PRODUCED WATER EMISSIONS RESEARCH SUMMARY

Marc Mansfield, Huy Tran, and Seth Lyman

UtahStateUniversity BINGHAM ENTREPRENEURSHIP & ENERGY RESEARCH CENTER

Measurement Techniques: Flux Chamber

- ~225 hour-long measurements in Uinta Basin and Wyoming at 10 facilities (facilities in Basin account for 25% of total Basin pond area)
- Evidence exists that chamber is biased low in high winds. More about this later

Water Composition

Emission Flux Composition

Emission Flux Composition

Inversed-modeling: Case study

Inverse dispersion models:

• Utilized models: EPA regulatory **AERMOD** and the Heavy Gas dispersion model for Steady-state (HEGADAS-S).

Inversed-modeling: Wind complexities

Fluid dynamic model suggests:

- wind speeds at water level significantly differ from wind speed at 6 m above ground level
- emission rate is not uniform at every point over pond's surface. Emissions are mainly released from up-wind part of the pond.

Inversed-modeling: Results vary with techniques used

Comparisons of NMHC concentration distributions (excluding alcohols)

HEGADAS-S partial-pond

HEGADAS-S full-pond

Inversed-modeling consistently overestimate flux-chamber measurements

Measurement	Means of					Total NMHC		
Campaign	estimation	Alkanes	Alkenes	Aromatics	Alcohols			
April 2015	FLUX	287.5	4.6	83.8	2.4	378.3		
(Landfarm)	FLUX-C	The developed wind correction factors are not applicable for air-soil exchange						
	AERM	2891.0	0.4	1068.8	29.6	3990		
	HEGA	2690.4	0.8	1027.1	11.1	3729		
Apr2016	FLUX	34.0	0.0	60.4	201.5	296		
(Pond)	FLUX-C	37.9	0.0	67.1	659.6	765		
	AERM-1	714.8	1.3	628.1	312.8	1657		
	HEGA-1	Was not performed due to calm and strongly variate wind						
	AERM-2	525.1	16.0	490.6	2658.2	3690		
	HEGA-2	149.6	6.2	142.9	866.3	1165		
	AERM-3	659.7	26.8	748.6	1729.3	3164		
	HEGA-3	495.1	15.1	388.4	1148.4	2047		
Jul2016	FLUX	24.4	0.0	67.6	108.8	201		
(Pond)	FLUX-C	46.0	0.1	123.3	545.6	715		
	AERM-1	261.7	4.2	265.8	1327.0	1859		
	HEGA-1	114.9	1.5	143.3	686.3	946		
	AERM-2	417.4	3.9	1063.7	1935.8	3421		
	HEGA-2	160.8	0.8	424.0	728.8	1314		
Geometric means of ratios	HEGA/FLUX-C	5.3	2.7	3.6	1.8	2.5		
	AERM/FLUX-C	11.5	5.2	7.5	2.8	4.2		
	HEGA/AERM	0.5	0.5	0.5	0.4	0.5		

Mass-Transfer Law

Proportionality between flux and concentration.

S may depend on:

temperature, wind speed, salinity, nature of compound

WATER-9

Semi-empirical algorithm for estimating S (H = Henry's law coefficient, it anti-correlates with solubility.) Mass transfer coefficient (mm/h) (0^2) $(0^1$ Blue, tan, black: Temperature modulation. 10⁰ cyclic Salinity modulation is linear alkanes about 30% to 50% in H. and aromatics branched alcohols alkanes (0^{-1}) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11111 $10^{-\bar{3}}$ $10^{\overline{0}}$ $10^{\overline{2}}$ 10⁻² 10^{3} 10^{-1} 10^{1} 10^{-4} Η Eq. (7), $D_w = 1.64E-05$, $D_a = 0.15$ Eq. (7), $D_w = 1.18E-05$, $D_a = 0.15$ Eq. (7), $D_w = 1.0E-05$, $D_a = 0.1$ Eq. (6)

WATER-9 prediction of flux chamber results.

Accurate to within about 1 order of magnitude over a range of about 5 orders.

Wind Speed Correction

Based on WATER-9

Basin-wide scale up

Table 3. Estimated total annual emissions from all produced water ponds in the Uinta Basin, tonne/yr. Bootstrapped means are shown, and upper and lower 95% confidence intervals are shown in parentheses. Confidence intervals reflect natural variability in measurements from the pond types indicated rather than measurement uncertainty.

		Other active		Total
Tonnes yr ⁻¹	Skim ponds	ponds	Inactive ponds	
Methane	201 (32,830)	444 (263,853)	69 (27,201)	714
				(323,1885)
Carbon dioxide	88 (48,175)	2014	15544	17646
		(1425,2887)	(10761,22947)	(12234,26008)
Alkanes	1128	394 (254,620)	18 (1,96)	1541
	(217,4384)			(472,5101)
Alkenes	0 (0,0)	24 (3,98)	0 (0,1)	24 (3,100)
Aromatics	267 (53,1043)	422 (245,743)	5 (1,19)	694
				(299,1805)
Alcohols	379 (142,713)	4704	150 (84,337)	5233
		(2428,10617)		(2653,11667)
Non-methane	1773	5546	174 (86,458)	7494
organics	(412,6141)	(2968,11952)		(3466,18552)

Acknowledgements

Funding Provided By

- U.S. Department of Energy/Research Partnership to Secure Energy for America (Contract No. 12122-15)
- Bureau of Land Management (Cooperative Agreement No. L13AC00292)
- Uintah Impact Mitigation Special Service District
- GSI, Inc./State of Wyoming
- Utah State and Institutional Trust Lands Administration

Thank You

binghamresearch.usu.edu