  |            |         |
| NO <sub>x</sub> All Sources             |           | 347.1 tons per rolling 12-month period<br>2.09 tons per day |            |         |