UTAH STATE IMPLEMENTATION PLAN

PM_{2.5} Maintenance Provisions for the Salt Lake City, UT Nonattainment Area

SECTION IX.A.36

Table of Contents

IX.A.36.	a Introduction	1
a)	Background	1
IX.A.36.	b Redesignation Requirements	2
(1) Tł	ne Area Has Attained the PM _{2.5} NAAQS	3
a)	Ambient Air Quality Data (Monitoring) and Utah's Monitoring Network	3
b)	Modeling Element	6
c)	EPA Acknowledgement	7
(2) Fι	Illy Approved Attainment Plan for PM _{2.5}	7
. ,	provements in Air Quality Due to Permanent and Enforceable Reductions in sions	11
a)	Improvement in Air Quality	12
i.	Reduction in Emissions	14
(4) St	ate has Met Requirements of Section 110 and Part D	20
a)	Section 110	20
b)	Part D Subpart 1 and 4	20
(5) Ma	aintenance Plan for PM _{2.5} Areas	20
IX.A.36.	c Maintenance Plan	21
(1) De	emonstration of Maintenance - Modeling Analysis	21
(a)]	Introduction	22
(b)	Photochemical Modeling	22
i.	Emissions Preparation	22
ii	Photochemical Modeling Domains and Grid Resolution	23
ii	i. Meteorological Data	24
iv	v. Episode Selection	24
c)	Photochemical Model Performance Evaluation	33
d)	Modeled Attainment Test	37
(2) At	tainment Inventory	39
(3) Ao	dditional Controls for Future Years	41
(4) M	obile Source Budget for Purposes of Conformity	41
a)	Mobile Source PM _{2.5} Emissions Budgets	41
(i	i) Direct PM _{2.5} , NO _x , and VOC	42
	Section IX.A.36	

(ii) Trading Ratios for Transportation Conformity	44
(5) N	onattainment Requirements Applicable Pending Plan Approval	44
(6) R	evise in Eight Years	44
(7) V	erification of Continued Maintenance and Monitoring	44
(8) C	ontingency Plan	45
a)	List of Potential Contingency Measures	45
b)	Tracking	46
c)	Triggering	46

List of Tables

Table IX.A.36. 1 Prerequisites to Redesignation in the Federal Clean Air Act	3
Table IX.A.36. 2 Monitored Ambient 24-hr PM2.5 Data	.6
Table IX.A.36. 3 SLC, UT Serious SIP Approval Status	.8
Table IX.A.36. 4 Area Source Rules Implementation Schedule and EPA Approval Status	
Table IX.A.36. 5 Point Source Emission Control Measure Implementation Schedule and Compliance	
Mechanism1	16
Table IX.A.36. 6 Area Source Rule Emissions Reduction in SLC NAA	18
Table IX.A.36. 7 Emission Reductions in SLC NAA from all Controls in Serious SIP	19
Table IX.A.36. 8 CAA Maintenance Plan Requirements	21
Table IX.A.36. 9 Baseline and Future Design Values (µg/m ³) at Monitors in SLC NAA	39
Table IX.A.36. 10 Emissions Inventories in Tons per Average Episode Day by Year and Source Categor	ſУ
	41
Table IX.A.36. 11 2035 Wasatch Front Regional Council Motor Vehicle Emissions Budget4	43
Table IX.A.36. 12 2026 On-Road Mobile Inventory Compared to Total 2026 Emissions Inventory4	44

List of Figures

Figure IX.A.36. 1 Utah's PM _{2.5} Monitoring Network	5
Figure IX.A.36. 2 SLC NAA PM _{2.5} Annual Mean Concentration	13
Figure IX.A.36. 3 SLC NAA PM _{2.5} 98th Percentile of 24-hr Concentration	14
Figure IX.A.36. 4 CAMx Photochemical Modeling Domains in Two-Way Nested Configuration	23
Figure IX.A.36. 5 Measured and Modeled 24-hr PM _{2.5} Concentrations During January 1-10 2011 at	
Hawthorne Monitoring Station in SLC NAA	27
Figure IX.A.36. 6 a) Measured and b) Modeled Species Contribution (in $\mu g/m^3$ and %) to PM _{2.5} at	
Hawthorne Monitoring Station in the SLC NAA on a Typical 24-hr PM _{2.5} Exceedance Day	28
Figure IX.A.36. 7 Measured and Modeled 24-hr PM _{2.5} Concentrations During December 7-19, 2013 at	
Hawthorne Monitoring Station in the SLC NAA	29

List of Acronyms and Abbreviations

BACM BACT BDV CAA CDD CFR CAMx DAQ EPA FDV FR MOVES	Best Available Control Measure Best Available Control Technology Base Design Value Clean Air Act Clean Data Determination Code of Federal Regulations Comprehensive Air Quality Model with Extensions Utah Division of Air Quality (also UDAQ) Environmental Protection Agency Future Design Value Federal Register Motor Vehicle Emission Simulator
MPO	Metropolitan Planning Organization
MVEB	Motor Vehicle Emissions Budget
µg/m³	Micrograms Per Cubic Meter
Micron	One Millionth of a Meter
NAAQS	National Ambient Air Quality Standards
NH ₃	Ammonia
NO _x	Nitrogen Oxides
NNSR	Nonattainment New Source Review
PM	Particulate Matter
PM ₁₀	Particulate Matter Smaller Than 10 Microns in Diameter
PM _{2.5}	Particulate Matter Smaller Than 2.5 Microns in Diameter
R-307	Utah Administrative Code Air Quality Rules
RACM	Reasonably Available Control Measures
RACT	Reasonably Available Control Technology
RFP	Reasonable Further Progress
RRF	Relative Response Factor
SIP	State Implementation Plan
SLC NAA	Salt Lake City Nonattainment Area
SMAT	Software for Model Attainment Test
SMOKE	Sparse Matrix Operator Kernal Emissions Sulfur Dioxide
SO ₂	
SO _x TPY	Sulfur Oxides Tons Per Year
TSD	Technical Support Document
UAC	Utah Administrative Code
UT	Utah
VMT	Vehicle Miles Travelled
VOC	Volatile Organic Compounds
WRF	Weather Research and Forecasting
VVINI	พอลแก่อา กรออลางกาลกัน กายปล่องแก่ยุ

- 1 Section IX.A.36
- 2 PM_{2.5} Maintenance Provisions the for SLC, UT
- 3 Nonattainment Area

4 IX.A.36.a Introduction

- 5 The Salt Lake City Nonattainment Area (SLC NAA) has attained the 2006 PM_{2.5} 24-hour National
- 6 Ambient Air Quality Standard (NAAQS). As a result, this Section has been added to the State
- 7 Implementation Plan (SIP) to demonstrate that the SLC NAA is eligible for redesignation to attainment.
- 8 Under Section 107(d)(3)(E) of the Clean Air Act (CAA or the Act), a nonattainment area is eligible for
- 9 redesignation when the area has met the following requirements: (1) the area has attained the national
- 10 ambient air quality standard, (2) the area has an Environmental Protection Agency (EPA) approved
- 11 attainment SIP, (3) the improvement in air quality is due to permanent and enforceable reductions in
- 12 emissions resulting from implementation of the SIP, (4) the State has met the SIP requirements of Section
- 13 110 and Part D of the Act, and (5) the area has an EPA approved Maintenance Plan.
- 14 As demonstrated in Subsection IX.A.36.b, the SLC NAA has satisfied the redesignation requirements of

15 Section 107 and is eligible for redesignation pending the EPA's approval of the SLC NAA Maintenance

16 Plan. The maintenance plan is included in Subsection IX.A.36.c and was written in compliance with

- 17 Section 175A of the Act. The maintenance plan demonstrates that the SLC NAA will continue to
- 18 maintain the 24-hour PM_{2.5} NAAQS through at least the year 2035. The maintenance plan also includes
- 19 contingency measures to assure that the State will promptly correct any violation of the standard that may
- 20 occur after redesignation. Upon the EPA's approval of the maintenance plan, the State is requesting that
- 21 the SLC NAA be redesignated to attainment for the 2006 $PM_{2.5}$ 24-hour NAAQS.¹

22 a) Background

- 23 In October of 2006, EPA revised the 1997 NAAQS for PM_{2.5}. While the annual standard remained
- unchanged at 15 μ g /m³ until 2012, the 24-hr standard was lowered from 65 μ g /m³ to 35 μ g /m³. The
- Utah Division of Air Quality (UDAQ) has monitored $PM_{2.5}$ since 2000 and found that all areas have
- complied with the 1997 standards. Since the promulgation of the 2006 standard, all or parts of seven Utah
- counties have recorded monitoring data that was not in compliance with the new 24-hr standard. In 2012,
- EPA lowered the annual standard to $12 \,\mu g \,/m^3$, and all areas of the state meet this new standard.
- 29 On November 13, 2009, EPA designated the SLC NAA as nonattainment for the 2006 24-hour PM_{2.5}
- 30 NAAQS under the Act's general provisions for nonattainment areas. On January 4, 2013, the D.C. Circuit
- 31 Court of Appeals issued a decision holding that the specific provisions for PM_{10} nonattainment areas,
- 32 which are found in Part D, Subpart 4 of the Act, also apply to PM_{2.5} nonattainment areas. These
- 33 provisions require EPA to classify a PM nonattainment area as "moderate" at the time it is designated
- nonattainment. If the area cannot attain the NAAQS by the attainment date, then EPA is required to

¹ Concurrent with the State's submittal of SIP Section IX.A.36 to the EPA, Governor Gary Herbert will submit a letter to EPA requesting that EPA approve the maintenance plan and redesignate the SLC NAA to attainment.

- 1 reclassify the area as "serious." On June 2, 2014, the EPA classified the SLC NAA as a moderate
- 2 nonattainment area with an attainment date of December 31, 2015.
- 3 The Act requires areas failing to meet the federal ambient PM_{2.5} standard to develop a SIP with sufficient
- 4 control requirements to expeditiously attain and maintain the standard. On December 22, 2014, UDAQ
- 5 submitted a moderate area nonattainment SIP for the SLC NAA.² The modeled attainment demonstration
- 6 underlying the moderate SIP assessed the likelihood of attainment by the applicable attainment date of
- 7 December 31, 2015, and concluded that it would be impracticable to do so.
- 8 After reaching the statutory attainment date, the EPA was compelled to determine whether the area had or
- 9 had not achieved compliance with the standard by evaluating the prior three years of quality assured data.
- 10 On May 10, 2017, EPA determined that the SLC NAA did not reach attainment of the 2006 24-hour
- 11 standard by the attainment date (89 FR 21711). EPA subsequently reclassified the SLC NAA from a
- 12 moderate $PM_{2.5}$ nonattainment area to a serious $PM_{2.5}$ nonattainment area on June 9, 2017.
- 13 Under Subpart 4 of the Act, serious PM nonattainment areas require, in addition to the provisions
- submitted to meet the moderate area planning requirements, the submittal of a SIP revision that: 1)
- 15 provides for attainment of the applicable NAAQS no later than the end of the 10th calendar year after the
- 16 area's designation as nonattainment (December 31, 2019, for the SLC NAA), and 2) includes provisions
- 17 to assure that the best available control measures (BACM) for the control of $PM_{2.5}$ and its precursors shall
- 18 be implemented no later than four years after the date the area is re-classified as a serious area (June 9,
- 19 2021, for the SLC NAA). To fulfill the Subpart 4 requirements, Utah submitted a serious SIP to EPA,
- 20 including a BACM analysis, on February 15, 2019, that demonstrates attainment of the PM_{2.5} NAAQS by
- 21 December 31, 2019. EPA SIP approval is discussed in more detail in IX.A.36.b(2).
- 22 The statutory attainment date for the SLC NAA is December 31, 2019. Under the 24-hour PM_{2.5} NAAQS,
- compliance is determined by the average of three years of 98th percentile values. On June 5, 2019 (84 FR
- 24 26053), the EPA published a proposed rule in the Federal Register based on the validated data from 2016-
- 25 2018, that the SLC NAA attained the 2006 primary and secondary 24-hour $PM_{2.5}$ NAAQS prior to the
- 26 2019 attainment date. The purpose of this SIP submittal is to demonstrate that the SLC NAA is eligible
- 27 for redesignation to attainment (IX.A.36.b) and document a ten-year maintenance plan (IX.A.36.c).

28 IX.A.36.b Redesignation Requirements

- 29 Section 107(d)(3)(E) of the Act outlines five requirements that a nonattainment area must satisfy before
- 30 an area may be eligible for redesignation from nonattainment to attainment. Table IX.A.36.1 identifies the
- 31 redesignation requirements as they are stated in Section 107(d)(3)(E) of the Act. Each element will be

```
quality/sip/docs/2014/12Dec/SIP%20IX.A.21_SLC_FINAL_Adopted%2012-3-14.pdf
```

² UDAQ. December 3, 2014. Utah State Implementation Plan. Control Measures for Area and Point Sources, Fine Particulate Matter, PM_{2.5} SIP for the Salt Lake City, UT Nonattainment Area. Section IX. Part A.21. https://deg.utah.gov/legacy/laws-and-rules/air-

- 1 addressed in turn, with the central element being the maintenance plan found in Subsection IX.A.36.c
- 2 below.
- 3

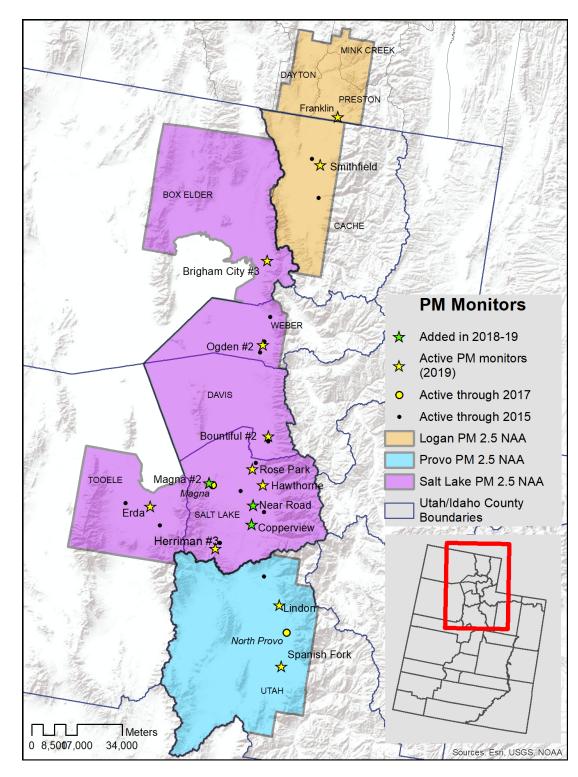
Category	Requirement	Reference	Addressed in
	•		Section
Attainment of	Three consecutive years of PM _{2.5} monitoring data	a CAA	IX.A.36.b(1)
Standard	must show that violations of the standard are no longer occurring	§107(d)(3)(E)(i)	
Approved SIP	The attainment SIP for the area must be fully	CAA	IX.A.36.b(2)
	approved	§107(d)(3)(E)(ii)	
Permanent and	The State must be able to reasonably attribute	CAA	IX.A.36.b(3)
Enforceable	the improvement in air quality to emission	§107(d)(3)(E)(iii),	
Emissions	reductions that are permanent and enforceable	Calcagni memo	
Reductions		(Sect 3, para 2)	
Section 110 and	The State must verify that the area has met all	CAA:	IX.A.36.b(4)
Part D	requirements applicable to the area under section	n§107(d)(3)(E)(v),	
requirements	110 and Part D	§110(a)(2), Sec 171	
Maintenance	The Administrator has fully approved the	CAA:	IX.A.36.b(5)
Plan	Maintenance Plan for the area as meeting the	§107(d)(3)(E)(iv)	and IX.A.36.c
	requirements of CAA §175A		
Table IX.A.36. 1 Prerequisites to Redesignation in the Federal Clean Air Act			

6 (1) The Area Has Attained the PM_{2.5} NAAQS

CAA 107(d)(3)(E)(i) – *The Administrator determines that the area has attained the national ambient air quality standard.* To satisfy this requirement, the State must show that the area is attaining the applicable
NAAQS. According to EPA's guidance³ concerning area redesignations, there are generally two
components involved in making this demonstration. The first relies upon ambient air quality data which
should be representative of the area of highest concentration and should be collected and quality assured
in accordance with 40 CFR 58. The second component relies upon supplemental air quality modeling.
Each component will be addressed in turn.

14

a) Ambient Air Quality Data (Monitoring) and Utah's Monitoring Network


15 The NAAQS for $PM_{2.5}$ are listed in 40 CFR 50.13. The 2006 24-hour NAAQS is 35 micrograms per cubic

16 meter ($\mu g/m^3$) for a 24-hour period and is met when the 98th percentile 24-hr concentration is less than or

- 17 equal to $35 \mu g/m^3$. Each year's 98th percentile is the daily value beneath which 98% of all daily values
- 18 would fall. The procedure for evaluating $PM_{2.5}$ data with respect to the NAAQS is specified in Appendix
- 19 N of 40 CFR Part 50. Generally speaking, the 24-hr $PM_{2.5}$ standard is met when a three-year average of
- 20 98th percentile values is less than or equal to $35 \ \mu g/m^3$.

³ John Calcagni. September 4, 1992. EPA Memorandum "Procedures for Processing Requests to Redesignate Areas to Attainment."

- 1 PM_{2.5} has been monitored in Utah since 2000, following the promulgation of the 1997 PM_{2.5} NAAQS.
- 2 UDAQ's monitors are appropriately located to assess concentration, trends, and changes in $PM_{2.5}$
- 3 concentrations. During Utah's wintertime temperature inversions, daily sampling and real time
- 4 monitoring are necessary for both public notification and to provide data for the air quality models.
- 5 The UDAQ Air Monitoring Section maintains an ambient air monitoring network in Utah in accordance
- 6 with 40 CFR 58 that collects both air quality and meteorological data. Figure IX.A.36.1 on the following
- 7 page shows the location of sites along the Wasatch Front and in the Cache Valley that collect $PM_{2.5}$ data.
- 8 The ambient air quality monitoring network along Utah's Wasatch Front and in the Cache Valley is
- 9 routinely audited by the EPA, and meets the agency's requirements for air monitoring networks.

1 2

Figure IX.A.36. 1 Utah's PM_{2.5} Monitoring Network

- 3
- 4 Data may be flagged when circumstances indicate that it would represent an event in the data set and not
- 5 be indicative of the entire airshed or the efforts to reasonably mitigate air pollution within. 40 CFR 50.14,

```
Section IX.A.36
```

1 Treatment of air quality monitoring data influenced by exceptional events, anticipates this, and says that a

2 State may request EPA to exclude data showing exceedances or violations of any national ambient air

- 3 quality standard that are directly due to an exceptional event that affects air quality, is not reasonably
- 4 controllable or preventable, is an event caused by human activity that is unlikely to recur at a particular
- 5 location or a natural event, from use in determinations. The protocol for data handling dictates that
- 6 flagging is initiated by the state or local agency, and then the EPA either concurs or indicates that it has
- 7 not concurred.

8 Table IX.A.36.2 below shows the 98th percentile values in μ g /m³ for 2016, 2017, and 2018 as well as the

9 three-year average of these values. The validated data in Table IX.A.36.2 excludes values at the Rose

10 Park monitor from a firework event on July 4, 2017, and a wildfire exceptional event on September 6,

11 2017. On May 28, 2019, UDAQ received notice^{4,5} that EPA concurred with the State's flag on both

12 exceptional events. The three-year average, or design value from 2016-2018 was used by EPA in their

13 proposed action of determination of attainment for the SLC NAA (84 FR 26053).

	2016	2017	2018	3-year average
Brigham City	35.0	36.2	26.2	32.4
Ogden 2	39.0	27.1	24.6	30.2
Bountiful	24.7	35.2	25.7	28.5
Hawthorne	38.4	35.7	26.2	33.4
Rose Park	43.2	32.4	29.2	34.9*
Herriman 3	24.9	28.2	29.0	27.3
Erda	25.1	20.9	30.6	25.5

14 Table IX.A.36. 2 Monitored Ambient 24-hr PM_{2.5} Data

15 *data excludes values from exceptional events that received EPA concurrence

16 **b) Modeling Element**

17 EPA guidance⁶ concerning redesignation requests and maintenance plans discusses the requirement that 18 the area has attained the standard and notes that air quality modeling may be necessary to determine the 19 representativeness of the monitored data. Areas that were designated nonattainment based on modeling 20 will generally not be redesignated to attainment unless an acceptable modeling analysis indicates 21 attainment. The SLC NAA was not designated based on modeling; therefore, additional modeling is not 22 necessary to determine the representativeness of the monitored data. The SLC NAA clean data 23 determination was made based on validated ambient monitored values. Consequently, modeling is not 24 necessary to show attainment. However, modeling was conducted for the purpose of this maintenance 25 demonstration to show continued compliance with the PM_{2.5} NAAQS through the year 2035 (see section 26 IX.A.36.c).

⁴ EPA letter to UDAQ. Ref: 8ARD-PM. Concurrence on Exceptional Event Claim for July 4, 2017 PM_{2.5} Data

⁵ EPA letter to UDAQ. Ref: 8ARD-PM. Concurrence on Exceptional Event Claim for September 6, 2017 PM_{2.5} Data ⁶ Calcagni (n 3)

1 c) EPA Acknowledgement

The data presented in the preceding paragraphs demonstrates that the SLC NAA is attaining the 24-hr PM_{2.5}NAAQS. On June 5, 2019, EPA published notice in the Federal Register (84 FR 26053) that pursuant to CAA section 199(b)(2), "the EPA is proposing to make a clean data determination for the 2006 24-hr fine particulate matter (PM_{2.5}) Salt Lake City, UT nonattainment area." This determination was based on quality-assured, quality-controlled, and validated ambient air monitoring data for 2016-2018.

8

9 (2) Fully Approved Attainment Plan for PM_{2.5}

10 $CAA \ 107(d)(3)(E)(ii)$ - The Administrator has fully approved the applicable implementation plan for the 11 area under section 110(k).

12

On February 15, 2019, Utah submitted a serious SIP⁷ for the SLC NAA that demonstrated attainment of
 the PM_{2.5} NAAQS by the attainment date, December 31, 2019.

15 Areas designated as nonattainment that attain the standard prior to the SIP submittal deadline, or prior to

16 an area's approved attainment date, are eligible for reduced regulatory requirements as described in

17 EPA's "Clean Data Policy."⁸ Under the Clean Data Policy, the EPA issued a proposed clean data

18 determination on June 5, 2019 (84 FR 26053) for the SLC NAA. The approval status of both the

19 moderate and serious SLC SIPs is dependent on the clean data determination requirements as detailed in

40 CFR 51.1015. For a serious PM_{2.5} nonattainment area, a clean data determination suspends the

21 requirements for the state to submit an attainment demonstration, reasonable further progress (RFP) plans,

22 quantitative milestones, and contingency measures until such time as: (1) the area is redesignated to

attainment, after which such requirements are permanently discharged; or (2) the EPA determines that the

24 area has re-violated the PM_{2.5} NAAQS, at which time the state shall submit such attainment plan elements

for the serious nonattainment area by a future date to be determined by the EPA. Table IX.A.36.3 details

26 the EPA SIP approval status.

27 Additionally, EPA guidance⁹ states that approval action on SIP elements and the redesignation request

28 may occur simultaneously. Requirements listed in Table IX.A.36.3 that show pending approval may fall

29 into this category.

Requirement	EPA Action & Date	FR Citation
Base Year and Projection Year Emission Inventories	Pending Approval	
Modeled Attainment Demonstration	Clean Data Determination	<u>84 FR 51055</u>

⁷ UDAQ. January 5, 2019. Utah State Implementation Plan. Control Measures for Area and Point Sources, Fine Particulate Matter, Serious Area PM_{2.5} SIP for the Salt Lake City, UT Nonattainment Area. Section IX. Part A.31. https://documents.deq.utah.gov/air-quality/pm25-serious-sip/part-a/DAQ-2019-005386.pdf

⁸ Steve Page, Director, EPA Office of Air Quality Policy Planning and Standard. December 14, 2004. EPA Memorandum to Air Division Directors, "Clean Data Policy for the Fine Particle National Ambient Air Quality Standards."

⁹ Calcagni (n 3)

Pending Approval	
Pending Approval	
Pending Approval	
Pending Approval	
Clean Data Determination Approved on 09/27/2019	84 FR 510558
Approved on 7/25/2019	84 FR 510558
Clean Data Determination Approved on 09/27/2019	84 FR 510558
Clean Data Determination Approved on 09/27/2019	84 FR 510558
Clean Data Determination Approved on 09/27/2019	84 FR 510558
	Pending Approval Pending Approval Pending Approval Clean Data Determination Approved on 09/27/2019 Clean Data Determination Approved on 09/27/2019 Clean Data Determination Approved on 09/27/2019 Clean Data Determination

Table IX.A.36. 3 SLC, UT Serious SIP Approval Status

2

3 The SIP elements still required under the clean data policy¹⁰ include emission inventories, NNSR

4 requirements, and BACM/BACT. The EPA approved R307-403, Permits: New and Modified Sources in

5 Nonattainment Areas and Maintenance Areas on July 25, 2019 (84 FR 35832), which covers the NNSR

6 requirement for the PM_{2.5} attainment plans. The State has submitted the emission inventories, and

7 BACM/BACT elements to the EPA, including the R307-300 series amendments and the point source

8 BACT emission limitation and operating practices (Utah SIP Section IX.H). These SIP elements are still

- 9 pending EPA approval.
- 10 While many of the moderate and serious SIP elements are suspended under the clean data determination,

11 many of the moderate SIP elements have been approved. As part of the Utah moderate SIPs, 24 area

12 source rules were either introduced or augmented to control PM_{2.5} and PM_{2.5} precursors. On February 25,

13 2016 (81 FR 9343) and October 19, 2016 (81 FR 71988), the EPA approved area source rule revisions

14 and reasonably available control measures (RACM) analyses (where appropriate) for the majority of the

15 R307-300 series. See Table IX.A.36.4 for details on rules, approval dates, and implementation schedules.

16 For the SLC NAA, the BACM analysis resulted in revisions to 13 different area source rules which affect

17 surface coating, graphic arts, and aerospace manufacture and rework facilities.

EPA-Approved/Conditionally Approved Control Measures for UT Moderate PM _{2.5} SIPs	Implementation Schedule
R307-302 Solid Fuel Burning Devices ¹ EPA conditionally approved* October 19, 2016 (81 FR 71988).	February 1, 2017

¹⁰ Environmental Protection Agency. August 24, 2016. Fine Particulate Matter National Ambient Air Quality Standards: State Implementation Plan Requirements; Final Rule. 82 FR 58128.

EPA-Approved/Conditionally Approved Control Measures for UT Moderate PM _{2.5} SIPs	Implementation Schedule
R307-303 Commercial Cooking ¹ EPA approved February 25, 2016 (81 FR 9343).	December 15, 2015
R307-304 Solvent Cleaning ¹	December 6, 2017
R307-307 Road Salting and Sanding EPA approved February 25, 2016 (81 FR 9343).	January 1, 2014
R307-309 Nonattainment and Maintenance Areas for PM ₁₀ and PM _{2.5} : Fugitive Emissions and Fugitive Dust ¹ EPA proposed for approval September 14, 2017	Salt Lake County, Utah County, and the City of Ogden – January 1, 2013. Remaining NAAs – April 1, 2013.
(82 FR 43205).	Amended August 4, 2017
R307-312 Aggregate Processing Operations for $PM_{2.5}$ Nonattainment Areas. EPA approved October 19, 2016 (81 FR 71988).	February 4, 2016
R307-335 Degreasing and Solvent Cleaning Operations ¹ EPA approved February 25, 2016 (81 FR 9343).	All sources within Salt Lake and Davis Counties R307-335-3 through R307-335-6 – January 1, 2013. All other sources defined in R307-335-2 – September 1, 2013. All sources within Box Elder, Cache, Utah, Weber, and Tooele Counties R307-335-7 – August 1, 2014 Amended October 29, 2017, by removing sections 6 & 7 to for rule R307-304
R307-342 Adhesives & Sealants ¹ EPA approved February 25, 2016 (81 FR 9343).	December 1, 2014
R307-343 Emissions Standards for Wood Furniture Manufacturing Operations ¹ EPA approved February 25, 2016 (81 FR 9343)	Sources in Salt Lake and Davis Counties – September 1, 2013. Sources in Box Elder, Cache, Tooele, Utah, and Weber Counties – January 1, 2014. Amended December 6, 2017
	Sources in Salt Lake and Davis Counties – February 1, 2013.
R307-344 Paper, Film & Foil Coatings ¹ EPA approved February 25, 2016 (81 FR 9343)	Sources in Box Elder, Cache, Tooele, Utah, and Weber Counties – January 1, 2014.
	Amended December 6, 2017
S	ection IX.A.36

EPA-Approved/Conditionally Approved Control Measures for UT Moderate PM _{2.5} SIPs	Implementation Schedule
R307-345 Fabric & Vinyl Coatings ¹ EPA approved February 25, 2016 (81 FR 9343)	Sources in Salt Lake and Davis Counties – February 1, 2013. Sources in Box Elder, Cache, Tooele, Utah, and Weber Counties – January 1, 2011.
	Amended December 6, 2017
R307-346 Metal Furniture Surface Coatings ² EPA approved February 25, 2016 (81 FR 9343)	Sources in Salt Lake and Davis Counties – February 1, 2013. Sources in Box Elder, Cache, Tooele, Utah, and Weber Counties – January 1, 2014.
	Amended December 6, 2017
R307-347 Large Appliance Surface Coatings ² EPA approved February 25, 2016 (81 FR 9343)	Sources in Salt Lake and Davis Counties – February 1, 2013. Sources in Box Elder, Cache, Tooele, Utah, and Weber Counties – January 1, 2014.
	Amended December 6, 2017
R307-348 Magnet Wire Coatings ² EPA approved February 25, 2016 (81 FR 9343)	Sources in Salt Lake and Davis Counties – February 1, 2013. Sources in Box Elder, Cache, Tooele, Utah, and Weber Counties – January 1, 2014.
	Amended December 6, 2017
R307-349 Flat Wood Panel Coatings ¹ EPA approved February 25, 2016 (81 FR 9343)	Sources in Salt Lake and Davis Counties – February 1, 2013. Sources in Box Elder, Cache, Tooele, Utah, and Weber Counties – January 1, 2014. Amended December 6, 2017
R307-350 Miscellaneous Metal Parts and Products Coatings ¹ EPA approved February 25, 2016 (81 FR 9343)	Sources in Salt Lake and Davis Counties – September 1, 2013. Sources in Box Elder, Cache, Tooele, Utah, and Weber Counties – January 1, 2014. Amended December 6, 2017
R307-351 Graphic Arts ¹ EPA approved February 25, 2016 (81 FR 9343)	Sources in Salt Lake and Davis Counties – February 1, 2013. Sources in Box Elder, Cache, Tooele, Utah, and Weber Counties – January 1, 2014. Amended December 6, 2017
S	ection IX.A.36

EPA-Approved/Conditionally Approved Control Measures for UT Moderate PM _{2.5} SIPs	Implementation Schedule
R307-352 Metal Containers, Closure, and Coil Coatings ²	January 1, 2014
EPA approved February 25, 2016 (81 FR 9343)	Amended December 6, 2017
R307-353 Plastic Parts Coatings ¹	January 1, 2014
EPA approved February 25, 2016 (81 FR 9343)	Amended December 6, 2017
R307-354 Automotive Refinishing Coatings ¹	January 1, 2014
EPA approved February 25, 2016 (81 FR 9343)	Amended December 6, 2017
R307-355 Control of Emissions from Aerospace Manufacture and Rework Facilities ¹	January 1, 2014
EPA approved February 25, 2016 (81 FR 9343)	Amended March 8, 2018
R307-356 Appliance Pilot Light ¹ EPA approved February 25, 2016 (81 FR 9343)	January 1, 2013
R307-357 Consumer Products ¹ EPA approved February 25, 2016 (81 FR 9343)	May 8, 2014
R307-361 Architectural Coatings ¹	

R307-361 Architectural Coatings 1 October 31, 2013 EPA approved February 25, 2016 (81 FR 9343)

1 Table IX.A.36. 4 Area Source Rules Implementation Schedule and EPA Approval Status

¹ control measure implementation schedule and confirmation that measures have been implemented 2

3 ² control measure implementation schedule and review if any new sources located in the NAA

- 4 *UDAQ submitted the committed revisions on February 1, 2017, within the one-year conditional approval window
- 5
- 6
- 7 The clean data determination has suspended all other elements of the SLC NAA PM_{2.5} attainment plan,
- including reasonable further progress (RFP) plans, quantitative milestones, and contingency measures at 8
- this time. Considering the suspended SIP elements through the clean data policy and the approval or 9
- 10 expected approval of required elements, Utah has met requirement 107(d)(3)(E)(ii) for the SLC NAA.

(3) Improvements in Air Quality Due to Permanent and Enforceable Reductions in 11 12 Emissions

- 13 CAA 107(d)(3)(E)(iii) - The Administrator determines that the improvement in air quality is due to
- 14 permanent and enforceable reductions in emissions resulting from implementation of the applicable
- implementation plan and applicable Federal air pollutant control regulations and other permanent and 15

1 *enforceable reductions.* Speaking further on the issue, EPA guidance¹¹ reads that the State must be able to

2 reasonably attribute the improvement in air quality to emission reductions which are permanent and

3 enforceable. In the following sections, both the improvement in air quality and the emission reductions

4 themselves will be discussed.

5 a) Improvement in Air Quality

6 The improvement in air quality with respect to $PM_{2.5}$ can be shown in a number of ways. Improvement, in

7 this case, is relative to the various control strategies that affected the airshed. For the SLC NAA, these

8 control strategies were implemented as the result of both the moderate SIP and the serious SIP, submitted

9 to EPA in December 2014 and February 2019, respectively. The various control measure effective dates

10 are detailed in Tables IX.A.36.4 and IX.A.36.6.

11 An assessment of the ambient air quality data collected at monitors in the NAA from the year monitoring

12 began to 2018 (the last year of validated data) shows an observable decrease in monitored $PM_{2.5}$ (see

13 Figures IX.A.36.2 and IX.A.36.3). The SLC NAA is designated nonattainment only for the 24-hour

health standard, not for the annual standard. However, it is useful to observe both the 98th percentile

15 average of 24-hr data as well as the annual arithmetic mean to understand trends. Ambient concentrations

16 in excess of the 24-hr standard are typically only incurred during winter months when cold-pool

17 conditions drive and trap secondary $PM_{2.5}$. The actual cold-pool temperature inversions vary in strength

and duration from year to year, and the $PM_{2.5}$ concentrations measured during those times reflect this variability far more than they reflect gradual changes in the emissions of direct $PM_{2.5}$ and $PM_{2.5}$

20 precursors. This variability is apparent in Figure IX.A.36.3. Despite the variability, if a line is fit through

the 24-hr data, the trend is noticeably downward and indicates an improvement of approximately one μg

22 /m³ per year.

23 This episodic variability is reduced by looking at annual mean values of PM_{2.5} concentrations shown in

Figure IX.A.36.2. The data is still skewed more by winter data than summer data. It includes all of the

high values identified as the 98th percentiles, as well as the values ranked even higher. Still, the trend is

downward. Fitting a line through the data collected at the Hawthorne site (chosen because it has recorded,

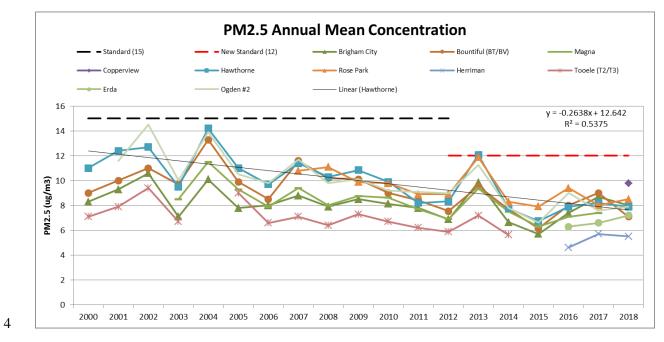
- validated data since 2000 and consistently records the 2nd highest values after Rose Park) reveals a trend
- that noticeably decreases and indicates an improvement of approximately $4.3 \ \mu g \ /m^3$ over the 18-year span.

Improvements must be considered in light of the attainment date as well as the date by which all controls
 must be implemented. For the SLC NAA, the attainment date is December 31, 2019; however, 40 CFR

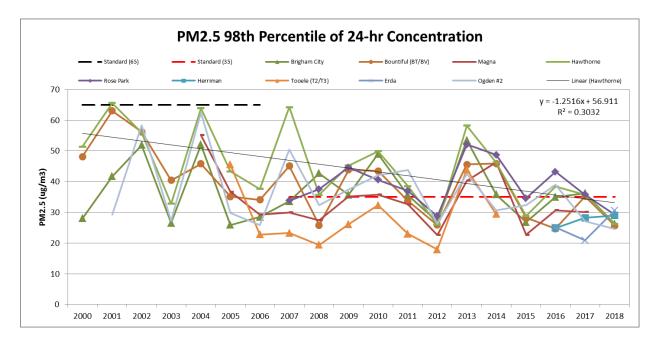
51 must be implemented. For the SLC INAA, the attainment date is December 51, 2019, nowever, 40 CFK

51.1011 establishes that control measures must be implemented no later than the beginning of the year

containing the applicable attainment date. Thus, for purposes of reasonable further progress and SIP
 credit, the deadline for control measure implementation is January 1, 2019. Any control measures


35 implemented beyond such date are instead regarded as additional feasible measures (that other than

timing, meet the definition of BACM). Thus, by the end of 2018, the control measure emission reduction


will be reflected in the ambient data, while the additional feasible measures reduction will be reflected as

¹¹ Calcagni (n 3)

- 1 late as June 9, 2021 (four years after the date that the SLC NAA was redesignated as serious). The
- 2 requirement to ensure BACM/BACT is in addition to the requirements from the moderate Area SIP,
- 3 which included RACM and RACT.

- 5 Figure IX.A.36. 2 SLC NAA PM_{2.5} Annual Mean Concentration
- 6
- 7

2 Figure IX.A.36. 3 SLC NAA PM_{2.5} 98th Percentile of 24-hr Concentration

3 i. Reduction in Emissions

As stated above, EPA guidance¹² says that the State must be able to reasonably attribute the improvement in air quality to emission reductions that are permanent and enforceable. In making this showing, the State

6 should estimate the percent reduction (from the year that was used to determine the design value)

achieved by Federal measures such as motor vehicle control, as well as by control measures that have

8 been adopted and implemented by the State.

9 As mentioned, the ambient air quality data presented in Subsection IX.A.36.b(3)(a) includes values prior

10 to the nonattainment designation through 2018 to illustrate the lasting effect of the implemented control

11 strategies. In discussing the effect of the controls, as well as the control measures themselves, however, it

12 is important to keep in mind the time necessary for their implementation.

13 The moderate nonattainment SIP for the SLC NAA included a statutory date for the implementation of

14 RACM/RACT of December 31, 2014. Thus, 2015 marked the first year in which RACM/RACT was

15 reflected in the emissions inventories for the SLC NAA. Section 189(c) of the CAA identifies, as a

16 required plan element, quantitative milestones which are to be achieved every three years, and which

17 demonstrate reasonable further progress (RFP) toward attainment of the standard by the applicable date.

18 As defined in CAA Section 171(1), the term reasonable further progress means "such annual incremental

19 reductions in emissions of the relevant air pollutant as are required by this part or may reasonably be

20 required by the Administrator for the purpose of ensuring attainment of the applicable national ambient

21 air quality standard by the applicable date." Hence, the milestone report must demonstrate that the control

22 strategy is achieving reasonable progress toward attainment.

¹² Ibid

- 1 The RACM prescribed by the moderate nonattainment SIP and the subsequent implementation by the
- 2 State is discussed in more detail in a milestone report submitted for the SLC NAA to EPA on March 23,
- 3 2018, within the 90-day post-milestone date required by CAA 189(c)(2) and 51.1013(b). On October 24,
- 4 2018, EPA sent Governor Gary Herbert a letter stating "The Environmental Protection Agency has
- 5 determined that the 2017 Quantitative Milestone Reports are adequate. The basis for this determination is
- 6 set forth in the enclosures. This determination is based on the EPA's review of information contained in
- 7 the Moderate Area Plans and additional information provided in the 2017 Quantitative Milestone
- 8 Reports." This approval letter is included in the TSD for this SIP submittal. Much of the downward trend
- 9 in the ambient data as seen in Figures IX.A.36.2 and IX.A.36.3 is attributable to the controls implemented
- 10 through the moderate SIP.
- 11 40 CFR 51.1011 establishes that control measures must be implemented no later than the beginning of the
- 12 year containing the applicable attainment date, January 1, 2019, for the SLC NAA. Any control measures
- 13 implemented beyond such date are instead regarded as additional feasible measures. Implementation
- 14 schedules for point source control measures are included in Table IX.A.36.5. Emission reductions leading
- to lower ambient values can be observed in Figures IX.A.36.2 and IX.A.36.3, with further improvements
- 16 expected beyond 2019 as a result of the more stringent BACM/BACT requirements.
- 17 Included in the serious SIP for the SLC NAA are additional BACT emission limits for eight stationary
- 18 point sources. The changes in these requirements are reflected in Section IX, Part H (Emission Limits and
- 19 Operating Practices) of the SIP.

Company	RACT Equipment Update(s)	BACT Requirement(s)	Implementation Schedule	Quantify Reduction (tons/yr)	Compliance Mechanism
ATK Launch Systems Inc.	Two (2) 25 MMBTU/hr Natural Gas Boilers	Ultra Low Nox Burners 31-Dec-24		NOx ~ 10.44 tons/yr	AO Issuance
Big West Oil Company	Hydrocarbon Flares	Limited routine flaring between Oct 1st and March 31st. Date of SIP Approval		N/A	AO Issuance
	Carbon Canisters/Fire Pumps	Miscellaneous Carbon Canister and Fire Pump Changes 31-Dec-19		VOC ~ 15.4 tons/yr	AO Issuance
Chemical Lime Company	Lime Kiln	Selective Non-catalytic Reduction Upon Source Start-up New Baghouse Upon Source Start-up		N/A N/A	AO Issuance AO Issuance
Chevron Products Co.	Boilers/Compressor Drivers	Replacement of 4 <u>Placed limits on 3</u> Compressor Drivers Removal of Boilers 1, 2, & 4;	31-Dec-19	N/A	AO Issuance
	Tier 3 Fuels	Replacement with Boiler 7	31-Dec-19	N/A	AO Issuance
Compass Minerals	Boilers #1 & #2 - Required Nox Limitations PM2.5 Filterable and Condensable emission limits required for 14 emission	Ultra low Nox burners/Upgrades to Baghouses	31-Dec-19	NOx ~ 10 tons/yr	AO Issuance
Hexel Corporation	points Carbon Fiber Lines	Addition of Filter Boxes on Lines 13 & 14 De-NOx Water Direct Fired Thermal	31-Dec-19	PM 2.5 ~ 20 tons/yr	AO Issuance
		Oxidizer on Lines 13, 14, 15 & 16 Low-Nox Burners w/fuel gas re-	31-Dec-24	NOx ~ 75 tons/yr	AO Issuance
		circulation on Lines 3, 4, & 7 VOC emission limitation for painting	31-Dec-24	NOx ~ 25.5 tons/yr	AO Issuance
Hill Air Force Base	Painting and De-painting Boilers	Activities. Requirement that no boilers manufactured after January 1, 1989	31-Dec-24	PM2.5 ~ 11.8 tons/yr NOx ~ 434.38 tons/yr	AO Issuance
	Dollers	over 30 MMBtu/hr be operated.		VOC ~ 8.53 tons/yr	
Holly Corporation	Wet Gas Scrubber & Boiler	Installation of Wet Gas Scrubber and Boiler Replacement	N/A	N/A	N/A
Kennecott Utah Copper					
Mine	Mine	Mileage limitation and Required lower emission rate for in-pit crusher Unit #4: Installation of SCR and	Date of SIP Approval	PM2.5 ~ 4.33 tons/yr NOx ~ 1,268.8 tons/yr	AO Issuance
Power Plant	Power Plant upgrades	Overfired Air; Unit #4: Lower ppm and lb/hr testing	1-Jan-19	(8760 hrs of operation) NOx ~ 302.43 tons/yr	AO Issuance
Smelter & Refinery	Smelter & Refinery upgrades	requirement. Replacement of one (1) 82 MMBtu/hr Tankhouse Boiler	1-Dec-20	(2088 hrs of operation) NOx ~ 35.04 tons/yr (8760 hrs of operation)	AO Issuance AO Issuance
Nucor Steel Mills	No Changes	No BACT Changes	N/A	N/A	N/A
Pacificorp Energy					
Gadsby Power Plant	No Changes	No BACT Changes	N/A	N/A	N/A
Proctor & Gamble	Utility Boilers	PM2.5 Filterable and Condensable Limits & Nox Limits N/A Workload changes at facility		N/A	AO Issuance
Tesoro Refining	Refinery Operations	Installation of Wet Gas Scrubber	31-Oct-19	N/A	AO DAQE- 103350075-18
University of Utah	Heating Plant	Replacement of Boiler #4. Installation of Boiler #9. Natural Gas limitations on Boilers #1,	31-Dec-19	NOx ~ 44.29 tons/yr	AO Issuance
		#3, & #4.	30-Sep-19	NOx ~ 4.27 tons/yr	AO Issuance
Utah Municipal Power Agency	Power Plant	No BACT required changes	N/A	N/A	N/A
Vulcraft	Steel Fabrication	No BACT required changes	N/A	N/A	N/A

1 Vulcraf

2 Table IX.A.36. 5 Point Source Emission Control Measure Implementation Schedule and

- 3 **Compliance Mechanism**
- 4

1 As part of the Utah moderate SIPs, 24 area source rules were either introduced or augmented to control

- 2 PM_{2.5} and PM_{2.5} precursors. For the serious SIP area source BACM review, each of UDAQ's existing area
- 3 source rules were re-evaluated to ensure that all appropriate source categories were addressed in
- 4 rulemaking and that the level of control required is consistent with BACM. For newly identified controls
- 5 or enhancement of existing controls, an evaluation was made to determine technological and economic
- 6 feasibility. The BACM review resulted in revisions to 13 different area source rules which affect surface
- 7 coating (for a variety of different surfaces), graphic arts, and aerospace manufacture & rework facilities.
- 8 The rules and amendments are listed in Table IX.A.36.4. Table IX.A.36.6 shows the effectiveness of the
- 9 area source rules within the SLC NAA.

SLC NAA	Emissions Reduced in Pounds Per Day (lb/day)									
Area Source Rule Name	2016 Base Year 2017 Miles			estone	e Year					
	NOx	VOC	NH3	SO2	PM2.5	NOx	VOC	NH3	SO2	PM2.5
R307-342 adhesive/sealants	0.0	869.9	0.0	0.0	0.0	0.0	1,176.6	0.0	0.0	0.0
R307-355 aerospace manufacture & rework										
R307-312 aggregate processing	0.0	0.0	0.0	0.0	5.6	0.0	0.0	0.0	0.0	5.6
R307-347 appliance surface coating										
R307-354 automotive refinishing	0.0	344.2	0.0	0.0	0.0	0.0	698.1	0.0	0.0	0.0
R307-352 metal container, closure & coil coating										
R307-303 commercial cooking	0.0	51.3	0.0	0.0	0.0	0.0	52.0	0.0	0.0	0.0
R307-357 consumer products	0.0	4,372.5	0.0	0.0	0.0	0.0	4,435.4	0.0	0.0	0.0
R307-335 degreasing & solvent cleaning										
R307-345 fabric & vinyl coatings										
R307-349 flat wood panel coatings										
R307-309 fugitive dust	0.0	0.0	0.0	0.0	1,442.4	0.0	0.0	0.0	0.0	1,455.7
R307-351 graphic arts										
R307-208 outdoor wood boilers	5.8	188.2	4.8	5.8	178.6	5.6	187.4	4.6	5.6	178.4
R307-221 landfill controls	0.0	276.5	0.0	0.0	0.0	0.0	281.9	0.0	0.0	0.0
R307-348 magnet wire coatings										
R307-346 metal furniture surface coating										
R307-350 misc metal parts & product coating										
R307-361 architectural coating	0.0	6,089.7	0.0	0.0	0.0	0.0	6,177.3	0.0	0.0	0.0
R307-344 paper/film/foil coating										
R307-356 appliance pilot light	3,383.8	198.0	0.0	21.6	15.5	4,511.6	264.0	0.0	28.8	20.6
R307-353 plastic parts coating										
R307-302 residential wood burning ban	1,344.8	10,436.3	389.1	133.9	9,046.5	1,339.2	10,406.0	386.3	133.3	9,019.9
R307-230 water heaters										
R307-343 wood furniture manufacturing										
Total Area Source Emissions Reduced	4,734.4	22,826.6	393.9	161.3	10,688.6	5,856.4	23,678.5	390.9	167.7	10,680.2

SLC NAA Emissions Reduced in Pounds Per Day (Ib/day)										
Area Source Rule Name	2019 Attainment Year				2020 Milestone Year					
	NOx	VOC	NH3	SO2	PM2.5	NOx	VOC	NH3	SO2	PM2.5
R307-342 adhesive/sealants	0.0	1,513.1	0.0	0.0	0.0	0.0	1,533.7	0.0	0.0	0.0
R307-355 aerospace manufacture & rework	0.0	28.7	0.0	0.0	0.0	0.0	43.1	0.0	0.0	0.0
R307-312 aggregate processing	0.0	0.0	0.0	0.0	5.6	0.0	0.0	0.0	0.0	5.6
R307-347 appliance surface coating	0.0	0.5	0.0	0.0	0.0	0.0	0.7	0.0	0.0	0.0
R307-354 automotive refinishing	0.0	1,436.0	0.0	0.0	0.0	0.0	1,817.8	0.0	0.0	0.0
R307-352 metal container, closure & coil coating	0.0	83.6	0.0	0.0	0.0	0.0	125.0	0.0	0.0	0.0
R307-303 commercial cooking	0.0	53.6	0.0	0.0	0.0	0.0	54.3	0.0	0.0	0.0
R307-357 consumer products	0.0	4,559.9	0.0	0.0	0.0	0.0	4,625.3	0.0	0.0	0.0
R307-335 degreasing & solvent cleaning	0.0	1,014.9	0.0	0.0	0.0	0.0	1,527.9	0.0	0.0	0.0
R307-345 fabric & vinyl coatings	0.0	362.0	0.0	0.0	0.0	0.0	443.0	0.0	0.0	0.0
R307-349 flat wood panel coatings	0.0	11.4	0.0	0.0	0.0	0.0	17.1	0.0	0.0	0.0
R307-309 fugitive dust	0.0	0.0	0.0	0.0	1,484.0	0.0	0.0	0.0	0.0	1,497.1
R307-351 graphic arts	0.0	995.5	0.0	0.0	0.0	0.0	1,062.4	0.0	0.0	0.0
R307-208 outdoor wood boilers	5.8	186.6	4.8	5.8	177.0	5.8	186.0	4.8	5.8	176.6
R307-221 landfill controls	0.0	293.8	0.0	0.0	0.0	0.0	299.4	0.0	0.0	0.0
R307-348 magnet wire coatings	0.0	22.0	0.0	0.0	0.0	0.0	22.2	0.0	0.0	0.0
R307-346 metal furniture surface coating	0.0	167.1	0.0	0.0	0.0	0.0	249.5	0.0	0.0	0.0
R307-350 misc metal parts & product coating	0.0	273.8	0.0	0.0	0.0	0.0	411.4	0.0	0.0	0.0
R307-361 architectural coating	0.0	6,344.1	0.0	0.0	0.0	0.0	6,441.8	0.0	0.0	0.0
R307-344 paper/film/foil coating	0.0	97.9	0.0	0.0	0.0	0.0	147.6	0.0	0.0	0.0
R307-356 appliance pilot light	5,834.7	396.4	0.0	43.2	31.0	4,926.2	361.8	0.0	39.5	28.3
R307-353 plastic parts coating	0.0	189.3	0.0	0.0	0.0	0.0	222.4	0.0	0.0	0.0
R307-302 residential wood burning ban	1,332.3	10,343.1	385.7	132.0	8,964.8	1,327.6	10,311.5	384.5	131.7	8,939.5
R307-230 water heaters	1,396.8	0.0	0.0	0.0	0.0	1,632.5	0.0	0.0	0.0	0.0
R307-343 wood furniture manufacturing	0.0	604.1	0.0	0.0	0.0	0.0	910.9	0.0	0.0	0.0
Total Area Source Emissions Reduced	8,569.5	28,977.4	390.5	181.0	10,662.3	7,892.1	30,814.8	389.3	177.0	10,647.1

1

2 Table IX.A.36. 6 Area Source Rule Emissions Reduction in SLC NAA

3

4 In reality, the NAAs should expect to see continued improvement in the next five to ten years as a result

5 of the phase-in period of a number of the area source rules and some additional feasible measures

6 installed at point sources. For example, the gas-fired water heater rule R307-230 requires that only ultra-

7 low NOx gas-fired water heaters be sold or installed after July 1, 2018, but it takes years for water heater

8 turnover to occur. In addition, the 13 rules that were revised during the serious SIP BACM review were

9 implemented at the state level in 2018 and have a five-year phase-in period, resulting in full emission

10 reduction by 2023. Therefore, additional emissions reductions will be seen. These phase-in periods were

11 considered in the inventories used for modeling in this SIP.

12 Existing controls not implemented through the SIP process also affect the emission rates from non-

13 stationary source categories. The federal motor vehicle control program has been one of the most

14 significant control strategies affecting emissions that produce $PM_{2.5}$. Tier 1 and 2 standards were

15 implemented by 1997 and 2008 respectively. Tier 3 vehicle/engine standards were initiated with new

vehicles coming to market in 2017 (25% of new sales) with full phase in by 2021 (100% of new sales).

17 For gasoline, the five Wasatch Front refineries and the Sinclair refinery in Wyoming that also supplies

Section IX.A.36

- 1 gasoline to the Wasatch Front market, are considered small refineries by EPA's rule. As such, these
- 2 refineries have a tier 3 delayed implementation date of January 1, 2020 to produce a tier 3 (10 ppm sulfur)
- 3 gasoline product or produce a gasoline product (greater than 10 ppm sulfur) with compensating sulfur
- 4 credits. Similarly, the Heavy-Duty Engine and Vehicle Standards took effect in 2007 and were fully
- 5 phased in by 2010. Air quality benefits, particularly those stemming from the light-duty and heavy-duty
- 6 vehicle standards, continue to be realized as older, higher-polluting vehicles are replaced by newer,
- 7 cleaner vehicles.
- 8 To supplement the federal motor vehicle control program, Inspection and Maintenance Programs were

9 implemented in Salt Lake, Davis, and Weber Counties. These programs have been effective in

10 identifying vehicles that no longer meet the emission standards for their respective makes and models and

- 11 in ensuring that those vehicles are repaired in a timely manner.
- 12 Emissions from non-road mobile emission sources also benefit from several significant regulatory
- 13 programs enacted at the federal level. This category of emitters includes airplanes, locomotives, hand-
- 14 held engines, and larger portable engines such as generators and construction equipment. The
- 15 effectiveness of these controls has been incorporated into the "NONROAD" model UDAQ uses to
- 16 compile the inventory information for this source category.

SLC NAA					
*Emissions by Year	Base Yr.	Projection	n Years wit	h Growth &	& Controls
	2016	2017	2019	2020	**RFP
PM _{2.5}	15.4	15.8	16.1	16.0	0.2
NOx	103.6	100.2	94.9	87.9	-2.9
SO2	5.6	5.6	4.9	4.9	-0.2
VOC	91.7	91.5	86.8	83.5	-1.6
NH3	16.0	16.0	16.0	15.9	0.0
PM _{2.5} Precursors	216.9	213.2	202.6	192.2	-4.8
Total	232.3	229.0	218.7	208.2	-4.5
*E					

*Emissions are reported in tons per average-episode-day

**Emission change per year, (ton/day) averaged from Base Year (2016) through Attainment Year (2019)

17 Table IX.A.36. 7 Emission Reductions in SLC NAA from all Controls in Serious SIP

18

19 The cumulative effect of all permanent and enforceable emission reductions is represented in Table

20 IX.A.36.7. The emissions reductions resulting from federal programs and the RACM/RACT plus

21 BACM/BACT controls incorporated into the Utah SIP and promulgated at the State level, result in

- 22 emission reductions that are consistent with the notion of permanent and enforceable improvements in air
- 23 quality. Taken together with the trends in ambient air quality illustrated in the preceding paragraph, along
- 24 with the continued implementation of the nonattainment SIP for the SLC NAA, they provide a reliable
- 25 indication that these improvements in air quality reflect the application of permanent steps to improve the

26 air quality in the region.

1 (4) State has Met Requirements of Section 110 and Part D

2 $CAA \ 107(d)(3)(E)(v)$ - The State containing such area has met all requirements applicable to the area

3 *under section 110 and part D*. Section 110 of the Act deals with the broad scope of state implementation

plans and the capacity of the respective state agency to effectively administer such a plan. Part D deals
 specifically with plan requirements for nonattainment areas, including those requirements that are specific

6 to $PM_{2.5}$.

7 a) Section 110

8 The State has met all requirements applicable to the SLC NAA under Section 110 of the Act. Section 9 110(a)(2) contains the general requirements or infrastructure elements necessary for EPA approval of the 10 SIP. On September 21, 2010, the State submitted an Infrastructure SIP to EPA demonstrating compliance 11 with the requirements of Section 110 that are applicable to the 2006 PM_{2.5} NAAQS. EPA approved the 12 State's Infrastructure SIP on November 25, 2013 (78 FR 63883) for all Section 110 requirements that are 13 applicable to redesignation.

14 b) Part D Subpart 1 and 4

Part D of the Act addresses "Plan Requirements for Nonattainment Areas." Subparts 1 and 4 of Part D contain planning elements that must be included in the SIP. This includes the requirement to submit an attainment demonstration, reasonable further progress plans, quantitative milestones and milestone reports, a motor vehicle emission budget for the attainment year for the purposes of transportation conformity, and contingency measures for the area. However, upon EPA's issuance of a final clean data determination demonstrating that the SLC NAA has attained the standard, these requirements are suspended (40 C.F.R. § 51.1015(b) and 84 FR 26054).

22 The remaining Part D requirements that are relevant to redesignation are requirements that are

23 independent of helping the area achieve attainment. This includes the requirement to have a

24 nonattainment new source review ("NNSR") program, emissions inventory submission, and

25 implementation of BACM/BACT. The State has satisfied these remaining requirements. Utah's NNSR

program can be found in Utah Administrative Rule R307-403, Permits: New and Modified Sources in

27 Nonattainment Areas and Maintenance Areas. EPA fully approved the current version of the NNSR

program on July 25, 2019 (84 FR 35832). The BACM/BACT requirements and the emissions inventory

were included in the serious SIP for the SLC NAA that the State submitted to the EPA on February 15,

30 2019. Upon EPA's approval of these elements prior to or concurrently with EPA's action on the

31 maintenance plan/redesignation request, Utah will have complied with all applicable Part D requirements.

32 (5) Maintenance Plan for PM_{2.5} Areas

33 As stated in the Act, an area may not be redesignated to attainment without first submitting and receiving

EPA approval of a maintenance plan. The maintenance plan is a quantitative showing that the area will

35 continue to attain the NAAQS for an additional 10 years (from EPA approval), accompanied by sufficient

assurance that the terms of the numeric demonstration will be administered by the State and by the EPA

in an oversight capacity. The maintenance plan is the central criterion for redesignation. It is contained in

38 the following subsection.

. . .

1 IX.A.36.c Maintenance Plan

2 $CAA \ 107(d)(3)(E)(iv)$ - The Administrator has fully approved a maintenance plan for the area as meeting

3 the requirements of section 175A. An approved maintenance plan is one of several criteria necessary for

4 area redesignation as outlined in Section 107(d)(3)(E) of the Act. The maintenance plan itself, as

5 described in Section 175A of the Act and further addressed in EPA guidance¹³ has its own list of required

- 6 elements. The following table is presented to summarize these requirements. Each will then be addressed
- 7 in turn.

Category	Requirement	Reference	Addressed in Section
Maintenance demonstration	Provide for maintenance of the relevant NAAQS in the area for at least 10 years	CAA: 175A(a)	IX.A.36.c (1)
Revise in 8 Years	after redesignation. The State must submit an additional	CAA:	IX.A.36.c (6)
	revision to the plan, 8 years after redesignation, showing an additional 10 years of maintenance.	175A(b)	<i>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</i>
Continued Implementation of Nonattainment Area	The Clean Air Act requires continued implementation of the NAA control strategy unless such measures are shown to be	CAA: 175A(c), 110(l),	IX.A.36.c (5)
Control Strategy	unnecessary for maintenance or are replaced with measures that achieve equivalent reductions.	Calcagni memo	
Contingency Measures	Areas seeking redesignation from nonattainment to attainment are required to develop contingency measures that include State commitments to implement additional control measures in response to future violations of the NAAQS.	CAA: Sec 175A(d)	IX.A.36.c (8)
Verification of Continued Maintenance	The maintenance plan must indicate how the State will track the progress of the maintenance plan.	Calcagni memo	IX.A.36.c (7)

8 Table IX.A.36. 8 CAA Maintenance Plan Requirements

9 (1) Demonstration of Maintenance - Modeling Analysis

- 10 CAA 175A(a) Each State which submits a request under section 107(d) for redesignation of a
- 11 nonattainment area as an area which has attained the NAAQS shall also submit a revision of the
- 12 applicable implementation plan to provide for maintenance of the NAAQS for at least 10 years after the

13 redesignation. The plan shall contain such additional measures, if any, as may be required to ensure such

14 *maintenance*. The maintenance demonstration is discussed in EPA guidance¹⁴ as one of the core

15 provisions that should be considered by states for inclusion in a maintenance plan.

16 According to the EPA guidance, a State may generally demonstrate maintenance of the NAAQS by

17 either showing that future emissions of a pollutant or its precursors will not exceed the level of the

18 attainment inventory (discussed below) or by modeling to show that the future mix of sources and

¹³ Ibid

14 Ibid

1 emission rates will not cause a violation of the NAAQS. Utah has elected to make its demonstration

2 based on air quality modeling.

3 (a) Introduction

4 The following chapter presents an analysis using observational datasets to detail the chemical regimes of

5 Utah's NAAs. Prior to the develop of this maintenance plan, UDAQ conducted a technical analysis to

6 support the development of the serious SIP for the SLC NAA. The analysis included preparation of

7 emissions inventories and meteorological data, and the evaluation and application of a regional

8 photochemical model. Part of this process included episode selection to determine the episode that most

9 accurately replicates the photochemical formation of ambient $PM_{2.5}$ during a persistent cold air pool 10 episode in the airshed. For this maintenance plan, UDAO is using the same arised that uses used for the

- 10 episode in the airshed. For this maintenance plan, UDAQ is using the same episode that was used for the 11 serious SIP modeling
- 11 serious SIP modeling.

12 (b) Photochemical Modeling

13 UDAQ used the Comprehensive Air Quality Model with Extensions (CAMx) version 6.30 for air quality

14 modeling. CAMx v6.30 is a state-of-the-art air quality model that includes State of Utah funded

15 enhancements for wintertime modeling. These enhancements include snow chemistry, topographical and

16 surface albedo refinements. CAMx is an EPA approved model for use in SIP modeling. Its configuration

17 for use in this SIP, with respect to model options and model adjustments, is discussed in the Technical 18 Support Document

18 Support Document.

19 i. Emissions Preparation

The emissions processing model used in conjunction with CAMx is the Sparse Matrix Operator Kernel Emissions Modeling System (SMOKE) version 3.6.5¹⁵. SMOKE prepares the annual emissions inventory

for use in the air quality model. There are three aspects to the preparet in annual emissions

23 inventory for air quality modeling:

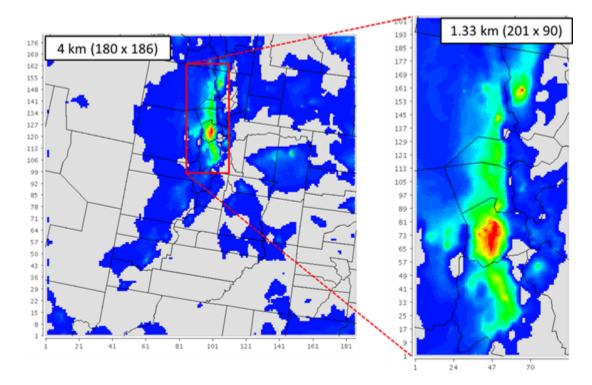
- Temporal: Convert emissions from annual to daily, weekly and hourly values.
- Spatial: Convert emissions from a county-wide average to gridded emissions.
- Speciation: Decompose PM_{2.5} and VOC emissions estimates into individual subspecies using the latest Carbon Bond 6 speciation profiles.
- 28 The process of breaking down emissions for the air quality model was done with sets of activity profiles

and associated cross reference files. These are created for point or large industrial source emissions,

30 smaller area sources, and mobile sources. Direct $PM_{2.5}$ and $PM_{2.5}$ precursor estimates were modified via

31 temporal profiles to reflect wintertime conditions.

- 32 Activity profiles and their associated cross reference files from the EPA's 2011v6¹⁶ modeling platform
- 33 were used. For stationary non-point and mobile sources, spatial surrogates from the EPA Clearinghouse


¹⁵ <u>https://www.cmascenter.org/smoke/</u>

¹⁶ https://www.epa.gov/air-emissions-modeling/2011-version-6-air-emissions-modeling-platforms

- 1 for Inventories and Emissions Factors (CHIEF¹⁷) were used to distribute emissions in space across the
- 2 modeling domain. Emissions from large industrial sources (point sources) were placed at the location of
- 3 the source itself. Where reliable local information was available (population density, traffic demand
- 4 modeling, residential heating), profiles and surrogates were modified or developed to reflect that
- 5 information.

6 ii. Photochemical Modeling Domains and Grid Resolution

- 7 The UDAQ CAMx v6.30 modeling framework consists of two spatial domains: a high-resolution 1.33 km
- 8 domain nested inside of a coarser 4 km domain (see Figure IX.A.36.4). This configuration allows one to
- 9 efficiently integrate regional effects with local impacts within the SLC NAA. Vertical resolution in the
- 10 model consists of 41 layers extending to the top of the atmosphere.

11

Figure IX.A.36. 4 CAMx Photochemical Modeling Domains in Two-Way Nested Configuration

- 14
- 15 The UDAQ 4 km coarse domain covers the entire state of Utah, a significant portion of Eastern Nevada
- 16 (including Las Vegas), as well as smaller portions of Idaho, Wyoming, Colorado, and Arizona. The fine
- 17 1.33 km domain covers all of Utah's three $PM_{2.5}$ nonattainment areas, including the SLC NAA.
- 18 Throughout this document, we will refer to the fine 1.33 km domain as the "modeling domain" when the
- 19 coarse domain is not specified.

¹⁷ https://www.epa.gov/chief

1 iii. Meteorological Data

2 Meteorological modeling was carried out by the University of Utah (University) with financial support

3 from UDAQ.

4 Meteorological inputs were derived using the Weather Research and Forecasting¹⁸ (WRF) Advanced

5 Research WRF (WRF-ARW) model to prepare meteorological datasets for our use with the

6 photochemical model. WRF contains separate modules to compute different physical processes such as

7 surface energy budgets and soil interactions, turbulence, cloud microphysics, and atmospheric radiation.

8 Within WRF, the user has many options for selecting the different schemes for each type of physical

9 process. There is also a WRF Preprocessing System (WPS) that generates the initial and boundary

10 conditions used by WRF, based on topographic datasets, land use information, and larger-scale

11 atmospheric and oceanic models.

12 Model performance of WRF was assessed against observations at sites maintained by the University.

13 WRF has reasonable ability to replicate the vertical temperature structure of the boundary layer (i.e., the

14 temperature inversion), although it is difficult for WRF to reproduce the inversion when the inversion is

15 shallow and strong (i.e., an 8-degree temperature increase over 100 vertical meters). A summary of the

16 performance evaluation results for WRF is included in the TSD.

17 iv. Episode Selection

18 Part of the modeling exercise involves a test to see whether the model can successfully replicate the PM_{2.5}

19 mass and composition that was observed during prior episode(s) of elevated PM_{2.5} concentration. The

20 selection of an appropriate episode, or episodes, for use in this exercise requires some forethought and

21 should determine the meteorological episode that helps produce the best air quality modeling

- 22 performance.
- 23 EPA Guidance¹⁹ identifies some selection criteria that should be considered for SIP modeling, including:
- Select episodes that represent a variety of meteorological conditions that lead to elevated PM_{2.5}.
 - Select episodes during which observed concentrations are close to the baseline design value.
- Select episodes that have extensive air quality data bases.
- Select enough episodes such that the model attainment test is based on multiple days at each monitor violating NAAQS.
- 29

25

After careful consideration, the following meteorological episodes were selected as candidates for Utah'sSIP modeling:

- 32 January 1-10, 2011
- December 7-19, 2013

 $^{^{18}\,\}underline{https://www.mmm.ucar.edu/weather-research-and-forecasting-model}$

¹⁹ Environmental Protection Agency. April 2007. Guidance on the Use of Models and Other Analyses for Demonstrating Attainment of Air Quality Goals for Ozone, $PM_{2.5}$, and Regional Haze.

- 1 February 1-16, 2016 • 2 3 In addition to the criteria identified in the modeling guidance, each of these candidate episodes may be 4 characterized as having the following atmospheric conditions: 5 Nearly non-existent surface winds Light to moderate winds aloft (wind speeds at mountaintop < 10-15 m/s) 6 • 7 Simple cloud structure in the lower troposphere (e.g., consisting of only one or no cloud layer) • 8 • Singular 24-hour PM_{25} peaks suggesting the absence of weak intermittent storms during the 9 episode 10 11 Previous work conducted by the University of Utah and UDAQ showed the four conditions listed above 12 improve the likelihood for successfully simulating wintertime persistent cold air pools in the WRF 13 model²⁰. A comprehensive discussion of the meteorological model performance for all three episodes can 14 be found in the meteorological modeling TSD²¹. 15 a) Model Adjustments and Settings In order to better simulate Utah's winter-time inversion episodes six different adjustments were made to 16 17 CAMx input data: 18 1. Increased vertical diffusion rates (Kvpatch) 19 2. Lowered residential wood smoke emissions to reflect burn ban compliance during forecasted high 20 $PM_{2.5}$ days (burn ban) 3. Ozone deposition velocity set to zero and increased urban area surface albedo (snow chemistry) 21 22 4. Cloud water content reduced during certain days (cloud adjustment) 23 5. Ammonia injection to account for missing ammonia sources in UDAQ's inventory. This is 24 defined as artificially adding non-inventoried ammonia emissions to the inventoried emissions 25 that are input into CAMx. 26 6. Reduced the dry deposition rate of ammonia by setting ammonia Rscale to 1. Rscale is a 27 parameter in CAMx that reflects surface resistance. 28 7. Applied a 93% reduction to paved road dust emissions. 29 30 Depending on the episode, different adjustments were applied. All adjustments were applied to the 31 January 2011 episode while select adjustments were applied to the other two episodes. 32 Kypatch improved overall model performance by enhancing vertical mixing over urban areas. Snow
- 33 chemistry modifications, which included reducing ozone deposition velocity and increasing surface

²⁰ <u>https://www.mmm.ucar.edu/weather-research-and-forecasting-model</u>

²¹ <u>https://documents.deq.utah.gov/air-quality/planning/technical-analysis/research/model-improvements/3-wintertime-episodes/DAQ-2017-014342.pdf</u>

1 albedo over urban areas, helped improve the model performance by better representing secondary

- 2 ammonium nitrate formation during winter-time inversion episodes in Utah.
- 3 Cloud adjustments were only applied to the January 2011 episode, which was characterized by cloud
- 4 cover on January 6-8 over the Salt Lake and Utah valleys. This cloud cover led to a high bias in sulfate
- 5 due to the effect of ammonia on the gas-to-particle partitioning of sulfate in clouds. Application of the
- 6 cloud adjustment scheme helped reduce this bias.
- Rscale modification and burn ban adjustments were also only applied to the January 2011 episode. The
 burn ban adjustments reflect the compliance rate with the state's two-stage policy ban on wood-burning.
- A 93% reduction in paved road dust emissions was only applied to the January 2011 emissions. This
 adjustment helped improve the model performance for crustal material.
- 11 b) Episodic Model Performance

12 Shown below for each of three episodes are the CAMx performance results for total 24-hour PM_{2.5} mass

- 13 and $PM_{2.5}$ chemical species, including nitrate (NO₃), sulfate (SO₄), ammonium (NH₄), organic carbon
- (OC), elemental carbon (EC), chloride (Cl), sodium (Na), crustal material (CM) and other species (othermass).
- 16 January 1-10, 2011
- 17 A comparison of 24-hr modeled and observed PM_{2.5} during January 1-10, 2011, at the Hawthorne
- 18 monitoring station in the SLC NAA showed that overall the model captures the temporal variation in
- $PM_{2.5}$ well (Figure IX.A.36.5). The gradual increase in $PM_{2.5}$ concentration and its transition back to low
- 20 levels are generally well reproduced by the model. An overestimation in $PM_{2.5}$ is observed on January 3^{rd} ,
- which is most likely related to the meteorological model performance on this day. Thin mid-level clouds,
- which were observed on January 3-4, were not simulated in the WRF model, leading to an increasingly
- 23 stable low-level boundary layer, limiting the mixing of pollutants²². To help reduce this bias, Kvpatch was
- applied. The underestimation in $PM_{2.5}$ on January 5, 2011, at the Hawthorne station is also related to the
- 25 meteorological model performance on this day, where the WRF model overestimated the wind shear near 26 the mixing height²³.

- ²²https://documents.deq.utah.gov/air-quality/planning/technical-analysis/research/model-improvements/3wintertime-episodes/DAQ-2017-014342.pdf
- ²³https://documents.deq.utah.gov/air-quality/planning/technical-analysis/research/model-improvements/3wintertime-episodes/DAQ-2017-014342.pdf

Figure IX.A.36. 5 Measured and Modeled 24-hr PM_{2.5} Concentrations During January 1-10 2011 at Hawthorne Monitoring Station in SLC NAA

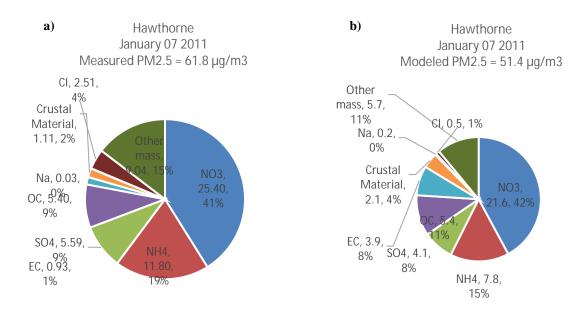
5 The model performance for PM_{2.5} chemical species was also good for this episode. The chemical

6 composition of modeled $PM_{2.5}$ on January 7, which corresponds to a $PM_{2.5}$ exceedance day, is similar to

7 that of measured $PM_{2.5}$ with modeled secondary species, nitrate, ammonium and sulfate, accounting for

8 over 50% of PM_{2.5} mass, in agreement with measurements (IX.A.36.6). Ammonia injection helped

9 improve the model performance for these species. The model also performed well for organic carbon

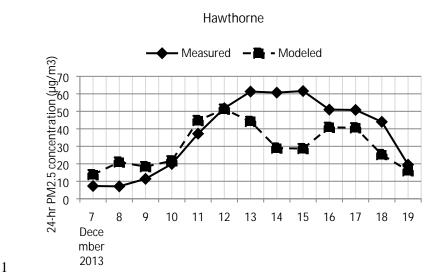

10 (OC) while it overestimated crustal material and elemental carbon (EC), possibly due to an overprediction

11 in their source emissions. While a 93% reduction in paved road dust emissions was applied, it is possible

12 that further reduction was needed.

Overall, the model simulated well the timing of the capping inversion during this January episode. $PM_{2.5}$ chemical species, particularly nitrate, are also well simulated in the model, suggesting that this episode is

15 suitable for modeling.


Figure IX.A.36. 6 a) Measured and b) Modeled Species Contribution (in μg/m³ and %) to PM_{2.5} at Hawthorne Monitoring Station in the SLC NAA on a Typical 24-hr PM_{2.5}

- 4 Exceedance Day
- 5

6 December 7-19, 2013

- 7 A comparison of modeled and measured 24-hr PM_{2.5} at Hawthorne during the December 7-19, 2013,
- 8 episode showed that the model did not represent well the temporal variation in $PM_{2.5}$ and the capping
- 9 inversion (Figure IX.A.36.7). While observations show peak PM_{2.5} concentrations during December 14-15,
- 10 CAMx is simulating a drop in $PM_{2.5}$ levels. This can be attributed to the WRF model not properly capturing
- 11 the cold overnight low temperatures that were observed on these days²⁴.

²⁴ <u>https://documents.deq.utah.gov/air-quality/planning/technical-analysis/research/model-improvements/3-</u> wintertime-episodes/DAQ-2017-014342.pdf.

Figure IX.A.36. 7 Measured and Modeled 24-hr PM_{2.5} Concentrations During December 7 19, 2013, at Hawthorne Monitoring Station in the SLC NAA

5 To further evaluate the model performance, modeled and measured $PM_{2.5}$ chemical species on December

6 15, which corresponds to a PM_{2.5} exceedance day with available speciation measurements, were

7 compared for Hawthorne (Figure IX.A.36.8). Nitrate and ammonium are both underpredicted in the

8 model, which can be partly related to the meteorological model performance, where WRF overpredicted

9 surface temperatures, leading to increased mixing. Moreover, similarly to the model performance for the

10 January 2011 episode, crustal material is overpredicted in the model. An adjustment to paved road dust

11 emissions was not applied for the December 2013 simulations. Chloride (Cl) was also underestimated in

12 the model while the performance for sulfate and OC was acceptable.

Given that the strength of the capping inversion and timing of the $PM_{2.5}$ peaks were not well simulated, using the December 2013 episode for the modeling demonstration is not desirable.

15

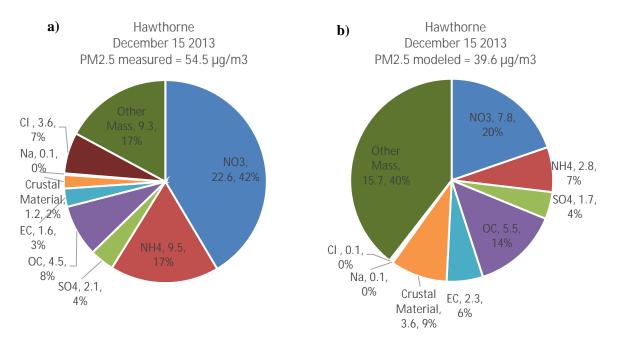
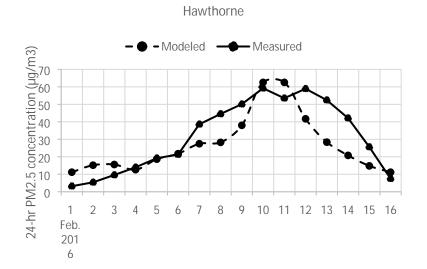



Figure IX.A.36. 8 a) Measured and b) Modeled Chemical Composition of 24-hr PM_{2.5} in
 µg/m³ and % of PM_{2.5} at Hawthorne Monitoring Station in SLC NAA on December 15, 2013

- 4
- 5 February 1-16, 2016
- 6 A comparison of modeled and measured 24-hr PM_{2.5} at Hawthorne monitoring station (Figure IX.A.36.9)
- 7 shows that $PM_{2.5}$ concentrations are generally biased low in the model and $PM_{2.5}$ drops off prematurely in
- 8 the model. This can be related to the meteorological model performance, where the mixing height was
- 9 overestimated due to performance issues related to clouds and fog formation. While fog and low clouds
- 10 were observed during February 9-15, WRF was unable to properly capture the timing of the fog and
- 11 clouds formation²⁵.

²⁵ <u>https://documents.deq.utah.gov/air-quality/planning/technical-analysis/research/model-improvements/3-wintertime-episodes/DAQ-2017-014342.pdf</u>.

Figure IX.A.36. 9 Measured and Modeled 24-hr PM_{2.5} Concentrations During February 1 16, 2016, at Hawthorne Monitoring Station in the SLC NAA

4 5


To further evaluate the model performance, modeled and measured PM_{2.5} chemical species on February

6 12, which corresponds to a PM_{2.5} exceedance day, were compared for Bountiful monitoring station

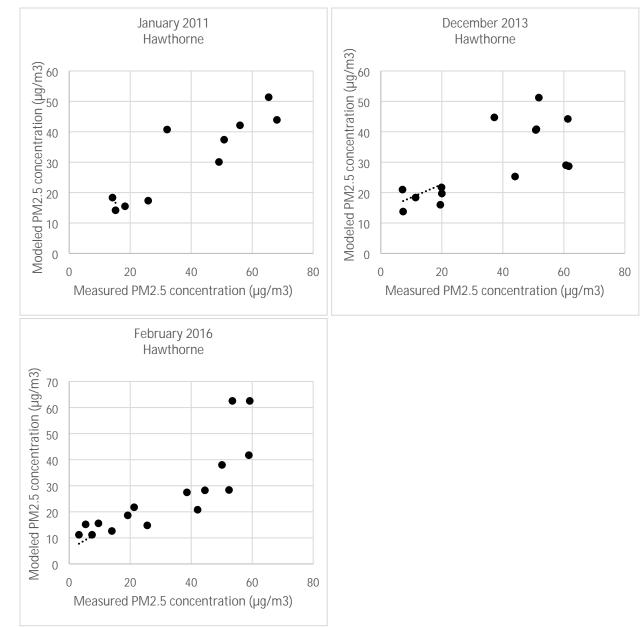
7 (Figure IX.A.36.10). Complete speciation measurements were not available for Hawthorne. As can be

8 seen, nitrate, ammonium and sulfate were underpredicted in the model. Moreover, similarly to the model

9 performance for the two other episodes, EC and crustal material were overestimated in the model.

10

Figure IX.A.36. 10 a) Measured and b) Modeled Chemical Composition of 24-hour $PM_{2.5}$ in $\mu g/m^3$ and % of $PM_{2.5}$ at Bountiful monitoring Station on February 12, 2016


1 Given that the model is not able to sustain the observed $PM_{2.5}$ peaks, this episode is less suitable for

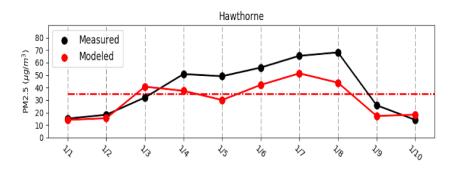
2 modeling compared to the 2011 episode.

3 Conclusion

- 4 Examining the PM_{2.5} model performance for all three episodes, it is clear that CAMx performed best
- 5 when using the January 2011 WRF output, which was specifically calibrated to the meteorological
- 6 conditions experienced during January 2011, a period that coincided with an exhaustive field campaign
- 7 focused on the Salt Lake Valley (Persistent Cold Air Pool Study (PCAPS)²⁶. The superior model
- 8 performance for the January 2011 episode was further confirmed by a linear regression analysis that
- 9 showed that modeled and measured PM_{2.5} at Hawthorne monitoring station were more strongly correlated
- 10 during the January 2011 episode ($R^2 = 0.80$) compared to the other episodes ($R^2 = 0.54$ and 0.69) (Figure
- 11 IX.A.36.11).
- 12 Given that the January 2011 WRF data produced superior model performance when compared with the
- 13 other two episodes, UDAQ selected the January 2011 episode to conduct its modeled maintenance
- 14 demonstration work. A more thorough discussion is provided in the TSD.

²⁶ http://www.pcaps.utah.edu/

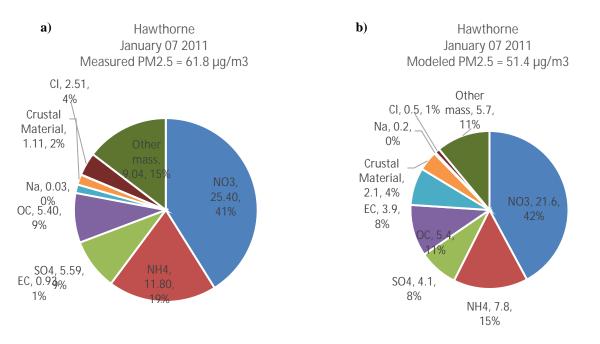
1


Figure IX.A.36. 11 Modeled versus measured 24-hr PM_{2.5} at Hawthorne monitoring station
 for each of the three modeling episodes: January 2011, December 2013, and February
 2016. Dots represent each individual day of the modeling episode. Linear regression fits
 (dashed line) and equation are shown for each episode.

7 c) Photochemical Model Performance Evaluation

8 Introduction

- 9 To assess how accurately the photochemical model predicts observed concentrations and to demonstrate
- 10 that the model can reliably predict the change in pollution levels in response to changes in emissions, a
- 11 model performance evaluation was conducted. This model performance evaluation also provides support


- 1 for the model modifications and settings that were applied (ammonia injection, increase of surface
- 2 resistance to ammonia, zeroing-out of ozone deposition velocity, reduction of cloud-water content, snow
- 3 albedo enhancement, vertical diffusion modifications and paved road dust emissions adjustment) to more
- 4 accurately reproduce winter-time inversion episodes. A detailed explanation of these model modifications
- 5 is provided in the TSD.
- 6 Available ambient monitoring data were used for this photochemical model performance evaluation. Data
- 7 included 24-hr total $PM_{2.5}$ and 24-hr chemically-speciated $PM_{2.5}$ measurements collected at the
- 8 Hawthorne monitoring station in the SLC NAA. Ammonia measurements collected during special field
- 9 studies were also used for this performance evaluation. The evaluation was based on the December 31-
- 10 January 10, 2011, episode and the 2011 emissions inventory was used as input data for the model
- 11 simulations. The evaluation focused on days with $PM_{2.5}$ concentration exceeding the NAAQS (> 35
- 12 $\mu g/m^3$). Results for December 31, which is a model spin-up day, are excluded from this evaluation.
- 13 A more detailed model performance evaluation that examines the model performance for gaseous species
- 14 is provided in the TSD. More details on the model performance at various sites within the SLC NAA are
- 15 also included in the TSD.
- 16 Daily PM_{2.5} Concentrations
- 17 A comparison of 24-hr modeled and observed PM_{2.5} during January 1-10, 2011, at the Hawthorne
- 18 monitoring station in the SLC NAA showed that the model overall captures the temporal variation in
- 19 PM_{2.5} well (Figure IX.A.36.12). The gradual increase in PM_{2.5} concentration and its transition back to low
- 20 levels are generally well reproduced by the model. Moreover, with the exception of January 3 and 5, the
- 21 bias between measured and modeled PM_{2.5} is overall relatively small, particularly on PM_{2.5} exceedance
- days. The biases observed on January 3 and 5 are largely related to the meteorological model performance
- 23 on these days, as aforementioned.

- Figure IX.A.36. 12 Ten-day Time Series of Observed (black) and Modeled (red) 24-hr
 Average PM_{2.5} Concentrations During January 1-10, 2011, at Hawthorne Monitoring
 Station in the SLC NAA. Dashed Red Line is NAAQS for 24-hr PM_{2.5}
- 28 29

30 *PM*_{2.5} *Chemical Speciation*

- 1 To further investigate the model performance, measured and modeled $PM_{2.5}$ chemical species were
- 2 compared at the Hawthorne monitoring site, which is part of EPA's Chemical Speciation Network (CSN).
- 3 Figure IX.A.36.13 shows a comparison of the bulk chemical composition of measured and modeled PM_{2.5}
- 4 at Hawthorne on January 7, 2011, which corresponds to the only $PM_{2.5}$ exceedance day when
- 5 measurement data are available. Chemical species, including nitrate (NO₃), sulfate (SO₄), ammonium
- 6 (NH₄), organic carbon (OC), elemental carbon (EC), chloride (Cl), sodium (Na), crustal material (CM)
- 7 and other species (other mass), were considered in this analysis. The model performance evaluation for
- 8 non-PM_{2.5} exceedance days is provided in the TSD.
- 9 The model performance for particulate nitrate, which is the major component of $PM_{2.5}$, was good, with
- both modeled and measured NO_3 accounting for similar contributions to $PM_{2.5}$ filter mass. Modeled and
- 11 observed NO₃ concentrations were also comparable, with modeled concentration being biased low by
- 12 about 15%. The model performance for particulate SO_4 was also reasonably good, with SO_4 being biased
- 13 low in the model by about 27%. Similarly, to its performance for NO_3 and SO_4 , the model was also biased
- 14 low for NH_4 by about 34%. This underprediction in particulate NH_4 can be attributed to an
- 15 underestimation in modeled HCl (more details are provided in the TSD). The model performance for OC
- 16 was good for January 7, with modeled and observed concentrations being quite comparable. The model,
- 17 on the other hand, overestimated EC and CM. The overprediction in these species on days when the
- 18 simulated atmospheric mixing was particularly strong, suggests that this overestimation is potentially
- 19 related to an overestimation in their source emissions.

- Figure IX.A.36. 13 a) Measured and b) Modeled Species Contribution (in μ g/m³ and %) to
- 22 PM_{2.5} at Hawthorne Monitoring Station in the SLC NAA during a typical 24-hr PM_{2.5}
- 23 exceedance day

- 1 The model performance was also evaluated for ammonia (NH₃), which is an important precursor to the
- 2 formation of ammonium nitrate, ammonium sulfate, and ammonium chloride, all of which are important
- $3 \quad PM_{2.5}$ species accounting for over 50% of the $PM_{2.5}$ mass during winter-time inversion events.
- 4 Hourly modeled NH₃ (Figure IX.A.36.14) was compared to hourly NH₃ measurements (Figure
- 5 IX.A.36.15) conducted at the Neil Armstrong Academy, located in West Valley City in the SLC NAA,
- 6 during a special field study in winter 2016. Measurements from 2016 were considered since
- 7 measurements of NH₃ were not available during 2011. Hourly measurements were also only available at
- 8 the Neil Armstrong Academy. However, while these 2016 field study measurements cannot be directly
- 9 compared to day-specific 2011 model simulations, the measurements are qualitatively useful to assess if
- 10 the model predicts similar levels of NH_3 during strong inversion conditions.
- 11 Modeled NH₃ at Hawthorne and the Neil Armstrong Academy is well within the range observed in 2016.
- 12 It also displays a similar behavior to measured NH_3 , with the concentration dropping during peak $PM_{2.5}$
- 13 events.

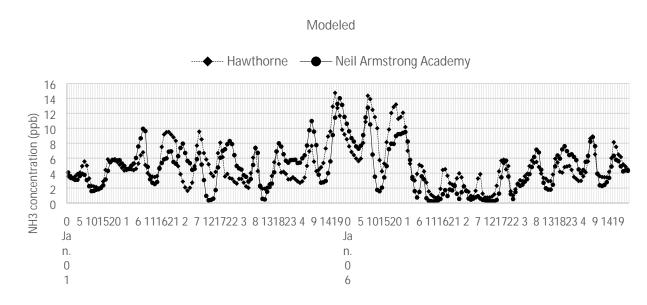


Figure IX.A.36. 14 Hourly Time Series of Modeled Ammonia (ppb) at Hawthorne and Neil Armstrong Academy during January 1 – 10, 2011

¹⁷

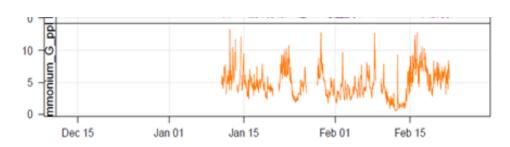


Figure IX.A.36. 15 Hourly Measured Ammonia on y-axis (ppb) at Neil Armstrong Academy
 in the SLC NAA during January – February 2016. Note that ammonia drops during the
 PCAP of February 7-14, 2016.

5

1

6 Summary of Model Performance

7 The model performance replicating the buildup and clear out of $PM_{2.5}$ is good overall. The model captures 8 the temporal variation in PM_{2.5} well. The gradual increase in PM_{2.5} concentration and its transition back to 9 low levels are generally well reproduced by the model. The model also predicts reasonably well PM_{25} 10 concentration on peak days. It also overall replicates well the composition of PM_{2.5} on exceedance days, 11 with good model performance for secondary nitrate and ammonium which account for over 50% of PM_{25} 12 mass. Simulated ammonia concentrations are also within the range of those observed, further indicating 13 that the model overall performs well. 14 Several observations should be noted on the implications of these model performance findings on the 15 attainment modeling presented in the following section. First, it has been demonstrated that model performance overall is good and, thus, the model can be used for air quality planning purposes. Second, 16 17 consistent with EPA guidance, the model is used in a relative sense to project future year values. EPA suggests that this approach "should reduce some of the uncertainty attendant with using absolute model 18 19 predictions alone."

20

d) Modeled Attainment Test

21

22 Introduction

23

With acceptable performance, the model can be utilized to make future-year attainment_projections. For
any given (future) year, an attainment projection is made by calculating a concentration termed the Future
Design Value (FDV). This value is calculated for each monitor included in the analysis, and then

27 compared to the NAAQS ($35 \mu g/m^3$). If the FDV at every monitor located within a NAA is less than the

28 NAAQS, this demonstrates attainment for that area in that future year.

A maintenance plan must demonstrate continued attainment of the NAAQS for a span of ten years. This span is measured from the time EPA approves the plan, a date which is somewhat uncertain during plan

30 span is measured from the time EPA approves the plan, a date which is somewhat uncertain during plan 31 development. To be conservative, attainment projections were made for 2035. An assessment was also

made for 2026 as a "spot-check" against emission trends within the ten-year span.

1 PM₂₅ Baseline Design Values

- 2 For any monitor, the FDV is greatly influenced by existing air quality at that location. This can be
- quantified and expressed as a Baseline Design Value (BDV). The BDV is consistent with the form of the 3
- 24-hour PM_{2.5} NAAQS, which is the 98th percentile value averaged over a three-year period. 4
- 5 Quantification of the BDV for each monitor is included in the TSD, and is consistent with EPA guidance.

6 Relative Response Factors

- 7 In making future-year predictions, the output from the CAMx model is not considered to be an absolute
- 8 answer. Rather, the model is used in a relative sense. In doing so, a comparison is made using the
- 9 predicted concentrations for both the year in question and a pre-selected baseline year, which for this plan
- 10 is 2017. This comparison results in a Relative Response Factor (RRF).
- 11 The UDAQ used the Software for Model Attainment Test - Community Edition (SMAT-CE) v. 1.01
- 12 utility from EPA²⁷ to perform the modeled attainment test for daily $PM_{2.5}$. SMAT is designed to
- interpolate the species fractions of the PM mass from the Speciation Trends Network (STN) monitors to 13
- 14 the FRM monitors. It also calculates the relative response factor (RRF) for grid cells near each monitor
- 15 and uses these to calculate a future year design value for these grid cells. A grid of 3-by-3 (9) cells
- 16 surrounding the monitors was used as the boundary for RRF calculations.
- 17 The State of Utah operates three Chemical Speciation Network (CSN) monitors: Hawthorne, Bountiful,
- 18 and Lindon. Hawthorne is located in Salt Lake County, the Bountiful monitor is in Davis to the north, and
- 19 the Lindon monitor is located in Utah County to the south. Of the three, Hawthorne samples one out of
- 20 three days, while the other two sample one in six days.
- 21 This mismatch in sampling frequency lead, initially, to interpolated speciation profiles that were
- 22 unexpectedly non-uniform across the Salt Lake Valley. To create more realistic speciation profiles, the
- 23 CSN data collected at the Hawthorne monitor were applied to all of the FRM sites in the SLC NAA.
- 24 UDAQ believes this is a reasonable assumption that is supported by recently conducted special studies.
- 25 Further discussion may be found in the TSD.
- 26 For each monitor, the FDV is calculated by multiplying the BDV by the relative response factor: FDV =
- 27 **RRF** * **BDV**. These FDV's are compared to the NAAQS in order to determine whether attainment is
- 28 predicted at that location or not. The results for each of the monitors are shown below in Table
- 29 IX.A.36.9.
- 30 For all projected years and monitors, no FDV exceeds the NAAQS. Therefore, continued attainment is 31 demonstrated for the SLC NAA.
- 32

²⁷ https://www.epa.gov/scram/photochemical-modeling-tools

Monitor Location	2016-2018 BDV	2026 FDV	2035 FDV*
Brigham City	32.4	27.5	27.5
Bountiful	28.5	28.1	28.2
Hawthorne	33.4	31.8	32.1
Rose Park	34.9	33.5	33.6
Ogden	30.2	28.8	28.9
Erda**	25.5	23.0	23.1

2 Table IX.A.36. 9 Baseline and Future Design Values (µg/m³) at Monitors in SLC NAA

3 *These values include additional emissions added to the WFRC MVEB from the safety margin

4 **Erda site uses 2016 speciation data instead of 2011 like the other SLC NAA monitors because Erda

5 was a new site starting in 2016

6 (2) Attainment Inventory

7 The attainment inventory is discussed in EPA guidance²⁸ as another one of the core provisions that should

be considered by states for inclusion in a maintenance plan. According to the guidance, the stated purpose
of the attainment inventory is to establish the level of emissions during the time periods associated with

10 monitoring data showing attainment.

11 In cases such as this, where a maintenance demonstration is founded on a modeling analysis that is used

12 in a relative sense, the modeled baseline inventory is used for comparison with every projection year

13 model run. For this analysis, the State compiled a baseyear inventory for the year 2017. This year falls

14 within the span of data representing current attainment of the $PM_{2.5}$ NAAQS. The guidance discusses the

15 projection inventories as well, and notes that they should consider future growth, including population

16 and industry, should be consistent with the baseyear inventory, and should document data inputs and

17 assumptions. Any assumptions concerning emission rates must reflect permanent, enforceable measures.

18 Utah compiled projection inventories for use in the quantitative modeling demonstration. The years

19 selected for projection include 2026 and 2035. The emissions contained in the inventories include sources

20 located within the modeling domain encompassing all three PM_{2.5} nonattainment areas, as well as a

- 21 bordering region. See Figure IX.A.36.3.
- 22 Since this bordering region is so large, the State identified a "core area" within this domain wherein a

23 higher degree of accuracy is important. Within this core area (which includes Weber, Davis, Salt Lake,

24 Utah, Box Elder, Tooele, Cache, and Franklin, ID counties), SIP-specific inventories were prepared to

25 include seasonal adjustments and forecasting to represent each of the projection years. In the bordering

regions away from this core, the State used the most current (2014) National Emissions Inventory from

- EPA for the analysis.
- 28 There are four general categories of sources included in these inventories: point sources, area sources, on-
- road mobile sources, and non-road mobile sources. For each of these source categories, the pollutants that
- 30 were inventoried includes: PM_{2.5}, SO₂, NO_X, VOC, and NH₃. The unit of measure for point and area

²⁸ Calcagni (n 3)

sources is the traditional tons per year. Mobile source emissions are reported in terms of tons per day. The
 pre-processing model, SMOKE, converts all emissions to daily, weekly, and hourly values.

- 3 Area source emissions were projected to 2017 from the 2014 triannual inventory. Growth data from
- 4 appropriate data sources, including information from the Governor's Office of Management and Budget,
- 5 was used to project inventories to 2026 and 2035. Point source emissions are represented as the actual
- 6 emissions from the 2017 triannual emissions inventory. Point sources were grown to 2026 and 2035 on a
- 7 case-by-case basis for the projection inventories.
- 8 On-road mobile source emissions were calculated for each year using MOVES2014b in conjunction with
- 9 the appropriate estimates for vehicle miles traveled (VMT). VMT estimates for the urban counties were
- 10 provided by the local metropolitan planning organizations (MPOs), including the Wasatch Front Regional
- 11 Council, the Mountainland Association of Governments, and the Cache Metropolitan Planning
- 12 Organization, and are based on their travel demand modeling for 2017, 2026, and 2035. Non-road mobile
- 13 source emissions were calculated for each year using MOVES2014b. Growth data from appropriate data
- 14 sources was used to project to 2026 and 2035. The Technical Support Documentation accompanying this
- 15 SIP includes the Inventory Preparation Plan that details the growth factors used for each emissions source.
- 16 Source category emission inventories are expected to look quite different between 2017 and 2035.
- 17 Population is expected to steadily increase between the 18-year span. On-road mobile emissions dominate
- 18 the 2017 inventory; however, in 2035 area source emissions dominate the inventory. This is due to the tier
- 19 3 federal fuel standards and phase-in of newer cars driving on-road emission reductions. Area source
- 20 emissions are relatively stable from 2017 to 2026 to 2035, besides a decrease in NOx from 2017 to 2026
- 21 due to the phase-in of area source rules.
- 22 Since this SIP subsection takes the form of a maintenance plan, it must demonstrate that the area will
- 23 continue to attain the $PM_{2.5}$ NAAQS throughout a period of ten years from the date of EPA approval. It is
- also necessary to "spot check" this ten-year interval. Hence, projection inventories were prepared for
- 25 2026 and 2035. Table IX.A.36.10 below summarizes these inventories. As described, it represents point,
- area, on-road mobile, and non-road mobile sources in the modeling domain and includes $PM_{2.5}$, as well as
- 27 the precursors SO_2 , NO_X , VOC, and NH_3 as defined in 40 CFR Parts 50, 51, and 93.
- 28 More detail concerning any element of the inventory can be found in the appropriate section of the TSD.
- 29 More detail about the general construction of the inventory can be found in the Inventory Preparation
- 30 Plan.
- 31

Emissions (tons/day)	Sector	PM _{2.5} Filterable	PM _{2.5} Condensable	PM _{2.5} Total	NOx	VOC	NH3	SO2
2017	Area Sources	5.02	1.11	6.13	13.55	45.98	14.21	0.21
	Mobile Sources	-	_	2.28	44.21	30.12	1.28	0.31
	NonRoad Sources	-	-	0.96	18.12	8.89	0.02	0.35
	Point Sources	2.97	0.97	3.94	17.01	6.52	0.34	3.78
	Total			13.31	92.89	91.51	15.85	4.65
	Area Sources	5.19	1.15	6.34	8.54	43.99	14.19	0.2
	Mobile Sources	_	-	1.34	19.63	15.96	1.09	0.16
2026	NonRoad Sources	_	_	0.72	14.64	8.85	0.02	0.44
	Point Sources	4.19	1.38	5.57	22.61	7.26	0.48	3.5
	Total			13.97	65.42	76.06	15.78	4.3
2035	Area Sources	5.37	1.19	6.56	8.69	47.17	14.21	0.2
	Mobile Sources	_	_	1.39	18.91	18.93	1.19	0.15
	NonRoad Sources	_	_	0.67	13.32	9.7	0.03	0.51
	Point Sources	4.19	1.38	5.57	22.62	7.26	0.48	3.5
				14.15	62.21			
	Total			14.19	63.54	83.06	15.91	4.36

 1
 10tal
 14.19
 63.54
 83.06
 15.91
 4

 2
 Table IX.A.36. 10 Emissions Inventories in Tons per Average Episode Day by Year and

 3
 Source Category

4

5 (3) Additional Controls for Future Years

6 Since the emission limitations discussed in subsection IX.A.36.b(3) are federally enforceable and, as

7 demonstrated in IX.A.36.c(1) above, are sufficient to ensure continued attainment of the PM_{2.5}NAAQS,

8 there is no need to require any additional control measures to maintain the $PM_{2.5}$ NAAQS.

9 (4) Mobile Source Budget for Purposes of Conformity

10 The transportation conformity provisions of section 176(c)(2)(A) of the Act requires regional

11 transportation plans and programs to show that "...emissions expected from implementation of plans and

12 programs are consistent with estimates of emissions from motor vehicles and necessary emissions

reductions contained in the applicable implementation plan..." EPA's transportation conformity

regulation (40 CFR 93, Subpart A, last amended at 77 FR 14979, March 14 2012) also requires that

15 motor vehicle emission budgets must be established for the last year of the maintenance plan, and may be

16 established for any years deemed appropriate (see 40 CFR 93.118(b)(2)(i)).

17 For an MPO's Regional Transportation Plan, analysis years that are after the last year of the maintenance

18 plan (in this case 2035), a conformity determination must show that emissions are less than or equal to the

19 maintenance plan's motor vehicle emissions budget(s) for the last year of the implementation plan.

a) Mobile Source PM_{2.5} Emissions Budgets

21 In this maintenance plan, Utah is establishing transportation conformity motor vehicle emission budgets

- 22 (MVEB) for direct $PM_{2.5}$, NO_X , and VOC for 2035. The MVEBs are established for tons per average
- 23 winter weekday for NO_x and VOC, and for direct $PM_{2.5}$ (primary exhaust $PM_{2.5}$ + brake and tire wear).

1 (i) Direct $PM_{2.5}$, NO_x , and VOC

- 2 Direct (or "primary") PM_{2.5} refers to PM_{2.5} that is not formed via atmospheric chemistry. Rather, direct
- 3 PM_{2.5} is emitted straight from a mobile or stationary source. With regard to the emission budget
- 4 presented herein, direct $PM_{2.5}$ includes road dust, brake wear, and tire wear as well as $PM_{2.5}$ from exhaust.
- 5 Through atmospheric chemistry, NO_X and VOC emissions can substantially contribute to secondary $PM_{2.5}$
- 6 formation. For this reason, NO_X and VOC are considered $PM_{2.5}$ precursors and are the only $PM_{2.5}$
- 7 precursors emitted at a significant level by on-road mobile, and therefore included in the MVEBs.
- 8 EPA's conformity regulation (40 CFR 93.124(a)) allows the implementation plan to quantify explicitly
- 9 the amount by which motor vehicle emissions could be higher while still demonstrating compliance with
- 10 the maintenance requirement. These additional emissions that can be allocated to the applicable MVEB
- 11 are considered the "safety margin." As defined in 40 CFR 93.101, the safety margin represents the
- 12 amount of emissions by which the total projected emissions from all sources of a given pollutant are less
- 13 than the total emissions that would satisfy the applicable requirement for demonstrating maintenance. The
- 14 implementation plan can then allocate some or all of this "safety margin" to the applicable MVEBs for
- 15 transportation conformity purposes.
- 16 As presented in the TSD for on-road mobile sources, the estimated on-road mobile source emissions of
- 17 direct PM_{2.5}, NOx, and VOC in 2035 for the SLC NAA, are listed in the first row (original MVEB) in
- 18 Table IX.A.36.11. These mobile source emissions were included in the maintenance demonstration in
- 19 Subsection IX.A.36.c.(1) which estimates a maximum $PM_{2.5}$ concentration of 33.2 μ g/m³ in 2035 within
- 20 the SLC NAA portion of the modeling domain. These emissions numbers are considered the MVEB for
- 21 the maintenance plan prior to the application of any amount of safety margin.
- 22 The safety margin for the SLC NAA portion of the domain equates to $1.8 \,\mu\text{g/m}^3$ (the 2006 24-hr PM_{2.5}
- 23 standard of $35.0 \,\mu\text{g/m}^3$ minus the initial 2035 FDV of $33.2 \,\mu\text{g/m}^3$). To evaluate the portion of safety
- 24 margin that could be allocated to the MVEBs, modeling was re-run for 2035 using the same emission
- 25 projections for point, area and non-road mobile sources with additional emissions attributed to the on-
- road mobile source (see 2nd row of Table IX.A.36.11, Additional Tons Per Day from Safety Margin). The
- revised maintenance demonstration for 2035 still shows maintenance of the $PM_{2.5}$ standard. It estimates a maximum $PM_{2.5}$ concentration of 22.6 m/m³ in 2025 mithin the SLC NAA.
- maximum $PM_{2.5}$ concentration of 33.6 μ g/m³ in 2035 within the SLC NAA portion of the modeling domain, allocating .4 μ g of the safety margin to on-road mobile emissions for the WFRC MVEB. The
- a final 2035 MVEB for WFRC is listed in the last row of Table IX.A.36.11. The final WFRC MVEB is
- 31 adjusted since Tooele and Box Elder counties are partially within the SLC NAA.
- 32
- ~~
- 33
- 34 35
- 55
- 36

	Direct PM _{2.5}	NO _X	VOC	Design Value @ controlling monitor
Original NAA MVEB	1.04	16.33	14.07	33.2 µg/m ³
Additional Tons Per Day from Safety				
Margin	0.34	5.30	6.50	
Final WFRC MVEB	1.38	21.63	20.57	33.6 µg/m³
		• · · ·		

1 Table IX.A.36. 11 2035 Wasatch Front Regional Council Motor Vehicle Emissions Budget 2 in Tons per Winter Weekday

3

4 It is important to note that the MVEBs presented in Table IX.A.36.11 are somewhat different from the on-

5 road summary emissions inventory presented in Table IX.A.36.10.

6 Overall the emissions established as MVEBs are calculated using MOVES to reflect an average winter

7 weekday. The totals presented in the summary emissions inventory (Table IX.A.36.11), however,

8 represent an average-episode-day. The episode used to make this average (December 31, 2010 through

9 January 10, 2011) includes seven such winter weekdays, but also includes two weekends. Emissions

10 produced on weekdays are significantly larger than those produced on both Saturdays and Sundays.

11 Therefore, the weighted average of daily emissions calculated for an episode-day will be less than that of

12 a weekday.

13 There are also some conventions to be considered in the establishment of MVEBs. In particular, PM_{2.5} in

14 the summary emissions inventory totals includes direct exhaust, tire and brake wear, and fugitive

15 dust. For the MVEBs, PM_{2.5} includes direct exhaust, tire and brake but no fugitive dust. VOC emissions

16 in the summary emissions inventory include refueling spillage and displacement vapor loss and are

17 counted in the on-road mobile category. MVEBs for VOC do not include these emissions because, in this

18 context, they are regarded as an area source.

19 40 CFR 93.118((b)(2)(i) also states "If the maintenance plan does not establish motor vehicle emissions

20 budgets for any years other than the last year of the maintenance plan, the conformity regulation requires

that a "demonstration of consistency with the motor vehicle emissions budget(s) must be accompanied by

22 a qualitative finding that there are not factors which would cause or contribute to a new violation or

23 exacerbate an existing violation in the years before the last year of the maintenance plan."

24 Considering this, it is useful to compare the projected future design values in 2026 at all monitors in the

25 NAA to the on-road mobile emission inventory as well as the percent of the total inventory that the on-

26 road mobile sector comprises. As can be seen in Table IX.A.36.9, the design values throughout the SLC

NAA range from 23.0 to 33.5 μ g/m³. The Rose Park monitor shows the highest value at 33.5 μ g/m³,

28 which is still $1.5 \,\mu g/m^3$ below the standard. The on-road mobile source contribution to the overall

29 inventory is shown in Table IX.A.36.12.

30

- 31
- 32

Emissions tons/day	PM _{2.5}	NOx	VOC
	Section	IX.A.36	
		1 0	

2026 emission inventory total	14.16	62.21	83.05
2026 on-road mobile inventory	1.35	17.58	18.93
On-road mobile % of total inventory	9.53%	28.26%	22.79%

Table IX.A.36. 12 2026 On-Road Mobile Inventory Compared to Total 2026 Emissions Inventory

2 3

1

4 Since the projected design values are well below the standard, and the on-road budget is a relatively small

5 percentage of the total inventory, UDAQ is confident that there will not be any on-road mobile factors

6 that will cause or contribute to a new violation of the NAAQS.

7 (ii) Trading Ratios for Transportation Conformity

8 Per section 93.124 of the conformity regulations, for transportation conformity analyses using these

9 budgets in analysis years beyond 2035, a trading mechanism is established to allow future increases in on-

10 road direct $PM_{2.5}$ emissions to be offset by future decreases in plan precursor emissions from on-road

11 mobile sources at appropriate ratios established by the air quality model. Future increases in on-road

12 direct $PM_{2.5}$ emissions may be offset with future decreases in NO_x emissions from on-road mobile sources

- 13 at a NO_x to PM_{2.5} ratio of 6.3 to 1 and/or future decreases in VOC emissions from on-road mobile sources
- 14 at a VOC to $PM_{2.5}$ ratio of 20.9 to 1. This trading mechanism will only be used if needed for conformity

analyses for years after 2035. To ensure that the trading mechanism does not impact the ability to meet

16 the NO_x or VOC budgets, the NO_x emission reductions available to supplement the direct $PM_{2.5}$ budget

17 shall only be those remaining after the 2035 NO_x budget has been met, and the VOC emissions reductions

18 available to supplement the direct $PM_{2.5}$ budget shall only be those remaining after the 2035 VOC budget

19 has been met. Clear documentation of the calculations used in the trading should be included in the

20 conformity analysis. The assumptions used to create the trading ratios can be found in the TSD.

21 (5) Nonattainment Requirements Applicable Pending Plan Approval

22 CAA 175A(c) - Until such plan revision is approved and an area is redesignated as attainment, the

23 requirements of CAA Part D, Plan Requirements for Nonattainment Areas, shall remain in force and

24 *effect.* The Act requires the continued implementation of the nonattainment area control strategy unless

such measures are shown to be unnecessary for maintenance or are replaced with measures that achieve

26 equivalent reductions. Utah will continue to implement the emissions limitations and measures from both

 $27 \quad PM_{2.5} \text{ SIPs.}$

28 (6) Revise in Eight Years

29 CAA 175A(b) - Eight years after redesignation, the State must submit an additional plan revision which

30 shows maintenance of the applicable NAAQS for an additional 10 years. Utah commits to submit a

31 revised maintenance plan eight years after EPA takes final action redesignating the Salt Lake City area to

32 attainment, as required by the Act.

33 (7) Verification of Continued Maintenance and Monitoring

34 Implicit in the requirements outlined above is the need for the State to determine whether the area is in

fact maintaining the standard it has achieved. There are two complementary ways to measure this: 1) by

36 monitoring the ambient air for $PM_{2.5}$; and 2) by inventorying emissions of $PM_{2.5}$ and its precursors from

37 various sources.

1 The State will continue to maintain an ambient monitoring network for PM_{2.5} in accordance with 40 CFR

2 Part 58 and the Utah SIP. The State anticipates that the EPA will continue to review the ambient

- 3 monitoring network for PM_{2.5} each year, and any necessary modifications to the network will be
- 4 implemented.
- 5 Additionally, the State will track and document measured mobile source parameters (e.g., vehicle miles
- 6 traveled, congestion, fleet mix, etc.) and new and modified stationary source permits. If these and the
- 7 resulting emissions change significantly over time, the State will perform appropriate studies to
- 8 determine: 1) whether additional and/or re-sited monitors are necessary; and 2) whether mobile and
- 9 stationary source emission projections are on target. The State will also continue to collect actual
- 10 emissions inventory data from sources at thresholds defined in R307-150.

11 (8) Contingency Plan

- 12 CAA 175A(d) Each maintenance plan shall contain contingency measures to assure that the State will
- 13 promptly correct any violation of the standard which occurs after the redesignation of the area to
- 14 attainment. Such provisions shall include a requirement that the State will implement all control
- 15 measures which were contained in the SIP prior to redesignation.
- 16 Upon redesignation, this contingency plan for the SLC NAA supersedes Subsection IX.A.31.9,
- 17 Contingency Measures, which is part of the serious SLC NAA PM_{2.5} attainment SIP.
- 18 The contingency plan must also ensure that the contingency measures are adopted expeditiously once
- 19 triggered. The primary elements of the contingency plan are: 1) the list of potential contingency measures;
- 20 2) the tracking and triggering mechanisms to determine when contingency measures are needed; and 3) a
- 21 description of the process for recommending and implementing the contingency measures.

a) List of Potential Contingency Measures

- Section 175(d) of the CAA requires the maintenance plan to include as potential contingency measures all of the PM_{2.5} control measures contained in the attainment SIP that were relaxed or modified prior to redesignation. There were no control measures relaxed in the SLC NAA; however, below are potential contingency measure that will be evaluated. If it is determined through the triggering mechanism that additional emissions reductions are necessary, UDAQ will adopt and implement appropriate contingency measure as expeditiously as possible. The following are potential contingency measures that may be considered by UDAQ:
- Measures to address emissions from residential wood combustion (i.e. emissions from fireplaces under the existing R307-302 rule), including re-evaluating the thresholds at which red or yellow burn days are triggered. Residential wood combustion represents 35.4% of direct PM_{2.5} emissions in the 2017 county-wide inventory.
- Measures to address fugitive dust from area sources. Fugitive dust represents 31.2% of direct
 PM_{2.5} emissions in the 2017 county-wide inventory.
- Additional measures to address other PM_{2.5} sources identified in the emissions inventory such as
 on-road vehicles, non-road vehicles and engines, and industrial sources. These source categories

- 1 represent 35.8%, 13.0%, and 14.5%, respectively, of the overall 2017 baseyear emissions 2 inventory.
- 3 In addition, UDAQ administers incentive and grant programs that reduce emissions in Utah's NAAs. The
- 4 emissions reductions are not included in the quantitative maintenance demonstration; however, they are
- 5 expected to contribute to the mitigation of PM2.5 concentrations. Generally speaking, the programs target
- 6 Utah nonattainment areas. The programs include approximately \$25.5 million from the Volkswagen
- 7 settlement and approximately \$12.7 million to replace heavy-duty diesel trucks and buses that are
- 8 operating under old emissions standards. Approximately \$1.3 million will go towards upgrading non-road 9 engines on the Wasatch Front. Another \$3.8 million of the Volkswagen funding will go towards installing
- 10 electric vehicle supply equipment in Utah. UDAQ is in the process of using approximately \$9.6 million in
- federal funding to implement wood stove changeout programs throughout the three Utah PM_{2.5} NAAs. 11

12 b) Tracking

13 The tracking plan for the three NAAs consists of monitoring and analyzing ambient PM_{2.5} concentrations.

- 14 In accordance with 40 CFR 58, the State will continue to operate and maintain an adequate PM_{2.5}
- 15 monitoring network in SLC, Provo, and Logan NAAs.

c) Triggering 16

17 Triggering of the contingency plan does not automatically require a revision to the SIP, nor does it mean 18 that the area will automatically be redesignated once again to nonattainment. Instead, the State will have

19 an appropriate timeframe to correct the potential violation with implementation of one or more adopted

- 20 contingency measures. In the event that violations continue to occur, additional contingency measures
- 21 will be adopted until the violations are corrected.
- 22 Upon notification of a potential violation of the PM_{2.5} NAAQS, the State will develop appropriate
- 23 contingency measures intended to prevent or correct a violation of the PM_{2.5} standard. Information about
- 24 historical exceedances of the standard, the meteorological conditions related to the recent exceedances,
- 25 and the most recent estimates of growth and emissions will be reviewed. The possibility that an
- 26 exceptional event occurred will also be evaluated.
- 27 Upon monitoring a potential violation of the PM_{2.5} NAAQS, including exceedances flagged as
- 28 exceptional events but not concurred with by EPA, the State will identify a means of corrective action
- 29 within six months after a potential violation. The maintenance plan contingency measures will be chosen
- 30 based on a consideration of cost-effectiveness, emission reduction potential, economic and social
- 31 considerations, or other factors that the State deems appropriate.
- 32 The State will require implementation of such corrective action no later than one year after the violation is
- 33 confirmed. Any contingency measures adopted and implemented will become part of the next revised
- 34 maintenance plan submitted to the EPA for approval.