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Chapter 1

Model Overview

1.1 Introduction

The goal of this model is to forecast, with uncertainty estimates, all of the one-time and ongoing sources of

emissions from oil and gas operations in Utah’s Uinta Basin. The basic structure and design of the model is

summarized in Figure 1.1. Broadly speaking, there are three stages to the modeling process: collection (and

sometimes processing) of source data, data analysis, and finally performing a Monte-Carlo (MC) simulation.

The major steps in each component of the model are discussed below, followed by a general overview of the

model’s file structure and code layout.
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Figure 1.1: Model Diagram. Acronyms used in figure stand for: oil and gas emissions inventory (OGEI),
cumulative distribution function (CDF), cumulative probability table (CPT), and regression (Reg.).

1.2 Source Data Collection

The two primary data sources used by the model are the U.S. Energy Information Administration (EIA)

for energy price histories and forecasts, and the Utah Division of Oil, Gas and Mining (UDOGM) for well

drilling and production histories. The sources of required data files are discussed in detail in the function

descriptions of Chapter 3 wherever external data sources are used. EIA data sources are spread across a

number of different websites and reports, consequently the user must pre-process and format the source

data into comma-separated variable (csv) files. Template spreadsheets, built with Google Spreadsheets,

are available and their use is discussed in the descriptions of the functions that use their data output.

UDOGM database files require less pre-processing outside of R, however the user is still required to download

the source database files from UDOGM’s Data Research Center website (https://oilgas.ogm.utah.gov/

Data_Center/DataCenter.cfm) and to run their executable files to extract the database files into a *.dbf

file format. Source data for published emission factors (used for activity-based emission factor calculations)

are taken from Wilkey et al. [2016]. Equipment-based emission factors rely on the oil and gas emissions

inventory (OGEI) database, available from the Utah Division of Air Quality (UDAQ).

1.3 Data Analysis

Source data is primarily analyzed to generate:
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• Cumulative distribution functions (CDF), which are a function that describes the probability that a

certain term will have a given value between the minimum and maximum value for that term.

• Cumulative probability tables (CPT), which are a table containing (a) every unique combination of

values from a larger database table and (b) a count of how many times each unique combination occurs.

• Least-squares regression, where a term is modeled as a function of a set of predictor variables with

coefficients fitted to minimize the error between the model output and the term’s observed values.

Most of the data analysis functions in the model are designed to produced CDFs for the terms used in the

MC simulation. The primary functions that involve regression are the drilling schedule models, which fit

a set of functions that predict the number of wells drilled as a function of energy prices, and the decline

curve analysis functions, which fit both hyperbolic decline curves and cumulative production curves to the

production histories for each well in the Uinta Basin. The data analysis functions are designed so that their

results are saved to disk upon function completion; therefore they only need to be run whenever the source

data files are updated.

1.4 Monte-Carlo Simulation

Monte-Carlo (MC) simulations are a form of modeling where terms in the model are picked randomly and

independently from CDFs. If this random selection is repeated a sufficient number of times then the set of

sample iterations will produce a range of outcomes that are representative of all the possible model outcomes

(without having to actually solve for all possible combinations of the model input parameter terms). For

each iteration (i.e. run) of the MC simulation, the model performs the following algorithm:

1. Generate an energy (oil and gas) price forecast

2. Calculate how many new wells are drilled in response to the energy price forecast

3. For every well (new and existing)

(a) Pick well attributes (well depth, location, emission factors, etc.)

(b) Calculate production rates

(c) Calculate emissions from drilling and production

4. Sum together results for all wells to find total oil, gas, emissions, etc., for the given run of the MC

simulation

Details of the MC simulation functions and their options are described in Chapter 4.

1.5 Programming Language, Software, and File Structure

The programming language used by the model is R, which is an open source language designed specifically

for statistics and data analysis. R can be downloaded for your choice of operating system from https://www.
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r-project.org/. While the only requirement for running the model is that the user must have R installed on

their computer, the capabilities of the model are greatly enhanced with the following recommended software

tools:

• RStudio (https://www.rstudio.com/)

An integrated development environment (IDE) for programming in R. Greatly improves the user in-

terface for coding in R in addition to providing version control tools for Git and SVN repositories.

• Git (https://git-scm.com/)

For version control (i.e. tracking and managing code changes in model scripts and function files).

• Any cloud version control repository (Bitbucket, Github, etc.)

Cloud hosting of the Git repository allows for code backup and for easy distribution of coding changes

between multiple users.

• Any cloud data service (Dropbox, Google Drive, etc.)

For storing source data files and data analysis results. Placing both the code repository and data files

in the cloud is recommended (a) to improve the portability of the model, (b) to allow multiple users

to work with the code simultaneously, and (c) to reduce the risk of code and/or data loss.

The model is comprised of four primary scripts. The first script is main, which performs the following

functions (all of which are discussed in detail in Part II):

1. Establishes the global environment (e.g. setting file paths, loading libraries and functions, etc.).

2. Runs data analysis functions (or loads the results of a previous analysis).

3. Runs the MC simulation.

4. Saves specified results from the MC simulation.

5. Performs specified post-processing steps (primarily generating predefined plots).

The second script is IO options , which contains and summarizes (nearly) all user input options and which

is discussed in detail in Part III. Additional input options for equipment-based emission calculations are

contained in the third script, EF options (discussed in Part IV). The goal of splitting up the scripts this way

is that the user should be able to set all of their desired modeling options and preferences in IO options and

EF options, then run main, without having to search for or make any modifications to the function calls in

main itself.

The fourth and final script is postProcess, which calculates the percentiles of the MC simulation results

and generates a variety of predefined plots (e.g. production volumes of oil and gas, drilling rates, emissions

by species and equipment, etc.). Detailed information about postProcess is available in Part V.

All other minor scripts not covered above are discussed in Part VI.
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Part II

main
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Chapter 2

Global Options

The global options are contained in Section 1.x of the main script. The primary purpose of this code segment

is to:

1. Define the file path structure used in all subsequent sections of the model.

2. Load (or “source”) all of the functions used by the model.

3. Load packages.

4. Set and load options.

5. If specified, load saved model results and stop further execution of the main script.

2.1 File Paths

The file structure for the model is divided into two sections: (1) a Git folder, which contains all scripts and

functions that are tracked with version control, and (2) a “Dropbox” or cloud data service folder, which

contains all pre- and post-processed data. The specific file paths and their intended purposes are listed

below:

1. “raw”

Location of all the raw data which is processed in the 2.x Data Analysis segment of main, most notably

all of the UDOGM database *.dbf files.

2. “data”

Location where all the processed data is saved after the 2.x Data Analysis segment.

3. “look”

Only used in the dogmDataUpdate function, this folder contains a single csv file that specifies a name

replacement pattern for use with formatting strings from the UDOGM database files.

14



4. “plot”

Destination folder for all plots saved to portable document format (pdf) by the model, including well

decline curve fits, MC results, etc.

5. “work”

The working directory for the model (i.e. file folder that will be specified as the default location of any

load or save file commands). By default this is set as the same directory as the location of the main

and the other primary scripts in the model (IO options, EF options, and postProcess).

6. “fun”

Location of all function files besides (other than those located under the “work” directory).

7. “plotfun”

Sub-folder of “fun” folder, containing scripts called by postProcess that generate CDFs and boxplots

of decline curve coefficients.

Assuming that future users keep the same file/folder structure used at the time of the model’s release, the

only items that need to be changed in the 1.1 Paths section of main are the locations of the Git (pwd.git)

and Dropbox (pwd.drop) folders.

2.2 Functions

After setting the file paths, the next step in the global options segment is to source all of the functions that

are used every time the model is run. The functions that are utilized on every run are (a) the functions

in the MC simulation (all code sections labeled as 3.x), and (b) utility functions that are used repeatedly

throughout the model. The functions used in Section 3.x are discussed in Chapter 4. The global utility

functions are discussed below.

2.2.1 clipboard

This function copies an object in R (value, vector, data.frame, etc.) to the clipboard so that it can be pasted

into a different program, and in particular, for copy/pasting data from R into Excel. The function is based

on an article by Landgraf [2014], with modifications so that it works on a variety of operating systems (the

default operating system is Windows, but other options enable use of the function in Mac and Linux). To

use, simply place any R object inside the function call:

clipboard([any object in R])

Note that by default column names are also copied (suppress by including clipboard(..., col.names =

FALSE) in the function call). Additionally, there are size limits that prevent copying large objects to the

clipboard. If you encounter the size limit, an error message will be displayed and another exporting option,

such as write.csv, must be used.
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2.2.2 inf adj

This function inflation adjusts a cost value using Equation 2.1:

C = Co

(
I

Io

)
(2.1)

where C is the cost, I is the cost/inflation index, and the subscript o indicates the base value of C or I.

The only cost index used in this model is the Consumer Price Index (CPI) [U.S. Bureau of Labor Statistics,

2015].

2.2.3 CDFd and CDFq

These two functions are designed to calculate the CDF for set of values stored in a vector object. CDFd

accomplishes this task by:

1. Calculating the probability density function (PDF) calculated by R’s density function. The additional

inputs in CDFd are passed to the density function call.

2. Taking the cumulative sum of the PDF and multiplying it by the PDF’s step size.

3. Dividing the cumulative sum by the maximum value in the summation to normalize the result.

Initially, CDFd was the sole method used for estimating CDFs. However there is a subtle problem with

CDFd. The density function estimates the PDF by drawing a Gaussian distribution (or other user-specified

distribution) over each point in the input vector, and then sums together the overlapping distributions to

determine the total PDF. As a result the PDF will be nonzero outside of the range of values in the input

vector. For example, suppose that the input vector is the initial production rates for oil (bo in the hyperbolic

decline curve equation or Cp in the cumulative production equation, which are discussed later in detail in

Section 3.10), and further suppose that the values (generated from a random normal distribution with mean

= 50 and standard deviation = 20) were as follows:

32 39 35 31 61 53 35 17 7 17 36 74 25 22 61 65 60 37 51 18

A plot of the CDF for this sample set is shown in Figure 2.1. Note that the CDF curve extends to negative

initial production rate values (the cumulative probability of a negative number occurring in for this sample

set is 2%), which is an impossible result (no well should have negative production volumes). The “from” and

“to” inputs in CDFd were included specifically to fix this issue by clipping the results from density to just

the range between “from” and “to.” However it was later discovered that limiting the output range doesn’t

change the PDF result, and normalizing to the limited range skews the CDF so that random draws from

that CDF won’t reproduce the distribution of the input vector.
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Figure 2.1: Example plot of the cumulative distribution function (CDF) calculated by R’s density function.

After discovering this issue, an alternative method for generating CDFs using another function in R,

quantile, was written. The quantile function returns the value of the input vector’s CDF at a speci-

fied cumulative probability. For example, the value of the example initial oil production vector specified

above at a cumulative probability of 0.5 (i.e. the median or 50th percentile) is 35.5. However any number of

probability points can specified, so by simply inputing the full range of cumulative probabilities (from 0 to

1), quantile will return the CDF. The CDFq function does exactly that and reformats the result to match

the output of the CDFd function. A comparison of the CDFs calculated by both CDFd and CDFq from the

example input vector is shown in Figure 2.2. While the output from CDFq looks choppy (due in this instance
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to the low number of data points in the input vector), it appropriately limits the CDF to the minimum and

maximum values in the input vector (7 and 74), and any random draws from it will reproduce the same

distribution as the input vector.
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Figure 2.2: Comparison of the CDFs calculated on the basis of the density or quantile function.

In summary, CDFd was the original method used for calculating CDFs for all terms in the model. However we

subsequently found that random draws from CDFs generated by CDFd did not match the distributions used

to create them. CDFq was then developed as an alternative method for generating CDFs. CDFq limits the

CDF values to the minimum and maximum values in the original data set, and reliably reproduces the same

distribution used to create it. By default, all CDFs in the model are now generated using CDFq, however
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CDFd has been retained as an alternative method.

2.2.4 asYear

This function takes any date object in R and converts it to a numeric year value. For example, if the function

was given the following date object (for January 15, 2016, following R’s YYYY-MM-DD format for date

objects):

‘‘2016-01-15’’

then the function would return the numeric value 2016.

2.2.5 NAoverwrite

This function finds and replaces any NA values in a vector or matrix object with a specified replacement

value (by default the replacement value is 0). It is primarily used to remove NA values from the CPTs used

to calculate equipment-based emissions (see Section 3.14), and is intended to prevent the propagation of NA

values through that calculation process.

2.2.6 calTstep

This function is used to convert calendar dates in the input option files (particularly those in EF options)

into the equivalent integer time step value used in the MC simulation using the formula:

tstep = 1 + round

[
dt(tdate − tstart) ∗

12

365.25

]
(2.2)

where tstep is the equivalent MC time step of the calendar date tdate, tstart is the start date of the MC

simulation, dt is the function difftime (a built-in function in R for calculating the difference in time between

two date objects), and round is a rounding function which returns the difftime result as an integer. For

example, suppose that the MC simulation started on January 1, 2015. This date would therefore be taken

as the value for tstart and time step 1 of the model. If the user specifies that a pollution reduction for VOC

emissions from tanks begins on the month of Jan. 2017 (which would be taken as the value for tdate), then

calTstep would calculate the equivalent time step of that calendar date in the model as:

tstep = 1 + round

[
(731days) ∗ 12

365.25

]
= 25 (2.3)
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2.3 Packages

Packages provide additional capabilities and functions not included in the base installation of R. All of the

packages used in the model are loaded in Section 1.3 of main. A list of the packages utilized and their

purpose is shown in Table 2.1. Packages are loaded using the library function, however the package must

be installed before it can be loaded. R packages can be automatically downloaded and installed via the

command:

install.packages("[package name]")

Replace [package name] with the name of the package you’d like to install. Alternatively, if you are using

RStudio you can use the menu option “Tools → Install Packages. . . ” to perform the package installation

process.
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Table 2.1: Packages utilized by the model and their purpose.

Package Source Purpose

foreign R Core Team
[2015b]

Enables use of read.dbf function, which allows R to read in
UDOGM database files (which are all saved as *.dbf files).

plyr Wickham [2011] Used in pre-processing of UDOGM database files, specifically the
ddply function, to combined the production from different zones
of the same well into a single total production record for each well
in each month.

zoo Zeileis and
Grothendieck
[2005]

Tools for analyzing time series data, such as merging different
data sets by a common date index, or calculating
monthly/quarterly/annual averages, rolling averages, etc.

data.table Dowle et al.
[2014]

Can be used to create a special kind of data.frame called a
data.table, which enables quick indexing and function application.
Primarily used in the dogmDataUpdate function.

sqldf Grothendieck
[2014]

Allows use of SQL queries in R. Used extensively throughout the
data analysis section.

minpack.lm Elzhov et al.
[2013]

Allows use of nlsLM function, which is a nonlinear solver that
uses the Levenberg-Marquardt algorithm. nlsLM is used for
fitting all decline curves.

scatterplot3d Ligges and
Mächler [2003]

Used for plotting 3D scatterplots in postProcess.

beepr Baath [2015] Quality of life feature, enables R to audibly “beep” at the user at
the conclusion of the model run.

fitdistrplus Delignette-
Muller and
Dutang [2015]

Enables use of the fitdist function, for fitting the parameters of
known distributions (i.e. Gaussian, gamma, log-normal, etc.)
using least squares. Used for projecting the future CDFs of
certain decline curve coefficients.

lhs Carnell [2012] Latin hypercube sampling (LHS) package for use with optim

function to pick range of starting parameter values for (3.3) in
drillingModelUpdate function.

xtable Dahl [2014] Used to export R objects as formatted LATEX tables.

devtools Wickham and
Chang [2016]

Required by openxlsx package (provides necessary zipping tools).

openxlsx Walker [2015] Used to export equipment-based emissions results to Excel in
postProcess script.

forecast Hyndman [2016] Provides functions for performing ARIMA fitting and forecasting.

Rtools R Core Team
[2015a]

Rtools is a separate programs required by devtools. It is not a
package, and must downloaded and installed from CRAN the
same way that R itself is installed.

2.4 Set and Load Options

Finally, the last step of the Global Options section is to set several important options:

21



• options(stringsAsFactors = FALSE)

By default, R treats character strings in imported text files as “factors.” Factors are used in R as

categorical variables. For example, several of UDOGM’s database files have a column for well type, in

which oil wells are specified as “OW” and gas wells as “GW”. If this column was typed as a factor,

and you subsequently tried to find the mean cumulative oil production from all wells in the database,

R would differentiate between oil and gas wells and return the mean of both individually but not

collectively, which may or may not be a problem depending on how the rest of your code was setup. In

this model we have elected to write the code such that we explicitly define the levels in our analysis,

rather than relying on R to implicitly define them.

• source(‘‘IO options’’)

This command loads all of the options set in IO options.

• source(‘‘EF options’’)

This command loads all of the options set in EF options.

• set.seed(1)

This command sets a seed for R’s random number generator so that the results of any MC simulation

can be reproduced. Random number generation in R always follows a sequence determined by the

seed number. By specifying a seed number, randomly generated numbers will always follow the same

sequence. Any number can be used, 1 is entered as the default.

• Loading saved results (if(opt$load.prior == TRUE) {...})

If specified by the user, this section of the code loads previously saved model results, cancels further

execution of the main script, and prints the loading message to the console.

• writeLines and runstart

These two commands print a message to the console to inform the user that the data analysis section

of the model is about to commence. The start time of the data analysis section is saved as runstart,

and is subsequently used to calculate the total data analysis run-time.

22



Chapter 3

Data Analysis

Section 2.x of the model contains all of the data analysis functions in the model. In general, the functions

in this segment load an external data source, format and/or restructure that input data, and finally analyze

that data to produce a CDF, CPT, or regression model. The updating functions are structured such that

main will run the function if its update flag in IO options is set to TRUE. This allows the user to run the

update functions when new data is available, and otherwise to save on model computation time by simply

loading the results of the last call to the update function. Each of the functions in Section 2.x are described

below.

3.1 dogmDataUpdate

This function is used for extracting the information contained in UDOGM’s *.dbf database files proddata,

welldata, and histdata into a format usable by R (*.rda). As discussed in Chapter 1, these source database

files are available for download from UDOGM’s Data Research Center website (https://oilgas.ogm.utah.

gov/Data_Center/DataCenter.cfm) [Utah DOGM, 2015]. In addition to extracting the database files, this

function also merges the database files together into a single data.frame called production and adds several

columns for subsequent analysis. The UDOGM database files contain the following information:

• proddata

– Fourteen columns with one row for every production zone in every well in Utah for every month

that well or well zone has been in operation.

– Contains all of the production records (oil, gas, and water) and number of days each well and/or

well zone was in operation.

– Production records extend from the present back to 1984.

• welldata

– Forty one columns with one row for every well in Utah
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– Contains all well attributes tracked by UDOGM (location, surface lease owner, well type, etc.)

and cumulative production volumes for all wells.

– Information given is the present status of each well. For example, a well might be listed as a

water injection well in welldata, but that well could have previously been in operation as an oil

or gas well.

• histdata

– Thirty one columns with one row for each well event that has been reported to UDOGM.

– Well events include any event related to work on drilling and well workovers or changes, such as

APD approval, spudding, completion, date of first production, well depth, 24 hour production

test method and results. etc.

– This database contains well event records from as early as 1924 to the present, but in most cases

well events are only partially reported.

Any wells producing from multiple zones have the production records from all zones summed together so

that there is only one total production record from each well in each reporting period. Additionally, since

the main item of interest in histdata is the original well type, only the first entry for each well in that

database is kept in the merged data.frame production. Finally, after either updating the database files or

loading the saved results from the last time that the dogmDataUpdate function was run, the script creates

a subset p of production that contains only those wells located in Uintah or Duchesne counties. Note that

this subsetting step occurs outside of the updating function so that both production and p are available in

the model workspace.

3.2 scheduleUpdate

This function generates the CDFs for a well’s field location, well type, surface lease type (federal, state,

tribal, or fee), and well depth. The first step in the function is to create a summary data.frame called well

with one row for each unique well in p with columns for its date of first production, field number, well type,

surface lease type, and measured well depth. well is then subsetted to selected only those wells that were:

1. Drilled within a specified timeframe.

2. Have a measured well depth greater than or equal to some minimum cutoff.

3. That were either an oil well, gas well, or dry well when they were first drilled (as reported in histdata).

One of the key assumptions in our model is that the characteristics of new wells (production rates, depth,

surface lease ownership, etc.) will be the same as those of existing wells drilled in the same geographically

area. The geographical area that we have elected to use are “fields”, which are designations used by UDOGM

to distinguish between different oil and gas production regions. Each field in UDOGM’s database has a

unique name and number (although typically just the field number is used in most database tables). A
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list of the top ten largest fields present in the Uinta Basin (based on number of wells and percentage of

oil and gas production) are shown in Table 3.1. A full listing of UDOGM recognized fields is available

at https://oilgas.ogm.utah.gov/pub/Publications/Lists/field_list.pdf. Note that just a small

portion of the fields in the Uinta Basin are responsible for the majority of both the drilling and production

activity (especially for gas production), which implies that:

1. By analyzing just a few fields individually, we can cover the majority of the oil and gas activity in the

Uinta Basin.

2. Since there are very few wells in most fields, there won’t be many observations to base CDFs on for

most fields. Any CDFs for fields with less than approximately 150 wells are highly likely to have rough

and/or discontinuous CDFs (similar to the example CDF shown in Figure 2.2).

Table 3.1: Top 10 largest UDOGM fields by well counts and production (from Jan. 1984 to May 2015).

Field Name Field # Oil Wells Gas Wells All Wells Oil (%) Gas (%)

Natural Buttes 630 73 5436 5509 6.15 68.41

Monument Butte 105 2242 15 2257 15.70 2.81

Brundage Canyon 72 842 21 863 5.28 2.88

Altamont 55 589 19 608 17.76 4.36

8 Mile Flat North 590 419 38 457 2.59 0.90

Bluebell 65 399 8 407 23.71 3.57

Wonsits Valley 710 135 241 376 3.95 2.41

Red Wash 665 230 98 328 4.64 2.00

Antelope Creek 60 324 2 326 2.20 0.39

Pleasant Valley 115 190 1 191 1.22 0.28

All Other Fields — 1554 952 2506 16.79 11.96

For both of these reasons, we only want to analyze a few fields individually, and any wells located in other

fields can be lumped together in a catch-all field category (defined as Field 999). The user input that

accomplishes this task is the field.cutoff input, which specifies the minimum fraction of wells in the

Uinta Basin that a field must have in order to be analyzed individually. scheduleUpdate counts the number

of wells in each unique field in the well data.frame, determines the fraction of wells in each field, selects the

fields with fractions greater than or equal to the value of field.fraction, and saves out the result as the

vector field, which is used as an input in many other functions in the data analysis section.

Through trial and error, the best value found for field.cutoff (for the purposes of cross-validating against

the 2010-2014 time period) was 0.05, which results in analyzing Fields 72, 105, and 630 individually. Field

25

https://oilgas.ogm.utah.gov/pub/Publications/Lists/field_list.pdf


55 and 65 were excluded (despite their large oil production percentages) because as of Dec. 2009 these fields

had only 153 and 161 wells (2% of the total 7,641 wells in the Uinta Basin at that time), respectively. All

other fields were either too small to analyze individually or were found to produce unusable CDFs.

Having selected which fields will be analyzed individually (and which will be included in Field 999), we

can now calculate the first CDF needed in the model, cdf.ff, which gives the probability that a new well

will be located in any given field in the Uinta Basin. This is determined the same way that field fractions

are calculated, except that only the field fractions in the individually analyzed fields are determined and

the difference between their fractions and the total well count in the Uinta Basin are used to find the field

fraction for Field 999.

Given that a well is located in a certain field, the next set of probabilities that must be determined is whether

a new well is an oil well, gas well, or dry well. The algorithm that accomplishes this counts the number of

wells that were initially reported as being: (a) dry, (b) gas, and (c) the total number of wells. From these

counts, the function next determines the probability for a well being dry. If the well is not dry, then there

is another probability that it will be a gas well, and finally if it isn’t a gas well then its an oil well. This

process is repeated for each field. These probability picks are cumulative, such that by randomly drawing

a number between 0 and 1 and checking which interval that number lies within you can find the well type.

For example, suppose that the probabilities were 0.01 of being dry and 0.40 of being a gas well. Any number

pick between 0 and 0.01 will be a dry well, between 0.01 and 0.40 a gas well, and greater than 0.40 will be

an oil well. In reality, none of the fields analyzed in the Uinta Basin from Jan. 1984 to the present have ever

reported a well as being dry initially, but the function provides for that possibility.

The last two factors to be determined in scheduleUpdate are surface lease ownership type and well depth.

UDOGM identifies four different types of surface lease ownership: federal, Indian, state, and fee (i.e. private

land). The probabilities for each type of surface land ownership are calculated off of the well data.frame by

field. Well depth CDFs are also calculated from well, but they are based on well type (oil well or gas well)

and not field because there are no clear trends or differences in well depths by field.

3.3 EIApriceUpdate

This function loads an externally pre-processed *.csv file with EIA wellhead oil and gas price histories and

formats the data for use with other parts of the model. The code in this function is fairly simple, and the

only modification made to the input data is an inflation adjustment step that uses the inf adj function (so

that the model can potentially use a different CPI index value than the one used in the *.csv file). The result

is saved out as a data.frame called eia.hp. The actual work in this data analysis step is pre-processing the

source data from EIA. A template spreadsheet that accomplishes this task is available at:

https://docs.google.com/spreadsheets/d/1S1M6RD3QXHewViG-7stioRxxzDDZvSKBHUe4YEVH-CU/edit?usp=

sharing

Monthly UT crude oil first purchase prices (FFP) from July 1977 to present are available from U.S. Energy

Information Administration [2015d] at http://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=pet&
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s=f004049__3&f=m, and are entered in the example spreadsheet in column C of the “Data & Calc - Monthly”

worksheet. The only change necessary is to adjust these nominal prices for inflation using U.S. Bureau of

Labor Statistics [2015] CPI data (entered in column B). Wellhead gas prices are more complicated because

there is no single consistent monthly price source for Utah. The data sources used to infer Utah’s natural

gas wellhead prices are:

1. Utah Natural Gas Wellhead Price [U.S. Energy Information Administration, 2015c]: http://tonto.

eia.gov/dnav/ng/hist/na1140_sut_3a.htm","http://tonto.eia.gov/dnav/ng/hist/na1140_sut_

3a.htm

While complete and direct, this data source only gives the annual average wellhead price.

2. U.S. Natural Gas Wellhead Price [U.S. Energy Information Administration, 2015b]: http://www.eia.

gov/dnav/ng/hist/n9190us3A.htm","http://www.eia.gov/dnav/ng/hist/n9190us3A.htm

This source gives monthly wellhead prices, but is currently incomplete (covers time period Jan. 1976

to Dec. 2012) and it’s unclear if it will ever be updated.

3. Henry Hub Natural Gas Spot Price [U.S. Energy Information Administration, 2015a]: http://www.

eia.gov/dnav/ng/hist/rngwhhda.htm","http://www.eia.gov/dnav/ng/hist/rngwhhda.htm

The Henry Hub price isn’t the first purchase price (FFP) for natural gas, and it isn’t local to Utah,

but it is the only up to date monthly price list for natural gas available from EIA.

Given the available data sources, the process for calculating natural gas wellhead prices in Utah is as follows:

1. Find the average ratio of (Utah)/(U.S.) natural gas wellhead prices on an annual basis.

2. Multiply all monthly U.S. natural gas wellhead prices by that ratio to find the Utah wellhead price.

3. Once the U.S. natural gas wellhead price data ends, use the average ratio of (Henry Hub price)/(U.S.

wellhead price) to find the U.S. wellhead price after Dec. 2012.

The final result is given on the worksheet labeled “CSV Export - Monthly”. The data on that worksheet

should be exported to a *.csv file labeled “EIA HistPrices.csv” located in the “raw” data filepath.

3.4 leaseOpCostUpdate

This function fits a least squares model to lease equipment and operating cost estimates published by EIA

for domestic oil and gas operations between 1994 - 2009 [U.S. Energy Information Administration, 2010].

The source data is contained in multiple tabs of an Excel spreadsheet, which were reformatted into a *.csv

file with the following columns: year, consumer price index (CPI), nominal price (nominal $/bbl), real price

(2009 $/bbl), well depth (ft), production rate (for gas only, units of MCF/day or MCFD), and lease operating

costs (2009 $/year). The original costs in 2009 dollars are adjusted for inflation to a 2014 dollar basis and

then the data is fit with the following equations for both equipment and operating costs:
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LCoil = aOP + bD + c (3.1)

LCgas = aGP + bD + cPR+ d (3.2)

where LCoil and LCgas are the lease equipment or operating costs for oil and gas wells, respectively, OP is

oil price (in 2014 $/bbl), GP is gas price (in 2014 $/MCF), D is well depth in feet, PR is gas production

rate (in MCFD), and all other variables are fitted coefficients.

Since this report has been discontinued by EIA, there is likely no need to revise or change any of the inputs

to this function in the future.

3.5 drillingModelUpdate

The number of wells drilled each month in the Uinta Basin can be modeled as a function of past and present

energy prices. In economics, these kind of functions are referred to as distributed-lag models. This function

fits each of the following forms of distributed-lag models to the drilling history in the Uinta Basin:

Wt = aOPt + bGPt + cWt−1 + d (3.3)

Wt = aOPt−1 + bGPt−N + c (3.4)

Wt = aOPt−N + b (3.5)

Wt = aGPt−N + b (3.6)

In the equations above W is the number of wells drilled (oil, gas, or dry), t is the time step (in months), OP

is the FPP of oil in Utah ($/bbl), GP is the FPP of gas in Utah, and all other terms are fitted coefficients.

The drillingModelUpdate function fits each of the above equations simultaneously over the specified time

period so that the user can later choose between any of the models in the MC simulation. Note that the

fitted coefficient N is an integer value. Equations (3.4)-(3.6) are fitted for all values of N from 1 to the

maximum time-lag value specified in IO options, and the value of N that produces the smallest residual

error is automatically selected for subsequent use in the model. Equation (3.3) uses a fixed value of N = 1

for the prior well term because doing so effectively applies exponential smoothing to the entire price history

up to the time step t as discussed in Lozada and Hogue [2008].

Equations (3.4)-(3.6) all use R’s built in linear regression function lm. However since Equation (3.3) involves
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the term for the number of wells drilled in the prior time step (Wt−1), it can’t be solved using lm because

the value of Wt−1 is dependent on the fitted coefficients. As a result, the optimization function optim

is used to find the set of fitted coefficients that minimize the residual sum of the squares (RSS) error

between the estimate and the actual drilling schedule. Since optim requires (and is highly sensitive to) the

initial guesses supplied to it, a Latin hypercube sample (LHS) is drawn using the package lhs to pick a

representative range of possible starting guesses. The value ranges for the initial guesses are hard-coded into

the drillingModelUpdate function, but the range is wide enough that it shouldn’t need to be modified.

3.6 ARIMAfitUpdate

This function fits both a manually specified and automatically selected auto-regressive integrated moving

average (ARIMA) model to the past oil and gas price histories in the Uinta Basin for subsequent use in

generating long-term price forecasts.

ARIMA models are a commonly used type of time-series forecast. In a time-series forecast, the future values

of some quantity are predicted solely based on the past values of that same quantity. In general, the quantity

to be forecasted is assumed to be comprised of (a) seasonal variation, (b) an underlying trend, and (c) noise.

The seasonal decomposition of the oil and gas price histories for in the Uinta Basin are shown in Figures 3.1

and 3.2.
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Figure 3.1: Time-series decomposition of oil prices ($ / bbl) in the Uinta Basin. Note that the “time” values
on the x-axis are years since 1977.
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Figure 3.2: Time-series decomposition of gas prices ($ / MCF) in the Uinta Basin. Note that the “time”
values on the x-axis are years since 1977.

From Figures 3.1 and 3.2, we can conclude the following:

1. Seasonal variation in oil prices (±$1.5 / bbl) and natural gas prices (±$0.2 / MCF) is negligible.

2. Over their entire price history, the trend for both oil and gas is flat. There are clearly periods where

prices went up during the early 1980s and mid 2000s, but long-term there is no clear upward/downward

trajectory.
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3. There is substantial noise in the remainder term (±$30 / bbl for oil and +$3 -$1 / MCF for gas).

These features inform what type of ARIMA model to use for making long-term forecasts. In an ARIMA

model, the underlying trend is fitted using the past values (p), differences in past values (d), and the moving

average of the fitting error (q) as predictor variables. ARIMA models are classified based on (a) the order

of each type of these predictor variables (p,d,q) they use, and (b) whether or not they include a constant

term. Certain ARIMA models are known to have characteristic behaviors (e.g. they decay to zero, result in

a random walk around a constant mean, etc.). Several noteable types of ARIMA(p,d,q) models are discussed

below:

1. (0,0,0) with or without a constant - White noise

(Not recommended) Produces random values that have the same distribution of values as the data

used to fit the model. Quantiles of energy price forecasts produced with this model will appear to be

constant over time.

2. (1,0,0) with or without a constant - First-order auto-regressive model

(Not recommended) If a time-series is “stationary” (i.e. it has no trend, variations around the mean

are all of the same magnitude, and in general none of its statistical properites vary over time), then

future values can be predicted as a multiple of its own previous value, plus a constant. If the multiplier

is positive and less than 1, the model will be mean-reverting. This type of model is not recommended

because the oil and gas price histories in the Uinta Basin are not stationary.

3. (0,1,0) without a constant - Random walk

Starting from an initial value, the price will randomly step up or down at each price step. The resulting

model will produce forecasts that have a constant median equal to the starting initial value. This type

of model is equivalent to the previously used Geometric Brownian Motion model.

4. (0,1,0) with a constant - Random walk with drift

Same as the previous model, but adding a constant term will fit a straight line through the training

data and extrapolate that line over the entire forecast period as the median forecasted price (with

random variation around the median).

5. (0,1,1) without a constant - Exponential smoothing

(Recommended model) Uses an exponentially weighted moving-average of the error in past prediction

values in addition to the difference term to forecast each future values. This type of model is best for

modeling time-series with noisy fluctuations around a slowly-varying mean (which accurately describes

the oil and gas price histories in Figures 3.1 and 3.2).

6. (0,1,1) with a constant - Exponential smoothing with growth

Including a constant in a (0,1,1) model adds a trend to the forecast (in the same way as the (0,1,0)

with a constant does).

Unless the user believes there is reason to project a price trend with the (0,1,0) or (0,1,1) models, it’s best

to use the ARIMA models without a constant.
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Returning to the implementation of how the ARIMA models are fit in the ARIMAfitUpdate function, the

user must specify a “manually” selected model (e.g. (0,1,1) without a constant). This manually specified

model is fit using functions in the forecast package. Additionally, the auto.arima function from the forecast

package is used to find the best fitting ARIMA model for both oil and gas prices as measured by information

criteria scores (e.g. Akaike information criterion, Bayesian information criterion, etc.). Either ARIMA fit

(manual or automatic) can be used subsequently to make predictions. The user is advised to review the

plots generated by the ARIMAfitUpdate function to compare the performance of both model types.

3.7 EIAforecastUpdate

This function takes the Annual Energy Outlook (AEO) forecast data entered in IO options and adjusts it

for (1) inflation (using the CPI), and then (2) interpolates monthly oil/gas prices from the annual forecast

values. The interpolation is linear and assumes that the EIA AEO forecast prices occur during the middle

of each calendar year (i.e. June). Three EIA forecasts are considered in the model: the reference case (used

to generate the energy price forecast in the MC simulation), and a low/high case (which are included for

reference in postProcess’s predefined energy price forecast plots).

3.8 EIAerrorUpdate

This function generates the CDFs for the relative error in EIA’s Annual Energy Outlook (AEO) reference

oil and gas forecasts as a function of how far into the future the forecast is predicting. The source data

for generating these CDFs comes from EIA’s AEO Reports from 1999 - present [U.S. Energy Information

Administration, 2014] (using only EIA’s reported Rocky Mountain region wellhead oil and gas prices), and

the actual average annual wellhead energy prices from eia.hp. Relative error (RE) is defined here as:

RE =
(PP −AP )

PP
(3.7)

Where PP is the EIA price prediction and AP is the actual price. Note that this method for calculating

relative error is no longer preferred and has been replaced by the alternative method discussed in Section

3.9. However EIAerrorUpdate has been retained in the model in case the user wishes to use this method

for propagating EIA’s forecasting error.

This function also requires a fair amount of pre-processing outside of R in a spreadsheet. A template

spreadsheet is available at:

https://docs.google.com/spreadsheets/d/1kew_vlpULLMUyWXxeD70HRnsO83ebCHfHMjaCsUrxYc/edit?usp=

sharing

To update the spreadsheet, follow the general steps listed below (steps are for updating the oil relative error

*.csv file, but the steps are identical for gas):
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1. Calculate new annual average wellhead oil prices from eia.hp. Add these values to the bottom of the

first table on the “EIA Oil FC” worksheet.

2. For every year for which new actual prices are available, fill in the AEO forecasted price for each AEO

report. Copies of each report are available from EIA at:

http://www.eia.gov/forecasts/aeo/archive.cfm.

Note that the prices are for the Rocky Mountain region, and that all prices must be inflation adjusted

to the same index value (for example, all costs in the template are adjusted to 2014 USD using the

CPI).

3. The second table contains the relative error calculation formulas. Extend the second table to match

the dimensions of the first table, moving any fixed references as necessary.

4. Repeat with the third table at the bottom of the worksheet, which presents the same information but

shifted so that the error in each AEO forecast is normalized by the number of years into the future

that the forecast is being made. Copy and paste the values from this last table (without the column

or row headers) into the “op error export” worksheet.

5. Download the export worksheet as a *.csv file. Make sure that the file name matches the one used in

EIAerrorUpdate, which by default is “EIA op error export.csv”. Finally, place the *.csv file in your

“raw” data folder path.

The actual code in the function begins by loading the *.csv files containing the percent relative error data.

These files are converted into a data.frame, and R’s normal CDF function qnorm is used to generate the CDF

for the relative error for each column (i.e. the number of years into the future being predicted), under the

assumption that the relative errors can be modeled as a normal distribution. The resulting CDF matrices

Eoil and Egas are then saved.

3.9 EIAerrorUpdateFrac

This function calculates the relative error (RE) between the actual price (AP ) of oil and gas in Utah and

EIA’s forecasted prices (FP ) using the equation:

RE =
FP

AP
(3.8)

if FP < AP , or:

RE =
AP

FP
(3.9)

if FP > AP . Defining RE in this way is useful because:
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1. The value of RE is always bounded between 0 and 1 and can be described using a beta probability

distribution.

2. It captures the absolute magnitude of the relative error. While EIA under-predicted actual prices for

oil over the 1999-2007 time period, forecasts from 2009 onwards have over-predicted actual prices for oil

(gas prices have followed a similar pattern). There is no evidence that EIA’s forecasts are systemically

under- or over-predicting energy prices.

3. Equations 3.8 and 3.9 avoid a mathematical pitfall that occurs with the absolute value calculation of

RE in Equation 3.7. Substituting the simulated price (SP ) for AP in Equation 3.7 and solving for SP

gives:

SP = FP ∗ (1 +RE) (3.10)

If a negative value of RE is selected during the MC simulation process (entirely possible given the

range of RE values calculated by Equation 3.7), then SP may be negative, which is not a realistic

result. By comparison, solving Equations 3.8 and 3.9 always returns a result bounded between [0, ∞]:

SP =
FP

RE
(3.11)

SP = RE ∗ FP (3.12)

The pre-processing steps for the EIA source data are very similar to those outlined for EIAerrorUpdate in

Section 3.8 (and the template spreadsheet referenced in Section 3.8 contains worksheets for both types of

RE analysis). The steps to follow are (identical for both oil and gas):

1. Calculate new annual average wellhead oil prices from eia.hp. Add these values to the bottom of the

first table on the “EIA Oil FC fraction” worksheet.

2. For every year for which new actual prices are available, fill in the AEO forecasted price for each AEO

report. These will be identical to the values used on the “EIA Oil FC” worksheet.

3. The second table contains the relative error calculation formulas (using Equations 3.8 and 3.9). Extend

the second table to match the dimensions of the first table, moving any fixed references as necessary.

4. Repeat with the third table at the bottom of the worksheet, which presents the same information but

shifted so that the error in each AEO forecast is normalized by the number of years into the future

that the forecast is being made. Copy and paste the values from this last table (without the column

or row headers) into the “op fraction export” worksheet.

5. Reformat the RE values into two columns containing (a) a numerical value indicating the number of

years into the future associated with the given RE value, and (b) the RE value itself.

6. Download the export worksheet as a *.csv file. The file name must match the name used in the script,

which by default is “EIA AEO frac error op export.csv”. Finally, place the *.csv file in your “raw”

data folder path.
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The actual code in the function begins by loading the *.csv files containing the relative error data. The data

set is converted into a data.frame and a beta distribution is fitted to the RE values for each year. The fitted

parameters are used to generate a CDF error matrix for oil (EoilFrac) and gas (EgasFrac) that follow the

same format as the Eoil and Egas matrices discussed in Section 3.8. Finally, EoilFrac and EgasFrac are

saved to disk.

3.10 DCAupdate

This function performs a well-by-well decline curve analysis (DCA) to enable the prediction of future produc-

tion rates from existing wells, and to generate the dataset necessary to estimate the production from future

wells. In general, the rate of production of oil and gas declines over time. Numerous decline curve equations

have been developed for different specific oil and gas reservoir conditions. The two forms of decline curve

equations used here are the hyperbolic decline curve equation (Equation (3.13), from Arps [1945]), and the

cumulative production equation (Equation (3.14), from Walton [2014]):

q(t) = qi(1 + bDit)
−

1

b (3.13)

Q(t) = Cp

√
t+ c1 (3.14)

In Equation (3.13) q is the production rate at time t, qi is the initial production rate, Di is the initial decline

rate, and b is the decline exponent. In Equation (3.14) Q is the cumulative production at time t, and Cp

and c1 are fitted coefficients.

The actual decline curve analysis method consists of applying Equation (3.13) or (3.14) to the production

records of a given well and finding the best fit by least-squares over a given time period. However this task

is significantly complicated by the tumultuous production records of many wells, which are frequently noisy

and which may contain “late starts” and/or “restarts.” Late starts are wells that initially come online at

a relatively low production rate, and then later reach a much higher production rate from which the curve

begins its true decline. Restarts are any event which leads to a major increase in well production rates,

followed by a subsequent but separate decline curve. In either case, the nonlinear solver typically fails to

converge or finds terrible fits for these type of production records.

The workaround then is to identify the actual start/stop points of each decline curve segment in each well’s

production record. The algorithm for accomplishing this task (and for implementing a number of other fixes

to problems that can occur) is described below:

1. Subset the data.frame p to only include production records from oil or gas wells within the time range

of interest and which produced for at least a minimum number of days per month.

There are two things to note about this step. First, the requirement that the wells produce for at least

a minimum number of days per month substantially cuts down on noise by removing from the dataset
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production records that don’t accurately reflect a full month of production.

Second, regarding time ranges, there are two ranges of interest. If the model is being cross-validated,

then some portion of the production dataset must be excluded from the DCA for testing the model’s

predictions. However for both decline curve distribution fitting (discussed later) and for full prediction

modes, it’s desirable to fit with all of the production records available. Since having both the full and

time-constrained results in the model workspace at the same may be necessary, the DCAupdate function

is set to run both with and without time subsetting constraints.

2. Get a list of unique wells in the subsetted production data and determine how “old” each well is at

the start of the MC simulation period. Age here is an indication of how far along into its production

decline curve each individual well is, so that production from existing wells can be calculated for each

individual well based on its age.

3. For each well, and for both gas and oil:

(a) Select the production records for the given well and product type, and further select only the

records which are > 0. Note that there are actually records which are negative in the UDOGM

database. Another reason for the > 0 requirement is that even if a well is no longer a producing

(e.g. it was converted into a water injection well, shut-in, etc.), it will still have a zero production

record for every month of its existence.

(b) Check if the number of remaining production records is greater than some minimum number of

production records. This step is intended to prevent over-fitting newly drilled wells which might

only have a couple of data points. If there are too few records, skip fitting the well, otherwise

move onto the next step.

(c) Determine the start and stop dates for each unique decline curve in the given well’s production

record. This is done by summing production records together over a specified time window (e.g.

12 months) into “bins”. If a well is constantly declining, then the difference between values

of adjacent bins will always be negative. The function checks this by first normalizing the bin

values and then calculating the differences between each bin. If any bin has a positive difference

value above a minimum specified threshold (e.g. a positive relative increase of > 15%), then the

preceding bin must contain the endpoint of a decline curve. The the preceding bin is searched

for its minimum value, and the point in time at which that record occurs is the stop point of the

decline curve. The search for stop points repeats for the entire production record, and then the

start points are found by searching for the maximum production record value between any stop

points (or the start of the production record).

There are a number of nuances to the binning process. First, the size of the bin time window

and the minimum positive difference value both have a big impact on identifying the start/stop

points. Large bin time windows smooth out noisy production curves and are more likely to find

the true minimum point at the end of each decline curve. Conversely, the smoothing effect also

means that large bins are less sensitive and are more likely to miss rapidly changing trends in the

production records. The minimum positive difference value is a judgment call that is dependent

on the choice of binning window. Too low (for the given bin size) and you will produce false

positives; too high and clear decline curve stop points will be missed.
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Secondly, searching for start points isn’t always as simple as picking the maximum value. We

found several instances where the maximum production value was an outlier that occurred near

the end of a decline curve segment. To act as a check against this possibility, the search for the

maximum production value is actually extended to the top n production values. The earliest

occuring value in the set of n values is then picked as the start point.

Lastly, the early segment of most production records is highly volatile. To avoid getting too many

false positives in this early period, another parameter was added which specifies how many bins

into the production record a potential stop point must be in order to be considered an actual stop

point. Any stop points found in the early segment are ignored.

(d) Given the selected start/stop points, calculate the time difference between when the well first

went online and when the start of the first decline curve occurred. This difference is the “time

delay,” and it is used to estimate the time between when a new well is drilled and when it first

begins production.

(e) Run the nonlinear solver on each decline curve segment using both forms of the decline curve

equation. Depending on how the decline curve segment search went, there will be either one

continuous curve or multiple curves. Intermediate curves are ignored, and only the first curve

(used for estimating production from new wells) and last curve (used for extrapolating production

from existing wells) are fitted.

It should be noted that the solver checks again that the length of each decline curve segment is at

least equal to the minimum number of production records, skipping the segment if the requirement

isn’t met.

There are many inputs for the nonlinear solver. Each coefficient in Equations (3.13) and (3.14)

requires an initial guess and a set of upper and lower limit values (for both oil and gas). The

majority of the inputs to DCAupdate are for the nonlinear solver.

(f) If specified by the user, the function can plot the production record and fit results for each well.

Plots are grouped together by field and by product type and are saved as *.pdf files in the “plots”

file path.

4. Finally, rearrange the fit results into the data.frames mo (for oil curves) and mg (for gas curves) and

save. Each row of these data.frames represents a unique well, and contains columns summarizing the

hyperbolic and cumulative curve fits for both the first and last curve of each well. mo and mg also

contain a set of flags indicating the result of the fitting procedure (fitted, skipped, or failed).

3.11 DCAupdateCDF and QfitDCAupdateCDF

This function takes the data.frame of fit results from DCAupdate and generates a CDF for each coefficient

in Equations (3.13) and (3.14) for each field being analyzed. The function begins by selecting a subset of

the fit results to ensure that the CDF reflects a realistic range of values (i.e. eliminates fitting outliers) and

only including fit results for wells drilled within the specified time range. The function supports estimating

the CDF for the selected data points using either the density or quantile functions. However as discussed

previously, the quantile method is preferred.
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3.12 reworkUpdate

This function calculates the CDF that describes the probability of a well being reworked (i.e. reperforated

or recompleted) as a function of how far a well is into its productive life and what type of well it is (oil or

gas). The function begins by loading the histdata data.frame from disk. Next, the function selects from

histdata only the wells located in the Uinta Basin. The histdata information is further subsetted into

one data.frame containing the dates when a well was drilled during the time frame of interest, and a second

data.frame containing the dates when a well was reworked. The number of wells that have existed for at

least n months is calculated from month 1 to the age of the oldest well in the dataset. Next, the number

of wells that were reworked n months into their productive life is calculated. The rework vector is divided

by the vector containing the number of wells present to get the probability that a well will be reworked as

a function of time, and that probability is summed together to create the CDF for reworking. Note that at

some point in time the number of wells remaining in the data set that are at least n months old will become

too small to draw any statistically meaningful relationship between well age and the rework probability.

Therefore the reworkUpdate function includes an input option to stop estimating the rework CDF if there

are fewer than some minimum number of wells left in the data set (100 wells by default).

3.13 DCAlnormUpdate

This function was created to (1) fit a log-normal distribution to the coefficients Cp and c1 in Equation

(3.14), and then (2) perform a linear regression on the fitted log-normal distribution parameters (the log-

mean and log-standard deviation). The resulting linear regression can then be used to project the log-normal

distribution parameters for cumulative oil or gas production for new wells. This approach was developed

to counter a problem encountered with predicting oil production from new wells. If the CDF for Cp and

c1 calculated by QfitDCAupdateCDF is used to predict oil production from new wells during the 2010-2014

time period based on DCA fits from the 1984-2009 time period, the model significantly under-predicts oil

production, even if the exact drilling schedule is taken as a given as shown in Figure 3.3.
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Figure 3.3: Cross-validation comparison of oil production from new wells using CDFs from
QfitDCAupdateCDF. The time period 1984-2009 was used as the training period, and 2010-2014 as the
test period. The exact drilling schedule for new wells was taken as a given.

The reason for the discrepancy is that the production rates from wells drilled during the 2010-2014 time

period increased signficantly compared to wells drilled during the test period. Figure 3.4 shows the CDF

for Cp for oil wells by year (labeled in the figure as years since 1984). The dotted-lines, equivalent to the

CDF for Cp from oil wells drilled during the test period, clearly show this shift in production rates. Since

the training period misses this shift in the Cp values for oil wells, there’s no way to match the production

rates for new wells using solely the empirical CDFs for Cp calculated in the QfitDCAupdateCDF function.
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Figure 3.4: CDFs for Cp for oil wells by year. Years in the figure are shown as years since 1984. CDFs
drawn with dotted lines are equivalent to the CDFs for wells drilled during the test period 2010-2014.

The two step approach in this function (fitting the coefficients in Equation (3.14) with a known distribution

and then projecting the distribution parameters into the future using linear regression) can fix this problem

if the selected regression time period is a match for future production. Figure 3.5 shows the linear regression

results for fits of Cp and c1 log-normal distribution parameters at the Basin-scale (i.e. for all wells in the

Uinta Basin).
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Figure 3.5: Linear regression fits of Cp and c1 log-normal distribution parameters for all wells in the Uinta
Basin. The data points used for fitting each trendline were from years 1999-2009 (with projections to other
years shown).

Various time periods were selected for fitting and projecting distribution parameters, and the overall best

fit to the production during the cross-validation period was achieved by fitting to data points in the 1999-

2009 time period. The results of predicting oil production from new wells with the distribution parameter

projection shown in Figure 3.4 are given in Figure 3.6 (again, taking the actual drilling schedule as a given).

Figure 3.6 is an excellent match to the actual production rates during that the 2010-2014 cross-validation

period, and if the trend of increasing Cp values for oil wells continues then this method should give the most
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accurate method for predicting future oil production from new wells in the Uinta Basin.

2010 2011 2012 2013 2014 2015

0
50

00
00

15
00

00
0

25
00

00
0

Time (months)

O
il 

P
ro

du
ct

io
n 

(b
bl

)

Actual
90%
70%

50%
30%
10%

Figure 3.6: Cross-validation comparison of oil production from new wells using log-normal distribution CDFs
for Cp as projected by the distribution parameter fit from DCAlnormUpdate. The time period 1999-2009 was
used as the linear regression period for distribution parameter fitting, and 2010-2014 was used as the test
period. The exact drilling schedule for new wells was taken as a given.
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3.14 emissionUpdate

This function finds all of the unique combinations of inputs required for performing equipment-based emis-

sions calculations using the data contained in the oil and gas emissions inventory (OGEI) database and

returns the result as a cumulative probability table (CPT). CPTs are created by:

1. Selecting the columns containing inputs variables needed for performing the equipment-based emissions

calculations from each OGEI database table.

2. Find all unique combinations of the selected input variables.

3. Count the number or times each unique combination appears in the table.

4. Calculate the cumulative probability for each combination.

For example, if the input variables in a table were:

Input 1 Input 2

a 1

a 1

a 1

b 2

b 1

c 3

Then the CPT for that table would be:

Input 1 Input 2 Count Fraction Cumulative
Probability

a 1 3 0.500 0.500

b 2 1 0.167 0.667

b 1 1 0.167 0.833

c 3 1 0.167 1.000

The motivation for using a CPT is two-fold. First, CPTs fit with the rest of the MC simulation’s structure

(randomly picking a number between 0 and 1 and finding the corresponding value from a table or CDF).

Second, CPTs safeguard against independently picking values for input variables that should be correlated.

As an example of this second point, consider the emission factors reported by operators for RICE and
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turbines, which can be any combination of AP 42, NSPS JJJJ, stack test, or manufacturer specification

(for each pollutant category). If each reported emission factor were described using a CDF, then during

simulations random selections from each CDF might produce combinations that are never observed in the

OGEI database (e.g. a low PM2.5 but high PM10 emission factor). Given the differences in emission factors

between each unique RICE or turbine, treating all inputs for that equipment category in combination is a

more representative approach.

The steps followed to create each CPTs are:

1. Export OGEI database tables to *.csv files.

In order to analyze the files contained in the OGEI database, the user must export the following tables

must from the OGEI database as csv files (using SqliteBrowser, or any similar program):

Table 3.2: List of tables that must be exported from OGEI database as *.csv files. Exported files should use
same name as table that they are representing (e.g. “apis” table should be named “apis.csv”).

Table Contents

apis API numbers associated with each facility ID

component count Component counts

dehydrators Dehydrators

facilities list Facilities list

fugitives Fugitive emissions

operator info Operator information

pneumatic controllers Pneumatic controllers

pneumatic pumps Pneumatic pumps

production areas Production areas

rice emission factors RICE emission factors

rice turbines RICE turbines

separators heaters Separators and heaters

tanks Tanks

truck loading Truck loading

well completions Well completions

2. Read exported files into R.

This step is handled automatically by R’s built in read.csv function, assuming that the tables have

the names listed in Table 3.2.
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3. Determine the number of wells associated with each unique facility ID and calculate the well fraction.

A conversion must be made to switch from the “facility” basis used in the OGEI database to the

well-by-well basis used throughout the model. This is accomplished by counting how many unique

API numbers are associated with each facility and operator ID key value combination in the apis

table (facility and operator ID are combined to make a single key, referred to hereafter as the facility-

operator key). Counts are made using an internal function called cptable, which uses a SQL query to

(a) find each unique combination of values over a specified set of columns and (b) counts the number

of repetitions for each combination. That count is inverted (i.e. calculating the 1/count value for each

key) to find the well fraction. For example, if a particular key value has four unique API numbers

associated with it, then the well fraction would be 1/4 = 0.25. Later on in the MC simulation, if a

well selected that key value from a CPT, then the emissions would calculated for that entire facility,

but only 25% of those emissions would be assigned to the individual well in question. Well fraction is

included in every CPT under the column “wfrac” by using the internal function apimerge to match

wfrac values by facility-operator key.

4. Match key values in the production areas table to the facility-operator key used in all other tables.

The production areas table uses operator ID and production area as keys. In order to match the

VOC wt% and natural gas molecular weight in that table with the default facility-operator key used

in all other tables, we need to perform a merge. The facilities list table contains the information

necessary to make the connection. A table called “prodlist” is created by merging these two tables

together, returning a table with columns for operator, production area, the facility-operator key, gas

molecular weight, and finally VOC wt%. This table is referenced as part of the CPT data analysis for

pneumatic pumps and fugitives equipment types.

5. Make the well completions CPT.

Using the cptable function, a CPT is made from the well completions table using the columns:

• annual diesel usage

• flare efficiency

• pct control

Well fraction isn’t considered as a factor for well completion because each reported well completion is

assumed to be for a single well (i.e. wfrac = 1). Additionally, any record in the well completions

table which is reported to have zero annual diesel usage is excluded from the CPT (on the assumption

that every well completion requires non-zero fuel consumption).

6. Make the RICE and Turbines CPT.

Two tables contain the required information about the RICE and turbines equipment type: rice turbines

and rice emission factors. The tables are connected via the “rice id” key. The first step therefore

is to merge these two tables together. However given the structure of the rice emission factors

table, the merge must be executed for each pollutant species (PM10, PM2.5, SOx, NOx, etc.). After

that series of merges is completed, wfrac is added via the apimerge function, the rice id column is

dropped, and a CPT is made from the merged table using the cptable function on the columns:

• horsepower
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• annual hours

• total combusted

• fuel heating

• control type

• control pm10

• control pm25

• control sox

• control nox

• control voc

• control co

• control ch2o

• wfrac

• fpm10

• upm10

• fpm25

• upm25

• fsox

• usox

• fnox

• unox

• fvoc

• uvoc

• fco

• uco

• fch2o

• uch2o

7. Make the Separators and Heaters CPT.

Using the apimerge and cptable function, a CPT is made from the separators heaters table using

the columns:

• heat duty

• hours operation

• fuel heat

• control status

• percent control
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• wfrac

8. Make the Dehydrators CPT.

Using the apimerge and cptable function, a CPT is made from the separators heaters table using

the columns:

• hours operation

• control type

• percent control

• heat input rate

• pilot volume

• factor voc

• wfrac

9. Make the Tanks CPT.

Using the apimerge and cptable function, a CPT is made from the tanks table using the columns:

• control type

• control percent

• combustor heat input

• pilot volume

• oil

• total voc

• ratio

• wfrac

The “oil” and “ratio” columns are generated in the data analysis script. The “oil” column is the sum

of the throughput condensate and throughput oil columns of the tanks table, and “ratio” is the ratio

of the total VOCs (as reported in tanks total voc column) divided by the “oil” column. Since some

rows in the tanks table have 0 values for “oil” it’s possible to have “ratio” values of ∞. To correct for

this, any row in tanks which has either an “oil” value of 0 or “ratio” value which is NA are removed

prior to calculating the CPT for tanks.

10. Make the Truck Loading CPT.

Emissions from truck loading are accounted for based on the individual oil production rates from each

well, therefore wfrac and the apimerge function aren’t required and the CPT for truck loading is

generated using cptable and the following columns from the truck loading table:

• s factor

• vapor pressure

• molecular weight
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• temp r

• control type

• control percent

11. Make the Pneumatic Controllers CPT.

Using the apimerge and cptable function, a CPT is made from the pneumatic controllers table

using the columns:

• high bleed

• intermittent bleed

• low bleed

• avg hours

• wfrac

12. Make the Pneumatic Pumps CPT.

In addition to using apimerge to add wfrac to the pneumatic pumps table, we also require the gas

molecular weight and VOC wt% data from the previously created prodlist data.frame. After performing

both merges, the cptable function is used to create a CPT is made from the following columns:

• annual operation

• vent rate

• control type

• control percent

• gas mw

• voc wt

• wfrac

13. Make the Fugitives CPT.

Creating a CPT table for the fugitives table requires several steps. First, wfrac is added in using

apimerge. Second, the component counts must be added from the component count table, which uses

the operator and production designation column instead of the facility-operator key. The previously

defined prodlist data.frame is used to match the two different key types. Finally, component counts

are given for a variety of fluids (gas, heavy oil, light oil, and water/oil). Therefore the counts in the

component count table must be merged to the fugitives table once for each type of fluid, generating

four different tables. cptable is then run on each table using the following columns:

• production hours

• voc wt

• valves

• pumpseals

• other1
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• connectors

• flanges

• open lines

• wfrac

14. Save the results.

All of the CPTs generated in the emissionUpdate function are structured into a list object called “eci”

and are saved to disk.
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Chapter 4

Monte-Carlo Simulation

The MC simulation takes the CDFs and regression results from the 2.x Data Analysis section of the model and

then randomly and repeatedly calculates the economic and environmental impacts of oil and gas development.

The random component in the simulation comes from the selection of values for each term from CDFs, such

as the error in EIA price forecasts, the characteristics of each well (location, type, depth, etc.), and the

production rates from each well (as calculated by decline curve coefficients). Based on the random and

independent selection of the value for each term in each iteration or “run” of the MC simulation, a number

of other terms are calculated based on the formulas fitted through regression in Section 2.x of the model,

such as the drilling schedule, oil and gas production rates from existing wells, and the cost of operating each

well. Each step in the MC simulation is discussed in detail below.

4.1 Transition to MC Simulation

This short code block at the start of the MC simulation transitions the main script from the data analysis

section to the MC simulation section. A message is printed to the console noting the total elapsed time

for completing the data analysis segment. Next, the start time of the MC simulation is noted in another

message that is printed to the console and a progress bar is shown indicating the number of runs completed

(as a percentage of the total number of runs specified for the MC simulation in IO options).

4.2 Energy Price Path Simulation

The first step of the MC simulation process is to generate the energy price paths for both oil and gas for each

run of the simulation. There are a number of possible options that can be used for generating the energy

price paths, which are discussed below. Note that the forecasting method used for oil and gas prices are

independent and are specified separately (should the user wish to use a different method for each).
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1. Simulate using ARIMA model

If this method is selected, the model simulates the energy price paths for oil and gas either the (a)

automatic or (b) manually specified ARIMA model fit by the ARIMAfitUpdate function. This method

should be used if performing a long-term forecast (5 - 20 years).

2. Simulate from EIA Annual Energy Outlook forecasts

If this method is selected, the model simulates the energy price paths for oil and gas by adjusting the

EIA AEO oil and gas forecasts by a randomly selected relative error percentage from the specified error

CDFs. This method is recommended for making forecasts on the order of 1 - 5 years into the future.

Two types of error matrices can be specified:

(a) (Not recommended) Direct relative error, as given by Equation 3.7 (see Section 3.8).

If this method is specified Eoil and Egas are used for the error CDFs. For each run, a single

row is selected from each matrix (rows = CDF quantiles, columns = time steps, and values in the

matrix = relative error values). The two row selections are made independently. The randomly

selected rows are taken as the values for RE at each time step in the simulation, and the EIA

forecast is adjusted as specified by Equation 3.10 (i.e. SP = FP ∗ (1 +RE)).

(b) (Recommended) Fractional relative error, as given by Equations 3.8 and 3.9 (see Section 3.9).

Like the direct relative error method, a single row is selected independently from each of the

relative error matrices EoilFrac and EgasFrac, representing the values of RE as a function of

time at a randomly selected CDF quantile. The selected RE values adjust the EIA forecast by

either Equation 3.11 (SP = FP/RE) or Equation 3.12 (SP = RE ∗ FP ). Since RE is always

a value between 0 and 1, Equation 3.11 will push the forecasted price upwards, while Equation

3.12 will reduce the forecasted price.

The choice of which equation to use is determined randomly by picking a value from a binomial

distribution, which returns either a value of 0 or 1. The probability that a value of 1 is returned

is specified by the user in IO options (by default, the probability is 50%). When a value of 1

occurs, the model uses Equation 3.11 (adjusting the forecast upwards). Conversely, a selection of

the value 0 causes the model to use Equation 3.12 (adjusting the forecast downwards).

3. Use the actual energy price path

If this option is selected then the energy price paths for oil and gas will be the actual energy price path

for oil and gas in every run of the simulation. This method can only be selected if the model is being

run in cross-validation mode, and is intended for testing the accuracy of the drilling schedule model.

4. Constant prices equal to the average of the last n months.

This option is intended for forecasts that are ≤ 1 year. Over a short-term period, it’s reasonable to

assume that the future price will be constant and equal to the average of the last n months. The value

of n can be specified by the user. The recommended value is 12 months.

5. Use a user-specified price path

If this option is selected, the model will use whatever price path is specified in IO options. This option

is intended to allow the user to analyze “what-if” scenarios, such as modeling what would happen if
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oil prices were $50/bbl for the entire simulation period. The specified price paths for oil and gas must

be given in the form of a matrix, with one row for each MC iteration and one column for each time

step, with the value of oil or gas prices in each element of the matrix in units of $/bbl or $/MCF,

respectively.

A wrapper function called EPFsim creates the simulated price paths. The input options for this function are:

1. The energy price path simulation method (opt$epf.type), selected from one of the methods described

above.

2. Whether to use the direct or fractional relative error model (opt$epf.EIA.type), if the EIA forecast

method is selected.

3. The binomial probability for the fractional relative error model (opt$epf.EIA.fracProb), if the EIA

forecast method is selected.

4. The number of months n to take the average price over (opt$epf.const), if the constant price method

is selected.

5. The user price paths for oil and gas (opt$epf.uepf), if the user-specified method is selected.

4.3 Well Drilling Schedule

The drilling schedule simulation function drillsim calculates the number of wells drilled in response to

the simulated energy price paths for oil and gas using one of the fitted models from drillingModelUpdate

(Equations (3.3)-(3.6)). Two alternative options exist. In the first, the user may specify that the actual

drilling schedule be used. This option can only be selected if the model is being run in cross-validation

mode, and is intended for testing the accuracy of predicting oil and gas production from new wells (by

eliminating all of the variability in the drilling schedule). The second alternative is that the user may

directly specify the total number of wells drilled each month. This option is intended to serve the same

“what-if” purpose as the equilvalent option for energy prices.

The input options for this function are:

1. Which drilling simulation method to use (opt$DStype). Valid options are simulation, actual well counts

(in cross-validation mode only), and user-specified.

2. The distributed-lag model to use for calculating the drilling schedule (opt$DSsimtype). Any of the

models discussed in Section 3.5 can be used.

3. The user-specified drilling schedule (opt$DS.uspec), for use with the option of the same name.
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4.4 Prior Wells

There are several calculation steps for handling information about prior wells. Unlike new wells, the charac-

teristics and production from prior wells need only be calculated once (instead of being randomly generated

and calculated during each run of the MC simulation). The results of the calculations from prior wells can

then be referenced during each run of the MC simulation (such as when calculating total production). The

functions used to calculate production and collect information about prior wells are described below.

4.4.1 priorProd

This function calculates the oil and gas production for each prior well in the Uinta Basin by extrapolating

from each well’s last hyperbolic decline curve fit (Equation (3.13)). The DCA results data.frames mo and mg

contain all of the necessary fitted decline curve coefficients, as well as the age of each well at the start of the

simulation period, so the extrapolation is fairly straightforward. The only issue with production from prior

wells is that approximately 18% of prior wells don’t have a fitted last hyperbolic decline curve. Almost all

of these wells are “skipped” during the DCA because they have fewer non-zero production points than are

required by the DCA algorithm. Production from skipped wells is estimated using the same method applied

to new wells (simulated decline curve coefficients generated randomly during each run for use with Equation

(3.14)). The priorProd function begins this calculation process for prior wells by identifying each prior well

that is skipped and collecting basic information about those wells.

The input options for this function are:

1. How old a well without a fit can be and still be included in the population of prior wells (opt$tend.cut).

2. How far into the future production should be calculated for each prior well (opt$MC.tsteps).

4.4.2 priorInfo

This function collects details about each prior well that are needed for calculating economic and environ-

mental impacts in the MC simulation. Specifically, it collects the well API number, field number, well type,

well depth, and the surface lease owner for each prior well.

No input options are required for this function.

4.5 Monte-Carlo Loop

In the MC loop, detailed calculations are carried out on a well-by-well basis for each time step in the

simulation period. Well characteristics are randomly generated from the appropriate CDFs, production

calculations are made for new wells (and for prior wells without fits), and the subsequent economic and

environmental impacts are calculated.
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Prior to starting the MC loop, the matrices and lists used to save the results of each run are preallocated

to the workspace (to speed up the MC simulation by preventing the resizing of result objects at the end of

each loop iteration). The result objects are:

1. osim - a matrix of oil production volumes (in units of barrels) from all new wells. The dimensions of

osim are set by the input options opt$nrun (for rows) and opt$MC.tsteps (for columns).

2. gsim - a matrix of gas production volumes (in units of MCF) from all new wells (same dimensions as

osim).

3. posim and pgsim - matrices for production volumes of oil/gas from all prior wells with the same units

and dimensions as osim and gsim.

4. aE - a structured list of activity-based emission results, containing total and reduced emissions for each

pollutant species, the fraction of emissions from new wells and prior wells, and the fraction of emissions

from each source activity. Most components of the aE list are matrices with the same dimensions as

osim.

5. eE - a structured list of equipment-based emission results, containing total emissions by species and by

equipment type. All components of the eE list are matrices with the same dimensions as osim.

6. reE - copy of eE used for storing equipment-based emission results with reductions applied.

The details of each step of the MC loop are described below.

4.5.1 Well Data Simulation

This section of the MC loop generates the data.frame wsim, which contains all of the randomly generated

details about each new well in each MC run. Each step in the creation of wsim is described below (note -

except where stated otherwise, the functions involved in creating wsim do not require any input options).

1. Create wsim and column tDrill.

The first step is to create the data.frame wsim and define the time step at which each well is drilled.

This is done using the function sim tDrill, which essentially generates a data.frame with one row

for each well in the drilling schedule for the current MC run and one column specifying the time step

in which it was drilled. For example, if the drilling schedule for a MC run called for two wells to be

drilled in time step 1, three wells in time step 2, and one well in time step 3, then the tDrill column

in wsim would look like: [1 1 1 2 2 3].

2. Pick the field number for each new well.

The first item that is randomly generated for each well in wsim is field number (i.e. location). This

term is selected from the CDF contained in the data.frame cdf.ff. For each well, the function

sim fieldnum generates a random number between 0 and 1 and compares that to the cumulative

probabilities in cdf.ff and picks the field associated with that random number.
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3. Pick the well type for each new well.

Once the field number is selected, the model can then randomly pick the well’s type (oil, gas, or dry)

using the sim wellType function. A random number is picked for each well and compared to the

cumulative probabilities for well types by field number contained in the data.frame prob.

4. Pick the time delays for oil and gas production from new wells.

Some wells have a time delay between when they are first drilled and when they begin producing.

The CDFs for time delays by well type and field are contained in the list objects DCA.cdf.coef.oil

and DCA.cdf.coef.gas. The function sim tdelay randomly picks the time delays for each well for

both oil and gas production. Note that the time delays for each type of production are separate and

independent. For example, a well could have a time delay of 0 for oil production (i.e. no time delay)

but 3 for gas (i.e. three months). Production curves for wells with time delays are started at time step

tDrill + tdelay.

5. Pick well depth.

Well depths are randomly selected from CDFs based on well type (oil or gas) by the function sim depth

(well depths were found to vary more as a function of well type rather than field number).

6. Pick the surface lease owner.

The function sim lease picks the surface lease owner (federal, state, Indian, or fee) based on each

well’s field number as specified by the CDFs in the data.frame cdf.flt.

7. Pick rework times for new wells, existing wells with fits, and existing wells without fits.

Any well in the simulation (new or prior) could potentially be reworked. The function sim rework

randomly picks if and when a rework occurs from the CDF cdf.rework based on well type, returning

the age of the well at which the rework occurs. It’s possible that the randomly selected rework time

occurs before or after the simulation period, in which case the rework is effectively ignored. For

example, suppose that an existing well were 100 months old at the start of a 60 month simulation

period. Any rework time picked for that well that is less than 100 months or greater than 160 months

is outside of the time period simulated and is therefore ignored. Rework times are picked separately

for new wells, prior wells with fits, and prior wells without fits because each contains slightly different

formats for storing information about the well (field number, well type, depth, etc.).

Additionally, since this is the first instance in which a randomly selected property is being generated

for prior wells, a new data.frame called wpri (well prior information) is created to hold the rework

times (and other subsequent information) for prior wells.

The sim rework function requires the number of simulated time steps (opt$MC.tsteps) and the sim-

ulation start date (opt$tstart - only necessary for prior wells).

8. Combine well information about skipped wells with wsim.

Since prior wells without fits have their production rates simulated in the same way as new wells, this

step adds all skipped wells as additional rows to the wsim data.frame.

9. Duplicate reworked wells.

Reworked wells (from all well types) are duplicated as additional rows and added onto the bottom of

wsim by the sim dupRework function.
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10. Pick decline curve coefficients.

The sim DCC function picks the decline curve coefficients used to estimate production for every well in

wsim. The function allows for the use of either hyperbolic (Equation (3.13)) or cumulative (Equation

(3.14)) types of decline curve coefficients. Details of the decline curve selection methods are covered in

Chapter 5.

The input options for this function are (a) the type of decline curve coefficient to pick for both oil

(opt$mcDCCpick.type.oil) and gas (opt$mc.DCCpick.type.gas) production, and (b) the sequence

of time steps used in the simulation (opt$tsteps).

11. Pick activity-based emission factors for all wells.

Emission factors for emissions in terms of carbon dioxide equivalence (CO2E), methane (CH4) and non-

methane volatile organic compounds (VOCs) are calculated for each of the following activity categories

(based on the emission factors reported in Wilkey et al. [2016]):

• Site preparation

• Transportation of materials for. . .

– Drilling

– Completion

– Rework

– Production

• Completion

• Gas production

• Gas processing

• Gas transmission and distribution

• Oil production

• Oil transport by tanker truck

The mean and standard deviation for each factor and each pollutant are specified in the data.frame

opt$EF, and are used by the function sim EF to randomly pick emission factors for each well, emission

type, and activity category (assuming a normal distribution). To simplify the number of emissions

factors used, several activities are summed together to give one single emission factor. Specifically,

the emission factors for site preparation and transportation of materials for drilling, completion, and

production are all summed together into a single emission factor called EFdrill. Likewise the emission

factor EFrework includes the transportation of materials for both completion and reworking.

12. Pick equipment-based emission calculation inputs

All of the inputs for calculating equipment-based emissions are selected by the function sim eq EF,

which randomly selects one row from each CPT in the list eci for each well. The randomly selected

rows are added to wsim and wpri, and are later referenced when calculating equipment-based emissions.

No input options are required for this function.
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4.5.2 Production Simulation

Two functions are used to calculate production volumes:

1. Production from new wells is calculated by the function productionsim. The function can calcu-

late production using either the hyperbolic or cumulative production equations (specified by the in-

put option opt$mc.DCeq.type) by using the corresponding simulated decline curve coefficients con-

tained in the wsim dataframe to project production over a specified number of time steps (as given by

opt$MC.tsteps).

2. While the production from existing wells is calculated before the start of the MC loop by priorProd

(see Section 4.4.1), there is still the potential for variation in production from individual existing wells

due to reworks. Any existing well which is randomly selected for reworking in a given iteration of the

MC loop has its production zeroed out beginning in the month that the well is reworked using the

function priorProdReworkAdjust. The only required input option for this function is the number of

time steps in the simulation (opt$MC.tsteps).

4.5.3 Lease Operating Costs

The next step in the MC loop is to calculate the lease operating costs for each well (LOC). These costs are

estimated using the regression model fitted to the lease operating cost data from U.S. Energy Information

Administration [2010] as discussed in Section 3.4. The function LOCcalc calculates lease operating costs for

all wells using the fit results the leaseCostUpdate function and each MC loop’s randomly selected inputs

for Equations 3.1 and 3.2 (i.e. well depth, oil/gas price, and oil/gas production volumes).

No input options are required for this function.

4.5.4 Production Correction

The production rates calculated from the productionsim and priorProd function assume that a well pro-

duces indefinitely, even if it is producing at a rate that is so low that it is no longer economical. To correct

for wells that are producing at uneconomical rates, the next step in the MC loop is to calculate the gross

revenue (gr) from each well and compare that to each well’s lease operating costs (LOC). Any well with a

ratio of LOC/gr that is greater than a specified cutoff value (set by the user in IO options) is assumed to be

permanently shut-in and abandoned (i.e. no further production or costs). In the code this is accomplished

by finding all of the records above the specified threshold and setting the production and lease operating

costs of those wells to zero.

4.5.5 Activity-Based Emissions

Activity-based emissions from each well are calculated using the Ecalc function. Emissions for each type of

pollutant and each activity category are tracked in matrices, with one row for each well and a column for
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each time step. Emissions fall into two categories:

1. One-time events, including drilling, completion, and reworks. Emissions in this category are handled

by simply placing each one-time emission factor that was randomly generated in wsim or wpri into the

emissions matrix for each well (row) in the time step (column) associated with that event.

2. Production events, including production, processing, etc. Production events for gas have a flat

emissions rate that isn’t dependent on gas production (the emission factor is in units of metric

tons/well/year). Therefore the calculation step for gas production emissions checks if each well is

producing gas, and if it is, then the randomly generated emission factor for that well is placed in the

emissions matrix (for each time step as appropriate). Gas processing and transmission and distribution

steps are dependent on gas production rates, and so their calculation is handled by multiplying the

emissions factor by gas production rates for each well. Emissions from oil production for transportation

are similarly dependent on oil production rates and are calculated in the same manner.

After calculating the base emissions rates for each pollutant for each activity category, the Ecalc function

then sums together all of the emissions matrices by pollutant type to give the total emissions for each

pollutant species by well and time step.

The last step in Ecalc is to calculate the potential reductions from new source performance standards

(NSPS). Each NSPS has to be programmed manually into the Ecalc program, but the basic algorithm used

is to:

1. Calculated the time step in the simulation at which the emission reduction well occur. For example,

one of the emissions reductions currently programmed into Ecalc is an NSPS reducing emissions from

the production, processing, and transmission of gas. This NSPS went into effect for wells drilled on or

after Nov. 2012. If the model were simulating the time period Jan. 2010 to Dec. 2014, then the time

step (in the simulation) where the NSPS would take effect is month 23.

2. Find all the wells which are effected by the NSPS. Continuing the example of the NSPS from Nov.

2012, this would be all wells drilled or reworked on or after month 23 of the simulation.

3. Multiply the base emissions matrices (by species and activity) by the NSPS emissions reduction factor

(as specified in IO options). A function called redfun, defined internally in Ecalc, can be used to

apply the reduction factor to only those time steps on or after the NSPS implementation date.

4. After applying all desired emission reductions, sum together the emission matrices to produce a single

set of emission matrices by species.

4.5.6 Equipment-based Emissions

Equipment-based emissions (EBE) are calculated for each well using the function eqEcalc using (a) the

randomly selected rows from each CPT (contained in the wsim and wpri dataframes), (b) the production

volumes of oil and gas, and (c) all of the options in EF options related to emissions calculations. EBEs
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are calculated for each type of equipment following the same procedure used in UDAQ’s OGEI spreadsheet.

Each step in the EBE calculation process is outlined below.

1. Preliminary steps (used by most of the subsequent EBE calculation steps)

(a) Create a production identity matrix (Eid)

The first step in the calculation procedure is to create a matrix with one row for each well and

one column for each time step where the value in each element is 0 if a well isn’t producing either

oil or gas and 1 otherwise. Since none of the EBEs depend on oil or gas production volumes

(except VOC emissions from tanks), EBEs are either “on” or “off.” Most of the functions used

to calculated EBEs for each type of equipment simply return a single annual emissions amount.

This is translated into a monthly emissions total for each well by multiplying annual emission by

the Eid matrix (and converting to a monthly emissions rate).

(b) Define the reduced emissions function redfun

This function selects a subset of rows from a matrix (given by the input ind) and multiplies them

by (1 − r) where r is the emissions reduction (specified as a fraction) specified by the user in

EF options. Additionally, the function is designed so that the reduction can apply to a subset

of the columns of the original emissions matrix (i.e. the reduction can be applied after a certain

date in the MC simulation).

(c) Define the reduction index selection function ind.select

The redfun applies reductions to all of the rows specified by the row index input ind. This

function handles three possible selection categories used to create the ind vector: well type

(oil or gas), jurisdiction (federal, state, fee, or Indian), and county (Uintah or Duchesne). Any

combination of these categories can be given to ind.select (including the options of selecting all

of the above) and the function will return the matching row indices.

(d) Get the maximum production rates of oil and gas for each well

Several EBE functions required the maximum potential production rates of oil and gas for each

well. This step finds those max rates and defines them as moil and mgas.

2. Calculate emissions from well completions (i.e. new wells and reworks)

Well completions are one-time emission events. Whenever a new well is drilled or an existing well is

reworked, the emissions from that event are calculated using the equation:

Ei = F ∗ EFi ∗
(

1− r

100

)
∗ 1

2000
(4.1)

where Ei is the emissions of species i (in tons), F is the diesel fuel usage (in gallons), r is the emissions

reductions (due to the use of control equipment, if any), and EFi is the emission factor (in lb/gallon).

In the OGEI database, r is reported as a percentage. Therefore in the calculated r must be divided

by 100 to convert to a fraction. The pollutant species for well completions are: PM10, PM2.5, NOx,

VOCs, and CO.

In the code, an identity matrix (similar to Eid) is created called Ewc which contains one row for each

well, one column for each time step, and which contains zeros for all elements except the for the time
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step in which each well is drilled, which is instead recorded as a 1. The EBEs are calculated for each

well using Equation 4.1. Those results are then multiplied by Ewc, and the resulting matrices are saved

as the base emissions results list E.

Note: the process described below for calculating reduced emissions applies to all types of equipment.

Any applicable reduction selection criteria specified in EF options for well completions are then used

to find which rows to apply reductions to using which() and ind.select. The reduction selection

criteria include:

(a) The time step in which a well is drilled

(b) The start/implementation date of the reduction

(c) Well type (oil, gas, or both)

(d) Jurisdiction (federal, state, fee, Indian, or all)

(e) County (Uintah, Duchesne, or both)

(f) Minimum annual emission thresholds (e.g. wells with emissions greater than some specified

amount)

(g) Minimum monthly oil or gas production rates

Additionally, any well which selects a row of inputs from the CPT which already has some form of

emissions control (combustor, VRU, etc.) will be automatically excluded from having any further

emission reductions applied to it (to prevent double-counting reductions).

Based on the selection criteria, reduced emissions are calculated for any applicable rows using redfun

and the reduced emissions are saved in the list rE.

3. Calculate emissions from RICE and Turbines

RICE (reciprocating internal combustion engines) and turbines have ongoing emissions which are cal-

culated by the function calc E rt using either equation:

Ei = F ∗HV ∗ EFi ∗ (1− r) ∗ wfrac

2000
(4.2)

if the emission factor EFi is in units of lb/MMBtu, or:

Ei =

(
hp ∗ t ∗ EFi

453.592

)
∗ (1− r) ∗ wfrac

2000
(4.3)

if the emission factor EFi is in units of gal/hp-hr. In both of the above equations F is the total

fuel combusted (MMCF/yr), HV is heating value (Btu/CF), hp is horsepower, t is operation time

(in hours/year), r is the control reduction (expressed as a fraction), and wfrac is the “well fraction”

discussed in Section 3.14. The pollutant species for RICE and turbines are: PM10, PM2.5, SOx, NOx,

VOCs, CO, and CH2O.

Prior to using calc E rt, any NA values in the randomly selected RICE and turbine CPT row selections

for each well are replaced with zeros using NA.overwrite. The cleaned up inputs are run through

calc E rt, returning annual emission rates for each pollutant species for each well. These vectors are

61



converted to a monthly basis and multiplied by Eid to create the base emissions matrices for RICE

and turbines, which are added to E.

Finally, the same emissions reductions process described for well completions is applied to the base

emissions to find rE.

4. Calculate emissions from separators and heaters

Separators and heaters have ongoing emissions which are calculated with the function calc E sh using

the equation:

Ei =
HD ∗ t ∗ EFi

HV
∗ wfrac

2000
(4.4)

where HD is the heat duty rating (MMBtu/hr) and all other terms are identical to those previously

identified. The pollutant species for separators and heaters are: PM10, PM2.5, SOx, NOx, VOCs, and

CO. Note that separators and heaters in the OGEI database include the option of using low NOx

burners, but no other built-in control equipment. Therefore for NOx, the emissions are calculated as:

Ei =
HD ∗ t ∗ EFi

HV
∗ wfrac

2000
∗ (1− r) (4.5)

where r is the control reduction (expressed as a fraction).

The steps for calculating emissions for separators and heaters is essentially identical to those for RICE

and turbines. NA values from the randomly selected rows of the CPT are replaced with zeros, calc E sh

is used to find annual emissions for each well and species, the results are multiplied by Eid and converted

to a monthly basis to find the base emissions E, and finally the reduced emissions for wells which meet

selection criteria is calculated using redfun.

5. Calculate emissions from dehydrators

Dehydrators have ongoing emissions which are calculated with the function calc E dh using either the

equation:

Ei =

(
HD ∗ 8760 ∗ EFi

HV
+
Vpilot ∗ EFi,pilot

106

)
∗ wfrac

2000
(4.6)

for NOx and CO, or:

EV OC =

(
EFV OC,DH ∗ t+

Vpilot ∗ EFV OC,pilot

106

)
∗ wfrac

2000
(4.7)

for VOCs. In both of the above equations, Vpilot is the volume of gas used by the combustor pilot

(CF/yr), and the subscripts DH and pilot indicate the emissions factor is for the dehydrator or

combustor pilot, respectively. All other terms are identical to those defined previously. The first term

in Equation 4.6 is for the emissions related to the operation of the combustor, and the second the

combustor pilot.

Like separators and heaters, the steps for calculating emissions from dehydrators are identical to that

used for RICE and turbines.
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6. Calculate emissions from tanks

Tanks have ongoing emissions which are calculated with the function calc E tank using a combination

of (a) the combustor and combustor pilot emissions equations (Equations 4.6 and 4.7), and (b) the

VOC emissions ratio discussed in Section 3.14 (e.g. R = (V OC)/(oil)). In the calc E tank function,

the combustor and combustor pilot emissions are first calculated (and converted to a monthly basis

inside the function). Next, the VOC emissions from the tank are calculated using the equation:

EV OC,tank = R ∗ [osim] ∗ (1− r) (4.8)

where R is the VOC emissions ratio drawn from the CPT, osim is the oil production matrix for all wells

(rows = wells, columns = time steps, elements = monthly oil production volumes), and r is the control

reduction (expressed as a fraction). Any element in EV OC,tank which is greater than the maximum

reported monthly emissions rate in the OGEI database is replaced with that maximum rate. Tank

VOC emissions from the combustor and pilot calculated in Equation 4.7 are then added to EV OC,tank

to get total tank VOC emissions. The remainder of the calculation process for EBEs from tanks is

identical to those described for RICE and turbines (with the exception that conversion from an annual

to a monthly basis isn’t required).

The pollutant species for tanks are: NOx, VOCs, and CO.

7. Calculate emissions from truck loading

Truck loading produces ongoing emissions which are calculated with the function calc E truck using

the equation:

EFi =

(
12.46 ∗ S ∗ Pvap ∗MW

T

)
∗ (1− r) ∗

(
42

103 ∗ 2000

)
(4.9)

where EFi is the emission factor for truck loading (ton VOC/bbl) S is the “S” factor for the truck

loading rack mode of operation, Pvap is vapor pressure (psia), MW is molecular weight (lb/lbmol), T

is temperature (◦R), and r is the control reduction (expressed as a fraction).

The only pollutant species considered from truck loading are VOCs.

After calculating the value of EFi for each well, the oil production matrix osim is multiplied by the

EFi vector to find VOC emissions as a result of truck loading. The remainder of the calculation process

for EBEs from truck loading is identical to those described for RICE and turbines.

8. Calculate emissions from pneumatic controllers

Pneumatic controllers have ongoing emissions which are calculated with the function calc E pctrl

using the equation:

EV OC = (nH ∗ EFH + nI ∗ EFI + nL ∗ EFL) ∗ t ∗ wfrac (4.10)

where n is the number of high (H), intermittent (I), or low (L) bleed devices with a VOC emissions

factor EF for each type. All other terms are identical to those previously defined.

The only pollutant species considered from pneumatic controllers are VOCs.
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After finding the total annual VOC emissions from pneumatic controllers as calculated by calc E pctrl,

the remainder of the calculation process is identical to that described for RICE and turbines.

9. Calculate emissions from pneumatic pumps

Pneumatic pumps have ongoing emissions which are calculated with the function calc E ppump using

the equation:

EV OC =
V R ∗ 60 ∗MW ∗ t ∗mV OC

379 ∗ 2000
∗ wwfrac (4.11)

where V R is the average vent rate for pumps (CF/min), mV OC is the VOC weight fraction, and all

other terms are identical to those previously described.

The only pollutant species considered from pneumatic pumps are VOCs.

After finding the total annual VOC emissions from pneumatic pumps as calculated by calc E ppump,

the remainder of the calculation process is identical to that described for RICE and turbines.

10. Calculate fugitive emissions

Fugitive sources produce ongoing emissions which are calculated with the function calc E fug using

the equation:

EV OC =
EFfug ∗ t

2000
∗ wfrac (4.12)

where EFfug is the fugitive emission factor (and all other terms are identical to those previously

described):

EFfug =

k∑
i=1

ni ∗ EFi (4.13)

where n is the number and EF the emission factor of each i type of fugitive source. Fugitives sources

considered here are: valves, pump seals, connectors, flanges, open lines, and a catch-all “other” category.

The only pollutant species considered from fugitive sources are VOCs.

Fugitive source counts in the OGEI database are recorded based on the fluid type (gas, heavy oil, light

oil, and water/oil) for each production area. Consequently calc E fug must be called for each fluid

type and the results summed together to get the total annual fugitive emissions for each well. That

vector is then multiplied by Eid, converted to a monthly basis, etc. following the same procedure

outlined for RICE and turbines.

11. Calculate total emission results

At the conclusion of the EBE calculation process, the function eqEcalc has created two structured lists,

E and rE (for base and reduced emissions, respectively), with one sub-list for each type of equipment

containing one matrix for each type of pollutant generated by that equipment. These matrices have

one row for each well in the MC simulation and one column for each time step.

The final step in the function is to sum the emissions together from all wells into (a) total emissions by

species and (b) total emissions by species and equipment type. This summation is handled using the
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function etotal, which takes the column-sums of the well-by-well emission results in E and rE. These

summation results are then returned to main.

4.5.7 Totals

The last step in the MC loop is to sum together the detailed results for each run into a single total for the

entire Uinta Basin as a function of time (e.g. total oil and gas production, emissions of each type of pollutant

species, etc.). The results that are summed together this all of the objects predefined at the start of the MC

loop (e.g. osim, gsim, aE, etc.) as discussed at the beginning of Section 4.5.

4.6 Post-processing

At the conclusion of the MC loop, the script prints to the console the elapsed time for the MC loop and a

message notifying that post-processing has begun. The script then sources the postProcess script (see Part

V).

4.7 Save Results

Finally, at the end of the main script, the if (opt$save == TRUE) {...} statement saves the entire

workspace to disk (if specified by the user in IO options). The *.rda file saved to disk is the same file

that can later be loaded at the end of the 1.x section of main as discussed in Section 2.4.

65



Part III

IO options
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Chapter 5

IO options

IO options is the second main script in the model, and contains all of the user input options that control the

execution of functions in main (except for those specifically related to equipment-based emissions options,

see Part IV). Options are organized into sections which (as closely as possible) follow the same structure as

the code in main. All of the input options are in IO options are described in detail below.

5.1 Global Options

The first section of IO options sets “global” options for the simulation that effect all areas of the model or

that are used by multiple functions in main. The options are:

• opt <- NULL

The very first command in IO options, this line creates the list object “opt” to which all subsequent

options in IO options are added. This line must be present and should not be changed.

• opt$save

This option specifies whether or not the model workspace should saved at the conclusion of the main

script. Valid options are TRUE or FALSE.

opt$save.name

Specifies the name of the file under which the model workspace will be saved if the previous option is

set to TRUE.

opt$load.prior and opt$load.name

The counterpart of the save options above, this option indicates whether the results of a prior run

should be loaded and if so what file should be loaded. opt$load.prior is a TRUE/FALSE input, while

opt$load.name can be any character string under which a prior run results were saved.

• opt$file ver
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This input option controls a character string that is added onto the end of every *.rda file saved in

the data analysis section of main. If a new analysis is being performed the value of this option should

be changed. The value can also be changed to any previous version to load the results of a previous

version of the data analysis functions.

• opt$nrun

This options specifies how many MC simulation iterations or runs should be performed in the MC loop

discussed in Section 4.5. Setting higher values for this option will lead to a more thorough sampling

of the model’s parameter space, but it will also linearly increase processing time. At the time this

manual was written, each run through the MC loop required approximately 8 seconds on a mainstream

desktop computer. For development and testing purposes setting this value to 100 is usually sufficient

to achieve a rough sampling of the parameter space. Setting the value to 103 substantially smooths

out the quantile results. It should also be noted that while there is little difference between the median

results of the 102 vs. 103 simulation results, the extremes of the quantile distribution (the 10th and

90th percentiles) do spread farther out as the number of runs increases. The only hard upper limit

to the value of opt$nrun is computer memory. Each iteration adds an additional row to all of the

matrices containing MC loop simulation totals, consuming about 30 MB of memory per run.

• opt$crossvalid

Logical TRUE/FALSE option that acts as a flag to control execution of queries and plotting options

in postProcess. If set to true, the model will attempt to calculate the actual values of energy prices,

oil and gas production, etc., over the simulation time period. If false (i.e. if the model is being run in

predictive mode), all of these steps will be skipped.

• Time options

These options control what time periods are used for the simulation period as well as the global training

period (i.e. what time period is used in general for selecting the data used in the data analysis section

of main). All dates must be entered in “YYYY-MM-DD” format. The specific options are:

– opt$tstart

The start of the simulation time period

– opt$tstop

The stop of the simulation time period

– opt$train.start

The start of the training period. The recommended value here is for “1984-01-01” (the first month

for which data is available in the UDOGM databases.

– opt$train.stop

The stop of the training period. This should be set to a date which is both (a) one month prior

to the simulation period (opt$tstart) and (b) for which data is available. For example, if the

simulation period was going to start on “2010-01-01” then this value should be set to “2009-12-01.”

– opt$tsteps

This option creates a vector of dates by month between opt$tstart and opt$tstop. It does not

need to be changed.
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– opt$MC.tsteps

This option calculates how many time steps are in the simulation period. It does not need to be

changed.

• Inflation adjustment

All of the dollar values used in model calculations need to be on the same time basis. The two global

options that control what time basis is used for inflation adjustment of dollar values are:

– opt$cpi

Enter the consumer price index (CPI) value you’d like to use as the time basis for dollar values

here. CPI values are listed in Table 24 of the U.S. Bureau of Labor Statistics [2015] monthly

CPI reports. Every function in the model that involves an inflation adjustment step will use this

value.

– opt$cpiDate

Character string indicating what year or date corresponding to the value of opt$cpi. This value

is only used in the plots produced by postProcess in y-axis labels (e.g. entering “2014” here

would produce the y-axis label “2014 USD”).

• opt$xq

This vector specifies which cumulative probability points should be used to generate CDFs with the

CDFq function. Specifying additional points will lead to finer resolution and selection of values for

terms described by CDFs in the MC simulation. However if the number of cumulative probability

points greatly exceeds the number of data points then the CDF will simply draw straight lines between

each point (see Figure 2.2). Good results have been achieved with a probability step size of 10−4.

Lastly, the upper and lower limit of opt$xq should not be set to 0 or 1, as that would lead to values

of ±∞ for CDFs generated from normal distributions.

• opt$min.well.depth

This option controls subsetting options which can exclude wells that are shallower than the specified

depth. Originally, this was used to skip wells that were only partially drilled. However subsequent

investigation of the UDOGM database revealed that any well being held in confidential status has a

reported well depth of 0 ft. Therefore to include information about these well’s in the model this value

should be left at 0.

• Flags for updating prepared data files

This segment controls the execution of each data analysis function in main. Update flags are logical

TRUE/FALSE values listed in opt$[...].update format, where “. . . ” is the data analysis function

that will be run if the flag is set to TRUE. If the flag is set to false the analysis function will be skipped

and the results of the data analysis function saved under the version number specified in opt$file ver

will be loaded. In general, the best approach to updating the model is to (1) specify a new version

number and then (2) set all update flags to TRUE. See Section 9.2 for detailed instructions on how to

update the data and data analysis used by the model.
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• Subsetting options for production

This section lists all of the columns contained in the data.frame production, which contains the

combined UDOGM database files proddata, histdata, and welldata for the entire state of Utah.

When the subset p of wells located in the Uinta Basin is taken from production, only the columns in

this options list which are uncommented will be included in p. There should be no need to change the

selection of values in this segment unless the user wants to include new information from production

in some future analysis.

5.2 Data Analysis Options

This section of IO options controls the specific options for each data analysis function in main. The options

for each function are described below.

5.2.1 dogmDataUpdate

opt$psub controls what subset to select from the data.frame production. Currently, the only valid sub-

setting option is “a,” which corresponds to selecting only records from production that are located in the

Uinta Basin (i.e. Uintah or Duchesne counties). Additional options can be added to the case-and-switch

programming structure in main. If additional options are programmed into main in the future then this is

the option to use to control which subset is selected.

5.2.2 scheduleUpdate

The options for this function are:

• opt$SU.tsteps

This option controls what data is selected for use in scheduleUpdate. By default, it is set to use the

same time range specified by opt$train.tstart and opt$train.tstop. Changing the value of this

option isn’t recommended.

• opt$field.cutoff

As discussed in Section 3.2, not every field is worth analyzing individually. This option specifies the

minimum value of the fraction (wells located in field i)/(total wells in Uinta Basin) that field i must

have in order to be analyzed individually. The recommended value for this option is 0.05. Lower

values can be selected, but the user may encounter errors with generating CDFs if too few values exist

for terms in smaller fields. For example, suppose a field contained only 100 wells, 10 of which were

oil wells, and that those oil wells didn’t have enough production records to be fit in the DCAupdate

function. No CDFs could be generated for oil decline curve coefficients for that field, and the model

would fail.
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• Well depth criteria

Two options are given for controlling the step size and upper limit of the CDF for well depth:

– opt$max.well.depth

This option sets the upper limit of cdf.depth.ow and cdf.depth.gw. The longest total measured

well length in the Uinta Basin at the time this manual was written was approximately 65e3 ft

long. A much smaller maximum well length of 20e3 ft is recommended because (a) the maximum

value is a large outlier, and (b) several regression functions which are fit to well depth (e.g. well

capital cost, drilling water usage, etc.) do not have any data points above 20e3 ft, and thus

allowing wells to be that long would require significant extrapolation from the fitted data set.

– opt$well.depth.step

The step size at which to estimate the CDFs for well depth. Any value may be selected here so

long as the resulting range between the minimum well depth set in the global options section and

the maximum well depth can be divided by the step size to give a whole number.

5.2.3 EIApriceUpdate

The only option for this function, opt$EP.CPI.basis, is a specification of the CPI value associated with the

prices in *.csv file processed by EIApriceUpdate. The value for CPI used in that spreadsheet must be the

same as the value for CPI entered here.

5.2.4 leaseOpCostUpdate

Unless the lease cost report is revived by EIA, new data for this function will most likely not be produced

and therefore the user will not need to change any of the options listed here. The three options available

are:

• opt$LU.tstart

The starting date to use for selecting lease cost data. The first data point available is for 1994. It

is recommended that the full data range be used for this function, therefore this value should not be

changed.

• opt$LU.tstart

The stop date to use for selecting lease cost data. The last data point available is for 2009. Again, it

is recommended to use the full range of data for this function and therefore this option should not be

changed.

• opt$LOCbasis

This options specifies the CPI value to which costs have been inflation adjusted in the *.csv file analyzed

by leaseOpCostUpdate.
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5.2.5 drillingModelUpdate

The only options to select for this data analysis function are for specifying the start (opt$DMU.tstart)

and stop (opt$DMU.tstop) points for the time range which will be used for fitting the drilling schedule

models (Equations (3.3)-(3.6)). Through trial and error, we have found that there is little correlation

between energy prices and drilling rates prior to 1999. Therefore we recommend setting the value of

opt$DMU.tstart to “1999-01-01.” The value of opt$DMU.tstop is set by default to the global training

stop time opt$train.tstop. If there is a substantial change in the drilling behavior of the oil and gas

industry that results in poor performance of the drilling schedule models, then the user is encouraged to try

different time periods for fitting Equations (3.3)-(3.6).

5.2.6 ARIMAfitUpdate

The options for this function are as follows:

• opt$ARIMA.tstart - start date for ARIMA model fitting. This should always be set to the beginning

date of the historical energy price data (1977-07-01).

• opt$ARIMA.tstop - end date for the ARIMA model fitting. This value should either be the last date of

the historical price data (if running the model in prediction mode) or the last date in the training data

(if running the model in cross-validation mode). For example, if the cross-validating model performance

over a twenty year period and price data extended from July 1977 to Dec. 2015, then the end date

should be specified as Dec. 1995. The ARIMA model(s) would then be trained on data between July

1977 and Dec. 1995, and the model can be tested against data from Jan. 1996 - Dec. 2015.

• opt$ARIMA.opdq - list object for the manually specified ARIMA oil price model. The list contains

two elements: “order,” which specifies the ARIMA model order according to the (p,d,q) formula (see

Section 3.6), and “ic,” which should be a logical TRUE/FALSE value indicating whether or not to

include a constant in the ARIMA model.

• opt$ARIMA.gpdq - same as previous input option, but for gas prices.

• opt$ARIMA.plotFit - TRUE/FALSE flag indicating whether or not to plot the cross-validated forecasts

for oil and gas from the manually and automitcally fitted ARIMA models. This item is set by default

to “TRUE” if opt$crossvalid is set to true, and false otherwise.

5.2.7 EIAforecastUpdate

The EIA Annual Energy Outlook forecast for the simulation period should be entered in this segment of

IO options. The forecast is specified by the following vectors:

• year - vector of dates in YYYY-MM-DD format, should be set so that there is one date for each year

in the EIA forecast with the month set to the midpoint (June) of each year.
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• oil / loil / hoil - vector of EIA reference / low / high oil prices.

• gas / lgas / hgas - vector of EIA reference / low / high gas prices.

These vectors are combined into the data.frame opt$forecast. In addition the forecast values mentioned,

the CPI value of the price forecast should also be entered in opt$EIAbasis.

5.2.8 EIAerrorUpdate

opt$EEU.tsteps controls how many years of relative error CDFs to produce. This option should be set to

have the same number of years as there are annual oil/gas prices in the EIA forecasts.

5.2.9 DCAupdate

This section contains all of the options for controlling the DCAupdate function. Options include:

• General DCA fitting options

These options primarily control the DCA binning algorithm.

– opt$minProdRec

This option specifies how many non-zero production records a decline curve segment must contain

in order to attempt fitting with the decline curve equations. The intended purpose of this option

is to prevent over-fitting wells with too few production records. The default and recommended

value for this option is 12 (i.e. one year of non-zero production records).

– opt$minDayProd

This option specifies how many days a well must be in operation in order to include production

records from that reporting period as a data point in the DCA. The intended purpose of this

option is to prevent the inclusion of production records from wells that have been either shut-in

or partially operating in a given reporting period. The recommended value for this term is 28

days.

– opt$diff.bin.cutoff

This term specifies how large the differential between adjacent production bins must be after

normalization in order for a decline curve stop point to be identified in the binStartStop function.

Small values will result in higher sensitivity but also increased rates of falsely identified stop

points. This value should be adjusted in conjunction with opt$bin. Combined with the a value

for opt$bin = 12 months, the recommended value for opt$diff.bin.cutoff is 0.15.

– opt$bin

This option specifies the size (in months) of time window or “bin” for aggregating production

volumes in the binStartStop function. Larger values will result in more smoothing of the pro-

duction record, smaller values will give increased sensitivity. This option should be adjusted in
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conjunction with opt$diff.bin.cutoff. Combined with the a value for opt$diff.bin.cutoff

= 0.15, the recommended value for opt$bin is 12 months.

– opt$DCAplot

Logical TRUE/FALSE flag indicating whether or not the DCAupdate function should plot the

DCA fits for each well by product type (oil or gas) and field.

– opt$n.stopB.min

This term specifies the first possible bin which will be considered a true stop point. For example,

at the default and recommended value of 4, any stop point found in bins 1-3 (years 1-3 with the

default bin size of 12 months) will be ignored. The intended purpose of this option is to prevent

attempts at fitting distinct decline curves to very early well production histories (which tend to

be much more erratic than later production records).

– opt$n.startT.search

This term controls how many top production points should be compared when determining the

start point of each production curve. At the default and recommended value of 3, the top 3 largest

production records are compared, and the earliest occurring record in that top three is selected as

the start point. The intended purpose of this option is to prevent the selection of large production

records as the start point of decline curves if those values occur much later in the decline curve

segment than other large values (there are occasionally outliers in production records where the

largest record occurs in the last third of the decline curve).

• Time step options

The options opt$DCA.tstart and opt$DCA.tstop specify that start and stop points of the time range

which will be included in the DCA. By default, these values are set to the same range as the global

training time range.

• Hyperbolic decline curve options

This set of options controls the behavior of the nonlinear solver nlsLM for fitting Equation (3.13).

Options include:

– opt$b.start.oil and opt$b.start.gas

Initial guess for the value of b in Equation (3.13). Trial and error has shown that good initial

guesses are 1.78 for oil and 1.32 for gas.

– opt$Di.start.oil and opt$Di.start.gas

Initial guess for the value of Di in Equation (3.13). Trial and error has shown that good initial

guesses are 1.16 for oil and 0.24 for gas.

– opt$lower.oil and opt$lower.gas

Lower limits for the nonlinear solver for each coefficient in Equation (3.13). Limits are given as a

vector, corresponding to the order [qo, b, Di]. The lower limit for all coefficients should be set to

zero.

– opt$upper.oil and opt$upper.gas

Upper limits for the nonlinear solver for each coefficient in Equation (3.13). Limits are given as a

vector, corresponding to the order [qo, b, Di]. The upper limit for qo and Di should be set to ∞
and the upper limit for b should be set to 10.
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• Cumulative decline curve options

This set of options controls the behavior of the nonlinear solver nlsLM for fitting Equation (3.14).

Options include:

– opt$Cp.start.oil and opt$Cp.start.gas

Initial guess for the value of Cp in Equation (3.14). Trial and error has shown that good initial

guesses are 103 for oil and 104 for gas.

– opt$c1.start.oil and opt$c1.start.gas

Initial guess for the value of c1 in Equation (3.14). Trial and error has shown that good initial

guesses are 0 for both oil and gas.

– opt$Qlower.oil and opt$Qlower.gas

Lower limits for the nonlinear solver for each coefficient in Equation (3.14). Limits are given as

a vector, corresponding to the order [Cp, c1]. The lower limit for Cp should be set to zero, while

the lower limit for c1 should be set to -∞.

– opt$Qupper.oil and opt$Qupper.gas

Upper limits for the nonlinear solver for each coefficient in Equation (3.14). Limits are given as

a vector, corresponding to the order [Cp, c1]. The upper limit for both coefficients should be set

to ∞.

5.2.10 DCAupdateCDF

The options for this function control the generation of CDFs for each coefficient in Equations (3.13) and

(3.14) as well as the CDFs for the time delay in oil and gas production. The available options are:

• opt$DCA.CDF.type

This option controls which CDF generation function is used. Valid options are “Density,” which sets

the function to use CDFd, or “Quantile,” which sets the function to use CDFq.

• Time step options

Specifies the time range of DCA data to include in the CDF generation. Both opt$DCAcdf.tstart

and opt$DCAcdf.tstop are set by default to use the global training time range.

• Hyperbolic decline curve CDF generation options

These options control the upper and lower limits of DCA coefficient values that are included in the

DCA CDF generation for the hyperbolic decline curve equation. The specific options are:

– opt$cdf.oil.from and opt$cdf.gas.from

This option specifies the lower limit for the CDFs for oil and gas for the hyperbolic decline curve

coefficients and the time delay for oil and gas production. The limits are given in a vector with

the order [qo, b, Di, tdelay]. The lower limit for all terms for both oil and gas should be set to

zero.
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– opt$cdf.oil.to and opt$cdf.gas.to

This option specifies the upper limit for the CDFs for oil and gas for the hyperbolic decline curve

coefficients and the time delay for oil and gas production. The limits are given in a vector with

the order [qo, b, Di, tdelay]. The upper limit for all terms except qo should be set to ∞ for both

oil and gas. The upper limit for qo should be set to 2e3 for oil and 4e4 for gas (based on trial and

error with the reasonable range of results for DCA fits to the hyperbolic decline curve equation).

– opt$cdf.oil.np and opt$cdf.gas.np

This option specifies how many points to estimate the CDF at if the CDF generation method is

set to “Density” (i.e. to use CDFd). The order of the vector here is the same as in the previous

options ([qo, b, Di, tdelay]). The values selected by default at set so that the size of the steps in

each CDF generated by CDFd would have values between 0.1 and 1.

• Cumulative decline curve CDF generation options

These options control the upper and lower limits of DCA coefficient values that are included in the

DCA CDF generation for the cumulative production equation. The meaning of all terms is the same

as in the hyperbolic options. The specific options are:

– opt$Q.cdf.oil.from and opt$Q.cdf.gas.from

This option specifies the lower limit for the CDFs for oil and gas for the cumulative decline curve

coefficients. The limits are given in a vector with the order [Cp, c1]. The lower limit for Cp for

both oil and gas should be set to zero. The recommended lower limits for c1 are -30e3 for oil and

-400e3 for gas.

– opt$Q.cdf.oil.to and opt$Q.cdf.gas.to

This option specifies the upper limit for the CDFs for oil and gas for the cumulative decline curve

coefficients. The limits are given in a vector with the order [Cp, c1]. The recommended upper

limit for Cp is 30e3 for oil and 200e3 for gas. The recommended upper limits for c1 are 30e3 for

oil and 100e3 for gas.

– opt$Q.cdf.oil.np and opt$Q.cdf.gas.np

This option specifies how many points to estimate the CDF at if the CDF generation method is

set to “Density” (i.e. to use CDFd). The order of the vector here is the same as in the previous

options ([Cp, c1]). The values selected by default at set so that the size of the steps in each CDF

generated by CDFd would have values between 0.1 and 1.

5.2.11 reworkUpdate

The first two options for this update function, opt$RWU.tstart and opt$RWU.tstop control the time range of

data used for generating the rework CDFs. By default, the global training time period values are used. The

remaining option, opt$wc.min specifies the minimum number of wells that must be left in the well population

in order to estimate the rework CDF. The intended purpose of this option is to stop estimating the CDF if

the population of existing wells becomes too small to be representative. Without a lower population limit

it’s also possible to have CDF values for reworking greater than 1. For example, if the oldest well on record

(population size 1) were reworked after n months and that well was also n months old, then the probability of
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a well being reworked in month n would be 100%. When that probability is added to the previous probability

values to get the CDF, the maximum CDF value would be equal to 1 plus the cumulative sum of all other

rework probabilities. The recommended value for opt$wc.min is 100 wells.

5.2.12 DCA Coefficient Distribution Fitting

The options for this function are:

• opt$DFmin.rec.count

This option specifies the minimum number of DCA fits in a given year (for the entire Basin or each

individual field) that must be present in order to attempt fitting the log-normal distribution to points

in that year. The intended purpose of this option is to prevent over-fitting when too few data points are

available. At the Basin-scale this requirement is almost always satisfied, but on the field-level there are

many years (especially for smaller fields) that only have a handful of wells drilled. The recommended

value for this option is 10 DCA fits.

• opt$DFplot.flag

This option is a logical TRUE/FALSE flag that specifies whether or not the DCA coefficient distribution

fits and regression plots to log-normal distribution parameters should be plotted. Specify as true to

output plots.

• Time options

The start and stop time options for DCAlnormUpdate are given as years and are specified independent

of the global training time ranges. The accuracy of the log-normal distribution fitting method is highly

dependent on the time period selected for fitting (see Section 3.13). Cross-validation tests of the 2010-

2014 time period have shown that the best time period to select for matching production data during

that test period are opt$DF.tstart = 1999 and opt$DF.tstop = 2009 (see Figure 3.5). Assuming that

recent trends continue, its recommended that opt$DF.tstart be left at 1999 and that opt$DF.tstop

be adjusted to the last year for which data is available in the training period.

5.3 Monte-Carlo Simulation

The options in the MC simulation section of IO options primarily provide character switches that control

the calculation methods in the simulation for determining energy prices, the drilling schedule, etc. The

options for each function in the MC simulation are presented below.

5.3.1 Energy Price Path Simulation

The option opt$epf.type is a character string specifying which method to use for generating energy prices

paths as discussed in Section 4.2. Valid options are:
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• “a” - for auto-ARIMA price path simulation

• “b” - for manually-specified ARIMA price path simulation

• “c” - for EIA Annual Energy Outlook forecasts with error propagation

• “d” - for using the actual price path

• “e” - for using the constant average price assumption

• “f” - for user specified price paths

The actual energy price paths can only be used if the model is being run in cross-validation mode, and

is intended to test the accuracy of the drilling schedule models. The recommended option to use depends

on the length of the forecast. For short term forecasts (≤ 1 year), option “e” or “f” is recommnded. For

forecasts over the time period 1 < t ≤ 5 years option “c” is recommended. Finally, if the forecasting period

is going to be > 5 years, option “a” or “b” is recommended.

In addition the character switch specifying which simulation method to use, the user also needs to specify

the following options:

• opt$epf.EIA.type

Character string specifying whether the model should use direct relative error (“direct”, see Section

3.8) or fractional relative error (“frac”, see Section 3.9). The “frac” option is recommended.

• opt$epf.EIA.fracProb

Probability value between 0 and 1 specifying whether prices should be adjusted up or down by the

fractional relative error method. Higher values increase the probability of returning a value of 1 from

the binomial distribution (and consequently increase the probability of adjusting energy price paths

upwards using Equation 3.11), while lower probability values do the opposite (more likely to return a

value of 0 and apply Equation 3.12 to the energy price paths, adjusting them downwards).

By default, this value is set to 0.5 (equal probability of adjusting upwards/downwards), and should

only be changed if the user has reason to believe that the error in EIA’s forecasts are skewed in a

particular direction.

• opt$epf.const - list object with the number of months over which to average prices for oil (“noil”)

and gas (“ngas”) if using the constant average price method. The recommended value is 12 (i.e. one

year) for both oil and gas.

• opt$epf.uepf

User specified price paths for oil and gas. These matrices must have one row for each MC iteration

and one column for each time step. The values in each element should be in units of $/bbl for oil and

$/MCF for gas.
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5.3.2 Drilling Simulation

The options to set for the drilling schedule simulation function drillsim are:

• opt$DStype

Character string used as a switch to specify what type of method to use for the drilling schedule. Valid

options are:

– “sim” - simulate the drilling schedule using one of the distributed-lag energy price models (see

Section 3.5).

– “actual” - use the actual drilling schedule over the forecasting period. This method can only be

used when the model is being run in cross-validation mode, and is intended to test the accuracy

of the production simulation calculations.

– “user” - use a user-specified drilling schedule. This method is intended to serve the same purpose

as the user-specified energy price modeling method, but it allows the user to fix the drilling

schedule directly (without going through the distributed-lag energy price modeling process).

• opt$DSsimtype

Character string used as a switch to specify which drilling model (Equations (3.3)-(3.6)) to use to

predict the drilling schedule. Based on model cross-validation results to the 2010-2014 period, the

most accurate drilling model is the oil price model (Equation (3.5)), or option “c.” Other options are

the prior well model (Equation (3.3), option “a”), energy price model (Equation (3.4), option “b”),

and gas price model (Equation (3.6), option “d”).

• DS.uspec

If using the user-specifed drilling schedule option, enter the desired schedule here. The schedule must

contain only integer values and be in the form of a matrix with rows = MC iterations and columns =

forecasting time steps.

5.3.3 Prior Production

The only option to specify for prior wells is the limit on how old a prior well without a fit can be and still

be included in the population of “skipped” wells. Most prior wells that don’t have fits are wells that had

fewer than the minimum number of non-zero production records required by opt$minProdRec. The majority

of these wells are wells that have been in operation for less than a year. However there are some skipped

wells which are much older, and were simply not operated as oil or gas wells for very long. opt$tend.cut

specifies the upper limit for how old a well can be and still be considered a recently drilled skipped well.

The recommended value for this term is 60 months.
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5.3.4 Well Data Simulation

The only step in generating wsim and wpri which requires an input option is a character switch specifying

what method should be used for generating decline curve coefficients. The switches are opt$mc.DCCpick.type.oil

for oil and opt$mc.DCCpick.type.gas for gas. If hyperbolic decline curves are used (option “a”), both

switches must be set to that option. If one of the cumulative production curve methods is used (options “b”

- “d”) then the switches can be set independently for oil and gas. Based on the work discussed in Section

3.13, the recommended values are “c” for oil and “b” for gas.

5.3.5 Production Simulation

The user specifies what type of decline curve equation to us with opt$mc.DCeq.type. Option “a” will use the

hyperbolic decline curve (Equation (3.13)). Option “b” will use the cumulative production curve (Equation

(3.14).

5.3.6 Activity-Based Emission Factors

This section of IO options is used to specify all of the mean and standard deviations for each emission

factor for each pollutant tracked in the model (CO2E, CH4, and VOCs). The specified means and standard

deviations are restructured to generate the data.frame opt$EF, which is then passed to the function sim EF

(which picks the emission factors for each well). The mean and standard deviation for each emission factor

and pollutant is given in Table 5.1, which is derived from the literature survey of emission factors in Wilkey

et al. [2016].
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Table 5.1: Mean (µ) and standard deviation (σ) of emission factors by pollutant type and activity category.
All values are in metric tons (103 kg) per the unit specified. “ToM” stands for transport of materials.

Activity 103 kg/ µCO2 σCO2 µCH4 σCH4 µV OC σV OC

Site Preparation well 2.08E+2 7.90E+1 9.90E+0 3.37E+0 1.58E+0 6.00E-1

ToM for Drilling well 4.00E-1 5.60E-1 8.60E-6 1.22E-5 1.38E-6 1.95E-6

ToM for Completion well 2.10E-1 2.90E-1 4.36E-6 6.16E-6 6.97E-7 9.86E-7

ToM for Rework well 3.05E+0 4.31E+0 7.71E-5 1.01E-4 1.15E-5 1.62E-5

ToM for Production well 1.36E+0 1.93E+0 3.29E-5 4.65E-5 5.26E-6 7.43E-6

Completion well 1.94E+3 9.67E+2 9.24E+1 4.60E+1 1.48E+1 7.37E+0

Gas Production well/year 3.58E+0 3.33E+0 1.73E-1 1.58E-1 6.50E-2 6.08E-2

Gas Processing MCF gas 9.01E-4 4.60E-5 5.58E-6 3.91E-6 8.90E-7 6.20E-7

Gas Transmission MCF gas 4.18E-3 3.42E-3 1.99E-4 1.63E-4 3.18E-5 2.60E-5

Oil Production bbl oil 4.91E-5 4.91E-5 2.34E-6 2.34E-6 8.88E-7 8.88E-7

Oil Transport bbl oil 1.15E-3 1.15E-3 2.82E-7 2.82E-7 3.84E-7 3.84E-7

In addition to generating opt$EF, this section also specifies emissions reductions in the dataframe opt$EFred.

Each emissions reduction must be programmed into the Ecalc function manually. Any new reductions added

to this section can be coded following the examples of those currently programmed in the Ecalc function.

5.4 Post-Processing

5.4.1 Plots

These options control what plots are created by the postProcess function and how they are labeled. The

specific options are:

• opt$exportFlag

Logical TRUE/FALSE value indicating whether or not plots generated by postProcess are to be

exported to *.pdf (if true), or printed to the user’s screen (if false).

• opt$exportSingle

Logical TRUE/FALSE value indicating whether or not to combine all plots into a single PDF. If true,

one PDF file will be created; otherwise each plot will be created as a separate PDF.
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• opt$prefix and opt$affix

These two options control the beginning and end of any *.pdf files that are generated by postProcess

if opt$exportFlag is set to true. The naming system used is:

[prefix][file name][affix].pdf

where “prefix” and “affix” are any character string that is specified by each of these options, respec-

tively. Any naming convention can be used.

• opt$plist

This data.frame contains a two columns with one row for every set of plots programmed into postProcess.

The first column specifies the name associated with the plot(s) in question as a character string, and is

inserted into the “file name” segment of the *.pdf naming convention noted above. The second column

is a logical TRUE/FALSE value indicating whether or not the plot(s) should be generated. Some

rows control multiple plots. For example, row 28, which controls water balance results, generates nine

separate plots (but all are printed out to the same file). Note that the order of the plots is important.

As the postProcess function checks whether or not each plot is going to be printed a counter variable

“j” is incremented after each if-statement. Therefore any new plots that are added to postProcess

should be added at the bottom of both that script and opt$plist.

• opt$defFontSize

This option specifies how large the font size in plots should be relative to the default size of 1.00 (e.g.

a value of 1.50 is 50% larger than the default). For improving readability of plots in presentations and

other media, the default value of this term has been set to 1.25.

• opt$quant

This vector specifies what quantiles (e.g. percentiles) to include in the plot results. For example,

specifying [0.1, 0.25, 0.5, 0.75, 0.9] would calculate the 10th, 25th, 50th, 75th, and 90th percentiles of

each simulation result in all plots designed to show those results.

5.4.2 Excel Export

This section controls the options for exporting the equipment-based emission results to an Excel spreadsheet.

The options are:

• opt$xls.export

Logical TRUE/FALSE flag indicating whether or not the emission results should be exported to Excel.

• opt$xls.name

Character string specifying the name of the results spreadsheet. The version number specified by

opt$file ver will automatically be appended to the end of this character string, along with the

appropriate file type extension (*.xlsx).
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Part IV

EF options
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Chapter 6

EF options

EF options is the third main script in the model, and contains all of the user input options for incorporating

equipment-based emissions into the model. The script contains one section for global options, followed by

sections for each type of equipment (well completions, RICE and turbines, etc.).

6.1 Global Options

The first section of EF options sets just one global option, namely it creates the eopt list object with the

line:

eopt <- NULL

to which all subsequent options in EF options are added. This line must be present and should not be

changed.

6.2 Equipment Type Options

All of the equipment related sections of EF options have the following format:

• Emission factors

The following types of equipment use emission factors that are specified by the user:

– Well completions (eopt$wc.EF)

– Separators and heaters (eopt$sh.EF)

– Dehydrators (eopt$dh.EF)

– Tanks (eopt$tank.EF)
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– Pneumatic controllers (eopt$pctrl.EF)

– Fugitive emissions (eopt$fug.EF)

By default all of these emission factors have been set to match those given in UDAQ’s OGEI database

spreadsheet. The emission factors used for all other types of equipment are specified directly by the

entries in the CPTs created by the emissionUpdate function.

• Emission reduction options

Every type of equipment has a built-in set of reduction options labeled eopt$r$... where “...” is

replaced with the following abbreviations:

– wc - well completion

– rt - RICE and turbines

– sh - separators and heaters

– dh - dehydrators

– tank - tanks

– truck - truck loading

– pctrl - pneumatic controllers

– ppump - pneumatic pumps

– fug - fugitive emissions

The emission reduction options that can be set are:

1. tDrill

The time step in which a well is drilled. No wells drilled prior to the specified calendar date will

be considered for emission reductions. The calendar dates specified in YYYY-MM-DD format

will be converted into MC simulation time steps by the calTstep function described in Section

2.2.6.

2. tstep

Similar to tDrill, this input specifies the date at which the emission reduction will be applied.

Only calendar dates on and after the date specified will be reduced. For example, if the MC

simulation was 60 months long, and the 30th month during the simulation period was specified

as tstep, then only the 30th - 60th columns of any applicable rows would have their emissions

reduced.

3. wellType

Character string indicating the type of wells to which reductions may be applied. Valid options

are “OW” for oil wells only, “GW” for gas wells only, and “all” for all well types.

4. juris

Character string indicating the jurisdiction to which reductions may be applied. Valid options

are:

– “federal” for federal jurisdiction only
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– “state” for state jurisdiction only

– “fee” for fee jurisdiction only

– “indian” for Indian jurisdiction only

– “all” for all jurisdiction types

5. county

Character string indicating the county to which reductions may be applied. Valid options are

“UINTAH” for Uintah county only, “DUCHESNE” for Duchesne county only, or “all” for any

county.

6. a...

Threshold annual emissions of each applicable pollutant species [...] (PM10, VOC, etc.). Only

those wells which have an annual average emission rate ≥ the specified amount (in ton/yr) will

considered for emission reductions. Each type of equipment lists only the pollutants it generates

in this section.

7. moil and mgas

The maximum oil (moil) and gas (mgas) production rate. Only those wells with values ≥ the

values specified will be considered for emission reductions

Note that care should be used when applying this criteria, as many wells in the simulation will

have no production in their first month of operation (due to time delays between well completion

and first production). If this criteria is applied, the reduced emissions results will appear to

spike at the end of the forecasting period (especially well completion emissions). Therefore it is

recommended that this criteria should not be applied to well completions (i.e. moil and mgas

should be set to 0 for well completions).

8. red...

Finally, the actual emission reductions to apply for each applicable species [...]. The values listed

here should be expressed as fractions (e.g. 0.9 for a 90% reduction). Each type of equipment lists

only the pollutants it generates in this section.
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postProcess
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Chapter 7

Post-Processing

After the MC simulation is complete there are a number of post-processing options that can be used to

visualize and export the results. A set of predefined plots are provided in the script postProcess which

runs at the end of main. The structure of postProcess is discussed below.

7.1 Queries and Calculations in postProcess

If the model is being run in cross-validation mode, the postProcess script begins by determining the actual

values of several terms during the test period, including: energy prices, drilling schedule, and oil and gas

production (from new wells, prior wells, and all wells). If the model is being run in predictive mode, there

is no actual data to compare against and this step is skipped.

The next step in the post-processing analysis is to summarize the full range of results for all the MC simulation

runs for each term of interest. The method we have utilized is to calculate the quantiles (i.e. percentiles) of

the results for each term as a function of time using the quantile function. The percentiles sampled are set

by opt$quant (by default, the 10th, 30th, 50th, 70th, and 90th percentiles). These percentiles are calculated

for nearly every term in the MC simulation (energy prices, drilling schedule, oil and gas production, emissions,

etc.). The calculated quantiles are all stored in matrices with one row for each quantile calculated and one

column for each time step. The quantile matrix for each term uses the same name as the MC simulation

results matrix it is based on, with an additional “.q” placed on the end of the matrix name. For example,

the simulated drilling schedule for each simulation run is stored in the matrix Drilled, and the quantiles of

that drilling schedule are stored in Drilled.q.

7.2 Excel Export

The postProcess script includes the option to export equipment-based emission calculation results to an

Excel spreadsheet. The exported spreadsheet contains one worksheet for (a) total emissions by species and
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(b) emissions by equipment type and species. Both types of results are given with one row for each time step

in the MC simulation and one column for each quantile in opt$quant. Additionally, separate worksheets are

created for both the base and reduced emissions.

7.3 Plots in postProcess

Most of the predefined plots share the same overall structure. The plots begins with an if-statement that

controls whether or not the plot is generated (based on user input in IO options). If the plot is going

to be generated, a second if-statement controls whether or not that plot will be saved to a *.pdf file (or

printed to the user’s screen). Next, the main plot function is called, usually to plot the largest quantile

result as a function of time (e.g. the 90th percentile of oil price forecasts). The first plot call also creates

the main elements of the plot (axes, labels, titles, etc.). Afterwards the lines function is used to drawn in

the remaining quantile results. If the model is being run in cross-validation mode, the actual value is then

drawn. Finally, a legend is inserted. Note that if the number of quantiles is ever changed the legend entries

in each plot will also have to be adjusted to match (as all the predefined plots are currently configured to

use 10th - 90th percentile range). An example of a typical xy-quantile plot is shown in Figure 7.1
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Figure 7.1: Example xy-quantile plot of oil price paths.

7.4 Other Export Options

A number of options exist for exporting results from R to other programs and file formats. See Section 9.5

for a detailed discussion of exporting options.
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Minor Scripts
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Chapter 8

Minor Scripts

In addition to the major scripts discussed previously, the model contains several other minor scripts which

are discussed below.

8.1 R-Markdown Reports

Two automated reports have been included in the model under the “Data Analysis” folder of the Git

repository. These reports are written in the R-Markdown language, and return as an output an html

document. The reports are intended to be used after the user has run the data analysis segment of the

model. The two reports generated are:

• dataAnalysis.Rmd

This report summarizes the CPTs produced by the emissionUpdate function, returning for each piece

of equipment:

– The inputs from the OGEI database which are used by model

– The dimensions of the original table(s) in the OGEI database and the size of the CPT

– The top 10 most common entries in each CPT

– A summary statistics of each input variable (if they are numeric), or the unique values of the

input variable (if they are character strings)

– A number of exploratory plots for each type of equipment (e.g. CDFs of interesting input vari-

ables).

• tanksDA.Rmd

This report creates a set of exploratory data analysis plots of tank VOC emissions vs. fluid (oil,

condensate, and water) throughput volumes for (a) the OGEI database and (b) the ten largest operators

in the database (based on the number of entries by each operator in the database). Data points are

also differentiated based on whether or not they are from sources with or without controls.
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8.2 README.md

This markdown document (located in the home directory of the Git repository with main, IO options, etc.)

is used to create the README published on the model’s Bitbucket webpage. It lists the steps necessary for

downloading and running the model, and provides links to the model’s supporting documentation (including

this User Manual).
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Chapter 9

Tutorials for Common Tasks

9.1 Model Installation and Setup

The instructions below outline the steps necessary for setting up the model using version control with

Bitbucket (https://bitbucket.org) and RStudio (http://www.rstudio.com). Alternative installation

methods exist, however at a minimum, the user must (a) install R and (b) copy the model folder (containing

all of the scripts and functions in the model) and its supporting data folder (containing all of the raw and

prepared data files) onto their computer.

1. Download and install both R and Rtools (http://www.r-project.org).

(a) Special notes for installing Rtools:

i. At the first three screens of the installer (“Welcome”, “Information”, “Select Destination”),

page just click “Next”.

ii. At the “Select Components” page choose the default “Package authoring installation” and

click “Next”.

iii. At the “Select Additional Tasks” page find choose to let the installer “Edit the system PATH”

by clicking a checkbox that appears beside the current value of the PATH.

iv. At the “System Path” page just click “Next”.

v. At the “Ready to Install” page click “Install”.

2. Download and install RStudio (http://www.rstudio.com/products/rstudio/download).

3. Download and install Git for version control and set your global username and email following the

instructions here: https://confluence.atlassian.com/bitbucket/set-up-git-744723531.html.

4. Setup an account on bitbucket.org (https://bitbucket.org/account/signup/). If the repository is

private, ask the current repository manager to share the repository with your account.
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5. Download the model’s supporting raw and prepared data files from Dropbox (https://www.dropbox.

com/sh/sfc47tx1c2d9nzw/AADDnBzPnw4S5ywAVfVZ6L1Ya?dl=0).

6. Launch RStudio.

7. Confirm that RStudio has the correct path to the Git executable. From the menu bar select “Tools

→ Global Options” and then in the Options menu select “Git/SVN.” Enter the filepath to the Git

executable in the appropriate dialogue box (by default: [installation directory]/Git/bin/git.exe). If

you had to find the Git executable, restart RStudio.

8. From the menu, select “File → New Project”. In the dialogue menu that pops up, select “Version

Control” then “Git.”

9. The repository can be connected to using either HTTPS or SSH.

(a) To connect using HTTPS, paste the URL for the respository (e.g. https://wilkey@bitbucket.

org/wilkey/ub_o-g_emissions.git) into the “Repository URL” box. You will then be prompted

for your username and password when you connect to the server.

(b) To connect using SSH, you must first create a public/private RSA ID and upload your public

key to Bitbucket following the instructions given in the tutorial here: https://confluence.

atlassian.com/bitbucket/set-up-ssh-for-git-728138079.html. Then, paste the Git SSH

location (e.g. git@bitbucket.org:wilkey/ub o-g emissions.git) into the “Repository URL”

box.

10. Enter the desired name for the project directory (i.e. the name of the folder that will be created on

your computer) and the file path for the folder, or accept the RStudio defaults.

11. Click “Create Project” and Git will clone all of the folders and scripts in the repository to your machine.

12. Open the script main.

13. Under the section of the script labeled “Paths” change the pwd.drop and pwd.git paths to the location

on your computer where you downloaded the Dropbox folder and where you cloned the repository to,

respectively.

14. Install the packages necessary to run main. The required packages are listed under the “Packages”

section header and in Table 2.1. You can install packages from the menu by selecting “Tools → Install

Packages. . . ” or by using the install.packages command in the R console.

15. Save the changes made to main.

You can now run the script by clicking the “Source” button on in the top-right corner of the source window.

By default, source runs without printing to the console, however you can also run source with echo and it

will print every line in the script as it is executed.
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9.2 Updating the Model with New Data

The following steps should be taken to update the source data used by the model. All data sources are

updated on at least an annual basis, however some update more frequently. The user is free to update any

data source files as desired using the TRUE/FALSE flags in IO options.

1. Download the most recent UDOGM database files from UDOGM’s Data Research Center (https://

oilgas.ogm.utah.gov/Data_Center/DataCenter.cfm#download). In particular, download the latest

copies of:

• “Well Data” (welldata.exe)

• “Well History Data” (histdata.exe)

• “Production Data (ALL Data - too large for Excel!)” (proddata.exe)

• “Field Data” (fieldata.exe)

2. Run all of the downloaded excutable files, which are self-contained zip archives of *.dbf database files,

and paste the *.dbf files into the “Raw Data” folder.

3. Update the “EIA HistPrices.csv” using the spreadsheet and data sources discussed in Section 3.3.

4. Enter the desired EIA Annual Energy Outlook forecast data in IO options as discussed in Section

5.2.7.

5. Update the EIA error analysis data *.csv files. If using the direct relative error method (see Section

3.8), then the two required *.csv files are “EIA gp error export.csv” and “EIA op error export.csv”. If

using the fractional relative error method (see Section 3.9), then the two required *.csv files are “EIA

AEO frac error gp export.csv“ and “EIA AEO frac error op export.csv”. Note that this data source

can only be updated on an annual basis (as EIA forecast and actual price data becomes available).

6. Extract the following tables from the UDAQ OGEI database as *.csv files and place them in the

“OGEI” folder (located under in the ”Raw Data” Dropbox folder):

• apis

• component count

• dehydrators

• facilities list

• fugitives

• operator info

• pneumatic controllers

• pneumatic pumps

• production areas

• rice emission factors

• rice turbines
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• separators heaters

• tanks

• truck loading

• well completions

7. Update any other source data file or input in IO options.

8. If desired (but highly recommended) set opt$file ver to a new version number (e.g. “v9”). This will

prevent any previous results from being overwritten, and also allows the user to easily revert back to

any prior version of the model’s data analysis results.

9. Set the appropriate TRUE/FALSE update flags for each data analysis segment in IO options. If the

opt$file ver was changed, set all update flags to TRUE (or manually copy and rename a previously

prepared *.rda file in the “Prepared Data” folder to match the new file version name).

10. Run the model by sourcing main.

9.3 Running the Model: Cross-Validation

For the purpose of validating and tuning the model’s performance, the model can be cross-validating by

segmenting the available data into “training” and “testing” time periods in IO options. The model will

then run all data analysis functions using only the data from the training period, and the results of predictions

made with the training data can be compared to the independent test data set. The steps for running the

model in cross-validation mode are outlined below.

1. Set user input options in IO options

(a) Set global options in IO options.

i. Set opt$crossvalid to TRUE. This will enable post-processing analysis steps aimed at mak-

ing comparisons between test data and model predictions.

ii. Enter a date for opt$tstart and opt$tstop that is fully within the date range where data

is available. This date range will become the time period over which the model simulation is

run, and over which the model is compared to the test data. Using the last five years of data

is recommended, or the last “n” years where “n” is the length of time for which you would

like to make predictions into the future.

iii. Enter a date for opt$train.tstart and opt$train.tstop that is fully within the date range

where data is available and that does not overlap the test period opt$tstart - opt$tstop

time range. In general, only data inside of this time range will be used in the data analysis

section of the model.

iv. If desired, set a new opt$file ver version number.

v. If desired, set the data analysis functions you wish to be run to TRUE. If a new file version

number has been set, run all of the update functions.
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(b) Set the desired options for all data analysis update functions. The meanings of all data analysis

update options are discussed in Section 5.2. Several data analysis update options are discussed

below.

i. leaseOpCostUpdate Options

The start and stop times steps for the lease cost update function are for the entire time range

where data is available. Given that there is no independent test data to compare against,

this value should be left as-is to cover the full data set.

ii. drillingModelUpdate Options

The start and stop time steps are also set independently for this function. Past efforts at fitting

drilling rates as a function of energy prices have shown that there is little to no correlation

between energy prices and drilling in the Uinta Basin prior to the late 1990s. Going forward,

the start date of the drilling update function (opt$DMU.tstart) should be set no earlier than

1999-01-01, and the end date should be no greater than opt$tstart. Aside from those limits,

the user should set the time span for the drilling model update function that they believe

most closely reflects current and/or future market conditions in the Uinta Basin.

iii. EIAforecastUpdate Options

Enter the EIA AEO forecast for Rocky Mountain wellhead oil and gas prices for the same

year as opt$tstart (e.g. if opt$tstart = 2010-01-01, then enter the 2010 Annual Energy

Outlook forecast). Enter as many years of forecasted prices as are covered by the test period

time span between opt$tstart - opt$tstop.

iv. DCA Coefficient Distribution Fitting Options

This update function also uses an independent training time range. Given the trends in DCA

fitted distribution coefficient values, selecting a start date of < 1999 is not recommended, and

the stop date should be less than the value of opt$tstart.

(c) Set desired Monte-Carlo simulation options.

(d) Set desired post-processing options. The predefined post-processing plots are primarily designed

to enable comparisons between model predictions and the test period data.

2. Set desired equipment-based emission calculation options in EF options.

3. Run the model by sourcing main.

9.4 Running the Model: Prediction

Running the model in predictive mode involves many of the same steps as cross-validation, except that the

training period is extended to cover the entire range of time for which data is available and opt$tstart -

opt$tstop is pushed forward into a future time period. The steps for running the model in predictive mode

our outlined below.

1. Set user input options in IO options

(a) Set global options in IO options.
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i. Set opt$crossvalid to FALSE. This will prevent post-processing errors by omitting analysis

steps aimed at making comparisons between test data and model predictions.

ii. Enter a date for opt$tstart and opt$tstop that begins one month into the future and

extends for any duration of time. For example if data was available up to 2015-08-01, then

the value of opt$tstart should be set to 2015-09-01. The start date of the simulation period

shouldn’t be set any further out than one month into the future because many steps in the

model rely on knowing the actual value of an input parameter just prior to the start of the

simulation period (e.g. oil/gas first purchase prices, initial wells drilled, etc.). This date range

will become the time period over which the model simulation is run.

A simulation period of five years is recommended. Model predictions become increasingly

uncertain with time, especially in regards to energy price paths. If longer simulation periods

are desired, the only limitation is the time period for which energy prices are available. If

the EIA AEO error propagated forecasted is being used, the upper limit is the number of

years into the future for which forecasted prices are available (at present, EIA AEO forecasts

extend to 2040). If the GBM forecasting method is being used, there is no limit to how far

into the future prices can be estimated.

iii. Enter a date for opt$train.tstart and opt$train.tstop that is fully within the date range

where data is available and that does not overlap the test period opt$tstart - opt$tstop

time range. For the purposes of running the model in predictive mode, it’s recommended

that all available data be covered in the training period.

iv. If desired, set a new opt$file ver version number.

v. If desired, set the data analysis functions you wish to be run to TRUE. If a new file version

number has been set, run all of the update functions.

(b) Set the desired options for all data analysis update functions. The meanings of all data analysis

update options are discussed in Section 5.2. Several data analysis update options are discussed

below.

i. leaseOpCostUpdate Options

The start and stop times steps for the lease cost update function are for the entire time range

where data is available. Given that there is no independent test data to compare against,

this value should be left as-is to cover the full data set.

ii. drillingModelUpdate Options

The start and stop time steps are also set independently for this function. Past efforts at fitting

drilling rates as a function of energy prices have shown that there is little to no correlation

between energy prices and drilling in the Uinta Basin prior to the late 1990s. Going forward,

the start date of the drilling update function (opt$DMU.tstart) should be set no earlier than

1999-01-01, and the end date should be no greater than opt$tstart. Aside from those limits,

the user should set the time span for the drilling model update function that they believe

most closely reflects current and/or future market conditions in the Uinta Basin.

iii. EIAforecastUpdate Options

Enter the EIA forecast for Rocky Mountain wellhead oil and gas prices from EIA’s Annual

Energy Outlook forecast for the same year as opt$tstart (e.g. if opt$tstart 2̄015-01-01,

then enter the 2015 Annual Energy Outlook forecast). Enter as many years of forecasted

prices as are covered by the test period time span between opt$tstart - opt$tstop.
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iv. DCA Coefficient Distribution Fitting Options

This update function also uses an independent training time range. Given the trends in DCA

fitted distribution coefficient values, selecting a start date of < 1999 is not recommended, and

the stop date should be less than the value of opt$tstart.

(c) Set desired MC simulation options.

(d) Set desired post-processing options. The predefined post-processing plots are primarily designed

to enable comparisons between model predictions and the test period data. All prior comparisons

will be dropped from prepared plots if opt$crossvalid is set to FALSE.

2. Set desired equipment-based emission calculation options in EF options.

3. Run the model by sourcing main.

9.5 Exporting Results

After a simulation run is complete there are a variety of data export options available that can be used to

extract information from any object in the R workspace. If the data set that you would like to extract is

relatively small (i.e. < 103 elements) a fast export option is to use the clipboard function to copy the object

to your computer clipboard, from which the copied data can be pasted into any spreadsheet program. If the

data set is large, then the next easiest export option is to save the data to a *.csv file using the write.csv

function. For example, the command:

write.csv(osim, file.path(path$data, "osim.csv"))

would write to a *.csv file named “osim.csv” in the “Prepared Data” folder the object osim, which contains

the total oil production records for each MC simulation run. The postProcess script also includes options

for directly generating Excel spreadsheets with the model’s emission results. The code in that script can

be used as a template to export other model results to Excel. Finally, there are a number of exports

tools in R for connecting to relational databases. Detailed instructions for how to use relational databases

(and other data import/export topics) are covered in documentation available from the R Core Team at

https://cran.r-project.org/doc/manuals/r-release/R-data.pdf.
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Appendix A

Nomenclature

A.1 User Manual Nomenclature

Table A.1: User Manual Nomenclature

Symbol/Abbreviation Description

µ Percent drift term in GBM equations

σ Volatility term in GBM equations

AP Actual Price

b Decline exponent

C Cost

c1 Fitted coefficient in cumulative production equation

Cp Fitted coefficient in cumulative production equation

Di Initial decline rate

dt R’s difftime function

Ei Emissions of species i

EFfug Fugitive emission factor

EFi Emission factor for species i

EP Energy prices
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Symbol/Abbreviation Description

F Diesel fuel usage

FP Forecasted price

GP Gas price

HD Heat duty rating

hp Horsepower

HV Heating value

I Index

LC Lease equipment or operating cost

mV OC VOC weight fraction

MW Molecular weight (lb/lbmol)

ni Number of high/intermittent/low bleed devices (for pneumatic controllers)

or number of emission sources (for fugitive emissions)

OP Oil price

P Production rate of oil or gas

poil Oil production

Pvap Vapor pressure (in psia)

PP Predicted Price

PR Gas production rate

q Production rate

Q Cumulative production

qi Initial production rate

r Emission reduction fraction

R VOC emissions ratio (ton VOC)/(bbl oil)

RE Relative error

round R’s round function
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Symbol/Abbreviation Description

S “S” factor for truck loading

SP Simulated price

t Time (various units)

T Temperature (in ◦R)

tdate Calendar date of a MC simulation time step

tdelay Time delay between tDrill and the start of production

tDrill Time step in which a well is drilled

tstart Calendar date of the start of the MC simulation

tstep MC simulation time step

Vpilot Volume of gas used by the combustor pilot

V R Average pneumatic pump vent rate (CF/minute)

W Wells drilled

wfrac Well fraction

AEO Annual Energy Outlook

ARIMA Auto-regressive integrated moving average

bbl Barrel (42 US gallons)

Btu British thermal unit

CDF Cumulative distribution function

CF Cubic feet

CH2O Formaldehyde

CH4 Methane

CO Carbone monoxide

CO2E Carbon dioxide equivalence

CPI Consumer price index
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Symbol/Abbreviation Description

CPT Cumulative probability table

csv Comma-separated variable

D Well depth in ft

DCA Decline curve analysis

EBE Equipment-based emissions

EIA U.S. Energy Information Administration

EPF Energy price forecast

FPP First purchase price

gal Gallon

GBM Geometric Brownian motion

IDE Integrated development environment

lb Pound

lbmol Pound-mole

LHS Latin hypercube sampling

LOC Lease operating cost

MC Monte-Carlo

MCF Thousand standard cubic feet

MCFD Thousand standard cubic feet (MCF) per day

MLE Maximum likelihood estimation

MMBtu Million British Thermal Units (Btu)

NOx Nitrogen oxides

NSPS New source perfomance standards

OGEI Oil and gas emissions inventory

pdf Portable document format
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Symbol/Abbreviation Description

PDF Probability density function

PM10 Particulate matter (¡ 10 microns in diameter)

PM2.5 Particulate matter (¡ 2.5 microns in diameter)

rda Compressed file format used by R

RICE Reciprocating internal combustion engine

RSS Residual sum of the squares

SCF Standard cubic feet

SOx Sulfur oxides

ToM Transport of Materials

UDAQ Utah Division of Air Quality

UDOGM Utah Division of Oil, Gas and Mining

VOC Volatile organic compounds

VRU Vapor recovery unit

A.2 Model Nomenclature

Table A.2: Model Nomenclature

Object Description

aE Activity based emissions results list

alinecolor Line color used for actual results in postProcess plots

alinetype Line type used for actual results in postProcess plots

alinewidth Line width used for actual results in postProcess plots
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Object Description

all.p Actual oil and gas production during the simulation period. Calculated in

postProcess if the model is being run in cross-validation mode.

aPR Actual production ratio of oil and gas from new wells vs. prior wells (e.g.

(new)/(new + prior)) (if cross-validating)

apri Temporary adjusted prior production volumes (recalculated in each MC

simulation run)

ARIMAfitUpdate Function for updating ARIMA models

as.year Function for extracting the year from a calendar date object

binStartStop Function internal to DCAupdate that finds the start/stop points of decline

curve segments

bp Bar chart object in pregenerated plot for “Field Fractions”

bplotHypDCAcoef Function for creating boxplots of hyperbolic decline curve coefficients

bplotQfitDCAcoef Function for creating boxplots of cumulative production curve coefficients

calc E dh Function for calculating emissions from dehydrators

calc E fug Function for calculating emissions from fugitive sources

calc E pctrl Function for calculating emissions from pneumatic controllers

calc E ppump Function for calculating emissions from pneumatic pumps

calc E rt Function for calculating emissions from RICE and turbines

calc E sh Function for calculating emissions from separators and heaters

calc E tank Function for calculating emissions from tanks

calc E truck Function for calculating emissions from truck loading

calc E wc Function for calculating emissions from well completions

calTstep Function for converting a calendar date object into the equivalent integer

MC time step value

cdf.depth.gw CDF for well depth for gas wells

cdf.depth.ow CDF for well depth for oil wells

cdf.ff CDF for field locations / field fractions

cdf.flt CDF for surface lease owner type by field number
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Object Description

cdf.rework CDF for well reworks by well type

CDFd Function for determining the CDF for a vector based on R’s density

function

cdfDCAcoef Function for plotting CDFs of decline curve coefficients

CDFq Function for determining the CDF for a vector based on R’s quantile

function

clean names Function for cleaning up column names that is used internally in the

dogmDataUpdate function

clipboard Function for copying R objects to the user’s computer clipboard

DCA.cdf.coef.gas List object with CDF for each coefficient in the hyperbolic decline curve

equation for gas production, organized by field number

DCA.cdf.coef.oil List object with CDF for each coefficient in the hyperbolic decline curve

equation for oil production, organized by field number

DCAlnormFit Function for log-normal distribution fitting

DCAlnormUpdate Data analysis function for fitting log-normal distribution to decline curve

coefficient trends

DCAupdate Data analysis function for fitting decline curves to each well in the Uinta

Basin

DCAupdateCDF Data analysis function for creating CDFs for the decline curve coefficients in

each field

diffMonPOSIX Function that returns the number of months between two date objects; used

internally in dogmDataUpdate function

dogmDataUpdate Data analysis function for updating the UDOGM database files used by the

rest of the model

Drilled.act Actual drilling schedule during simulation period. Calculated in

postProcess if the model is being run in cross-validation mode.

Drilled.q Quantile results for drilling schedule

Drilled MC simulation drilling schedule matrix, with rows for each MC run and

columns for each time step

drillingModelUpdate Data analysis function for fitting distributed-lag energy price models to

drilling activity

drillModel List of fitted drilling models for Equations (3.3) - (3.6)

drillModelData Data.frame containing all of the data points used in fitting the drilling

models

drillsim MC drilling schedule simulation function
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Object Description

Ecalc MC emissions calculation function

eci List of CPTs for each type of emissions source

eE EBE results list

Egas EIA AEO relative error propagation matrix for gas price forecast. Contains

one row for every cumulative probability point in opt$xq and one column

for every time step in the simulation period.

EgasFrac Same as Egas, but for fractional relative error

eia.hp EIA energy price history data.frame

EIAerrorUpdate Data analysis function for determining the direct relative error in EIA

forecasts

EIAerrorUpdateFrac Data analysis function for determining the fractional relative error in EIA

forecasts

EIAforecastUpdate Data analysis function for converting EIA’s AEO forecasts to a monthly

basis

EIApriceUpdate Data analysis function for creating the energy price history object eia.hp

EIAsim MC simulation function for generating energy price paths via the EIA AEO

error propagation method

emissionUpdate Data analysis function for creating the CPT list object eci

emplot Post-processing fuction for creating EBE result plots (by species)

Eoil EIA AEO relative error propagation matrix for oil price forecast. Contains

one row for every cumulative probability point in opt$xq and one column

for every time step in the simulation period.

EoilFrac Same as Eoil, but for fractional relative error

eopt User input options list for everything related to EBEs

ep.act Actual energy prices during the simulation period. Calculated in

postProcess if the model is being run in cross-validation mode.

EPFsim Function for controlling which energy price forecast simulation method to

use in the MC loop

eqEcalc Function for calculating EBEs in the MC simulation

eqETsim EBE results object created by eqEcalc for each loop of the MC simulation

eqlinecolor Line color vector for lines in EIA AEO error CDFs
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Object Description

eqplot Post-processing fuction for creating EBE result plots (by species and by

equipment type)

ETpri Temporary emissions results list for prior wells (recalculated in each MC

simulation run)

ETsim Temporary emissions results list for new wells (recalculated in each MC

simulation run)

fcount Well counts by field from well.actual data.frame

field Vector listing each field being analyzed individually and the catch-all Field

999

fitdata Plane-fit object created to shown LOC regression results in the lease

operating cost fits (plot

23)

forlinecolor EIA forecast line colors

forlinetype EIA forecast line types

forlinewidth EIA forecast line widths

gas.q Quantile results for gas production

gp.ARIMA List containing the manual and automatic ARIMA fits for gas prices

gp.FC.high EIA AEO high forecasted gas prices during simulation time period

gp.FC.low EIA AEO low forecasted gas prices during simulation time period

gp.FC.ref EIA AEO reference forecasted gas prices during simulation time period

gp.q Quantile results for gas price paths

gp MC simulated gas price paths matrix. Contains one row for each MC run

and one column for each time step

gr Temporary gross revenue results for sales of oil and gas for each well

(recalculated in each MC simulation run)

gsim Total gas production for each MC simulation for new wells. Contains one

row for each MC run and one column for each time step

GSIM Temporary gas production matrix used in correcting production volumes

based on lease operating costs (see Section 4.5.4, recalculated in each MC

simulation run)

hypfit Function for performing hyperbolic decline curve fitting; internal to

DCAupdate function
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Object Description

i Counter variable used by MC simulation for-loop

ind.wpri Index of columns which should be selected to pull CPT selections from wpri

ind.wsim Index of columns which should be selected to pull CPT selections from wsim

ind Temporary index object, used and overwritten in many different functions

inf adj Function for adjusting input terms by an inflation index

j Counter variable used by postProcess plot counter

leaseCostUpdate Data analysis function for fitting EIA LOC data

LOC.data Data used in fitting lease equipment and operating cost models

LOC.gas.equip Linear regression fit object for capital costs of lease equipment for gas wells

LOC.gas.op Linear regression fit object for operating costs of lease equipment for gas

wells

LOC.oil.equip Linear regression fit object for capital costs of lease equipment for oil wells

LOC.oil.op Linear regression fit object for operating costs of lease equipment for oil

wells

LOC Temporary lease operating cost matrix used in correcting production

volumes based on lease operating costs (see Section 4.5.4, recalculated in

each MC simulation run)

LOCcalc Function for calculating lease operating costs in MC simulation

mg DCA results data.frame for gas wells. Limited to the time frame specified

by opt$DCA.tstart - opt$DCA.tstop

mgf DCA results data.frame for gas wells using all available data points

mo DCA results data.frame for oil wells. Limited to the time frame specified by

opt$DCA.tstart - opt$DCA.tstop

mof DCA results data.frame for oil wells using all available data points

NA.overwrite Function for replacing NA values with a specified value (by default, 0)

new.p Actual production of oil and gas from new wells during the simulation

period. Calculated in postProcess if model is run in cross-validation mode.

oil.q Quantile results for oil produced from new wells

op.ARIMA List containing the manual and automatic ARIMA fits for oil prices
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Object Description

op.FC.high EIA AEO forecasted high oil prices during simulation time period

op.FC.low EIA AEO forecasted low oil prices during simulation time period

op.FC.ref EIA AEO forecasted reference oil prices during simulation time period

op.q Quantile results for oil price paths

op MC simulated oil price paths matrix. Contains one row for each MC run

and one column for each time step

opt List object containing all user input options specified in IO options

osim Total oil production for each MC simulation for new wells. Contains one

row for each MC run and one column for each time step

OSIM Temporary oil production matrix used in correcting production volumes

based on lease operating costs (see Section 4.5.4, recalculated in each MC

simulation run)

p Data.frame containing all of the information in the UDOGM databases

proddata, histdata, and welldata for wells located in the Uinta Basin,

and just the columns selected in IO options

path List of file path directory locations

pb Counter object used by progress bar that is displayed during the MC

simulation loop

pgas.q Quantile results for total gas production from prior wells

pgsim Total gas production for each MC simulation for prior wells. Contains one

row for each MC run and one column for each time step

pi.skip Data.frame containing information about skipped prior wells

poil.q Quantile results for oil produced from prior wells

posim Total oil production for each MC simulation for prior wells. Contains one

row for each MC run and one column for each time step

ppri Oil and gas production volumes extrapolated from hyperbolic fits of existing

wells

prior.Info Data.frame containing information about prior wells with fits

prior.p Actual production of oil and gas from existing wells during the simulation

period. Calculated in postProcess if model is run in cross-validation mode.

priorInfo Function for extracting information about existing wells with fits
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Object Description

priorProd Function for calculating production rates of oil and gas from existing wells

with fits

priorProdReworkAdjust Function for removing production from prior wells that are reworked in each

MC simulation run

prob Data.frame containing cumulative probabilities for well type by field

production Data.frame containing all of the information in the UDOGM databases

proddata, histdata, and welldata for all wells in the state of Utah

productionsim Function for calculating production rates of oil and gas from new and

reworked wells

psim Temporary production volumes of oil and gas from new wells (recalculated

in each MC simulation run)

Q.DCA.cdf.coef.gas List object with CDF for each coefficient in the cumulative production

equation for gas production, organized by field number

Q.DCA.cdf.coef.oil List object with CDF for each coefficient in the cumulative production

equation for oil production, organized by field number

QfitDCAupdateCDF Data analysis function for creating CDFs of cumulative production curve

coefficients by field

qlinecolor Line color vector for quantile results

qlinetype Line type vector for quantile results

qlinewidth Line width vector for quantile results

reE Reduced EBE results list object

reworkUpdate Data analysis function for determining cumulative probability of a well

being reworked as a function of time

runstart Time object used to report start time of simulation and calculate the

model’s total run time

scheduleUpdate Data analysis function for analyzing many UDOGM database related

factors (e.g. actual well data information, well depth CDFs, fields to

analyze individually, etc.)

sim county Function for picking which county new wells will be located within

sim DCC Function used for picking decline curve coefficients for each well in each MC

simulation run

sim depth Function used for picking well depths for each well in each MC simulation

run

sim dupRework Function used for duplicating reworked well information in each MC

simulation run
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Object Description

sim EF Function used for picking emission factors for each well in each MC

simulation run

sim eq EF Function for picking rows for CPTs for each well for each type of equipment

in the EBE calculation process

sim fieldnum Function used for picking field numbers for each well in each MC simulation

run

sim lease Function used for picking the surface lease owner for each well in each MC

simulation run

sim rework Function used for picking rework time steps for each well in each MC

simulation run

sim tdelay Function used for picking time delays for oil and gas production for each

well in each MC simulation run

sim tdrill Function used for expanding the drilling schedules contained in Drilled

into the data.frame wsim

sim wellType Function used for picking the well type (oil, gas, or dry) for each well in

each MC simulation run

sPR Simulated production ratio of oil and gas from new wells vs. prior wells (e.g.

(new)/(new + prior))

well.actual Data.frame containing information about all of the wells used in the

scheduleUpdate function

wpri Temporary well information data.frame for prior wells (regenerated in each

MC simulation run)

wsim Temporary well information data.frame for new wells (regenerated in each

MC simulation run)
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