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4. Introduction

Investigations of inversion episodes in the Uintah Basin have shown that formaldehyde and other
carbonyls are key precursors to wintertime ozone formation (Edwards et al., 2014). Three principal
categories of carbonyl sources exist. These include: i) combustion-related primary emissions, ii) non-
combustion primary emissions, and iii) secondary formation in the atmosphere from photochemical
reactions involving organic compounds. Combustion-related emissions of formaldehyde have been
characterized to some extent (e.g., Stutz et al. (2011)), and EPA emission factors for formaldehyde are
available for some oil and gas-related combustion processes (see Literature Review). Photochemical
production of carbonyls from organic compounds is represented in the chemical mechanisms utilized by
regional-scale air quality models such as CAMx and CMAQ. These chemical mechanisms are imperfect,
and more work is needed to improve them, but a basic computational framework for estimating
atmospheric production of carbonyls exists.

In contrast, non-combustion primary emissions of carbonyls from oil and gas processes are completely
uncharacterized. To our knowledge, no publicly available measurements of non-combustion carbonyl
emissions have ever been collected in the Uintah Basin or elsewhere. Analyses of ambient air in the
Basin have indicated that non-combustion emissions of carbonyls from oil and gas-related sources may
be an important component of total emissions (Stoeckenius et al., 2014). Since very little is known
about non-combustion sources of carbonyls in oil and gas fields, and it is not yet even clear whether or
not they are important relative to combustion-related and photochemical sources, measurements to
determine the importance of non-combustion carbonyl emissions are warranted. This document
reports on measurements of carbonyl emissions from combustion-related and non-combustion oil and
gas sources in the Uintah Basin. We discuss these measurements in the context of past work, and
determine the effect of including our measurement results in a photochemical model of ozone.

5. Literature Review

5.1. Speciation Profiles

For photochemical modeling studies, several different volatile organic compound (VOC) speciation
profiles have been developed and applied for oil and gas emission sources in Uintah Basin. Currently
available speciation profiles are shown in Table 1.
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Data used in EPA’s SPECIATE VOC speciation profiles applied for oil and gas emission sources in the
Uintah Basin (i.e., Default_spcin Table 1) are derived from:

e Pro_code 0051: Flares — Natural Gas: This profile is based on composite survey data and
engineering evaluation of literature data (EPA, 1980; Taback, 1978).

e Pro_code 1207: Well Heads (Water Flood) Composite: Data are from the Oklahoma Glen Sand
formation, which is at a depth of 1500 feet. Nine samples were taken in stainless steel canisters
and analyzed using a GC with cryogenic sample pre-concentration and flame ionization
detection (EPA, 1990; Viswanath and Van Sandt, 1989).

e Pro_code 2487: Composite of 7 Emission Profiles from Crude Oil Storage Tanks — 1993: This
profile was developed by normalizing emissions to equal 100% for the sum of the 55 PAMS
(Photochemical Assessment Monitoring Stations) pollutants + MTBE (Methyl tertiary-butyl
ether) measured (EPA, 2015a).

None of these sources include measurements of carbonyl compound emissions, so the source of the
listed carbonyl speciation in the Default_spc profile is unclear. In Default_spc (Table 1), the application
of flaring profiles (e.g., 0051 with ~ 20% of total VOC emissions partitioned to formaldehyde) to non-
flaring oil and gas emission sources in the Uintah Basin is almost certainly incorrect.

In the Utah Bureau of Land Management’s Air Resource Management Strategy (ARMS) study (Table 1),
chemical speciation profiles were developed for oil and gas processes in Uintah Basin that have a
notable contribution to VOC emissions—including natural gas dehydrators, pneumatic devices, and oil
and condensate tanks—based on chemical composition analyses provided by Utah Department of
Environment Quality (pro_code 9001, 9002, 9003 in Table 1; AECOM (2013)).

In the WRAP Il study (Table 1), basin-specific VOC speciation profiles were developed based on gas
composition analysis of produced gas, condensate and flashing gas obtained from operator surveys
(Adelman, 2013). For the Uintah Basin, those basin-specific profiles (pro_code UNTO01, 02, 03, and 04)
were applied for some source categories, including blowdowns, completions and fugitive emissions. For
other O&G sources in the basin, profiles from EPA’s SPECIATE database were used. It is not clear
whether carbonyl emissions allocated in these speciation profiles were based on actual measurements.

Pro_codes developed in the BLM-ARMS or WRAP Il studies that assume zero emissions of carbonyls
could lead to an underestimation of actual emissions. A top-down emission inventory for oil and gas
emissions in Uintah Basin, developed from whole-basin methane emission measurements and ratios of
methane to other emitted compounds measured in ambient air, showed a notable amount of
formaldehyde/aldehyde emissions (Ahmadov et al., 2015), perhaps showing that neglect of carbonyl
emissions in the ARMS-BLM and WRAP Il Uintah Basin — specific profiles is not reasonable. On the other
hand, use of ambient air carbonyl concentrations to derive emission rates likely results in the inclusion
of both primarily emitted carbonyls and carbonyls that were produced secondarily in the atmosphere as
primary emissions, which would result in an overestimation of real primary emissions.



& ENERGY RESEARCH CENTER

Aiu@,];g UtahStateUniversity
BINGHAM ENTREPRENEURSHIP
5.2. Other Available Information

Several emission measurement campaigns for oil and gas processes have measured hydrocarbons, but
no carbonyl emission measurements have been included. Viswanath and Van Sandt (1989) presented a
comprehensive emission measurement dataset for hydrocarbons from many oil and gas field facilities in
Tulsa County, Oklahoma. Hendler et al. (2009) reported measurements of hydrocarbon emissions from
oil and condensate storage tanks at wellheads and gathering site tank batteries in East Texas. McKenzie
et al. (2012) showed an analysis of hydrocarbon measurements conducted in Garfield County, Colorado
around well-pads to estimate health risks for exposures to air emissions. Currently, emission
measurement campaigns for oil and gas fields are being conducted by the Collett Research Group in
Garfield County and the North Front Range, Colorado (http://collett.atmos.colostate.edu/research-
projects.html). Again, these studies focus on hydrocarbons, but none have included measurements of
carbonyls.

Ambient carbonyl concentration data have been collected at some monitoring stations located in cities
in Colorado, Texas and California for health risk assessment, but are not suitable for characterizing oil
and gas field emissions (Board, 2015; Eisele, 2009; Haney and Reddick, 2013). Jolly (2004) assessed the
importance of carbonyl compounds in ozone formation in Houston-Galveston and found that at two of
five monitoring stations in this study, formaldehyde and acetaldehyde were the two most important
species contributing to total carbonyl reactivity in forming ozone. Again, these ambient monitoring data
show the importance of carbonyls to air quality in oil and gas-producing areas, but are not useful for
calculating the actual emission fluxes of carbonyl compounds from oil and gas production facilities.
Airborne formaldehyde measurements made during the Texas Air Quality Study in 2000 indicated that
formaldehyde and ozone production were more associated with petrochemical facilities, rather than
power plant and mobile source emissions (Wert et al., 2003). Formaldehyde emissions were measured
from burning flares and smoke stacks of large refinery and chemical manufacturing facilities in Houston
and Texas City during the “Formaldehyde and Olefin from Large Industrial Sources” (FLAIR) campaign
conducted in 2009 (Stutz et al., 2011). These emissions data do show that carbonyls are emitted from
flares, but are probably not directly applicable to the relatively small oil and gas production facilities in
Uintah Basin. Air quality research campaigns focused in the Uintah Basin collected carbonyl data during
winter 2012, 2013 and 2014 at several monitoring stations to study unique radical source of ozone
formation in the basin, but these data also do not constitute emissions measurements (Lyman et al.,
2013; Stoeckenius et al., 2014).

AP-42, Compilation of Air Pollutant Emission Factors (EPA, 2015b), provides instruction on using the
TANKS model to estimate air emissions from organic liquid storage tanks. This emission model could be
applied for estimating VOC speciation emission profiles of oil/condensate storage tanks in the Uintah
Basin. However, the ability of TANKS to accurately estimate carbonyl emissions is uncertain.

6. Methods

6.1. Field Measurements

We collected carbonyls with BPE-DNPH sorbent cartridges following Uchiyama et al. (2009). The first
portion of the cartridge was packed with BPE-coated silica, which captures ozone and reduces sampling
artifacts. The second portion of the cartridge was packed with DNPH-coated silica. Carbonyls react with
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and are retained on these cartridges by DNPH. Non-carbonyl organics pass through the cartridges and
are exhausted. We kept DNPH cartridges refrigerated or on ice, except when installed for sampling.

We used a Class | Div 1 vacuum pump to pull sample exhaust gas from the emission source being tested
and through the BPE-DNPH cartridges. Mass flow controllers regulated the flow rate through the
cartridges. The sample line that connected the emission source to the cartridges was heated to 50°C
with a Class | Div 1 heat trace and insulated to avoid condensation in the line. The system was
connected to and housed within a small trailer and powered by a generator. The heated sample lines
were 80 feet long and the generator had a 100-foot cord, allowing the generator to be well over 100
feet from any well site combustion source.

For measurements of emissions from sources with an exhaust pipe, we attached a two-inch or three-
inch diameter extension pipe to the exhaust. Carbon steel and stainless steel extension pipes were
used. The extension pipes were manufactured by Cameron Measurement Systems in Vernal, Utah. We
inserted a thermal mass flow meter (Fox model FT3-061ESSSTE4DDMB) into this pipe to measure the
total exhausted gas flow. To measure the concentration of carbonyls in the exhaust gas, we pulleda 1L
min! subset of the extension pipe flow through the heated line and the BPE-DNPH cartridge. Flow,
temperature, and other data were collected using a Campbell Scientific CR1000 data logger.

After a cartridge had been analyzed in the laboratory, we calculated the emission rate as:

Emissions (ug s™) = Carbonyl Concentration in Exhaust Gas (ug m?)
x Exhaust Gas Flow Rate (m3s?).

For measurements of emissions from sources without an exhaust line (e.g., leaks), or sources with an
exhaust line too small to use the extension pipes (e.g., pneumatic pumps), we measured emissions via
bag sampling. We used a Teflon bag to enclose the component to be measured. We flooded the bag
with a constant, known flow of nitrogen. We sealed the bag around the component to be tested with
adhesive tape. We pulled gas from the bag at one liter per minute through the heated line and BPE-
DNPH sorbent cartridges. We measured oxygen and total combustible gas concentrations in the bag as
proxies for measurement of flow into the bag due to intrusion of outside air and flow due to the leak
itself. We then calculated emissions as:

Emissions (ug/s) = Carbonyl Concentration in Bag (ug m™) x [Nitrogen Flow Rate (m?s!) + Flow Rate Due
to Intrusion of Outside Air (m3?s?) + Flow Rate Due to the Leak Itself (m?s?)]

Figures 1 and 2 show diagrams of the flow tube and bag sampling methods. We used a handheld
natural gas detector to identify leaks or pneumatic device emissions for subsequent bag sampling.
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Generator-powered trailer

. Total flow measurement
Sample line

DNPH cartridge for Exhaust

carbonyl collection Extension
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control
Oil and gas
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.

Figure 1. Diagram of flow tube measurement technique for liquid storage tanks, glycol dehydrators, or other
equipment with an exhaust or vent line.

Generator-powered trailer

Sample line
= 3

DNPH cartridge for
carbonyl collection

Oil and gas
equipment

) Flow control

Vacuum pump

(“

‘1'

T Nitrogen|gas \=j|'eflon bag
Flow control

Figure 2. Diagram of bag measurement technique for pneumatic device emissions or leaks.

Each sample was collected over about 30 minutes. We collected field blanks on each day of sampling.
Field blank BPE-DNPH cartridges were handled and analyzed exactly the same as normal field samples,
but they were removed immediately after being connected to sampling apparatuses in the field. Before
each sampling period, we checked the sampling apparatus for leaks by plugging the sample inlet with a
gloved hand and ensuring that the flow rate dropped to zero. We checked flow rates indicated on flow
controllers and sampling pumps against a NIST traceable standard during the study.

6.2. Laboratory Analysis

We kept BPE-DNPH cartridges refrigerated before analysis, and analyzed them within 14 days of
sampling. To prepare samples for analysis, we flushed cartridges with a 5 mL solution of 75% acetonitrile
and 25% dimethyl sulfoxide to release DNPH-carbonyls into solution. The solution was collected into 5
mL volumetric flasks, and we brought the flasks to a volume of 5ml using 0.5-1 mL of the

10
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acetonitrile/dimethyl sulfoxide solution. Finally we pipetted a 1 mL aliquot from the 5 mL flask into a 1.5
mL autosampler vial for analysis by High Performance Liquid Chromatography (HPLC).

We analyzed samples using a Hewlett Packard series 1050 HPLC with a Restek Ultra AQ C18 column and
a diode array detector. We used a mixture of acetonitrile and water as the eluent. We prepared
standards by diluting commercially-available carbonyl-DNPH standards, and calibrated the instrument
each day with a five-point calibration curve. We ran an additional standard at the beginning and end of
each analysis batch to check for retention time drift or other errors.

We analyzed a laboratory blank during each laboratory analysis period. Laboratory blank cartridges
were processed and analyzed just like normal samples, but were not taken to the field.

6.3. Air Quality Model Configuration
6.3.1. VOC speciation profiles for oil and gas emissions in Uintah Basin

We modified the 2005 update of the Carbon Bond V (CB05) speciation profiles for emissions from vent
gas for oil tank batteries and raw gas composition at well heads based on our emission measurement
data combined with hydrocarbon emission data from our literature search. In this document, we refer
to this modified speciation profile as “BRC profiles.” Carbonyls compounds that we measured were
grouped into three CBO5 species for WRF-CAMx simulations: i) formaldehyde (FORM), ii) acetaldehyde
(ALD2) and iii) and higher aldehydes (ALDX).

For the oil tank batteries emission profile, we combined carbonyl data averaged over 11 samples
collected at liquid storage tanks with hydrocarbon data averaged over ten sites found in Hendler et al.
(2009) for oil tank battery emissions. All data were converted to pg s* as available in Hendler et al.
(2009) before calculating the weight % for each species.

For the emission profile for raw gas at well heads, we combined carbonyl data averaged over four
measurements of emissions from raw gas-powered pump jack engines with hydrocarbon data averaged
over nine samples found in Viswanath and Van Sandt (1989) for well head emissions. All data were
converted to pg m* as available in Viswanath and Van Sandt (1989) before calculating weight % for each
species.

We also measured carbonyl emissions at glycol dehydrators but have not found hydrocarbon emission
data for similar sources in our literature search; therefore, in our modeling sensitivity tests with the BRC

profiles, we only modified speciation profiles for oil tank batteries and raw gas at the well head.

We conducted sensitivity tests with different VOC speciation profile sets for oil and gas emissions in the
Uintah Basin with WRF-CAMx simulations. Those profile sets included:

e Default profiles available in the EPA SPECIATE 4.3 database (EPA, 2015b)
e ARMS profiles introduced by AECOM (2013)
e  WRAP Phase Il profiles (WRAP, 2015)

e BRC profiles based on carbonyl measurement data and the literature search as described above.
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We performed all of the test runs with listed VOC speciation profiles with the same bottom-up emission
inventory (discussed in detail below) and compared them with a top-down inventory (Ahmadov et al.,
2015). In the simulations utilizing the top-down inventory, only VOC oil and gas emissions in the Uintah
Basin differed from the other simulations; other emission sources were identical. For simulations using
BRC profiles, we kept everything same as the WRAPIII profiles except that UNTO2 and UNTO3 profiles
were substituted by the profiles that we derived for raw gas at well heads and oil tank batteries,
respectively.
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Table 2. Available CB05 VOC emission speciation profiles applied for oil and gas activities in Uintah Basin, in
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addition to a speciation profile developed from emissions measurements collected during this study. Data are

shown as split factors.
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6.3.2. Model configurations

We used WRF, CAMx, and SMOKE to model meteorology, chemistry, and emissions during 15-20
January 2013.

6.3.2.1. WRF model

We ran WRF simulations with a 12-4-1.3 km nested domain (Figure 3). We only used model results of
the finest domain (1.3 km gridded resolution) for CAMx runs. Our WRF model configuration mostly
followed the well-tested configurations of Neemann et al. (2015), which included: the Thompson cloud
microphysics scheme (Thompson et al. (2008), unmodified), the Kain-Fritsch cumulus-ensemble scheme
(Kain (2004); 12-km domain only), the treatment of long-wave and short-wave radiation based on
lacono et al. (2008), the Mellor-Yamada-Janjic scheme (Janjic, 1994) for the atmospheric boundary layer
and the Noah scheme (Chen and Dudhia, 2001) for the land surface model. NAM-12km analysis data
were used as initial and boundary conditions for WRF simulations. We applied analysis nudging with
NAM data for air above the planetary boundary layer and nudging with MADIS data for the surface
layer. The default NAM-12km initial snow field (snow depth and snow water equivalent) within the
Uintah Basin and outside the basin was replaced by observational data (Neemann et al., 2015) and
SNODAS 30s data (NOHRSC, 2004), respectively, to better represent initial snow cover for the entire
finest domain. WRF vertical resolution was configured with 40 eta levels starting from the surface to
zero hPa (Figure 3). The first layer above the ground had a thickness of 18m.

CAMx domain Vertical levels

= WRF
= CAMx

Height (m)
g

[ LT T I S T S T I |

Terrain haight (m)

Figure 3. WRF-CAMx domain and vertical resolution configurations.
6.3.2.2. CAMx model

For chemistry simulations, we ran CAMx model version 6.1 using version 6 of Carbon Bond (CB6;
Yarwood et al. (2010)) for gas-phase chemistry, Tropospheric Ultraviolet & Visible Radiation Model
(TUV; NCAR (2011)) for photolysis rate calculations, the Zhang model (Zhang et al., 2003) for dry
deposition, and no surface model. The 40 vertical layers of WRF runs were interpolated into 21 vertical
layers of CAMXx runs for computational efficiency. We kept the first 10 CAMx layers the same as the WRF
layers, and expanded the 11 following CAMx layers over 30 WRF layers (Figure 3).
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6.3.2.3. Emission inventories

Bottom-up emissions of most source sectors were obtained from the Utah Bureau of Land Management
(BLM) inventory developed for the Air Resource Management Strategy (ARMS) modeling project
(AECOM, 2013). Bonanza power plant emissions and stack parameters were obtained from the National
Emission Inventory for year 2011 (2011 NEI version 1 available at
http://www.epa.gov/ttnchiel/net/2011linventory.html). We updated the ARMS inventory, which is for
base year 2010, with the 2011 NEI where appropriate. Other updates made to the ARMS inventory
include extrapolating emissions from oil and gas sectors from base year 2010 to model year 2013 using
scale factors derived from well counts and oil and gas production growth rate data over the three years.

We developed spatial surrogates for our 1.3 km horizontal resolution domain using ArcGIS software,
employing the most updated data obtained from the Census Bureau, the Federal Emergency
Management Agency, the National Land-Cover Dataset, the Utah Division of Qil, Gas and Mining, and
other sources.

We processed the emission inventory through SMOKE model version 3.5. We used temporal surrogates
developed by AECOM (2013) for oil and gas activities in the Uintah Basin for our simulations.

We adopted top-down emissions from Ahmadov et al. (2015) for oil and gas VOC emissions in the Uintah
Basin only. This emission inventory approach was based on estimates of methane emissions derived
from in situ aircraft measurements and a regression analysis for multiple VOC species relative to
methane concentration measurements at the Horsepool monitoring site in the Uintah Basin.

7. Results and Discussion

7.1. Quality Control

Field blanks during the study averaged 0.1 ug per sample, which equates to an emission rate of 0.005 +
0.002 ug s (mean + 95% confidence interval), assuming a total exhaust flow rate that is the average of
exhaust flow from all measured samples. Laboratory blanks were always zero, so a confidence interval
could not be calculated. Laboratory calibration spikes averaged 105 + 5% recovery.

7.2. Measurement Results

We consistently detected emissions of carbonyls from all measured oil and gas equipment, except from
equipment that vented raw natural gas. Figures 4 and 5 show that emissions from pneumatic pumps
consistently yielded carbonyl emissions that were below detection. We also measured emissions from
well-site building vents, where emissions within the buildings were expected to be mostly raw gas, and
we failed to detect any carbonyl emissions from these sources, either. This is in spite of measureable
total organic compound emissions from these sources, as indicated by our handheld natural gas
detector.

Each source type measured had different carbonyl speciation in exhaust gas (Figure 4). Formaldehyde

made up the majority of carbonyls emitted from pumpjack engines, while acetaldehyde was the most
abundant carbonyl emitted from glycol dehydrators. Hexaldehyde, 2,5-dimethylbenzaldehyde, and

15



A A

m UtahStateUniversity

BINGHAM ENTREPRENEURSHIP
& ENERGY RESEARCH CENTER

propionaldehyde were also commonly emitted from pumpjack engines. Liquid storage tanks and glycol
dehydrators, on the other hand, tended to emit acrolein/acetone (acrolein and acetone were not
adequately separated by our HPLC and were thus reported together), propionaldehyde, and
butyraldehyde. Since carbonyl compounds have different chemical properties and different abilities to
produce ozone-forming radicals, the speciation of carbonyl emissions can be expected to impact air

quality.
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Figure 4. Speciation of carbonyl emissions from well-site oil and gas equipment.
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Figure 5. Carbonyl emissions from well-site oil and gas equipment. Each colored portion of each bar shows
average emissions for that compound or set of compounds. The top of each bar is the average total carbonyl
emissions. Whiskers represent 95% confidence intervals.
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Figure 5 shows that emissions from pumpjack engines were several times greater than emissions from
all other measured sources. This is due mostly to greater total exhaust flow from pumpjack engines
compared to other measured sources. Figure 6 shows that concentrations of the sum of formaldehyde
and acetaldehyde in exhaust gas from glycol dehydrators and pumpjack engines were similar. In other
words, the amount of carbonyls per exhaust volume was similar. Exhaust flow rates from pumpjack
engines were much higher than exhaust flow rates from other sources, however, leading to greater
overall emissions.

3000 A
® Formaldehyde

B Acetaldehyde

2500 A
2000 -+
1500 A

1000 A

Carbonyl Concentration in Exhaust Gas (ppb)

500 -+

Glycol Dehydrator Pumpjack Engine  Liquid Storage Tank  Raw Natural Gas
Figure 6. Concentrations of formaldehyde and acetaldehyde in exhaust gas from well-site oil and gas equipment.

Raw natural gas emissions of carbonyls were below detection, indicating that carbonyl concentrations in
raw natural gas are low. Emissions from liquid storage tanks and glycol dehydrators, on the other hand,
were consistently detected. Thus, carbonyls must be added to or generated by natural gas production
processes, either within or prior to storage tanks and dehydrators. This study made no attempt to
elucidate the source of carbonyls in these processes. Carbonyl emissions were measured from liquid
storage tanks on wells where glycol, methanol, and other chemicals were added at the well head, and
degradation of these chemicals may have resulted in carbonyl formation. Carbonyl emissions were also
measured from storage tanks where chemicals were not added at the well head or at any point prior to
the storage tank, however, indicating that other processes can produce carbonyls.

It is not clear from this study which of the measured equipment types is responsible for the most
carbonyl emissions throughout the entire Uintah Basin. Pumpjack engines emitted more carbonyls on a
per-unit basis, but the number of units in the Basin is not known with certainty. If there are many more
liquid storage tanks in the Basin than pumpjack engines, liquid storage tanks may contribute more
carbonyls to the atmosphere even though their per-unit emissions are much lower. Better information
about the number and location of each equipment type in the Basin is needed to accurately assess the
overall importance of each type of equipment measured.
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This project was carried out with logistical support from several oil and gas companies. We collected
measurements in cooperation with and according to the safety and logistical requirements of these
companies. Because of this, measurements at some sites were collected differently than others. For
some condensate tanks, a 60-foot polymer line was attached to the end of the tank exhaust, and we
measured carbonyl emissions from the downstream end of this line. We suspect the use of this line may
have resulted in the loss of some carbonyls. Figure 7 shows that emissions from condensate tanks
utilizing a downstream polymer line were lower than condensate tanks overall, though it is not certain
whether this was due to differences in actual emissions or interferences created by use of the polymer
line.
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Figure 7. Carbonyl emissions from normally-operated condensate tanks, and from condensate tanks that
incorporated a 60-foot polymer line between the normal tank exhaust location and the location of exhaust
measurement. Each colored portion of each bar shows average emissions for that compound or set of
compounds. The top of each bar is the average total carbonyl emissions. Whiskers represent 95% confidence
intervals.

Exhaust from liquid storage tanks operated by different companies was plumbed differently, forcing us
to adapt our emissions measurement system to fit different configurations. In some cases, we
measured emissions from liquid storage tanks after a pressure-relief valve that kept the tank at a
pressure greater than ambient. In other cases, we bypassed pressure-relief valves and measured
emissions without them. Figure 8 shows the results of a test wherein we measured emissions from two
tanks, once at each tank when the pressure relief valve was in place and once when it had been
bypassed. Bypassing the pressure relief valve did result in higher carbonyl emissions, but the difference
was not statistically significant.
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Figure 8. Carbonyl emissions from two liquid storage tanks that incorporated a pressure-relief valve, and from
the same two storage tanks, but with the pressure-relief valve bypassed during measurements. Each colored
portion of each bar shows average emissions for that compound or set of compounds. The top of each bar is the
average total carbonyl emissions. Whiskers represent 95% confidence intervals.

7.3. Limitations of Measurements

Very few measurements of carbonyl emissions from oil and gas sources have been made before this
study, and this study provides much-needed information to understand the sources of carbonyls during
Uintah Basin winters. Measurements collected in this study have a number of limitations, however:

e While measurements were collected from well sites belonging to several different companies,
the total number of measurements was few. This study included 11 glycol dehydrator
measurements, 12 condensate tank measurements, 5 oil tank measurements, 6 water tank
measurements, 8 raw gas measurements, and 4 pumpjack engine measurements. More
measurements from more pieces of equipment are needed to confirm the results obtained in
this study. Figure 5 shows that 95% confidence intervals for emissions measurements were
large relative to average emission rates. This is partly because the equipment measured
exhibited substantial variability, but it is also because the number of measurements was small.
More measurements will result in greater confidence in average emission rates.

e Measurements were collected only from well-site equipment. No measurements of emissions
from other equipment, such as compressor stations, midstream glycol dehydrators, gas
processing facilities, oil and gas waste disposal facilities, etc., have been collected. We also did
not measure emissions from well-site burners and heaters. Carbonyl emissions from these
sources are completely uncharacterized, and the emission rates we measured may not be
representative of emissions from these sources.
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e Measurements were collected of carbonyl compounds only. To apply these measurements to
VOC speciation profiles needed for air quality modeling, we must assume non-carbonyl organic
compound emissions from these facilities are similar to those measured in other studies. Also,
measurements of alcohols were not collected, and are needed because alcohols may degrade

into carbonyls in the atmosphere.

7.4. Application of Measurement Results in an Air Quality Model

Our analysis focused on the Ouray and Seven Sisters sites, which are close to oil and gas activities, so we
could see the more obvious effects of VOC speciation profiles on ozone concentrations.

At both sites, the model run that used the default speciation profiles (Table 2) yielded the highest ozone
concentrations (Figure 9). These profiles apply a flaring profile, which speciates 20% of total VOC into
formaldehyde, to non-flaring source categories, and we surmise that the high formaldehyde emissions
generated by these profiles leads to higher ozone. The remaining runs strongly underestimated ozone
concentrations, especially by the end of the studied episode when observed ozone started to build up
(Figure 9). Although ozone predicted by the model run that utilized the default speciation profile agreed
better with the observed data, we hypothesize that it was “right for the wrong reason,” especially given
the application of a flaring speciation profile to non-flaring emission sources.

The runs utilizing the WRAP-IIl and BRC profiles yielded almost same results (Figure 4) although the
UNTO02 and UNTO3 significantly differed from UNT02-BRC and UNTO03-BRC, respectively, on most of the
modeled species (Table 2). The two profiles agreed well, however, in that the carbonyl emissions of
both were very low compared with hydrocarbon emissions. The model run that utilized the ARMS
profiles predicted higher O3 concentration compared to the WRAP-IIl and BRC runs. This is likely due to
the fact that some of the non-flaring emission sources were still inappropriately assigned with a flaring
profile in the ARMS profiles (Table 2).
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Figure 9. Temporal evolution of simulated and observed ozone concentration at Ouray (top) and Seven Siters
(bottom). Ozone concentrations were produced by CAMx simulations that were identical except that they
utilized different emissions inventories. Default_spc, ARMS_spc, WRAPIII, and BRC utilized the same bottom-up
inventory, but allocated VOC emissions with different speciation profiles. TopDown utilized the VOC emissions
inventory developed by Ahmadov et al. (2015). Information about each profile is given in Table 2 and the text.
03_obs indicates ozone observations at the two sites.

The model run that utilized emissions from Ahmadov et al. (2015) yielded higher ozone than the WRAP-
[l and BRC runs, possibly because of higher formaldehyde emissions. Total formaldehyde emissions
from oil and gas activities over the entire Uintah Basin are about 268 ton/yr according to the inventory
that utilized the WRAPIII speciation profiles and are 576 ton/yr in the Ahmadov et al. (2015) inventory.
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Since formaldehyde emissions in the latter inventory were derived based on the regression of ambient
air formaldehyde with methane concentrations collected at a monitoring site, we believe carbonyl
emissions in this inventory include both primarily emitted carbonyls and carbonyls that were actually
produced secondarily in the atmosphere. In other words, the Ahmadov et al. (2015) inventory likely
incorrectly categorizes secondary carbonyl production as primary carbonyl emissions, resulting in an
overestimate of actual emissions.

Because of the obvious inaccuracies in the default speciation profiles (discussed above), and the fact
that our own measurement results match low-carbonyl profiles best, we feel that use of the default
profiles is inappropriate. Model runs utilizing the default profiles probably better match observed high
ozone because the extra formaldehyde generated by the default profiles compensates for other
deficiencies in the model that are preventing ozone buildup. Any of a number of model deficiencies
could be confounding our results with low-carbonyl profiles and leading to low modeled ozone. These
could include an overestimation of NOx, which could lead to too much nighttime NOx titration,
meteorological errors that lead to too much dilution of generated ozone and precursors, not enough
total VOC emissions or alcohol emissions, or other factors.

8. Conclusions

Carbonyls are emitted from combustion-related and non-combustion equipment used by the oil and gas
industry in the Uintah Basin. The processes by which carbonyls are added to or generated within non-
combustion equipment are not clear. Emissions of carbonyls from all of measured equipment types are
low, and emissions inventories that incorporate our emissions measurement results are not able to
simulate observed high wintertime ozone. The following additional work is suggested:

e More measurements of carbonyl emissions. Additional measurements are needed from the
same types of equipment measured in this study to confirm this study’s results. Measurements
from additional sources are also needed, including but not limited to compressor stations,
midstream glycol dehydrators, gas processing facilities, oil and gas waste disposal facilities,
heaters, burners, and flares. Measurements of speciated hydrocarbon emissions and alcohol
emissions should be made simultaneously with carbonyl emissions measurements.

e Additional verification of air quality models used to simulate wintertime ozone production.
Current models may be unable to simulate high ozone during winter inversions because of other
model inadequacies, rather than because of incorrect carbonyl emissions. Specific tasks could
include:

0 Verification that meteorological simulations accurately simulate the vertical and
horizontal structure of inversions, including air transport within the inversion and
transport of clean air into the inversion. Verification of other meteorological
phenomena simulated by models could also be pursued, such as cloud cover.

0 Comparison of modeled ambient air concentrations of a number of key chemicals with
measurements from many sites within the Basin, rather than just the Horsepool site.
Comparisons of measured and modeled concentrations of carbonyls, hydrocarbons, and
reactive nitrogen compounds would provide a wealth of information to help determine
whether models are accurately simulating emissions and chemistry.
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9. Final Dataset

A final dataset of collected measurement data, in Microsoft Excel format, is available with this report.
Please contact Seth Lyman at seth.lyman@usu.edu to obtain a copy of the final dataset.
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