

Alton Coal Development, LLC

463 North 100 West, Suite 1

Cedar City, Utah 84720

Phone (435) 867-5331 / Fax (435) 867-1192

UTAH DEPARTMENT OF ENVIRONMENTAL QUALITY

FEB - 4 2019

DIVISION OF AIR QUALITY

January 30, 2019

Catherine Wyffels Engineer Major New Source Review Section Utah Division of Air Quality 195 North 1950 West Salt Lake City, UT 84114

DAQ-2018-018561

RE: 4th QT 2018 Report - Coal Hollow Mine Project ID: N14047-0004

Dear Mrs. Wyffels,

Please find enclosed the Summary of PM₁₀ Data Collected at the Coal Hollow Mine, Utah during the Fourth Quarter, 2018 prepare by Alton Coal Development, LLC.

Please do not hesitate to contact me if you have any questions. I can be reached at (435) 867-5331 or (435) 691-1551.

Sincerely,

B.K.El Mhile

B. Kirk Nicholes Environmental Specialist Alton Coal Development, LLC

UTAH DEPARTMENT OF ENVIRONMENTAL QUALITY

FEB - 4 2019

Alton Coal Development, LLC.

DIVISION OF AIR QUALITY

Summary of PM₁₀ Data Collected at Coal Hollow Mine, Utah During the Fourth Quarter, 2018

Submitted to:

Utah Division of Environmental Quality Division of Air Quality 195 North 1950 West Salt Lake City, Utah Contact: Catherine Wyffles

Prepared by:

Alton Coal Development, LLC. 463 N 100W, Suite1 Cedar City, Utah 84721 Contact: Kirk Nicholes 435.867.5331

Contents

1.0	Intr	oduction		2
2.0	Site	Location		2
3.0	AIR	QUALI	ΓΥ DATA SUMMARIES	4
4.0	DAT	TA RECO	OVERY AND QUALITY ASSURANCE	7
	4.1		covery	
	4.2	Quality	Assurance	8
		4.2.1	Precision of PM ₁₀ Measurements	9
		4.2.2	Audit Results	9
		4.2.3	Zero and Single Point Flow Rate Checks	10

List of Tables

Table I - Summary of Measured PM ₁₀ Concentrations (µg/m ³)	5
Table II - Summary of Measured PM ₁₀ Concentrations (µg/m ³)	5
Table III - Summary of Measured PM ₁₀ Concentrations (µg/m ³)	6
Table IV - Summary of Measured PM ₁₀ Concentrations (µg/m ³)	6
Table VI – Mean Quarterly and Monthly Wind Speed	7
Table VIII - Summary of Data Recovery	8
Table VII III- Audit Summary 1	0

List of Figures

Figure 1 - Site Location Map	3
Figure 2 - Satellite View of Monitoring Locations	

List of Appendices

APPENDIX A Windrose APPENDIX B Listing of PM₁₀ Concentrations (Data sheets for monitor's on DVD) APPENDIX C Precision and Single-Point Flow Rate Checks APPENDIX D Field Data Sheets APPENDIX E Independent PM₁₀ Sampler Performance Audit Report

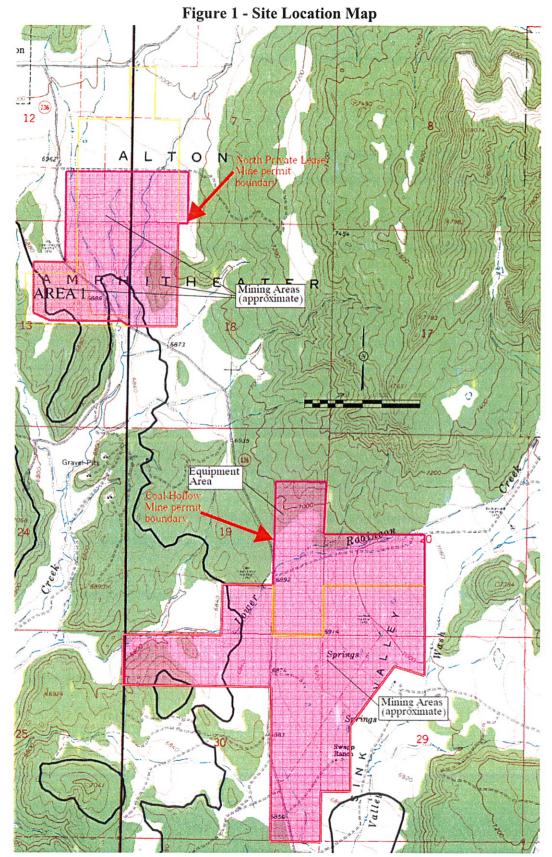
Alton Coal Development, LLC PM₁₀ Data, 4th Quarter, 2018

1.0 INTRODUCTION

This report summarizes measurements of Particulate Matter less than 10 microns nominal aerodynamic diameter (PM_{10}) collected and processed by Alton Coal Development, LLC, (ACD) from the five monitoring stations located at the Coal Hollow Mine Facility in Alton, Utah. Monitoring for PM_{10} is a condition of the mines operating permit.

 PM_{10} monitoring at the site consists of five BGI PQ200 PM_{10} monitors run by solar power. Figure 2 of this report shows the approximate locations of the monitoring locations. The BGI PQ200 monitors are EPA Reference Method monitors and are operated on the National Particulate 1-in-6 Monitoring Schedule. The data summarized herein covers the data collected during the fourth quarter of 2018.

2.0 SITE LOCATION


The Coal Hollow Mine is located in Kane County, Utah, approximately three miles southeast of the town of Alton, Utah. Figure 1 on the following page gives an overview of the site location. Specifically, the Coal Hollow Mine is located in Sections 19, 20, 29, and 30 of Township 39S, Range 5W; with an approximate facility location of:

Northing: 41401699 meters

Easting: 371534 meters

Universal Transverse Mercator (UTM) Datum NAD27, Zone 12

The three monitoring locations as depicted in Figure 2, are located in positions to collect both background and maximum PM10 concentrations. The background monitor has a manufactures serial #962, therefore this monitor will be referred as monitor 962A. The compliance monitor for the Coal Hollow Mine (CHM) has a manufactures serial #963, therefore this monitor will be referred as monitor 963B. The co-located monitor has a manufactures serial #964, therefore this monitor will be referred as monitor 964C. The background monitor coordinates are Northing: 4140856, Easting 373119, (UTM) Datum NAD27, Zone 12. The CHM compliance monitor and the co-located monitor coordinates are Northing: 4140396, Easting 371147, (UTM) Datum NAD27, Zone 12. The North Private Lease area of the CHM is located in Sections 12, 13 of Township 39S, Range 6W and Sections 7, 18 of Township 39S, Range 5W. The compliance monitor for the North Private Lease has a manufactures serial #2366, therefore this monitor will be referred as monitor 2366D. The co-located monitor has a manufactures serial #2368, therefore this monitor will be referred as monitor 2368E. The NPL compliance monitor and the co-located monitor for the NPL compliance monitor and the co-located monitor for the NPL compliance monitor and the co-located monitor for the NPL compliance monitor and the co-located monitor for the NPL compliance monitor and the co-located monitor for the NPL compliance monitor and the co-located monitor for the NPL compliance monitor and the co-located monitor for the NPL compliance monitor and the co-located monitor coordinates are Northing: 4141570, Easting 370928, (UTM) Datum NAD27, Zone 12.

Alton Coal Development, LLC PM₁₀ Data, 4th Quarter, 2018

January 31, 2019 Page 3

Figure 2 - Satellite View of Monitoring Locations

3.0 AIR QUALITY DATA SUMMARIES

A listing of the measured PM₁₀ concentrations for the quarter are presented in Appendix B (individual data sheets are provided on the enclosed disk in the PDF version of Appendix B) and Field Data Sheets generated during the collection of each sample are presented in Appendix D. Measurements were collected during a 24-hour periods and represent the average PM_{10} concentration during the midnight to midnight data collection cycle. As required by the operating permit for the CHM, duplicate measurements were made with Sampler #963B (designated as a compliance monitor) and Sampler #964C (designated as a co-located sampler) to the extent possible. The quarterly mean PM_{10} concentration and the comparison of measured concentrations to standards are based on measurements from the primary Sampler #963B. If a measurement from Sampler #963B was missing or invalid, the measurement from the secondary Sampler #964C would be used. Also, required by the operating permit for the NPL, duplicate measurements were made with Sampler #2366D (designated as a compliance monitor) and Sampler #2398E (designated as a co-located sampler) to the extent possible. The quarterly mean PM₁₀ concentration and the comparison of measured concentrations to standards are based on measurements from the primary Sampler #2366D. If a measurement from Sampler #2366D was missing or invalid, the measurement from the secondary Sampler #2398E would be used.

Alton Coal Development, LLC PM₁₀ Data, 4th Quarter, 2018

January 31, 2019 Page 4 The highest 24-hour mean PM_{10} concentrations measured during the quarter from the three monitoring locations are summarized in Table I, Table II, Table III, Table IV and Table V. The three highest concentrations, # of valid samples, and the arithmetic mean concentrations from each of the sites are listed. One day the measured PM_{10} concentrations exceeded the 24-hour National Ambient Air Quality Standard (NAAQS) of 150 µg/m³. For the November 28th run, both the 2366D and 2398E monitor exceeded the NAAQS. UDOGM requested removal of topsoil from an area of Prime Farmland (44 acres) to be removed and stockpiled all at the same time rather than pit by pit as is typical for ADC. This not only increased the area of disturbance at the NPL, but concentrated traffic near the location of the NPL monitors as several of the stockpiles are in close vicinity of the monitors. The stockpile, where complete and seeded to stabilize from future wind and water erosion.

Background Monitor - 902A				
RANK	DATE	PM ₁₀ CONCENTRATION		
Highest	8/7/2018	8.7		
2 nd Highest	10/29/2018	7.2		
Monthly Mean	10/1/18-10/31/18	4.1		
Monthly Mean	11/1/18-11/30/18	5.3		
Monthly Mean	12/1/18-12/31/18	2.5		
Quarterly Mean	10/1/18-12/31/18 (15 valid samples)	3.9		

Table I - Summary of Measured PM₁₀ Concentrations (µg/m³) Background Monitor - 962A

Table II - Summary of Measured PM₁₀ Concentrations (µg/m³) Compliance Monitor - 963B

RANK	DATE	PM ₁₀ CONCENTRATION	
Highest	10/29/2018	19.2	
2 nd Highest	11/10/2018	8.0	
Monthly Mean	10/1/18-10/31/18	19.2*	
Monthly Mean	11/1/18-11/30/18	9.8	

Alton Coal Development, LLC PM₁₀ Data, 4th Quarter, 2018

January 31, 2019 Page 5

Monthly Mean	12/1/18-12/31/18	4.2
Quarterly Mean	10/1/18-12/31/18 (9 valid samples)	6.7

* Only 1 valid run was completed in October

Table III - Summary of Measured PM₁₀ Concentrations (µg/m³) Collocated Monitor – 964C

RANK	DATE	PM ₁₀ CONCENTRATION
Highest	10/29/2018	24.4
2 nd Highest	11/10/2018	8.4
Monthly Mean	10/1/18-10/31/18	8.8
Monthly Mean	11/1/18-11/30/18	7.1**
Monthly Mean	12/1/18-12/31/18	4.0**
Quarterly Mean	10/1/18-12/31/18 (9 valid samples)	27.0

** Only 2 valid runs were completed in November and December each

Table IV - Summary of Measured PM₁₀ Concentrations (μg/m³) Compliance Monitor – 2366D

RANK	DATE	PM ₁₀ CONCENTRATION	
Highest	11/28/2018	191.5	
2 nd Highest	10/29/2018	93.1	
Monthly Mean	10/1/18-10/31/18	31.2	
Monthly Mean	11/1/18-11/30/18	58.9	
Monthly Mean	12/1/18-12/31/18	12.3	
Quarterly Mean	10/1/18-12/31/18 (14 valid samples)	34.3	

Alton Coal Development, LLC PM₁₀ Data, 4th Quarter, 2018

RANK	DATE	PM ₁₀ CONCENTRATION
Highest	11/28/2018	211.2
2 nd Highest	11/10/2018	48.4
Monthly Mean	10/1/18-10/31/18	8.6
Monthly Mean	11/1/18-11/30/18	61.7
Monthly Mean	12/1/18-12/31/18	11.1
Quarterly Mean	10/1/18-12/31/18 (14 valid samples)	28.5

Table V - Summary of Measured PM₁₀ Concentrations (µg/m³) Collocated Monitor – 2398E

Table VI - Mean Quarterly and Monthly Wind Speed

	4th Quarter 2018	Oct.	Nov.	Dec.
Mean Wind Speed (m/s)	2.88	3.00	2.91	2.72

4.0 DATA RECOVERY AND QUALITY ASSURANCE

4.1 Data Recovery

Monitor 962A

Monitor 962A collected 15 of the 15 samples during the quarter. The percent recovery for this quarter is 100%.

Monitor 963B

Monitor 963B collected 9 of the 15 samples during the quarter. The percent recovery for this quarter is 60%. For the sample date October 5th, 11th, 17th, 23rd, November 16th, and 22nd the monitor did not run the programed sampling time. After changing several components on the monitor, it was determined that the pump motor needed replaced.

Alton Coal Development, LLC PM₁₀ Data, 4th Quarter, 2018

January 31, 2019 Page 7

Monitor 964C

Monitor 964C collected 9 of the 15 samples during the quarter. The percent recovery for this quarter is 60%. For the sample dates of November 16^{th} , 22^{nd} , 28^{th} , and December 4^{th} , and 10^{th} the monitor failed to run due to a flow rate excursion $> \pm 5\%$ for > 5 minutes that caused the monitor to shut down. After changing several components on the monitor, it was pump motor quit and was replaced. For the sample date of December 28^{th} , the monitor failed to run due to a flow rate excursion $> \pm 5\%$ for > 5 minutes that caused the monitor failed to run due to a flow rate excursion $> \pm 5\%$ for > 5 minutes again that caused the monitor to shut down.

Monitor 2366D

Monitor 2366D collected 14 of the 15 samples during the quarter. The percent recovery for this quarter is 93%. For the sample date October 23rd, the monitor had an incomplete run and the data file was corrupt.

Monitor 2398E

Monitor 2398E collected 14 of the 15 samples during the quarter. The percent recovery for this quarter is 93%. For the sample date October 29th, the monitor although programmed correctly, did not run for the sampling period and shut down after 13 hrs. and 29 minutes.

Tuble (III) Summary of Data Recovery					
SAMPLER	POSSIBLE SAMPLES	VALID SAMPLES	PERCENT DATA RECOVERY		
962A	15	15	100%		
963B	9	15	60%		
964C	9	15	60%		
2366D	14	15	93%		
2398E	14	15	93%		

The PM₁₀ data recoveries for the five monitoring stations are presented below:

Table VII - Summary of Data Recovery

4.2 Quality Assurance

Quality assurance procedures utilized to verify the integrity of the measured PM_{10} data included the following:

1. Review of PM_{10} precision measurements based upon duplicate, collocated measurements.

Alton Coal Development, LLC PM₁₀ Data, 4th Quarter, 2018

- 2. Independent quarterly audits of the PM_{10} samplers.
- 3. Monthly zero and single point flow rate checks of the PM_{10} samplers.

4.2.1 Precision of PM₁₀ Measurements

The precision of the PM₁₀ measurements was determined from the duplicate samples collected from the collocated BGI PQ200 Monitors 963B and 964C at the Coal Hollow Mine and 2366D and 2398E at the North Private Lease. As recommended in *40 CFR, Part 58*, Appendix A, Section 5.3.1, PM₁₀ precision checks are reported for instances when the concentrations for duplicate samples both exceed 3 μ g/m³. Duplicate samples that did not meet this condition were omitted for the purposes of the precision checks. Appendix C, of this report summarizes precision calculations between the compliance monitor and the co-located monitor. Monthly flow rate verification data is also summarized in Appendix C.

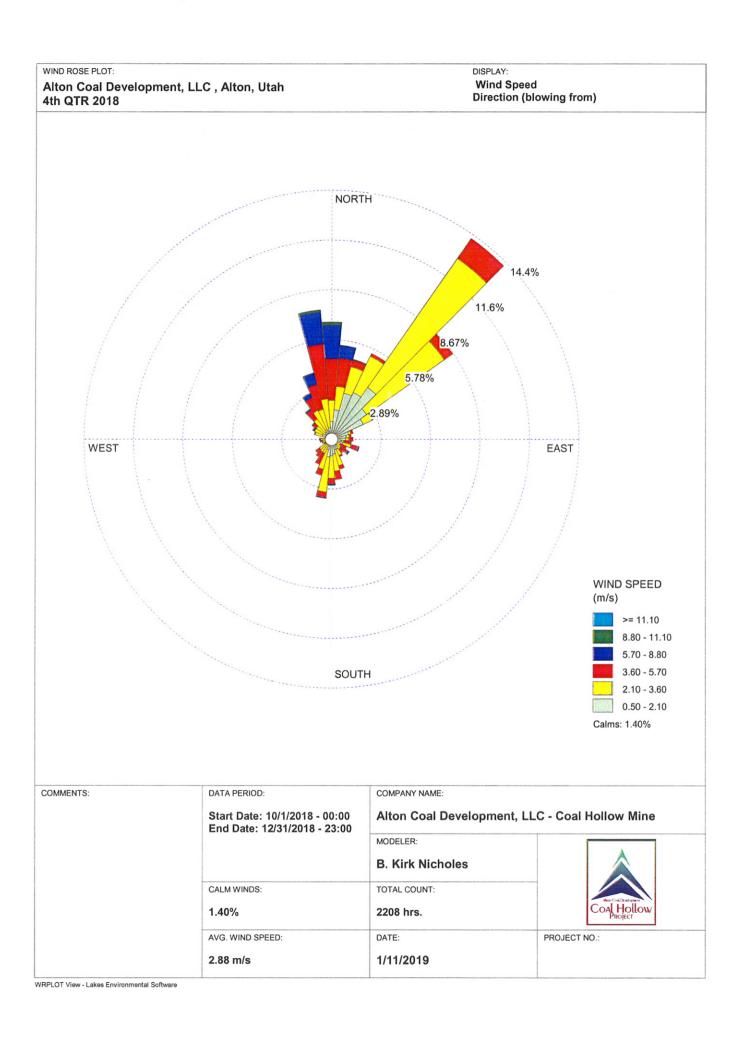
Precision calculations at the Coal Hollow Mine were developed based on 4 valid pairs of colocated monitoring data during the quarter. Single point precision based on *40 CFR, Part 58*, Appendix A Equation 2 results were -23.9% to -1.8%. The aggregate coefficient of variability (CV) calculated in accordance with *40 CFR, Part 58*, Appendix A Equation 11 is 15.7%. This value is not within the 10% goal for aggregate CV.

Precision calculations at the North Private Lease were developed based on 13 valid pairs of colocated monitoring data during the quarter. Single point precision based on *40 CFR, Part 58*, Appendix A Equation 2 results were -17.5% to 33.4%. The aggregate coefficient of variability (CV) calculated in accordance with *40 CFR, Part 58*, Appendix A Equation 11 is 14.1%. This value is not within the 10% goal for aggregate CV.

4.2.2 Audit Results

The accuracy of the PM_{10} sampler flows was verified by a performance audit conducted by Air Resource Specialist on November 19, 2018. A copy of the audit report is presented in Appendix E and is summarized in Table VI. The audit results indicate that four of the five samplers were operating properly. Sampler 963 B the pump motor would not power up at the time of the audit, replacement of the motor occurred later.

SAMPLER	AUDIT % DIFFERENCE	LIMIT*	DESIGN % DIFFERENCE	LIMIT*	
962A	-2.7	±4%	2.6	± 5%	
963B	N/A	±4%	N/A	± 5%	
964C	-1.2	±4%	1.3	± 5%	
2366D	1.4	±4%	0.1	± 5%	
2398E	-1.0	±4%	1.0	± 5%	
*Values between \pm 7% and \pm 10% require recalibration but no data are invalidated.					


Table VIII- Audit Summary

4.2.3 Zero and Single Point Flow Rate Checks

Zero and single-point flow rate verifications are performed by a site technician on a monthly basis. The data was then input into a statistical calculator to calculate percent difference and bias between each of the monitors and the monthly single point flow rate measured by a NIST traceable calibration orifice. The calculator used is called the "Data Assessment Statistical Calculator" DASC Tool. DASC was developed for the data user community and can be found in the Precision and Accuracy Reporting System within the Quality Assurance section of EPA's Ambient Monitoring Technology Information System. This data is presented in Appendix C of this report.

APPENDIX A

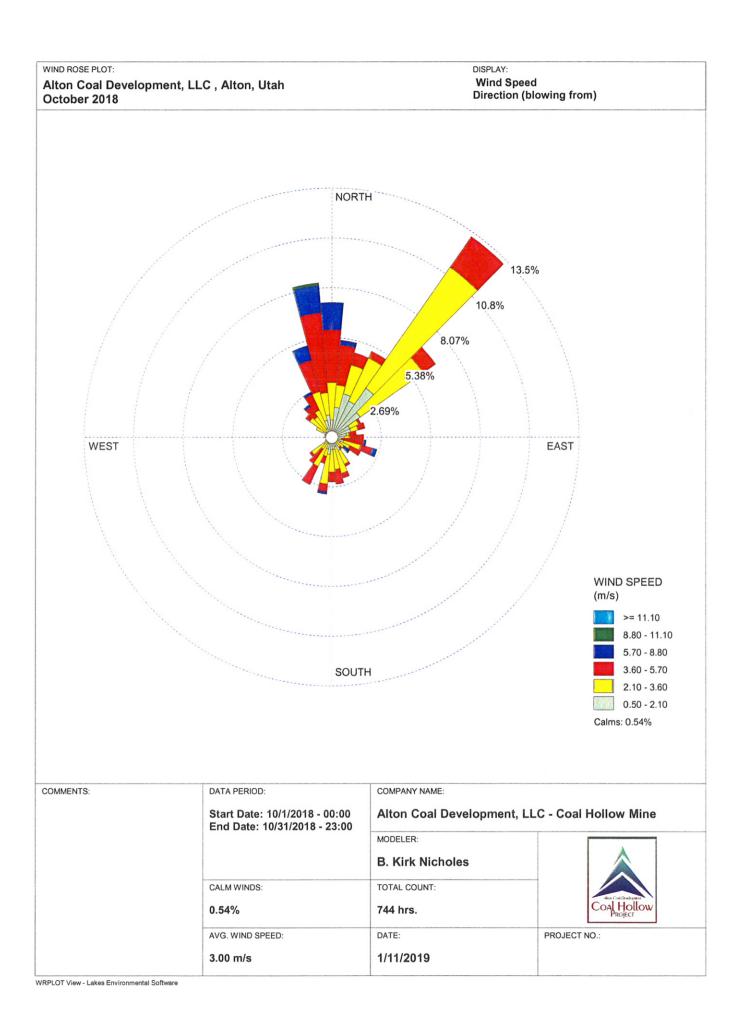
Windrose

Frequency Distribution (Count)

Wind Direction (Blowing From) / Wind Speed (m/s)

	0.50 - 2.10	2.10 - 3.60	3.60 - 5.70	5.70 - 8.808.8	30 - 11.10	>= 11.10	Total
355-5	23	27	53	43	4	0	150
5-15	38	30	36	17	0	0	121
15-25	61	35	9	1	0	0	106
25-35	66	51	4	0	0	0	121
35-45	81	201	31	0	0	0	313
45-55	55	122	13	0	0	0	190
55-65	45	13	1	0	0	0	59
65-75	23	3	3	0	0	0	29
75-85	19	4	3	0	0	0	26
85-95	18	4	6	0	0	0	28
95-105	13	3	9	1	0	0	26
105-115	15	11	9	2	0	0	37
115-125	7	6	9	0	0	0	22
125-135	8	7	10	3	0	0	28
135-145	9	7	6	0	0	0	22
145-155	14	9	2	0	0	0	25
155-165	14	21	5	0	0	0	40
165-175	19	22	11	0	0	0	52
175-185	21	29	7	2	0	0	59
185-195	23	45	7	1	0	0	76
195-205	14	26	8	0	0	0	48
205-215	7	13	16	0	0	0	36
215-225	7	13	8	0	0	0	28
225-235	9	10	6	0	0	0	25
235-245	6	3	2	0	0	0	11
245-255	7	5	1	0	0	0	13
255-265	7	5	3	0	0	0	15
265-275	8	6	1	1	0	0	16
275-285	3	4	0	0	0	0	7
285-295	12	10	1	0	0	0	23
295-305	13	11	1	2	0	0	27
305-315	10	14	6	0	1	0	31
315-325	11	21	14	2	0	0	48
325-335	14	27	18	6	0	0	65
335-345	12	28	33	14	1	0	88
345-355	15	37	70	41	3	0	166
Total	727	883	422	136	9	0	2208

Frequency of Calm Winds: 31


Average Wind Speed: 2.88 m/s

Frequency Distribution (Normalized)

Wind Direction (Blowing From) / Wind Speed (m/s)

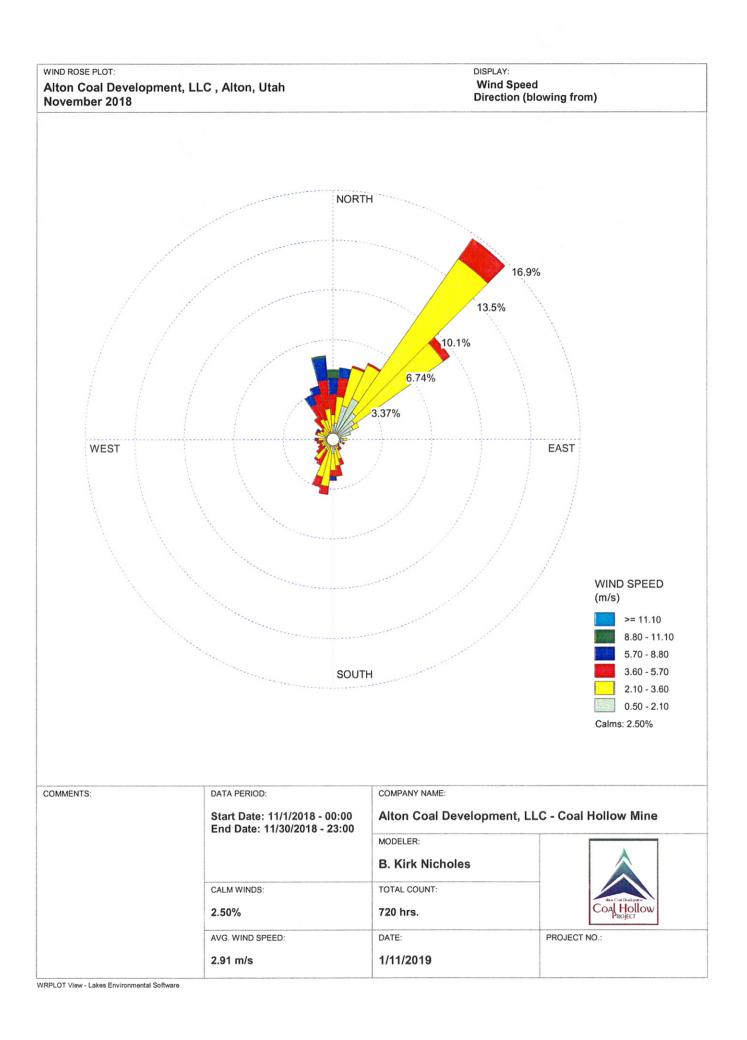
	0.50 - 2.10	2.10 - 3.60	3.60 - 5.70	5.70 - 8.808	.80 - 11.10	>= 11.10	Total
355-5	0.010417	0.012228	0.024004	0.019475	0.001812	0.000000	0.067935
5-15	0.017210	0.013587	0.016304	0.007699	0.000000	0.000000	0.054801
15-25	0.027627	0.015851	0.004076	0.000453	0.000000	0.000000	0.048007
25-35	0.029891	0.023098	0.001812	0.000000	0.000000	0.000000	0.054801
35-45	0.036685	0.091033	0.014040	0.000000	0.000000	0.000000	0.141757
45-55	0.024909	0.055254	0.005888	0.000000	0.000000	0.000000	0.086051
55-65	0.020380	0.005888	0.000453	0.000000	0.000000	0.000000	0.026721
65-75	0.010417	0.001359	0.001359	0.000000	0.000000	0.000000	0.013134
75-85	0.008605	0.001812	0.001359	0.000000	0.000000	0.000000	0.011775
85-95	0.008152	0.001812	0.002717	0.000000	0.000000	0.000000	0.012681
95-105	0.005888	0.001359	0.004076	0.000453	0.000000	0.000000	0.011775
105-115	0.006793	0.004982	0.004076	0.000906	0.000000	0.000000	0.016757
115-125	0.003170	0.002717	0.004076	0.000000	0.000000	0.000000	0.009964
125-135	0.003623	0.003170	0.004529	0.001359	0.000000	0.000000	0.012681
135-145	0.004076	0.003170	0.002717	0.000000	0.000000	0.000000	0.009964
145-155	0.006341	0.004076	0.000906	0.000000	0.000000	0.000000	0.011322
155-165	0.006341	0.009511	0.002264	0.000000	0.000000	0.000000	0.018116
165-175	0.008605	0.009964	0.004982	0.000000	0.000000	0.000000	0.023551
175-185	0.009511	0.013134	0.003170	0.000906	0.000000	0.000000	0.026721
185-195	0.010417	0.020380	0.003170	0.000453	0.000000	0.000000	0.034420
195-205	0.006341	0.011775	0.003623	0.000000	0.000000	0.000000	0.021739
205-215	0.003170	0.005888	0.007246	0.000000	0.000000	0.000000	0.016304
215-225	0.003170	0.005888	0.003623	0.000000	0.000000	0.000000	0.012681
225-235	0.004076	0.004529	0.002717	0.000000	0.000000	0.000000	0.011322
235-245	0.002717	0.001359	0.000906	0.000000	0.000000	0.000000	0.004982
245-255	0.003170	0.002264	0.000453	0.000000	0.000000	0.000000	0.005888
255-265	0.003170	0.002264	0.001359	0.000000	0.000000	0.000000	0.006793
265-275	0.003623	0.002717	0.000453	0.000453	0.000000	0.000000	0.007246
275-285	0.001359	0.001812	0.000000	0.000000	0.000000	0.000000	0.003170
285-295	0.005435	0.004529	0.000453	0.000000	0.000000	0.000000	0.010417
295-305	0.005888	0.004982	0.000453	0.000906	0.000000	0.000000	0.012228
305-315	0.004529	0.006341	0.002717	0.000000	0.000453	0.000000	0.014040
315-325	0.004982	0.009511	0.006341	0.000906	0.000000	0.000000	0.021739
325-335	0.006341	0.012228	0.008152	0.002717	0.000000	0.000000	0.029438
335-345	0.005435	0.012681	0.014946	0.006341	0.000453	0.000000	0.039855
345-355	0.006793	0.016757	0.031703	0.018569	0.001359	0.000000	0.075181
Total	0.329257	0.399909	0.191123	0.061594	0.004076	0.000000	0.985960

Frequency of Calm Winds: 1.40% Average Wind Speed: 2.88 m/s

Frequency Distribution (Count)

Wind Direction (Blowing From) / Wind Speed (m/s)

	0.50 - 2.10	2.10 - 3.60	3.60 - 5.70	5.70 - 8.808.	80 - 11.10	>= 11.10	Total
355-5	7	15	21	11	0	0	54
5-15	12	9	16	2	0	0	39
15-25	18	12	5	0	0	0	35
25-35	16	19	3	0	0	0	38
35-45	24	59	15	0	0	0	98
45-55	14	31	6	0	0	0	51
55-65	8	4	1	0	0	0	13
65-75	8	3	3	0	0	0	14
75-85	6	1	3	0	0	0	10
85-95	5	2	6	0	0	0	13
95-105	1	3	9	1	0	0	14
105-115	5	7	5	2	0	0	19
115-125	4	4	5	0	0	0	13
125-135	2	4	0	3	0	0	9
135-145	2	3	1	0	0	0	6
145-155	6	6	1	0	0	0	13
155-165	4	11	2	0	0	0	17
165-175	5	8	6	0	0	0	19
175-185	5	9	4	0	0	0	18
185-195	7	12	3	1	0	0	23
195-205	5	3	3	0	0	0	11
205-215	3	10	8	0	0	0	21
215-225	0	6	7	0	0	0	13
225-235	4	6	1	0	0	0	11
235-245	2	1	0	0	0	0	3
245-255	1	1	0	0	0	0	2
255-265	0	1	0	0	0	0	1
265-275	2	1	0	0	0	0	3
275-285	0	0	0	0	0	0	0
285-295	3	0	0	0	0	0	3
295-305	4	3	0	0	0	0	7
305-315	3	8	2	0	0	0	13
315-325	2	8	5	1	0	0	16
325-335	4	8	7	1	0	0	20
335-345	7	12	13	6	0	0	38
345-355	9	9	32	11	1	0	62
Total	208	299	193	39	1	0	744


Frequency of Calm Winds: 4 Average Wind Speed: 3.00 m/s

Frequency Distribution (Normalized)

Wind Direction (Blowing From) / Wind Speed (m/s)

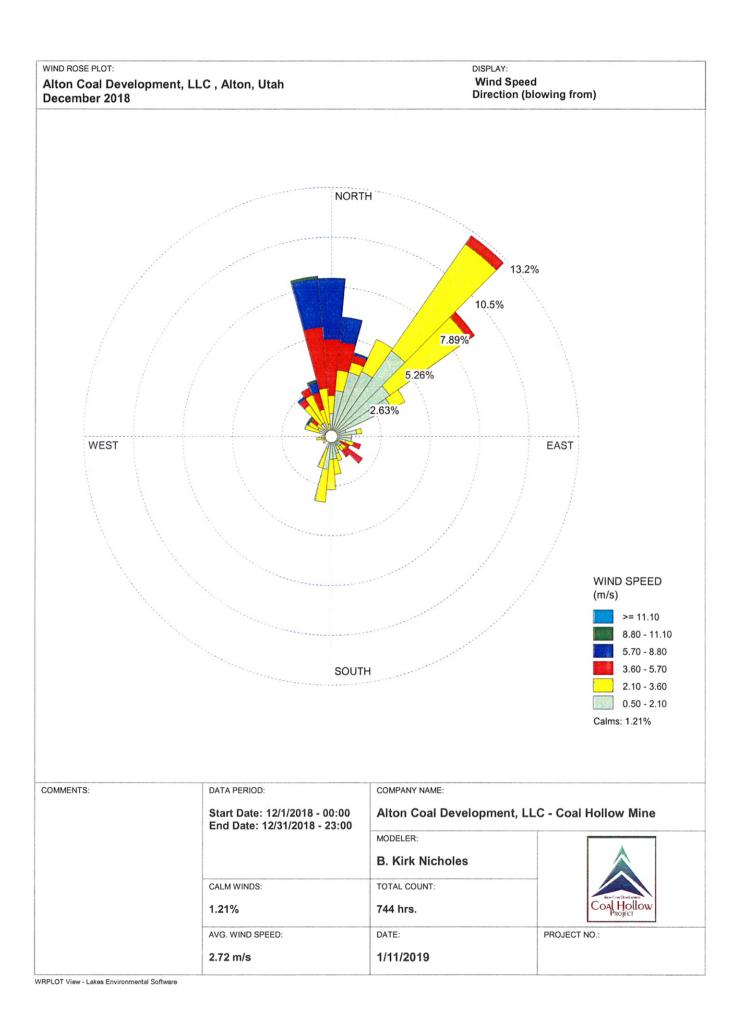
	0.50 - 2.10	2.10 - 3.60	3.60 - 5.70	5.70 - 8.808	.80 - 11.10	>= 11.10	Total
355-5	0.009409	0.020161	0.028226	0.014785	0.000000	0.000000	0.072581
5-15	0.016129	0.012097	0.021505	0.002688	0.000000	0.000000	0.052419
15-25	0.024194	0.016129	0.006720	0.000000	0.000000	0.000000	0.047043
25-35	0.021505	0.025538	0.004032	0.000000	0.000000	0.000000	0.051075
35-45	0.032258	0.079301	0.020161	0.000000	0.000000	0.000000	0.131720
45-55	0.018817	0.041667	0.008065	0.000000	0.000000	0.000000	0.068548
55-65	0.010753	0.005376	0.001344	0.000000	0.000000	0.000000	0.017473
65-75	0.010753	0.004032	0.004032	0.000000	0.000000	0.000000	0.018817
75-85	0.008065	0.001344	0.004032	0.000000	0.000000	0.000000	0.013441
85-95	0.006720	0.002688	0.008065	0.000000	0.000000	0.000000	0.017473
95-105	0.001344	0.004032	0.012097	0.001344	0.000000	0.000000	0.018817
105-115	0.006720	0.009409	0.006720	0.002688	0.000000	0.000000	0.025538
115-125	0.005376	0.005376	0.006720	0.000000	0.000000	0.000000	0.017473
125-135	0.002688	0.005376	0.000000	0.004032	0.000000	0.000000	0.012097
135-145	0.002688	0.004032	0.001344	0.000000	0.000000	0.000000	0.008065
145-155	0.008065	0.008065	0.001344	0.000000	0.000000	0.000000	0.017473
155-165	0.005376	0.014785	0.002688	0.000000	0.000000	0.000000	0.022849
165-175	0.006720	0.010753	0.008065	0.000000	0.000000	0.000000	0.025538
175-185	0.006720	0.012097	0.005376	0.000000	0.000000	0.000000	0.024194
185-195	0.009409	0.016129	0.004032	0.001344	0.000000	0.000000	0.030914
195-205	0.006720	0.004032	0.004032	0.000000	0.000000	0.000000	0.014785
205-215	0.004032	0.013441	0.010753	0.000000	0.000000	0.000000	0.028226
215-225	0.000000	0.008065	0.009409	0.000000	0.000000	0.000000	0.017473
225-235	0.005376	0.008065	0.001344	0.000000	0.000000	0.000000	0.014785
235-245	0.002688	0.001344	0.000000	0.000000	0.000000	0.000000	0.004032
245-255	0.001344	0.001344	0.000000	0.000000	0.000000	0.000000	0.002688
255-265	0.000000	0.001344	0.000000	0.000000	0.000000	0.000000	0.001344
265-275	0.002688	0.001344	0.000000	0.000000	0.000000	0.000000	0.004032
275-285	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
285-295	0.004032	0.000000	0.000000	0.000000	0.000000	0.000000	0.004032
295-305	0.005376	0.004032	0.000000	0.000000	0.000000	0.000000	0.009409
305-315	0.004032	0.010753	0.002688	0.000000	0.000000	0.000000	0.017473
315-325	0.002688	0.010753	0.006720	0.001344	0.000000	0.000000	0.021505
325-335	0.005376	0.010753	0.009409	0.001344	0.000000	0.000000	0.026882
335-345	0.009409	0.016129	0.017473	0.008065	0.000000	0.000000	0.051075
345-355	0.012097	0.012097	0.043011	0.014785	0.001344	0.000000	0.083333
Total	0.279570	0.401882	0.259409	0.052419	0.001344	0.000000	0.994624

Frequency of Calm Winds: 0.54% Average Wind Speed: 3.00 m/s

Frequency Distribution (Count)

Wind Direction (Blowing From) / Wind Speed (m/s)

	0.50 - 2.10	2.10 - 3.60	3.60 - 5.70	5.70 - 8.808.8	0 - 11.10	>= 11.10	Total
355-5	7	5	10	8	4	0	34
5-15	8	13	9	5	0	0	35
15-25	17	19	1	0	0	0	37
25-35	22	18	1	0	0	0	41
35-45	16	91	12	0	0	0	119
45-55	13	53	4	0	0	0	70
55-65	11	3	0	0	0	0	14
65-75	9	0	0	0	0	0	9
75-85	3	1	0	0	0	0	4
85-95	5	2	0	0	0	0	7
95-105	4	0	0	0	0	0	4
105-115	4	1	1	0	0	0	6
115-125	0	1	0	0	0	0	1
125-135	1	1	2	0	0	0	4
135-145	2	2	2	0	0	0	6
145-155	4	1	1	0	0	0	6
155-165	3	7	3	0	0	0	13
165-175	5	8	5	0	0	0	18
175-185	7	8	3	2	0	0	20
185-195	3	20	4	0	0	0	27
195-205	4	15	5	0	0	0	24
205-215	3	3	8	0	0	0	14
215-225	6	6	1	0	0	0	13
225-235	3	2	5	0	0	0	10
235-245	4	2	2	0	0	0	8
245-255	3	3	1	0	0	0	7
255-265	3	2	3	0	0	0	8
265-275	4	3	1	1	0	0	9
275-285	1	3	0	0	0	0	4
285-295	4	4	1	0	0	0	9
295-305	3	4	1	1	0	0	9
305-315	3	3	1	0	0	0	7
315-325	3	4	6	0	0	0	13
325-335	4	7	8	5	0	0	24
335-345	4	6	13	4	0	0	27
345-355	1	14	14	11	1	0	41
Total	197	335	128	37	5	0	720


Frequency of Calm Winds: 18 Average Wind Speed: 2.91 m/s

Frequency Distribution (Normalized)

Wind Direction (Blowing From) / Wind Speed (m/s)

	0.50 - 2.10	2.10 - 3.60	3.60 - 5.70	5.70 - 8.808	.80 - 11.10	>= 11.10	Total
355-5	0.009722	0.006944	0.013889	0.011111	0.005556	0.000000	0.047222
5-15	0.011111	0.018056	0.012500	0.006944	0.000000	0.000000	0.048611
15-25	0.023611	0.026389	0.001389	0.000000	0.000000	0.000000	0.051389
25-35	0.030556	0.025000	0.001389	0.000000	0.000000	0.000000	0.056944
35-45	0.022222	0.126389	0.016667	0.000000	0.000000	0.000000	0.165278
45-55	0.018056	0.073611	0.005556	0.000000	0.000000	0.000000	0.097222
55-65	0.015278	0.004167	0.000000	0.000000	0.000000	0.000000	0.019444
65-75	0.012500	0.000000	0.000000	0.000000	0.000000	0.000000	0.012500
75-85	0.004167	0.001389	0.000000	0.000000	0.000000	0.000000	0.005556
85-95	0.006944	0.002778	0.000000	0.000000	0.000000	0.000000	0.009722
95-105	0.005556	0.000000	0.000000	0.000000	0.000000	0.000000	0.005556
105-115	0.005556	0.001389	0.001389	0.000000	0.000000	0.000000	0.008333
115-125	0.000000	0.001389	0.000000	0.000000	0.000000	0.000000	0.001389
125-135	0.001389	0.001389	0.002778	0.000000	0.000000	0.000000	0.005556
135-145	0.002778	0.002778	0.002778	0.000000	0.000000	0.000000	0.008333
145-155	0.005556	0.001389	0.001389	0.000000	0.000000	0.000000	0.008333
155-165	0.004167	0.009722	0.004167	0.000000	0.000000	0.000000	0.018056
165-175	0.006944	0.011111	0.006944	0.000000	0.000000	0.000000	0.025000
175-185	0.009722	0.011111	0.004167	0.002778	0.000000	0.000000	0.027778
185-195	0.004167	0.027778	0.005556	0.000000	0.000000	0.000000	0.037500
195-205	0.005556	0.020833	0.006944	0.000000	0.000000	0.000000	0.033333
205-215	0.004167	0.004167	0.011111	0.000000	0.000000	0.000000	0.019444
215-225	0.008333	0.008333	0.001389	0.000000	0.000000	0.000000	0.018056
225-235	0.004167	0.002778	0.006944	0.000000	0.000000	0.000000	0.013889
235-245	0.005556	0.002778	0.002778	0.000000	0.000000	0.000000	0.011111
245-255	0.004167	0.004167	0.001389	0.000000	0.000000	0.000000	0.009722
255-265	0.004167	0.002778	0.004167	0.000000	0.000000	0.000000	0.011111
265-275	0.005556	0.004167	0.001389	0.001389	0.000000	0.000000	0.012500
275-285	0.001389	0.004167	0.000000	0.000000	0.000000	0.000000	0.005556
285-295	0.005556	0.005556	0.001389	0.000000	0.000000	0.000000	0.012500
295-305	0.004167	0.005556	0.001389	0.001389	0.000000	0.000000	0.012500
305-315	0.004167	0.004167	0.001389	0.000000	0.000000	0.000000	0.009722
315-325	0.004167	0.005556	0.008333	0.000000	0.000000	0.000000	0.018056
325-335	0.005556	0.009722	0.011111	0.006944	0.000000	0.000000	0.033333
335-345	0.005556	0.008333	0.018056	0.005556	0.000000	0.000000	0.037500
345-355	0.001389	0.019444	0.019444	0.015278	0.001389	0.000000	0.056944
Total	0.273611	0.465278	0.177778	0.051389	0.006944	0.000000	0.975000

Frequency of Calm Winds: 2.50% Average Wind Speed: 2.91 m/s

Frequency Distribution (Count)

Wind Direction (Blowing From) / Wind Speed (m/s)

	0.50 - 2.10	2.10 - 3.60	3.60 - 5.70	5.70 - 8.808.80	- 11.10	>= 11.10	Total
355-5	9	7	22	24	0	0	62
5-15	18	8	11	10	0	0	47
15-25	26	4	3	1	0	0	34
25-35	28	14	0	0	0	0	42
35-45	41	51	4	0	0	0	96
45-55	28	38	3	0	0	0	69
55-65	26	6	0	0	0	0	32
65-75	6	0	0	0	0	0	6
75-85	10	2	0	0	0	0	12
85-95	8	0	0	0	0	0	8
95-105	8	0	0	0	0	0	8
105-115	6	3	3	0	0	0	12
115-125	3	1	4	0	0	0	8
125-135	5	2	8	0	0	0	15
135-145	5	2	3	0	0	0	10
145-155	4	2	0	0	0	0	6
155-165	7	3	0	0	0	0	10
165-175	9	6	0	0	0	0	15
175-185	9	12	0	0	0	0	21
185-195	13	13	0	0	0	0	26
195-205	5	8	0	0	0	0	13
205-215	1	0	0	0	0	0	1
215-225	1	1	0	0	0	0	2
225-235	2	2	0	0	0	0	4
235-245	0	0	0	0	0	0	0
245-255	3	1	0	0	0	0	4
255-265	4	2	0	0	0	0	6
265-275	2	2	0	0	0	0	4
275-285	2	1	0	0	0	0	3
285-295	5	6	0	0	0	0	11
295-305	6	4	0	1	0	0	11
305-315	4	3	3	0	1	0	11
315-325	6	9	3	1	0	0	19
325-335	6	12	3	0	0	0	21
335-345	1	10	7	4	1	0	23
345-355	5	14	24	19	1	0	63
Total	322	249	101	60	3	0	744

Frequency of Calm Winds: 9 Average Wind Speed: 2.72 m/s

WRPLOT View Freeware 8.0.2 - Lakes Environmental Software

Frequency Distribution (Normalized)

Wind Direction (Blowing From) / Wind Speed (m/s)

	0.50 - 2.10	2.10 - 3.60	3.60 - 5.70	5.70 - 8.808	.80 - 11.10	>= 11.10	Total
355-5	0.012097	0.009409	0.029570	0.032258	0.000000	0.000000	0.083333
5-15	0.024194	0.010753	0.014785	0.013441	0.000000	0.000000	0.063172
15-25	0.034946	0.005376	0.004032	0.001344	0.000000	0.000000	0.045699
25-35	0.037634	0.018817	0.000000	0.000000	0.000000	0.000000	0.056452
35-45	0.055108	0.068548	0.005376	0.000000	0.000000	0.000000	0.129032
45-55	0.037634	0.051075	0.004032	0.000000	0.000000	0.000000	0.092742
55-65	0.034946	0.008065	0.000000	0.000000	0.000000	0.000000	0.043011
65-75	0.008065	0.000000	0.000000	0.000000	0.000000	0.000000	0.008065
75-85	0.013441	0.002688	0.000000	0.000000	0.000000	0.000000	0.016129
85-95	0.010753	0.000000	0.000000	0.000000	0.000000	0.000000	0.010753
95-105	0.010753	0.000000	0.000000	0.000000	0.000000	0.000000	0.010753
105-115	0.008065	0.004032	0.004032	0.000000	0.000000	0.000000	0.016129
115-125	0.004032	0.001344	0.005376	0.000000	0.000000	0.000000	0.010753
125-135	0.006720	0.002688	0.010753	0.000000	0.000000	0.000000	0.020161
135-145	0.006720	0.002688	0.004032	0.000000	0.000000	0.000000	0.013441
145-155	0.005376	0.002688	0.000000	0.000000	0.000000	0.000000	0.008065
155-165	0.009409	0.004032	0.000000	0.000000	0.000000	0.000000	0.013441
165-175	0.012097	0.008065	0.000000	0.000000	0.000000	0.000000	0.020161
175-185	0.012097	0.016129	0.000000	0.000000	0.000000	0.000000	0.028226
185-195	0.017473	0.017473	0.000000	0.000000	0.000000	0.000000	0.034946
195-205	0.006720	0.010753	0.000000	0.000000	0.000000	0.000000	0.017473
205-215	0.001344	0.000000	0.000000	0.000000	0.000000	0.000000	0.001344
215-225	0.001344	0.001344	0.000000	0.000000	0.000000	0.000000	0.002688
225-235	0.002688	0.002688	0.000000	0.000000	0.000000	0.000000	0.005376
235-245	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
245-255	0.004032	0.001344	0.000000	0.000000	0.000000	0.000000	0.005376
255-265	0.005376	0.002688	0.000000	0.000000	0.000000	0.000000	0.008065
265-275	0.002688	0.002688	0.000000	0.000000	0.000000	0.000000	0.005376
275-285	0.002688	0.001344	0.000000	0.000000	0.000000	0.000000	0.004032
285-295	0.006720	0.008065	0.000000	0.000000	0.000000	0.000000	0.014785
295-305	0.008065	0.005376	0.000000	0.001344	0.000000	0.000000	0.014785
305-315	0.005376	0.004032	0.004032	0.000000	0.001344	0.000000	0.014785
315-325	0.008065	0.012097	0.004032	0.001344	0.000000	0.000000	0.025538
325-335	0.008065	0.016129	0.004032	0.000000	0.000000	0.000000	0.028226
335-345	0.001344	0.013441	0.009409	0.005376	0.001344	0.000000	0.030914
345-355	0.006720	0.018817	0.032258	0.025538	0.001344	0.000000	0.084677
Total	0.432796	0.334677	0.135753	0.080645	0.004032	0.000000	0.987903

Frequency of Calm Winds: 1.21% Average Wind Speed: 2.72 m/s

APPENDIX B

Listing of PM₁₀ Concentrations

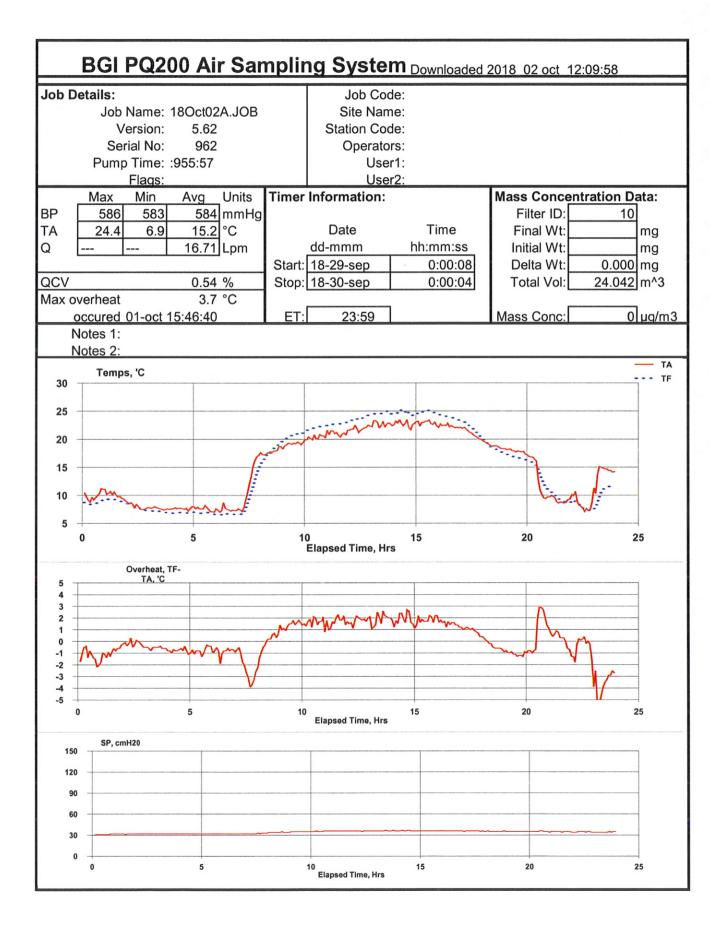
Background Monitor 962A

PM₁₀ Sampler Summary

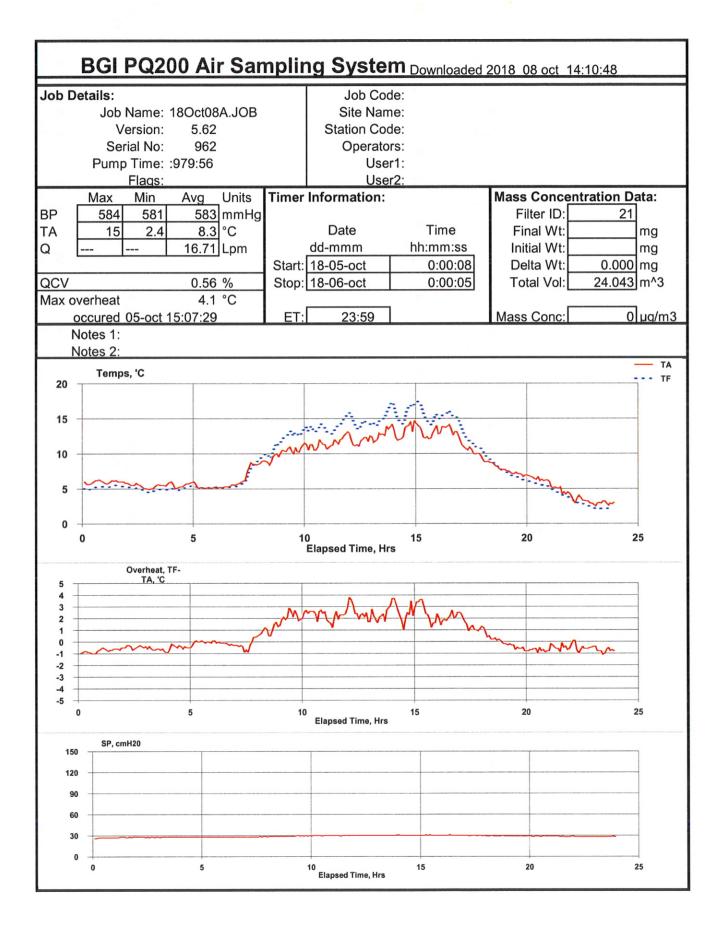
October 1, 2018 - December 31, 2018

AQS ID:

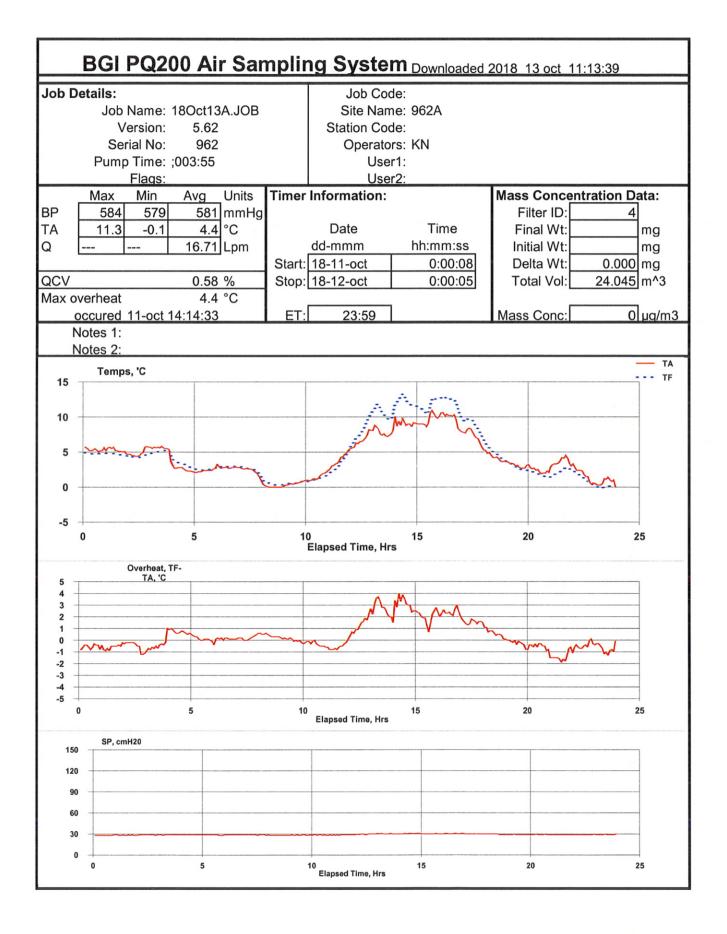
Network: Alton Coal Development

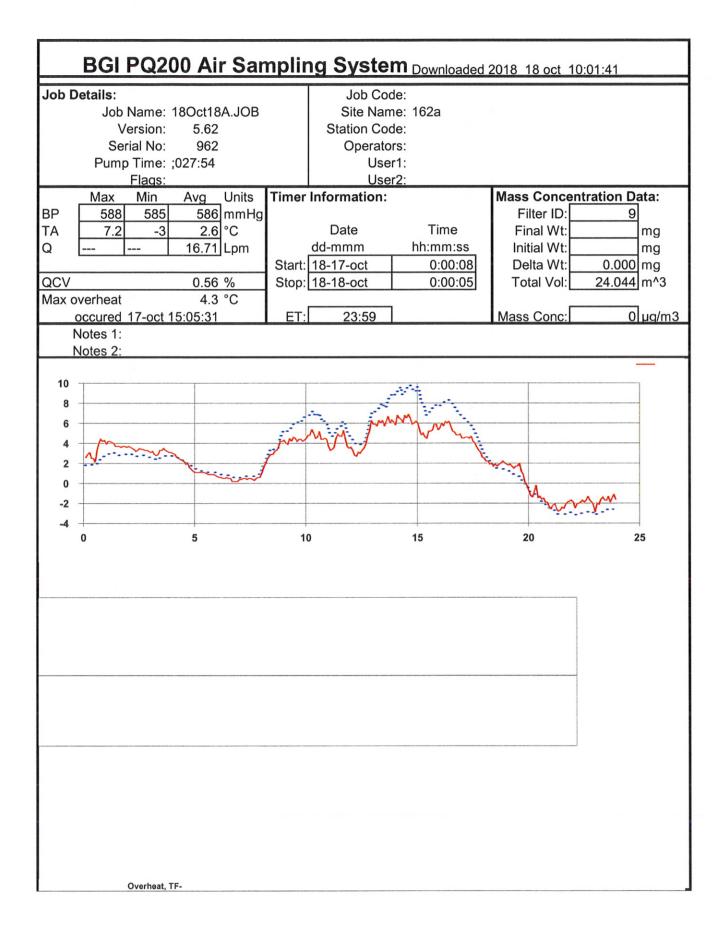

Site: Coal Hollow

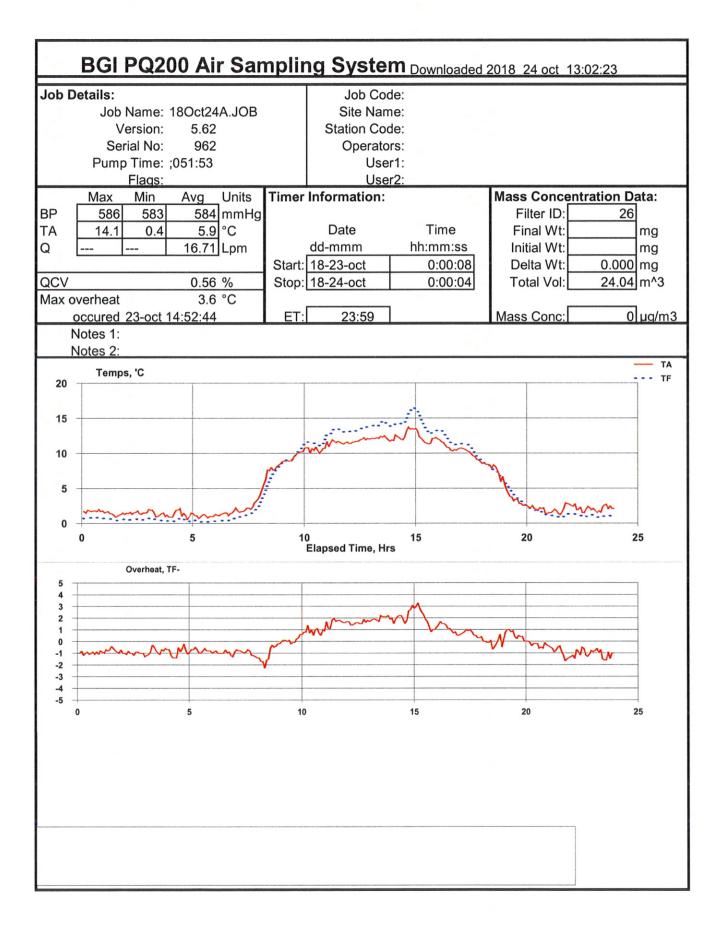
Sampler ID: Coal Hollow-A

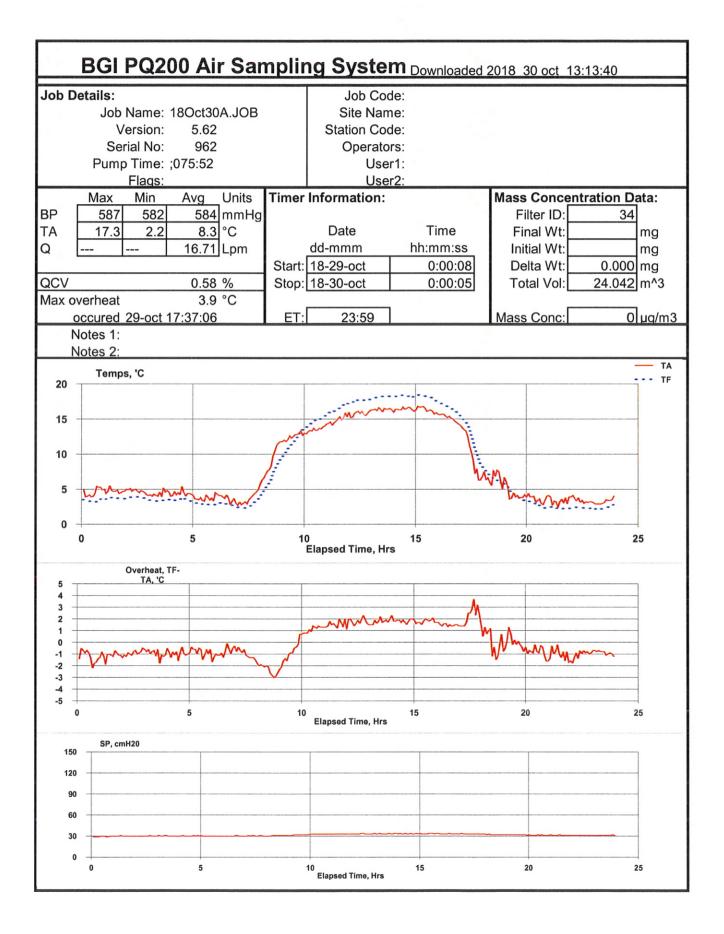

Sampler Type: BGI FRM Single

	Filter	Concentration (µg/m3)	Concentration (µg/m3)	Sample Period	Sample Volume	Std Volume	Tare	Mass Gross	Net		
Date	ID	LTP	STP	(hr:min)	(m3)	(m3)	(mg)	(mg)	(mg)	Flag	Comments
10/05/18	P2950123	2.8	3.4	23:59	24.0	19.5	394.1833	394.2507	0.0674		
10/11/18	P2950417	2.9	3.6	23:59	24.0	19.7	394.5398	394.6116	0.0718		
10/17/18	P2950422	2.2	2.6	23:59	24.0	20.0	394.4949	394.5481	0.0532		
10/23/18	P2951628	3.0	3.6	23:59	24.0	19.7	402.2977	402.3699	0.0722		
10/29/18	P2951633	5.8	7.2	23:59	24.0	19.6	389.0833	389.2247	0.1414		
11/04/18	P2951916	4.8	5.8	23:59	24.0	19.8	395.8603	395.9760	0.1157		
11/10/18	P2951921	4.0	4.8	23:59	24.0	20.1	393.7945	393.8927	0.0982		
11/16/18	P2951926	2.7	3.3	23:59	24.0	19.9	396.2521	396.3179	0.0658	TD	
11/22/18	P2952180	7.3	8.7	23:59	24.0	20.0		391.4629	0.1761		
11/28/18	P2952185	3.1	3.8	23:59	24.0	19.9		396.5648			
12/04/18	P2952454	1.8	2.0	23:59	24.0	20.9		396.5370			
12/10/18	P2952461	2.5	3.0	23:59	24.0	20.3		397.6438			
12/16/18	P2952666	1.3	1.6	24:00	24.0	20.1		389.9768			
12/22/18	P2952671	1.0	1.2	23:59	24.0	20.2		387.4718			
12/28/18	P2952676	3.9	4.5	23:59	24.0	20.6	394.9915	395.0854	0.0939		
	# Valid	Recovery	Average	St. Dev.	Max	Min					
	15	100%	3.9	2.0	8.7	1.2					

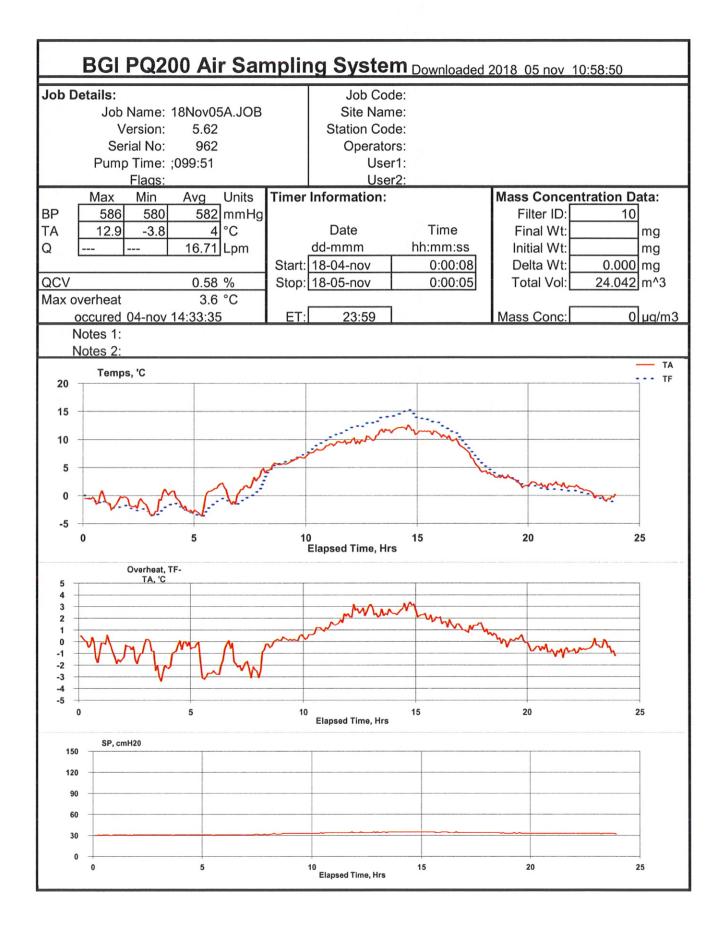

Inter-Mountain Laboratories' (IML) data validation is limited by the provided information. Data have been validated based on laboratory QC, field observations and other information available to IML. Additional data validation based on information not provided to IML may be required. According to 40 CFR 58.15 final responsibilities for data review and validation lies with each agency submitting data to AQS.


18-29-sep	0:05:08	585	10.0	8.7	-1.3	31	16.71
18-29-sep	1:05:08	585	9.9	9.1	-0.8	32	16.71
18-29-sep	2:05:08	585	8.0	7.8	-0.2	32	16.71
18-29-sep	3:05:08	585	7.6	7.1	-0.6	32	16.71
18-29-sep	4:05:08	585	7.7	6.9	-0.8	32	16.71
18-29-sep	5:05:08	585	7.6	6.8	-0.8	32	16.70
18-29-sep	6:05:08	585	7.5	6.6	-0.9	32	16.71
18-29-sep	7:05:08	585	12.5	10.2	-2.3	32	16.72
18-29-sep	8:05:08	586	17.8	17.9	0.1	34	16.72
18-29-sep	9:05:08	586	19.3	20.7	1.4	35	16.72
18-29-sep	10:05:08	586	20.4	22.0	1.6	36	16.73
18-29-sep	11:05:08	586	21.1	22.8	1.7	36	16.72
18-29-sep	12:05:08	585	22.0	23.8	1.8	36	16.72
18-29-sep	13:05:08	585	22.7	24.6	1.9	36	16.72
18-29-sep	14:05:08	584	22.8	24.6	1.9	36	16.73
18-29-sep	15:05:08	584	22.9	24.7	1.9	36	16.71
18-29-sep	16:05:08	584	22.3	23.8	1.5	36	16.71
18-29-sep	17:05:08	584	20.9	21.8	0.9	36	16.72
18-29-sep	18:05:08	584	18.8	18.4	-0.4	35	16.72
18-29-sep	19:05:08	584	17.8	16.7	-1.1	35	16.71
18-29-sep	20:05:08	584	12.9	13.9	0.9	35	16.71
18-29-sep	21:05:08	584	9.2	9.3	0.1	35	16.71
18-29-sep	22:05:08	585	8.6	7.9	-0.7	35	16.71
18-29-sep	23:05:08	585	14.1	10.5	-3.6	34	16.72

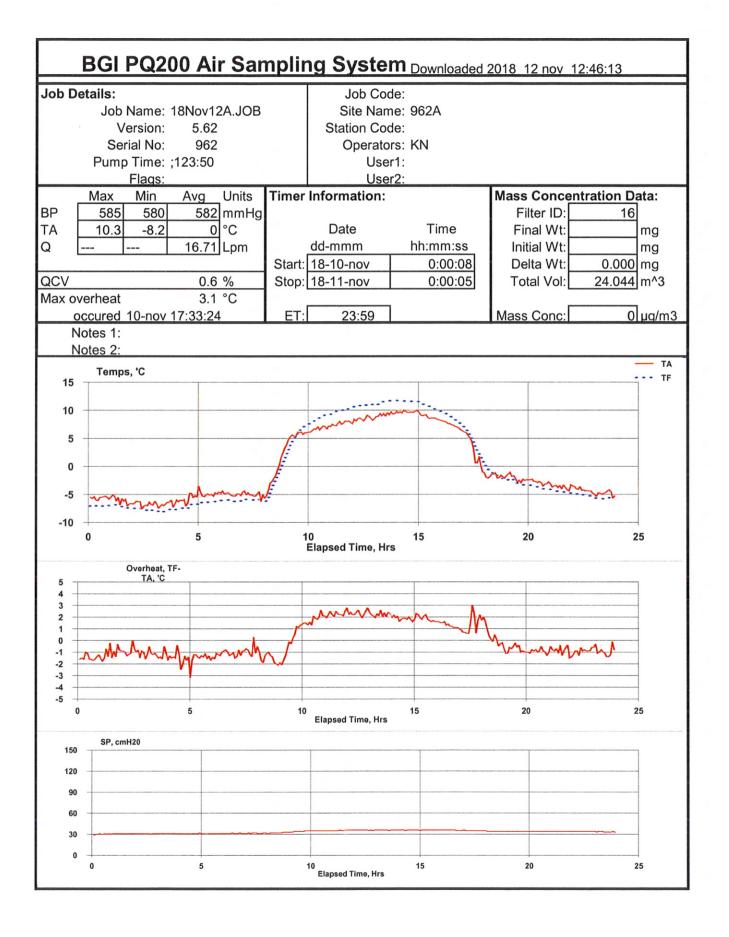

18-05-oct	0:05:08	583	6.0	5.1	-0.9	27	16.71
18-05-oct	1:05:08	583	6.0	5.3	-0.6	28	16.71
18-05-oct	2:05:08	583	5.4	4.9	-0.4	28	16.71
18-05-oct	3:05:08	583	5.5	4.8	-0.7	28	16.71
18-05-oct	4:05:08	583	5.5	5.1	-0.4	28	16.71
18-05-oct	5:05:08	583	5.2	5.2	0.0	28	16.71
18-05-oct	6:05:08	583	5.4	5.2	-0.1	28	16.71
18-05-oct	7:05:08	584	7.6	7.3	-0.2	28	16.72
18-05-oct	8:05:08	584	9.4	10.4	1.0	29	16.71
18-05-oct	9:05:08	584	10.6	12.8	2.2	29	16.71
18-05-oct	10:05:08	584	11.1	13.6	2.5	30	16.74
18-05-oct	11:05:08	584	12.0	14.1	2.1	30	16.71
18-05-oct	12:05:08	584	11.8	14.3	2.5	30	16.71
18-05-oct	13:05:08	583	12.9	15.4	2.4	30	16.71
18-05-oct	14:05:08	583	13.3	15.8	2.5	30	16.71
18-05-oct	15:05:08	583	13.0	15.5	2.5	30	16.73
18-05-oct	16:05:08	583	13.2	15.3	2.1	30	16.72
18-05-oct	17:05:08	583	10.3	11.7	1.4	30	16.72
18-05-oct	18:05:08	583	8.3	8.6	0.3	29	16.72
18-05-oct	19:05:08	583	7.1	6.6	-0.5	29	16.72
18-05-oct	20:05:08	583	6.4	5.6	-0.7	29	16.72
18-05-oct	21:05:08	583	4.7	4.2	-0.5	29	16.71
18-05-oct	22:05:08	583	3.2	2.8	-0.5	28	16.72
18-05-oct	23:05:08	582	2.9	2.1	-0.8	28	16.72

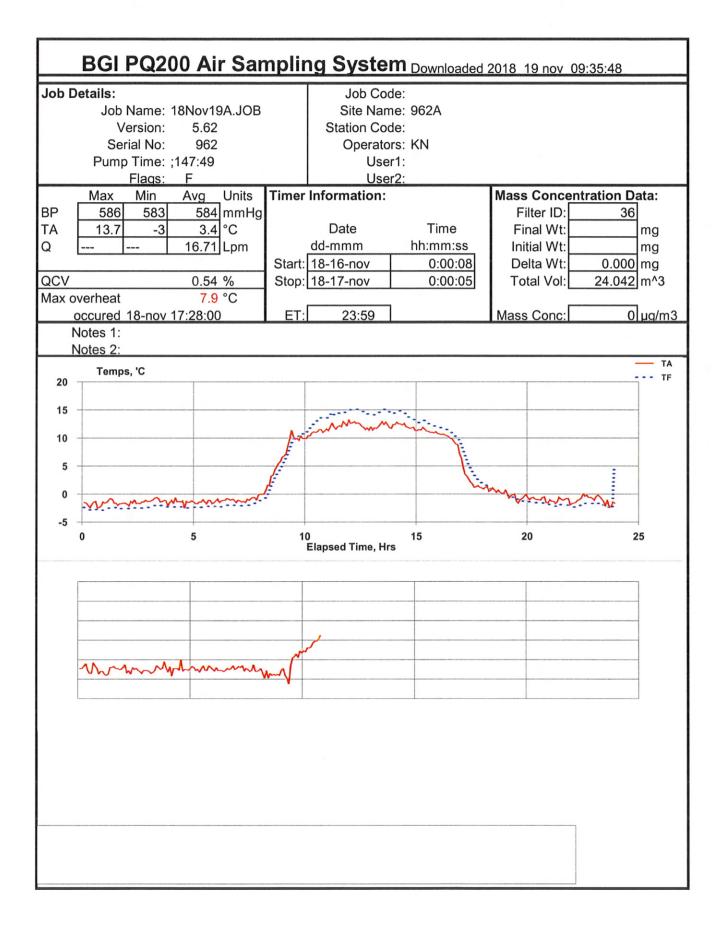


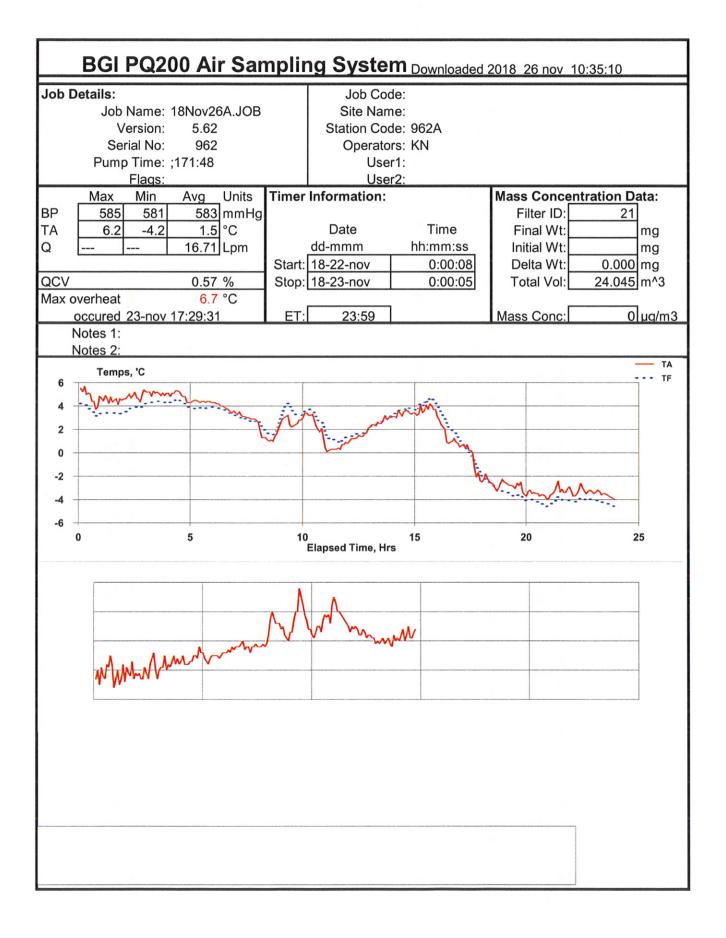
18-11-oct	0:05:08	581	5.3	4.8	-0.5	28	16.70
18-11-oct	1:05:08	580	5.2	4.7	-0.6	28	16.71
18-11-oct	2:05:08	580	5.0	4.4	-0.6	29	16.73
18-11-oct	3:05:08	580	5.2	4.9	-0.3	29	16.71
18-11-oct	4:05:08	581	2.5	3.2	0.7	29	16.72
18-11-oct	5:05:08	580	2.5	2.5	0.1	29	16.71
18-11-oct	6:05:08	581	2.8	2.9	0.1	29	16.71
18-11-oct	7:05:08	581	2.2	2.5	0.2	29	16.70
18-11-oct	8:05:08	582	0.1	0.5	0.4	28	16.71
18-11-oct	9:05:08	582	0.6	0.6	0.0	28	16.71
18-11-oct	10:05:08	582	1.5	1.2	-0.3	29	16.72
18-11-oct	11:05:08	582	4.0	3.5	-0.5	29	16.71
18-11-oct	12:05:08	582	6.9	8.2	1.4	30	16.72
18-11-oct	13:05:08	582	8.0	10.6	2.7	30	16.72
18-11-oct	14:05:08	581	9.1	12.2	3.1	31	16.71
18-11-oct	15:05:08	581	9.6	11.6	2.0	30	16.72
18-11-oct	16:05:08	582	9.7	12.1	2.4	31	16.73
18-11-oct	17:05:08	582	7.2	8.8	1.6	30	16.71
18-11-oct	18:05:08	582	4.2	4.8	0.6	30	16.72
18-11-oct	19:05:08	583	3.1	2.8	-0.3	29	16.71
18-11-oct	20:05:08	583	2.4	1.8	-0.6	29	16.71
18-11-oct	21:05:08	583	3.6	2.2	-1.4	29	16.72
18-11-oct	22:05:08	583	1.6	1.2	-0.4	29	16.71
18-11-oct	23:05:08	584	0.7	0.0	-0.7	29	16.71

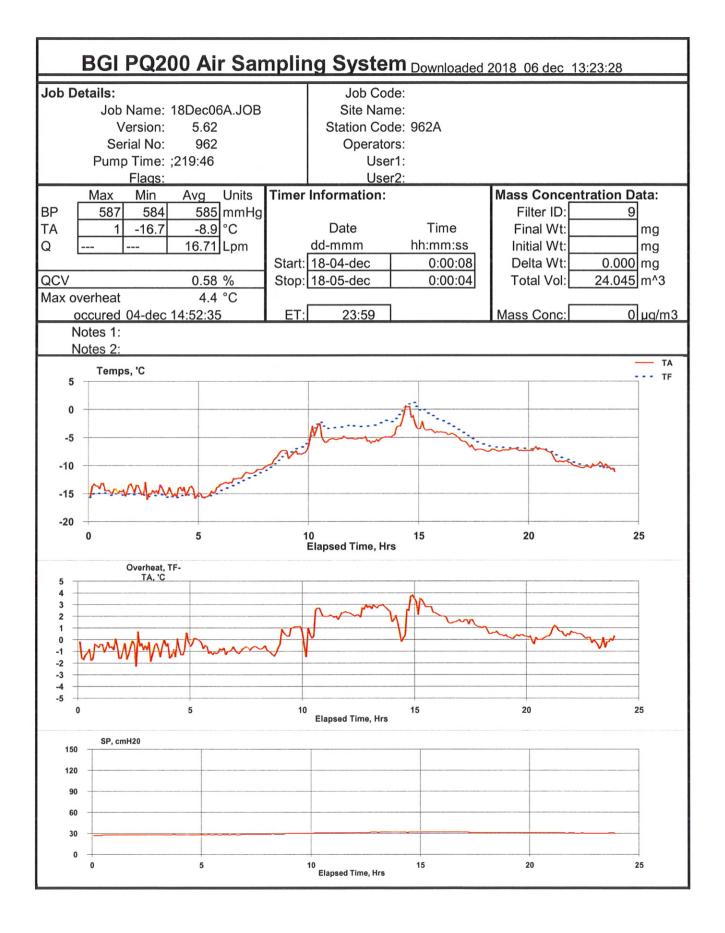


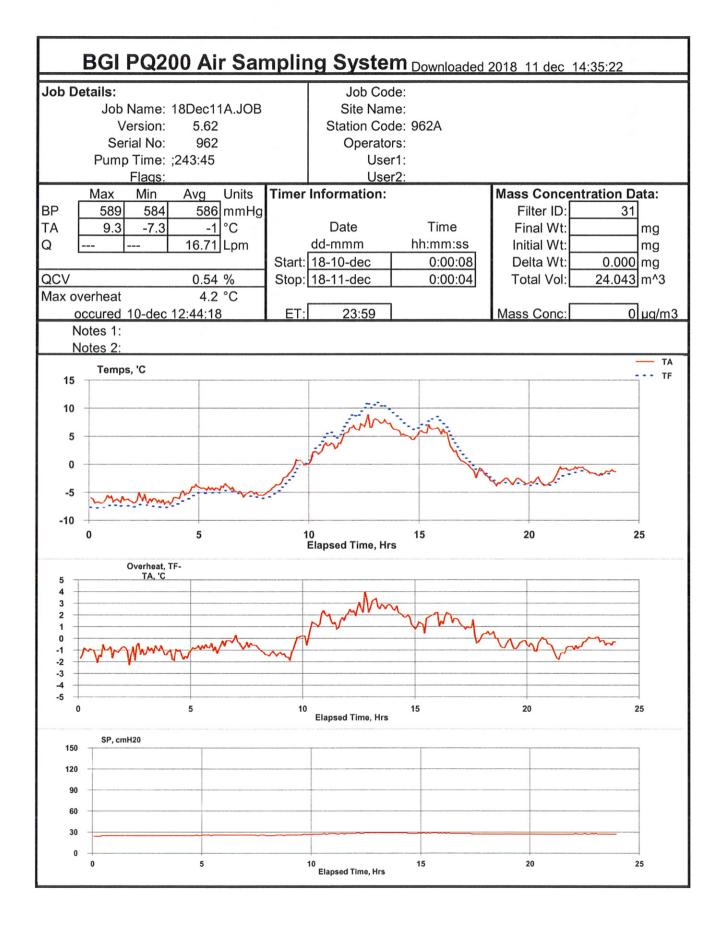
18-17-oct	0:05:08	586	3.3	2.1	-1.2	27	16.71
18-17-oct	1:05:08	586	3.8	2.9	-0.9	28	16.71
18-17-oct	2:05:08	586	3.4	2.8	-0.6	28	16.72
18-17-oct	3:05:08	586	3.1	2.6	-0.5	28	16.72
18-17-oct	4:05:08	586	2.0	2.2	0.2	28	16.71
18-17-oct	5:05:08	587	1.0	1.2	0.2	29	16.73
18-17-oct	6:05:08	587	0.4	0.7	0.3	28	16.72
18-17-oct	7:05:08	587	0.5	0.8	0.2	28	16.71
18-17-oct	8:05:08	587	3.1	3.4	0.3	29	16.72
18-17-oct	9:05:08	588	4.3	5.9	1.6	29	16.71
18-17-oct	10:05:08	587	4.6	6.6	1.9	30	16.71
18-17-oct	11:05:08	588	4.1	5.3	1.1	29	16.73
18-17-oct	12:05:08	587	4.0	4.7	0.8	29	16.71
18-17-oct	13:05:08	587	6.1	8.0	1.9	30	16.71
18-17-oct	14:05:08	587	6.4	9.3	3.0	30	16.72
18-17-oct	15:05:08	587	5.2	7.7	2.5	30	16.71
18-17-oct	16:05:08	587	5.4	7.7	2.3	30	16.71
18-17-oct	17:05:08	587	3.9	5.1	1.3	29	16.72
18-17-oct	18:05:08	587	2.0	1.8	-0.2	29	16.71
18-17-oct	19:05:08	587	1.1	0.5	-0.6	29	16.72
18-17-oct	20:05:08	587	-1.5	-1.7	-0.2	28	16.71
18-17-oct	21:05:08	587	-2.2	-3.0	-0.8	28	16.71
18-17-oct	22:05:08	587	-2.0	-3.0	-1.0	28	16.71
18-17-oct	23:05:08	587	-1.6	-2.8	-1.2	28	16.71

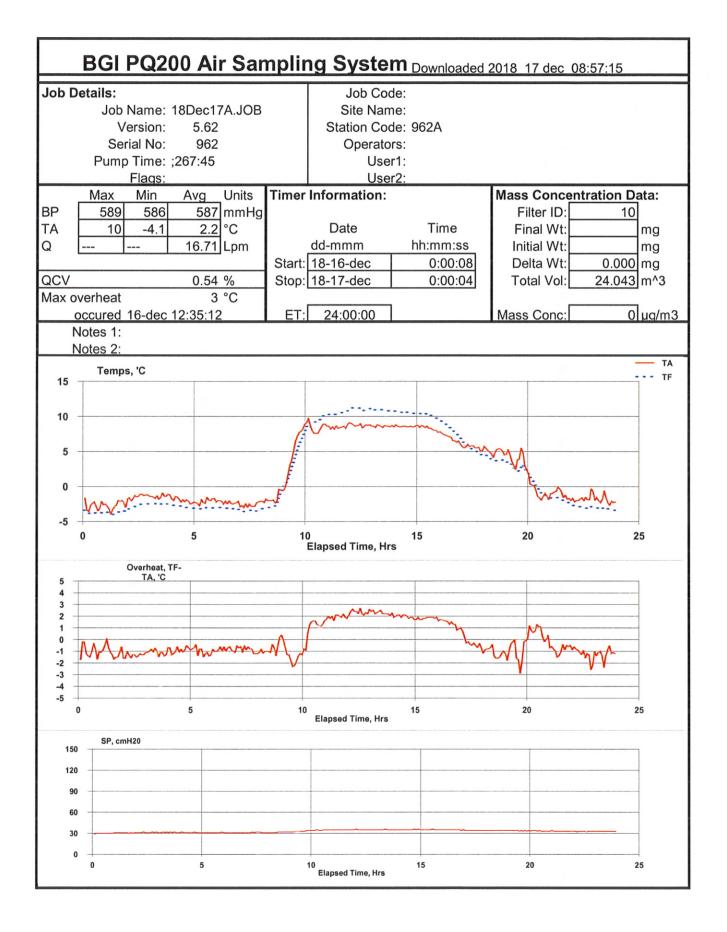


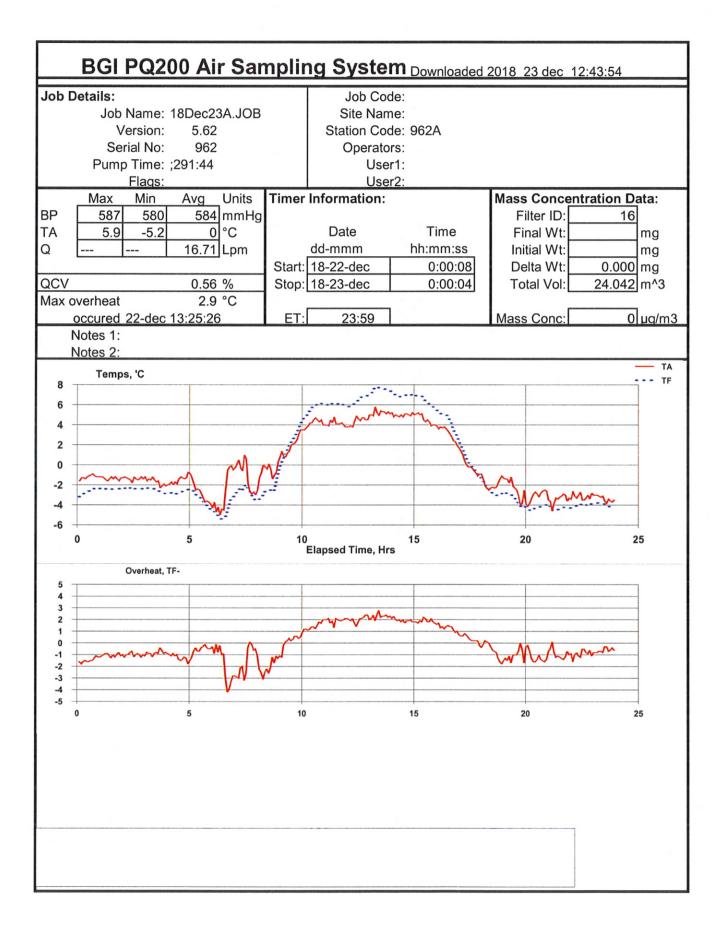

18-29-oct	0:05:08	586	4.6	3.4	-1.2	30	16.71
18-29-oct	1:05:08	586	4.8	3.6	-1.1	30	16.72
18-29-oct	2:05:08	586	4.7	3.8	-0.9	30	16.72
18-29-oct	3:05:08	585	4.4	3.4	-1.0	30	16.72
18-29-oct	4:05:08	585	4.4	3.4	-1.0	30	16.71
18-29-oct	5:05:08	585	3.7	2.8	-0.9	30	16.72
18-29-oct	6:05:08	585	3.6	2.8	-0.8	30	16.72
18-29-oct	7:05:08	585	3.9	2.8	-1.1	30	16.71
18-29-oct	8:05:08	585	9.2	6.9	-2.4	31	16.71
18-29-oct	9:05:08	586	12.6	11.8	-0.8	32	16.72
18-29-oct	10:05:08	585	13.6	14.7	1.1	33	16.71
18-29-oct	11:05:08	585	15.0	16.5	1.5	33	16.72
18-29-oct	12:05:08	584	15.8	17.6	1.8	33	16.72
18-29-oct	13:05:08	584	16.3	18.2	1.8	33	16.73
18-29-oct	14:05:08	584	16.4	18.2	1.8	33	16.72
18-29-oct	15:05:08	583	16.3	18.1	1.8	33	16.72
18-29-oct	16:05:08	583	15.1	16.5	1.5	33	16.71
18-29-oct	17:05:08	583	9.9	12.1	2.2	33	16.72
18-29-oct	18:05:08	583	6.6	6.6	0.0	32	16.71
18-29-oct	19:05:08	583	4.2	4.2	0.0	32	16.73
18-29-oct	20:05:08	583	3.6	2.8	-0.9	31	16.70
18-29-oct	21:05:08	583	3.3	2.3	-1.0	31	16.71
18-29-oct	22:05:08	583	3.4	2.3	-1.0	31	16.71
18-29-oct	23:05:08	583	3.2	2.3	-0.9	31	16.71

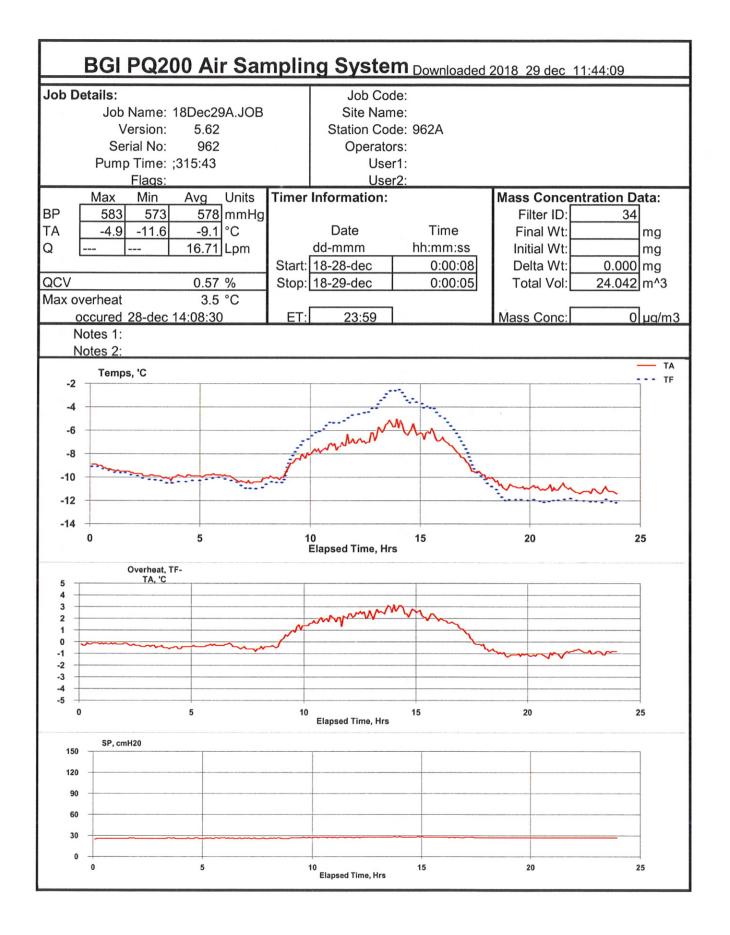

18-04-nov	0:05:08	585	-0.5	-0.8	-0.3	31	16.70
18-04-nov	1:05:08	585	-1.1	-1.9	-0.9	31	16.71
18-04-nov	2:05:08	585	-1.8	-2.5	-0.8	31	16.71
18-04-nov	3:05:08	585	-0.9	-2.7	-1.8	31	16.74
18-04-nov	4:05:08	585	-1.8	-2.3	-0.6	31	16.72
18-04-nov	5:05:08	584	-0.8	-2.7	-1.9	31	16.71
18-04-nov	6:05:08	584	0.3	-1.1	-1.4	31	16.72
18-04-nov	7:05:08	584	2.3	0.0	-2.3	31	16.72
18-04-nov	8:05:08	584	5.2	4.7	-0.4	33	16.71
18-04-nov	9:05:08	584	6.4	6.7	0.3	33	16.71
18-04-nov	10:05:08	584	8.1	8.9	0.8	34	16.71
18-04-nov	11:05:08	584	9.4	11.1	1.7	34	16.72
18-04-nov	12:05:08	583	9.9	12.5	2.7	34	16.71
18-04-nov	13:05:08	582	11.3	13.7	2.4	35	16.72
18-04-nov	14:05:08	582	11.9	14.7	2.8	35	16.72
18-04-nov	15:05:08	582	11.3	13.4	2.1	35	16.71
18-04-nov	16:05:08	581	9.9	11.5	1.5	34	16.71
18-04-nov	17:05:08	581	6.2	7.5	1.2	34	16.71
18-04-nov	18:05:08	581	3.6	4.0	0.5	34	16.72
18-04-nov	19:05:08	581	2.4	2.5	0.1	33	16.72
18-04-nov	20:05:08	581	2.0	1.4	-0.6	33	16.71
18-04-nov	21:05:08	581	1.8	0.9	-0.9	33	16.71
18-04-nov	22:05:08	581	0.9	0.4	-0.6	33	16.72
18-04-nov	23:05:08	581	-0.3	-0.8	-0.5	33	16.71


18-10-nov	0:05:08	585	-5.6	-7.1	-1.5	30	16.71
18-10-nov	1:05:08	585	-6.2	-7.2	-1.0	31	16.71
18-10-nov	2:05:08	584	-6.7	-7.7	-1.0	31	16.72
18-10-nov	3:05:08	584	-6.7	-7.9	-1.2	31	16.71
18-10-nov	4:05:08	583	-5.6	-7.2	-1.6	31	16.72
18-10-nov	5:05:08	583	-5.0	-6.4	-1.4	31	16.71
18-10-nov	6:05:08	583	-4.9	-6.1	-1.2	31	16.71
18-10-nov	7:05:08	583	-5.1	-6.0	-0.9	32	16.71
18-10-nov	8:05:08	583	-0.7	-2.2	-1.6	32	16.71
18-10-nov	9:05:08	583	5.7	5.7	0.0	34	16.72
18-10-nov	10:05:08	583	6.8	8.6	1.8	35	16.71
18-10-nov	11:05:08	583	7.7	10.0	2.3	36	16.73
18-10-nov	12:05:08	582	8.5	10.8	2.3	36	16.71
18-10-nov	13:05:08	581	9.3	11.5	2.2	36	16.70
18-10-nov	14:05:08	581	9.7	11.6	1.9	36	16.72
18-10-nov	15:05:08	581	8.7	10.6	1.9	36	16.72
18-10-nov	16:05:08	581	7.3	8.6	1.3	36	16.71
18-10-nov	17:05:08	581	2.6	4.0	1.4	35	16.72
18-10-nov	18:05:08	581	-1.8	-1.5	0.3	34	16.71
18-10-nov	19:05:08	581	-2.2	-2.9	-0.8	34	16.71
18-10-nov	20:05:08	581	-2.9	-3.8	-0.9	34	16.70
18-10-nov	21:05:08	581	-3.7	-4.6	-0.9	34	16.71
18-10-nov	22:05:08	581	-4.3	-5.1	-0.9	34	16.72
18-10-nov	23:05:08	580	-4.9	-5.8	-0.9	33	16.71


18-16-nov	0:05:08	586	-1.8	-2.8	-0.9	25	16.71
18-16-nov	1:05:08	585	-1.5	-2.6	-1.1	25	16.71
18-16-nov	2:05:08	585	-1.5	-2.6	-1.1	25	16.71
18-16-nov	3:05:08	585	-1.2	-2.1	-1.0	25	16.71
18-16-nov	4:05:08	585	-1.4	-2.4	-1.0	25	16.70
18-16-nov	5:05:08	585	-1.4	-2.3	-0.9	25	16.71
18-16-nov	6:05:08	585	-1.1	-2.1	-1.0	25	16.70
18-16-nov	7:05:08	585	-0.9	-1.8	-0.9	25	16.70
18-16-nov	8:05:08	585	3.1	1.7	-1.5	26	16.72
18-16-nov	9:05:08	585	9.5	9.0	-0.5	27	16.71
18-16-nov	10:05:08	585	11.0	12.6	1.6	28	16.72
18-16-nov	11:05:08	584	12.2	14.3	2.1	29	16.71
18-16-nov	12:05:08	584	12.2	14.8	2.5	29	16.72
18-16-nov	13:05:08	584	12.1	14.6	2.4	29	16.72
18-16-nov	14:05:08	583	12.1	14.1	2.0	29	16.71
18-16-nov	15:05:08	583	11.2	12.6	1.3	29	16.72
18-16-nov	16:05:08	583	9.8	11.0	1.3	28	16.71
18-16-nov	17:05:08	583	2.6	4.8	2.2	28	16.71
18-16-nov	18:05:08	583	0.7	0.8	0.2	27	16.72
18-16-nov	19:05:08	583	-0.5	-0.8	-0.3	26	16.72
18-16-nov	20:05:08	583	-0.9	-1.6	-0.6	26	16.71
18-16-nov	21:05:08	583	-1.2	-2.0	-0.9	26	16.71
18-16-nov	22:05:08	583	-0.8	-2.0	-1.1	26	16.71
18-16-nov	23:05:08	583	-1.2	-2.0	-0.8	26	16.71
18-18-nov	17:40:09	585	-1.6	4.9	6.5		0.00


18-22-nov	0:05:08	585	4.8	3.7	-1.1	29	16.71
18-22-nov	1:05:08	585	4.5	3.4	-1.1	29	16.72
18-22-nov	2:05:08	584	4.9	3.9	-1.0	29	16.71
18-22-nov	3:05:08	583	5.1	4.3	-0.8	29	16.71
18-22-nov	4:05:08	583	4.9	4.3	-0.6	29	16.72
18-22-nov	5:05:08	583	4.4	3.8	-0.6	30	16.71
18-22-nov	6:05:08	583	3.8	3.6	-0.2	30	16.71
18-22-nov	7:05:08	583	3.0	2.9	-0.2	30	16.72
18-22-nov	8:05:08	583	1.5	2.0	0.5	30	16.72
18-22-nov	9:05:08	583	2.7	3.6	0.8	30	16.71
18-22-nov	10:05:08	583	2.4	3.1	0.7	30	16.71
18-22-nov	11:05:08	583	0.4	1.2	0.7	30	16.71
18-22-nov	12:05:08	582	1.5	1.7	0.2	30	16.72
18-22-nov	13:05:08	582	2.7	2.7	0.0	30	16.72
18-22-nov	14:05:08	582	3.4	3.6	0.3	30	16.73
18-22-nov	15:05:08	582	3.7	4.2	0.5	30	16.72
18-22-nov	16:05:08	582	1.4	2.4	1.0	30	16.71
18-22-nov	17:05:08	582	-0.6	-0.4	0.2	30	16.71
18-22-nov	18:05:08	583	-2.6	-2.8	-0.3	30	16.72
18-22-nov	19:05:08	583	-3.0	-3.7	-0.7	30	16.72
18-22-nov	20:05:08	583	-3.6	-4.3	-0.7	30	16.71
18-22-nov	21:05:08	584	-3.2	-4.1	-0.9	30	16.71
18-22-nov	22:05:08	584	-3.3	-4.0	-0.7	30	16.71
18-22-nov	23:05:08	584	-3.6	-4.3	-0.7	30	16.73


18-04-dec	0:05:08	585	-14.1	-15.1	-1.0	28	16.71
18-04-dec	1:05:08	585	-14.4	-15.2	-0.8	28	16.71
18-04-dec	2:05:08	585	-14.6	-15.3	-0.7	28	16.73
18-04-dec	3:05:08	585	-14.8	-15.5	-0.7	28	16.71
18-04-dec	4:05:08	585	-14.5	-15.3	-0.8	28	16.73
18-04-dec	5:05:08	585	-14.8	-15.3	-0.5	28	16.71
18-04-dec	6:05:08	585	-12.7	-13.6	-1.0	29	16.71
18-04-dec	7:05:08	586	-11.0	-11.8	-0.8	29	16.71
18-04-dec	8:05:08	586	-8.6	-9.5	-0.9	29	16.72
18-04-dec	9:05:08	587	-7.8	-7.0	0.8	30	16.70
18-04-dec	10:05:08	587	-4.5	-3.3	1.2	31	16.71
18-04-dec	11:05:08	587	-5.2	-3.1	2.1	31	16.71
18-04-dec	12:05:08	587	-5.4	-3.0	2.4	31	16.71
18-04-dec	13:05:08	586	-4.9	-2.2	2.7	32	16.72
18-04-dec	14:05:08	586	-1.6	0.3	1.9	32	16.71
18-04-dec	15:05:08	585	-3.6	-0.9	2.8	32	16.71
18-04-dec	16:05:08	586	-4.7	-2.9	1.7	32	16.71
18-04-dec	17:05:08	585	-6.8	-5.4	1.4	31	16.72
18-04-dec	18:05:08	585	-7.3	-6.7	0.6	31	16.70
18-04-dec	19:05:08	585	-7.2	-7.0	0.3	31	16.72
18-04-dec	20:05:08	585	-7.2	-7.1	0.1	31	16.71
18-04-dec	21:05:08	585	-9.2	-8.5	0.7	31	16.72
18-04-dec	22:05:08	585	-10.2	-9.9	0.3	30	16.71
18-04-dec	23:05:08	585	-10.2	-10.4	-0.2	30	16.71


18-10-dec	0:05:08	589	-6.4	-7.7	-1.3	25	16.73
18-10-dec	1:05:08	588	-6.4	-7.4	-1.0	25	16.69
18-10-dec	2:05:08	588	-6.2	-7.4	-1.2	25	16.71
18-10-dec	3:05:08	588	-6.5	-7.5	-1.0	25	16.71
18-10-dec	4:05:08	588	-4.7	-6.0	-1.4	25	16.71
18-10-dec	5:05:08	587	-4.3	-5.1	-0.8	26	16.71
18-10-dec	6:05:08	588	-4.5	-5.0	-0.4	26	16.71
18-10-dec	7:05:08	588	-5.2	-5.8	-0.6	26	16.71
18-10-dec	8:05:08	588	-3.6	-4.9	-1.3	26	16.72
18-10-dec	9:05:08	588	-0.1	-0.9	-0.8	26	16.71
18-10-dec	10:05:08	588	2.6	3.7	1.1	27	16.71
18-10-dec	11:05:08	587	4.9	6.4	1.6	28	16.71
18-10-dec	12:05:08	586	7.1	9.7	2.6	29	16.71
18-10-dec	13:05:08	586	7.1	10.0	2.9	29	16.71
18-10-dec	14:05:08	586	5.1	6.9	1.8	28	16.71
18-10-dec	15:05:08	585	6.1	7.7	1.6	29	16.71
18-10-dec	16:05:08	585	3.0	4.6	1.6	28	16.72
18-10-dec	17:05:08	585	-1.0	-0.4	0.6	27	16.72
18-10-dec	18:05:08	585	-2.9	-2.9	0.0	27	16.71
18-10-dec	19:05:08	585	-3.1	-3.6	-0.5	27	16.72
18-10-dec	20:05:08	585	-3.2	-3.7	-0.5	27	16.72
18-10-dec	21:05:08	585	-1.3	-2.4	-1.1	27	16.72
18-10-dec	22:05:08	585	-1.0	-1.4	-0.4	27	16.71
18-10-dec	23:05:08	585	-1.5	-1.8	-0.3	27	16.71

18-16-dec	0:04:40	588	-2.7	-3.7	-1.0	30	16.71
18-16-dec	1:04:40	588	-2.7	-3.7	-1.0	31	16.71
18-16-dec	2:04:40	588	-1.4	-2.7	-1.3	31	16.71
18-16-dec	3:04:40	588	-1.4	-2.5	-1.1	31	16.70
18-16-dec	4:04:40	588	-2.0	-2.9	-0.9	31	16.70
18-16-dec	5:04:40	588	-2.1	-3.1	-1.0	31	16.71
18-16-dec	6:04:40	588	-2.2	-3.1	-0.9	31	16.71
18-16-dec	7:04:40	588	-2.6	-3.5	-0.8	31	16.72
18-16-dec	8:04:40	588	-1.7	-2.5	-0.8	32	16.71
18-16-dec	9:04:40	588	5.0	3.8	-1.3	33	16.71
18-16-dec	10:04:40	589	8.4	9.4	0.9	35	16.71
18-16-dec	11:04:40	588	8.5	10.4	1.9	35	16.71
18-16-dec	12:04:40	588	8.7	11.1	2.4	35	16.72
18-16-dec	13:04:40	587	8.6	10.9	2.3	35	16.72
18-16-dec	14:04:40	587	8.6	10.5	2.0	35	16.71
18-16-dec	15:04:40	587	8.3	10.1	1.8	35	16.71
18-16-dec	16:04:40	587	6.9	8.3	1.4	35	16.71
18-16-dec	17:04:40	587	5.6	5.4	-0.2	34	16.71
18-16-dec	18:04:40	587	5.0	3.9	-1.1	34	16.71
18-16-dec	19:04:40	587	3.9	2.8	-1.1	34	16.72
18-16-dec	20:04:40	587	-0.7	-0.1	0.6	33	16.72
18-16-dec	21:04:40	587	-1.1	-1.9	-0.8	33	16.72
18-16-dec	22:04:40	587	-1.6	-2.9	-1.3	33	16.71
18-16-dec	23:04:40	587	-2.0	-3.2	-1.2	33	16.71

18-22-dec	0:05:08	582	-1.2	-2.7	-1.5	29	16.72
18-22-dec	1:05:08	582	-1.4	-2.4	-1.0	29	16.70
18-22-dec	2:05:08	582	-1.4	-2.4	-1.0	29	16.70
18-22-dec	3:05:08	582	-1.7	-2.6	-0.8	29	16.70
18-22-dec	4:05:08	582	-1.5	-2.7	-1.3	29	16.71
18-22-dec	5:05:08	583	-3.0	-3.5	-0.5	29	16.72
18-22-dec	6:05:08	583	-2.5	-4.5	-2.0	29	16.72
18-22-dec	7:05:08	583	-1.2	-2.7	-1.5	29	16.72
18-22-dec	8:05:08	584	-0.4	-2.4	-2.0	29	16.71
18-22-dec	9:05:08	584	2.0	2.3	0.2	30	16.73
18-22-dec	10:05:08	585	4.2	5.6	1.5	32	16.71
18-22-dec	11:05:08	585	4.1	6.1	1.9	32	16.72
18-22-dec	12:05:08	585	4.4	6.4	2.0	32	16.72
18-22-dec	13:05:08	585	5.2	7.5	2.3	32	16.71
18-22-dec	14:05:08	585	5.0	6.9	1.9	32	16.70
18-22-dec	15:05:08	585	4.5	6.3	1.9	32	16.72
18-22-dec	16:05:08	586	3.0	4.3	1.3	31	16.71
18-22-dec	17:05:08	586	-0.2	0.1	0.3	31	16.71
18-22-dec	18:05:08	586	-1.9	-2.6	-0.7	30	16.72
18-22-dec	19:05:08	586	-2.5	-3.5	-1.0	30	16.72
18-22-dec	20:05:08	586	-3.1	-4.3	-1.2	30	16.71
18-22-dec	21:05:08	586	-3.4	-4.4	-0.9	30	16.71
18-22-dec	22:05:08	587	-3.1	-4.0	-0.9	30	16.71
18-22-dec	23:05:08	587	-3.4	-4.0	-0.6	30	16.71

18-28-dec	0:05:08	575	-9.1	-9.3	-0.2	26	16.71
18-28-dec	1:05:08	575	-9.5	-9.7	-0.2	26	16.71
18-28-dec	2:05:08	575	-9.8	-10.1	-0.3	26	16.70
18-28-dec	3:05:08	576	-10.0	-10.4	-0.4	26	16.71
18-28-dec	4:05:08	576	-9.9	-10.4	-0.5	26	16.73
18-28-dec	5:05:08	576	-9.8	-10.2	-0.3	27	16.71
18-28-dec	6:05:08	576	-10.1	-10.4	-0.3	26	16.70
18-28-dec	7:05:08	577	-10.3	-10.9	-0.6	26	16.70
18-28-dec	8:05:08	577	-9.9	-10.2	-0.3	26	16.71
18-28-dec	9:05:08	578	-8.3	-7.4	1.0	27	16.71
18-28-dec	10:05:08	578	-7.6	-5.9	1.7	28	16.71
18-28-dec	11:05:08	578	-7.1	-5.1	2.0	28	16.71
18-28-dec	12:05:08	578	-6.8	-4.4	2.4	28	16.71
18-28-dec	13:05:08	578	-5.6	-3.0	2.6	28	16.71
18-28-dec	14:05:08	579	-6.0	-3.3	2.7	28	16.72
18-28-dec	15:05:08	579	-6.5	-4.2	2.2	28	16.72
18-28-dec	16:05:08	580	-7.6	-6.0	1.6	28	16.71
18-28-dec	17:05:08	580	-9.5	-9.3	0.2	27	16.71
18-28-dec	18:05:08	581	-10.5	-11.3	-0.8	27	16.72
18-28-dec	19:05:08	581	-10.9	-12.0	-1.1	27	16.70
18-28-dec	20:05:08	581	-10.9	-12.1	-1.1	27	16.71
18-28-dec	21:05:08	582	-10.9	-11.9	-1.0	27	16.71
18-28-dec	22:05:08	582	-11.2	-12.0	-0.8	27	16.71
18-28-dec	23:05:08	582	-11.2	-12.1	-0.9	27	16.71

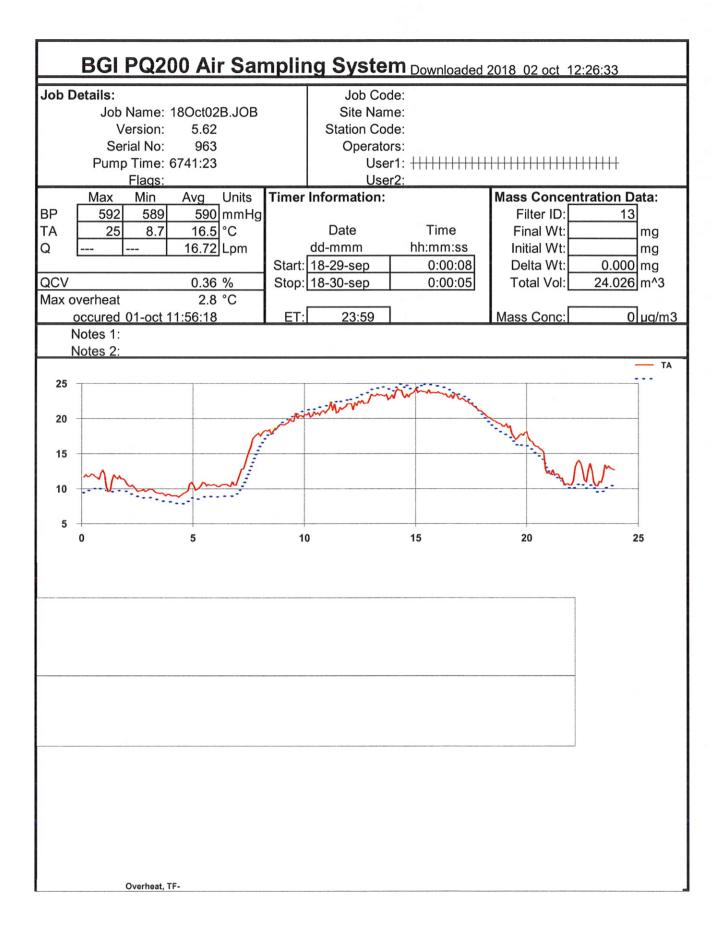
Compliance Monitor 963B

PM₁₀ Sampler Summary

October 1, 2018 - December 31, 2018

AQS ID:

Network: Alton Coal Development

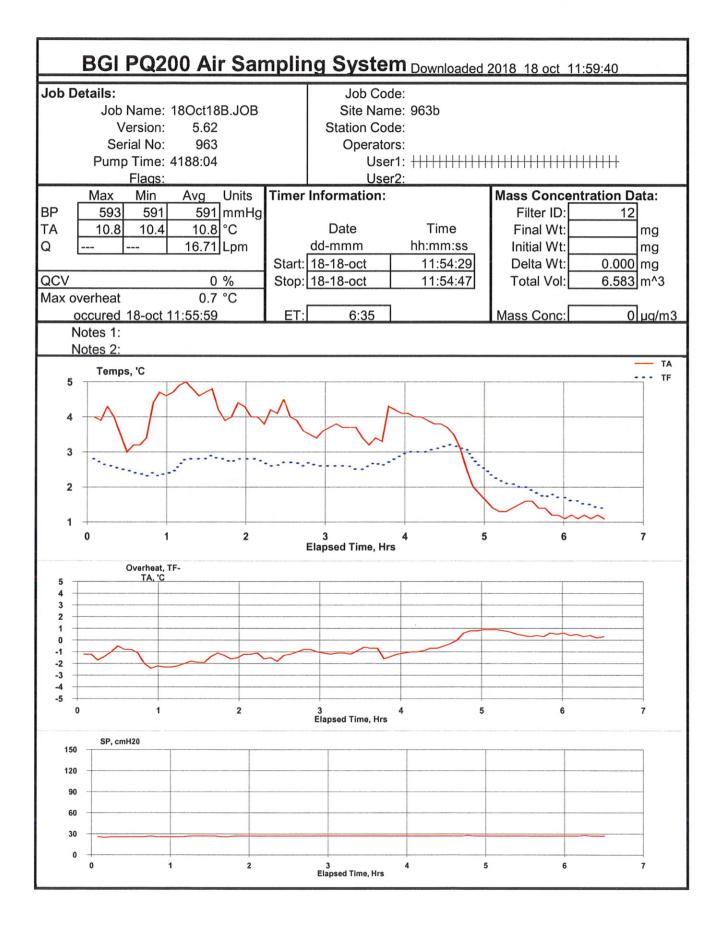

Site: Coal Hollow

Sampler ID: Coal Hollow-B

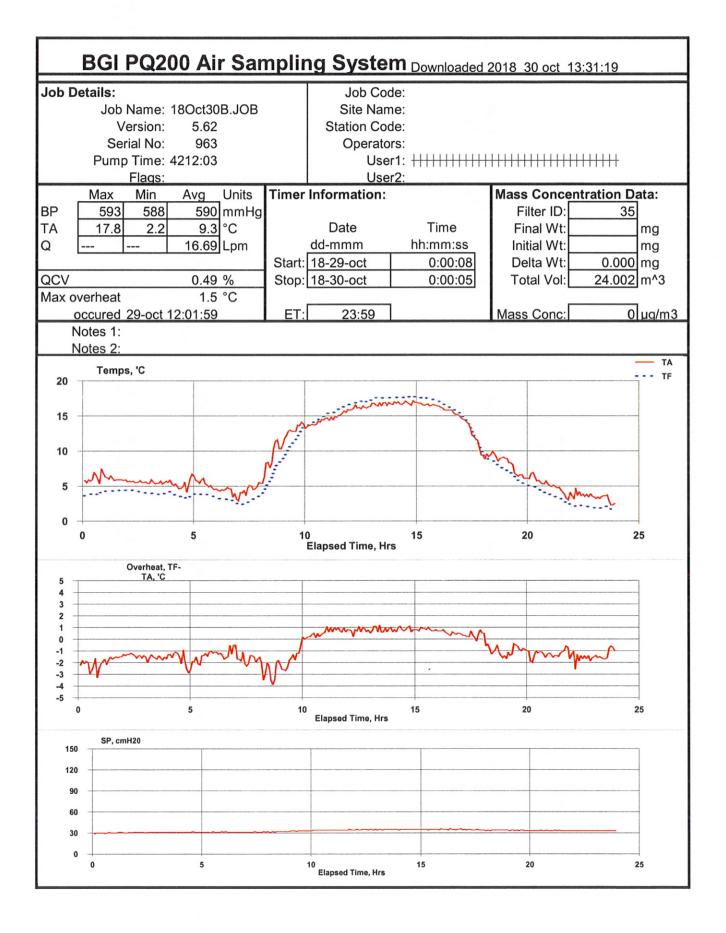
Sampler Type: BGI FRM Single

	Filter	Concentration (µg/m3)	Concentration (µg/m3)	Sample Period	Sample Volume	Std Volume	Tare	Mass Gross	Net		
Date	ID	LTP	STP	(hr:min)	(m3)	(m3)	(mg)	(mg)	(mg)	Flag	Comments
10/05/18	P2950124	Invalid - AN	Invalid - AN	0:03			393.5072	393.5123	0.0051	SP,FE	
10/11/18	P2950418	Invalid - AN	Invalid - AN	0:03			393.1551	393.1640	0.0089	SP,FE	
10/17/18	P2950423	Invalid - AN	Invalid - AN	6:35	6.6	5.4	394.1190	394.2068	0.0878	SP,CI	Did not run
10/23/18	P2951629	Invalid - AN	Invalid - AN				395.7624	395.7728	0.0104	SP,MD	No data
10/29/18	P2951634	15.7	19.2	23:59	24.0	19.7	391.5482	391.9265	0.3783		
11/04/18	P2951917	4.7	5.6	23:59	24.0	19.9	399.3784	399.4914	0.1130		
11/10/18	P2951922	6.8	8.0	23:59	24.0	20.2	395.7829	395.9464	0.1635		
11/16/18	P2951927	Invalid - AN	Invalid - AN				396.1102	397.4143	1.3041	SP,MD	Data corrupt
11/22/18	P2952181	Invalid - AN	Invalid - AN				389.2870	389.3053	0.0183	SP,MD	Did not run
11/28/18	P2952186	5.4	6.5	23:59	24.0	20.0	392.7649	392.8968	0.1319		
12/04/18	P2952455	2.1	2.4	23:59	24.0	21.1	394.0822	394.1331	0.0509		
12/10/18	P2952459	6.2	7.3	23:59	24.0	20.6	397.5245	397.6748	0.1503		
12/16/18	P2952668	1.4	1.7	24:00	24.0	20.3	389.2084	389.2441	0.0357		
12/22/18	P2952672	4.9	5.7	23:59	24.0	20.3	392.7591	392.8770	0.1179		
12/28/18	P2952677	3.5	4.1	23:59	24.0	20.8	395.9679	396.0538	0.0859		
	# Valid	Recovery	Average	St. Dev.	Max	Min					
	9	60%	6.7	5.1	19.2	1.7					

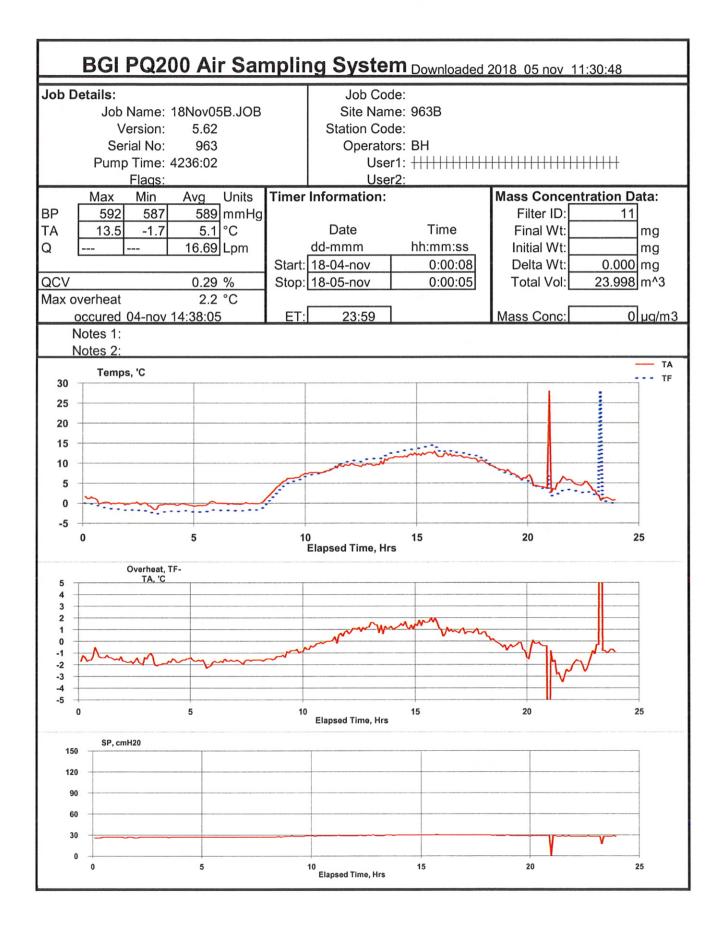
Inter-Mountain Laboratories' (IML) data validation is limited by the provided information. Data have been validated based on laboratory QC, field observations and other information available to IML. Additional data validation based on information not provided to IML may be required. According to 40 CFR 58.15 final responsibilities for data review and validation lies with each agency submitting data to AQS.

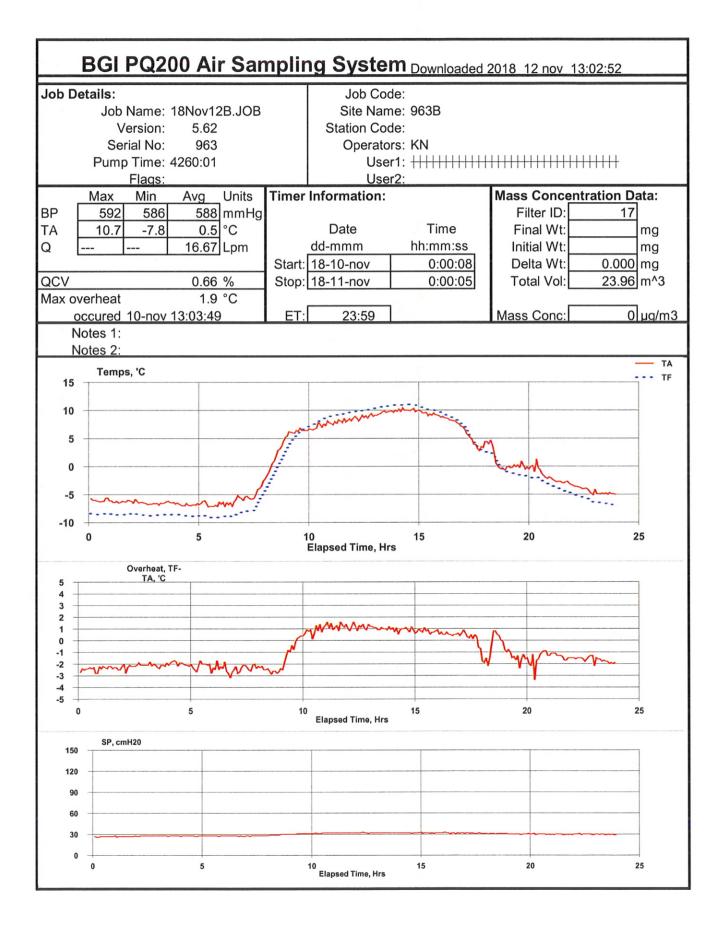

18-29-sep	0:05:08	591	11.9	9.8	-2.1	27	16.74
18-29-sep	1:05:08	591	11.0	9.6	-1.4	27	16.72
18-29-sep	2:05:08	591	10.0	8.9	-1.1	27	16.73
18-29-sep	3:05:08	591	9.4	8.3	-1.0	27	16.71
18-29-sep	4:05:08	591	9.6	8.1	-1.5	27	16.69
18-29-sep	5:05:08	591	10.4	8.8	-1.7	27	16.75
18-29-sep	6:05:08	591	10.6	8.9	-1.7	27	16.73
18-29-sep	7:05:08	592	15.4	12.6	-2.8	28	16.72
18-29-sep	8:05:08	592	18.5	18.0	-0.5	29	16.71
18-29-sep	9:05:08	592	20.0	20.4	0.4	29	16.71
18-29-sep	10:05:08	592	20.7	21.5	0.7	30	16.72
18-29-sep	11:05:08	592	21.6	22.4	0.8	30	16.72
18-29-sep	12:05:08	592	22.3	23.3	1.0	30	16.71
18-29-sep	13:05:08	591	23.2	24.3	1.1	30	16.74
18-29-sep	14:05:08	591	23.7	24.5	0.8	30	16.73
18-29-sep	15:05:08	590	23.8	24.7	0.9	30	16.72
18-29-sep	16:05:08	590	23.2	24.0	0.8	30	16.73
18-29-sep	17:05:08	590	21.9	22.1	0.2	30	16.71
18-29-sep	18:05:08	590	19.7	18.9	-0.8	30	16.74
18-29-sep	19:05:08	590	17.9	16.7	-1.3	30	16.73
18-29-sep	20:05:08	591	15.2	14.6	-0.7	30	16.73
18-29-sep	21:05:08	591	11.4	11.1	-0.3	29	16.66
18-29-sep	22:05:08	591	12.5	10.3	-2.2	29	16.71
18-29-sep	23:05:08	591	12.0	9.9	-2.1	29	16.74

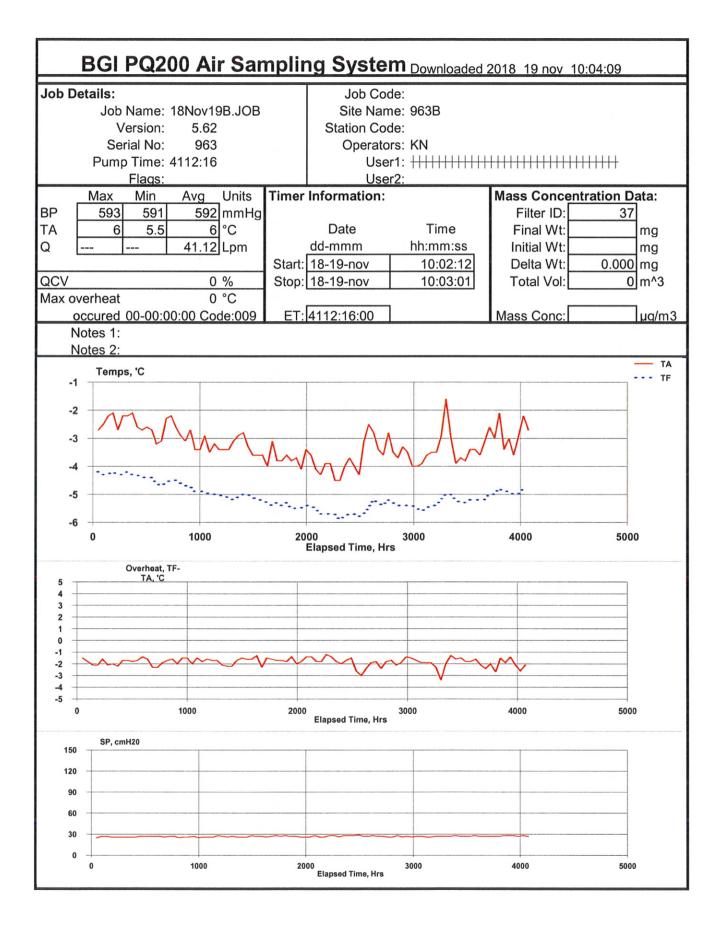
BGI PQ200 Air Sar	nplin	g Syste	m Downloaded	2018 08 oct 14:	52:51
Job Details: Job Name: 18Oct08B.JOB Version: 5.62 Serial No: 963 Pump Time: 6741:26		Job Coo Site Nam Station Coo Operato Use	ne: de:	+++++++++++++++++++++++++++++++++++++++	+++++
Flags: Q T Max Min Avg Units		Use nformation:		Mass Concent	
BP 589 587 587 mmHg TA 7.3 6.6 7.2 °C Q 0 Lpm	Start:	Date dd-mmm 18-05-oct	Time hh:mm:ss 0:00:08	Filter ID: Final Wt: Initial Wt: Delta Wt:	22 mg mg 0.000 mg
QCV 0 % Max overheat 2.2 °C	Stop:	18-06-oct	0:00:05	Total Vol:	0.009 m^3
occured 05-oct 12:12:55	ET:	0:03		Mass Conc:	0 µg/m3
Notes 1:		0.00			- 1 <u></u>
Notes 2:					


yy-dd-mmm	hh:mm:ss	mmHg	°C	°C	°C	cmH2O	aLpm

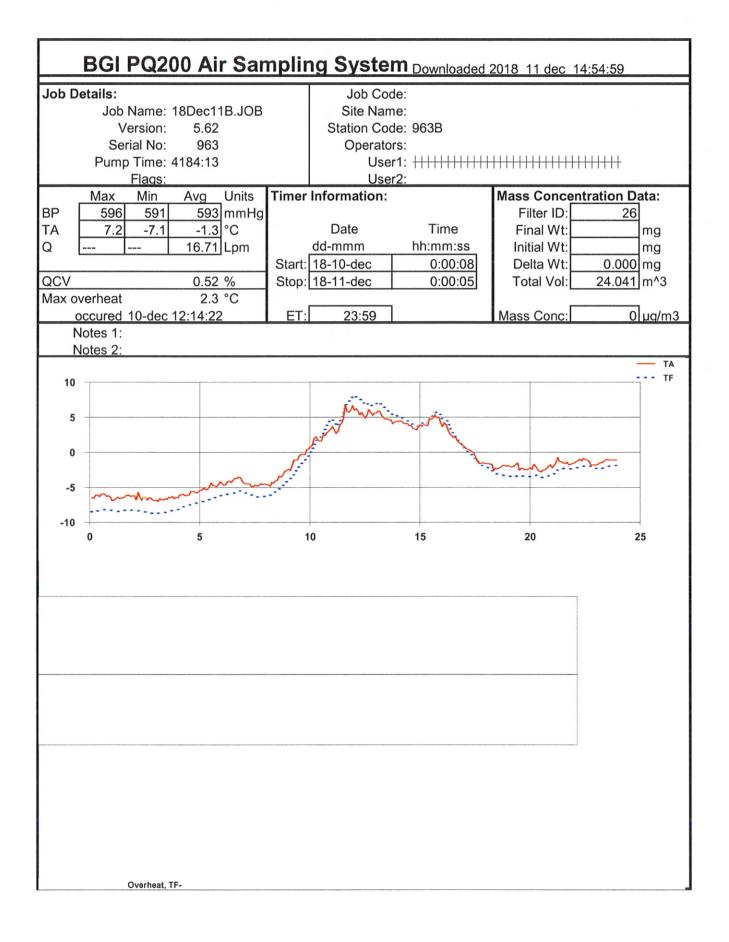
BGI PQ200 Air San	nplir	ng Syste	m Downloaded	2018 13 oct 11:2	27:57
Job Details: Job Name: 18Oct13B.JOB		Job Coo Site Nan	de: ne: 963B		
Version: 5.62		Station Co			
Serial No: 963		Operato			
Pump Time: 4181:29			er1: ++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++
Flags: Q T		Use			
Max Min Avg Units	Timer	Information:		Mass Concent	ation Data:
BP 587 585 585 mmHg				Filter ID:	5
TA 7.6 6.7 7.5 °C		Date	Time	Final Wt:	mg
Q 0 Lpm		dd-mmm	hh:mm:ss	Initial Wt:	mg
	Start:	18-11-oct	0:00:08	Delta Wt:	0.000 mg
QCV 0 %	Stop:	18-12-oct	0:00:05	Total Vol:	0.01 m^3
Max overheat 2.3 °C					
occured 11-oct 16:46:16	ET:	0:03		Mass Conc:	0 µg/m3
Notes 1:					
Notes 2:					

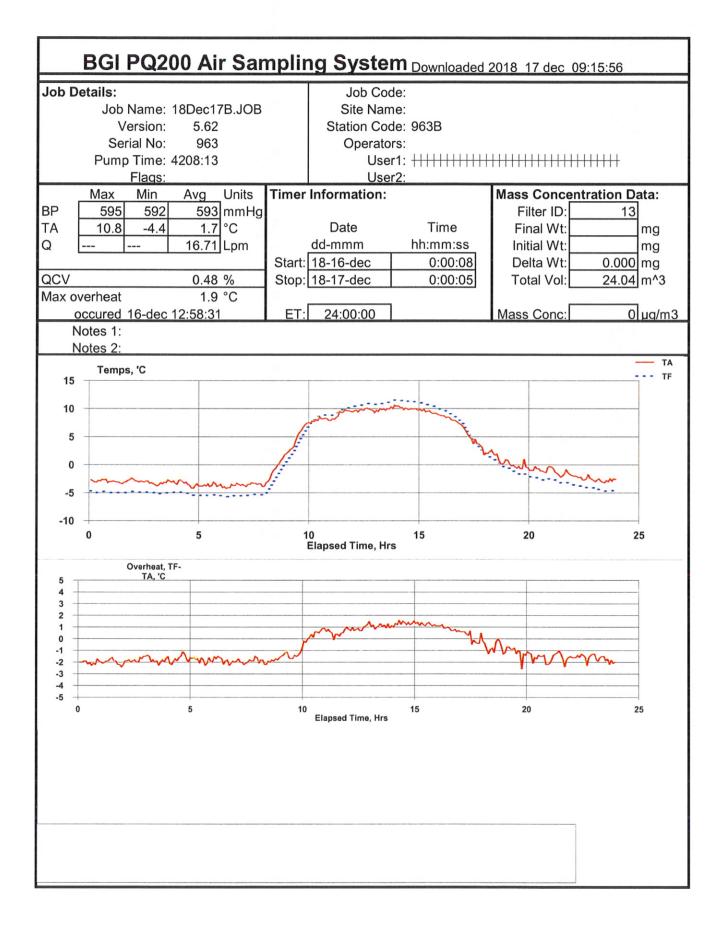

yy-dd-mmm	hh:mm:ss	mmHg	°C	°C	°C	cmH2O	aLpm

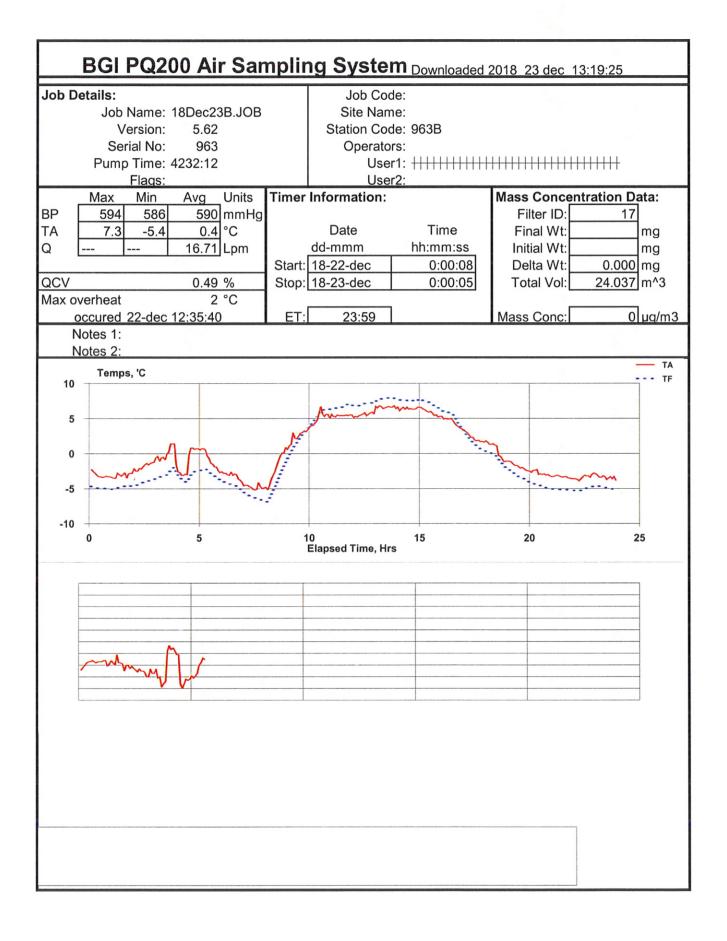

18-17-oct	0:06:08	593	3.9	2.5	-1.4	26	16.70
18-17-oct	1:06:08	593	4.5	2.8	-1.8	27	16.72
18-17-oct	2:06:08	593	3.9	2.7	-1.2	27	16.73
18-17-oct	3:06:08	593	3.7	2.6	-1.1	27	16.72
18-17-oct	4:06:08	593	3.4	3.0	-0.3	27	16.71
18-17-oct	5:06:08	593	1.4	2.0	0.6	27	16.69
18-17-oct	6:06:08	594	1.1	1.5	0.4	27	16.70

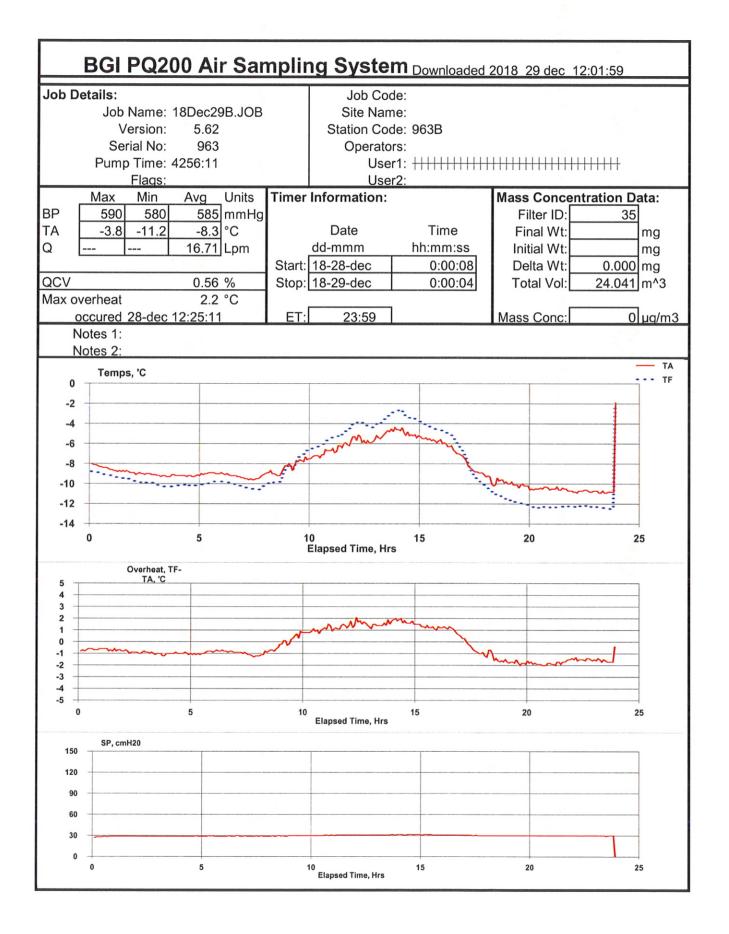

18-29-oct	0:05:08	592	6.2	3.9	-2.3	30	16.68
18-29-oct	1:05:08	592	6.0	4.3	-1.7	31	16.66
18-29-oct	2:05:08	592	5.6	4.2	-1.4	31	16.66
18-29-oct	3:05:08	591	5.5	4.0	-1.6	31	16.66
18-29-oct	4:05:08	591	5.3	3.6	-1.7	31	16.69
18-29-oct	5:05:08	592	5.3	3.7	-1.5	31	16.72
18-29-oct	6:05:08	591	4.1	3.0	-1.1	31	16.68
18-29-oct	7:05:08	591	4.7	2.9	-1.7	31	16.72
18-29-oct	8:05:08	592	9.1	6.5	-2.6	32	16.71
18-29-oct	9:05:08	592	13.1	11.4	-1.6	33	16.70
18-29-oct	10:05:08	592	14.1	14.4	0.3	34	16.70
18-29-oct	11:05:08	591	15.2	16.0	0.8	34	16.69
18-29-oct	12:05:08	591	16.3	17.0	0.7	35	16.70
18-29-oct	13:05:08	590	16.7	17.5	0.8	35	16.74
18-29-oct	14:05:08	590	16.8	17.7	0.8	35	16.73
18-29-oct	15:05:08	590	16.6	17.4	0.8	35	16.76
18-29-oct	16:05:08	590	15.6	16.1	0.5	35	16.68
18-29-oct	17:05:08	590	12.2	12.6	0.3	34	16.67
18-29-oct	18:05:08	590	9.2	8.3	-0.9	34	16.71
18-29-oct	19:05:08	589	7.1	6.1	-1.0	33	16.69
18-29-oct	20:05:08	589	5.8	4.5	-1.3	33	16.67
18-29-oct	21:05:08	589	4.2	3.0	-1.2	33	16.69
18-29-oct	22:05:08	589	3.7	2.1	-1.6	33	16.72
18-29-oct	23:05:08	589	3.1	1.8	-1.3	33	16.71


18-04-nov	0:05:08	592	0.8	-0.5	-1.3	27	16.71
18-04-nov	1:05:08	592	-0.1	-1.6	-1.5	27	16.68
18-04-nov	2:05:08	592	-0.4	-2.0	-1.6	27	16.68
18-04-nov	3:05:08	591	-0.4	-2.3	-1.8	27	16.69
18-04-nov	4:05:08	591	-0.5	-2.1	-1.6	27	16.69
18-04-nov	5:05:08	591	0.0	-1.9	-1.9	27	16.69
18-04-nov	6:05:08	590	-0.1	-1.8	-1.7	27	16.69
18-04-nov	7:05:08	590	0.9	-0.7	-1.6	27	16.70
18-04-nov	8:05:08	590	5.5	4.4	-1.2	28	16.70
18-04-nov	9:05:08	590	7.4	6.8	-0.6	29	16.71
18-04-nov	10:05:08	590	8.7	8.8	0.1	29	16.72
18-04-nov	11:05:08	590	9.6	10.5	1.0	29	16.72
18-04-nov	12:05:08	589	10.3	11.5	1.2	30	16.69
18-04-nov	13:05:08	589	11.8	13.1	1.3	30	16.69
18-04-nov	14:05:08	588	12.3	13.9	1.6	30	16.71
18-04-nov	15:05:08	588	11.9	12.8	0.9	30	16.71
18-04-nov	16:05:08	588	10.8	11.5	0.7	30	16.70
18-04-nov	17:05:08	587	8.5	8.3	-0.2	29	16.71
18-04-nov	18:05:08	587	6.6	5.9	-0.6	29	16.69
18-04-nov	19:10:08	587	4.1	3.9	-0.2	29	16.71
Ò,òü7	a02.7	Ĩ	28.0	6.7	-21.3		0.00
18-04-nov	21:00:08	587	5.1	2.7	-2.4	28	16.69
18-04-nov	22:00:08	587	4.3	2.6	-1.6	28	16.68
18-04-nov	23:00:08	587	1.9	1.6	-0.3	28	16.67
ÂþšËnÿ20:08	587	514	1.0	3.7	2.7	27	14.64


18-10-nov	0:05:08	592	-6.0	-8.5	-2.5	27	16.66
18-10-nov	1:05:08	591	-6.3	-8.6	-2.3	27	16.61
18-10-nov	2:05:08	591	-6.5	-8.7	-2.2	28	16.70
18-10-nov	3:05:08	590	-6.5	-8.6	-2.1	28	16.69
18-10-nov	4:05:08	590	-6.8	-8.8	-2.0	28	16.68
18-10-nov	5:05:08	590	-6.8	-9.0	-2.2	28	16.69
18-10-nov	6:05:08	590	-6.3	-8.7	-2.4	28	16.64
18-10-nov	7:05:08	589	-4.6	-6.9	-2.3	28	16.65
18-10-nov	8:05:08	590	2.1	-0.4	-2.5	30	16.69
18-10-nov	9:05:08	589	6.3	5.7	-0.6	31	16.70
18-10-nov	10:05:08	589	7.3	8.1	0.9	32	16.70
18-10-nov	11:05:08	589	8.1	9.3	1.2	32	16.70
18-10-nov	12:05:08	588	8.8	10.0	1.2	32	16.72
18-10-nov	13:05:08	588	9.7	10.7	1.0	32	16.68
18-10-nov	14:05:08	587	10.0	10.9	0.9	32	16.68
18-10-nov	15:05:08	587	9.3	10.1	0.8	32	16.67
18-10-nov	16:05:08	587	8.0	8.6	0.5	32	16.68
18-10-nov	17:05:08	587	4.4	4.5	0.1	31	16.74
18-10-nov	18:05:08	587	1.5	1.0	-0.5	31	16.66
18-10-nov	19:05:08	587	-0.1	-1.5	-1.4	30	16.66
18-10-nov	20:05:08	587	-1.0	-2.5	-1.6	30	16.58
18-10-nov	21:05:08	587	-2.9	-4.2	-1.4	30	16.62
18-10-nov	22:05:08	587	-4.1	-5.7	-1.6	30	16.70
18-10-nov	23:05:08	587	-4.9	-6.7	-1.8	29	16.71


18-16-nov	0:08:08	592	-2.4	-4.3	-1.9	26	16.76
18-16-nov	1:08:08	592	-2.9	-4.7	-1.8	26	16.55
18-16-nov	2:08:08	592	-3.4	-5.1	-1.8	27	16.66
18-16-nov	3:08:08	591	-3.8	-5.5	-1.7	27	16.59
18-16-nov	4:08:08	591	-3.7	-5.6	-1.9	28	16.95
18-16-nov	5:08:08	591	-3.5	-5.4	-1.9	27	16.53
18-16-nov	6:08:08	591	-3.1	-5.1	-2.0	27	16.67
18-16-nov	7:08:08	591	-3.0	-4.9	-1.9	28	16.73


18-04-dec	0:05:08	592	-13.6	-15.1	-1.5	26	16.71
18-04-dec	1:05:08	592	-13.8	-15.5	-1.7	26	16.71
18-04-dec	2:05:08	592	-14.1	-15.6	-1.5	26	16.70
18-04-dec	3:05:08	592	-13.1	-14.9	-1.8	26	16.71
18-04-dec	4:05:08	592	-14.2	-15.5	-1.3	26	16.71
18-04-dec	5:05:08	592	-13.9	-15.1	-1.2	27	16.71
18-04-dec	6:05:08	592	-12.0	-13.5	-1.5	27	16.71
18-04-dec	7:05:08	593	-10.6	-11.8	-1.2	27	16.71
18-04-dec	8:05:08	593	-9.3	-10.1	-0.8	28	16.71
18-04-dec	9:05:08	594	-6.8	-7.3	-0.5	28	16.73
18-04-dec	10:05:08	594	-5.3	-4.5	0.8	29	16.71
18-04-dec	11:05:08	594	-4.8	-3.4	1.4	29	16.72
18-04-dec	12:05:08	593	-4.4	-3.3	1.1	29	16.70
18-04-dec	13:05:08	593	-4.2	-3.0	1.2	30	16.72
18-04-dec	14:05:08	592	-2.7	-1.2	1.5	30	16.72
18-04-dec	15:05:08	592	-3.0	-1.8	1.2	30	16.70
18-04-dec	16:05:08	592	-4.6	-3.6	1.0	30	16.71
18-04-dec	17:05:08	592	-5.8	-5.6	0.2	29	16.70
18-04-dec	18:05:08	592	-6.4	-6.6	-0.2	29	16.71
18-04-dec	19:05:08	592	-6.3	-6.8	-0.5	29	16.71
18-04-dec	20:05:08	592	-6.6	-7.0	-0.5	29	16.72
18-04-dec	21:05:08	592	-8.0	-8.3	-0.2	29	16.71
18-04-dec	22:05:08	592	-9.0	-9.4	-0.4	29	16.71
18-04-dec	23:05:08	591	-9.9	-10.5	-0.6	28	16.70


18-10-dec	0:05:08	595	-6.3	-8.3	-2.0	28	16.71
18-10-dec	1:05:08	595	-6.4	-8.4	-2.0	20	16.71
18-10-dec	2:05:08		-6.6	-8.5	-2.0	29	16.71
		595					
18-10-dec	3:05:08	594	-6.6	-8.5	-1.9	29	16.70
18-10-dec	4:05:08	594	-5.8	-7.6	-1.7	29	16.70
18-10-dec	5:05:08	594	-4.8	-6.6	-1.8	29	16.72
18-10-dec	6:05:08	594	-4.1	-5.8	-1.7	30	16.71
18-10-dec	7:05:08	594	-4.6	-6.2	-1.6	30	16.70
18-10-dec	8:05:08	594	-3.7	-5.3	-1.7	30	16.72
18-10-dec	9:05:08	594	-0.6	-2.0	-1.4	31	16.71
18-10-dec	10:05:08	594	2.3	2.6	0.3	32	16.71
18-10-dec	11:05:08	594	4.9	5.8	0.9	32	16.71
18-10-dec	12:05:08	593	5.6	7.1	1.5	33	16.71
18-10-dec	13:05:08	592	4.8	6.0	1.2	33	16.71
18-10-dec	14:05:08	592	3.9	4.3	0.5	33	16.71
18-10-dec	15:05:08	592	4.4	4.9	0.5	33	16.71
18-10-dec	16:05:08	591	2.2	2.7	0.5	32	16.72
18-10-dec	17:05:08	591	-0.7	-1.0	-0.3	32	16.73
18-10-dec	18:05:08	592	-2.0	-3.0	-0.9	31	16.71
18-10-dec	19:05:08	592	-2.2	-3.5	-1.3	31	16.72
18-10-dec	20:05:08	592	-2.3	-3.4	-1.2	31	16.71
18-10-dec	21:05:08	592	-1.5	-2.5	-1.0	32	16.72
18-10-dec	22:05:08	592	-1.4	-2.1	-0.8	32	16.71
18-10-dec	23:05:08	592	-1.2	-2.1	-0.9	32	16.72

18-16-dec	0:04:32	594	-2.9	-4.9	-2.0	29	16.72
18-16-dec	1:04:32	594	-3.0	-5.0	-2.0	29	16.72
18-16-dec	2:04:32	594	-3.1	-4.9	-1.8	29	16.71
18-16-dec	3:04:32	594	-3.2	-5.1	-1.8	29	16.70
18-16-dec	4:04:32	594	-3.5	-5.2	-1.7	29	16.71
18-16-dec	5:04:32	594	-3.6	-5.5	-1.9	29	16.71
18-16-dec	6:04:32	594	-3.8	-5.6	-1.9	29	16.71
18-16-dec	7:04:32	594	-3.5	-5.4	-1.9	29	16.71
18-16-dec	8:04:32	595	-0.5	-2.4	-1.9	30	16.71
18-16-dec	9:04:32	595	5.1	3.7	-1.4	31	16.71
18-16-dec	10:04:32	595	8.0	8.4	0.4	32	16.71
18-16-dec	11:04:32	595	9.1	9.6	0.5	33	16.73
18-16-dec	12:04:32	594	9.7	10.7	0.9	33	16.72
18-16-dec	13:04:32	594	10.0	11.1	1.1	33	16.71
18-16-dec	14:04:32	593	10.0	11.3	1.3	33	16.72
18-16-dec	15:04:32	593	9.4	10.6	1.2	33	16.72
18-16-dec	16:04:32	593	8.0	8.9	0.9	33	16.71
18-16-dec	17:04:32	594	4.3	4.4	0.2	32	16.72
18-16-dec	18:04:32	594	1.4	0.7	-0.7	31	16.72
18-16-dec	19:04:32	593	-0.2	-1.3	-1.2	31	16.71
18-16-dec	20:04:32	593	-0.9	-2.5	-1.6	31	16.71
18-16-dec	21:04:32	593	-1.4	-3.0	-1.6	31	16.72
18-16-dec	22:04:32	593	-2.3	-3.9	-1.6	31	16.71
18-16-dec	23:04:32	593	-2.8	-4.6	-1.8	31	16.71

18-22-dec	0:05:08	588	-3.1	-4.9	-1.8	27	16.71
18-22-dec	1:05:08	588	-3.0	-4.8	-1.8	27	16.72
18-22-dec	2:05:08	588	-1.7	-4.1	-2.4	27	16.70
18-22-dec	3:05:08	589	-0.3	-2.9	-2.6	28	16.72
18-22-dec	4:05:08	589	-0.9	-3.2	-2.3	28	16.71
18-22-dec	5:05:08	589	-1.1	-2.9	-1.8	28	16.71
18-22-dec	6:05:08	589	-3.3	-4.6	-1.3	28	16.71
18-22-dec	7:05:08	589	-4.8	-6.3	-1.5	28	16.70
18-22-dec	8:05:08	590	-1.7	-4.0	-2.3	28	16.70
18-22-dec	9:05:08	591	2.6	1.9	-0.7	29	16.71
18-22-dec	10:05:08	592	5.2	5.6	0.4	30	16.70
18-22-dec	11:05:08	591	5.4	6.7	1.3	30	16.72
18-22-dec	12:05:08	591	5.7	7.0	1.4	30	16.71
18-22-dec	13:05:08	591	6.6	7.8	1.2	30	16.70
18-22-dec	14:05:08	591	6.4	7.6	1.2	30	16.72
18-22-dec	15:05:08	592	5.8	7.0	1.3	30	16.71
18-22-dec	16:05:08	592	4.3	5.0	0.7	30	16.71
18-22-dec	17:05:08	592	2.1	1.4	-0.8	29	16.71
18-22-dec	18:05:08	592	0.3	-0.8	-1.1	29	16.71
18-22-dec	19:05:08	593	-1.9	-3.3	-1.4	29	16.72
18-22-dec	20:05:08	593	-2.9	-4.7	-1.8	28	16.72
18-22-dec	21:05:08	593	-3.4	-5.2	-1.8	28	16.72
18-22-dec	22:05:08	593	-3.3	-5.0	-1.7	28	16.71
18-22-dec	23:05:08	593	-3.4	-4.9	-1.5	28	16.72

18-28-dec	0:05:08	582	-8.3	-9.0	-0.7	28	16.71
18-28-dec	1:05:08	582	-8.8	-9.5	-0.7	29	16.70
18-28-dec	2:05:08	582	-9.0	-9.9	-0.9	29	16.71
18-28-dec	3:05:08	582	-9.2	-10.2	-1.0	29	16.72
18-28-dec	4:05:08	583	-9.2	-10.2	-1.0	29	16.72
18-28-dec	5:05:08	583	-9.2	-9.9	-1.0	29	16.71
18-28-dec	6:05:08		-9.0	-10.0	-0.8	29	16.72
		583					
18-28-dec	7:05:08	583	-9.4	-10.5	-1.1	29	16.72
18-28-dec	8:05:08	584	-8.8	-9.6	-0.8	29	16.71
18-28-dec	9:05:08	584	-7.9	-7.6	0.3	30	16.71
18-28-dec	10:05:08	585	-7.1	-6.1	0.9	30	16.71
18-28-dec	11:05:08	585	-6.2	-4.9	1.2	31	16.71
18-28-dec	12:05:08	585	-5.7	-4.1	1.6	31	16.71
18-28-dec	13:05:08	585	-4.9	-3.4	1.5	31	16.71
18-28-dec	14:05:08	586	-5.0	-3.2	1.8	32	16.69
18-28-dec	15:05:08	586	-5.6	-4.3	1.3	31	16.71
18-28-dec	16:05:08	587	-6.5	-5.4	1.1	31	16.71
18-28-dec	17:05:08	587	-8.5	-8.9	-0.4	30	16.71
18-28-dec	18:05:08	588	-9.7	-11.0	-1.3	30	16.71
18-28-dec	19:05:08	588	-10.1	-11.9	-1.8	30	16.71
18-28-dec	20:05:08	588	-10.5	-12.3	-1.9	30	16.71
18-28-dec	21:05:08	589	-10.5	-12.3	-1.7	30	16.71
18-28-dec	22:05:08	589	-10.7	-12.2	-1.5	30	16.70
18-28-dec	23:05:08	589	-10.8	-12.4	-1.6	30	16.70
18-29-dec	12:00:34	590	-1.9	-2.3	-0.4		0.00

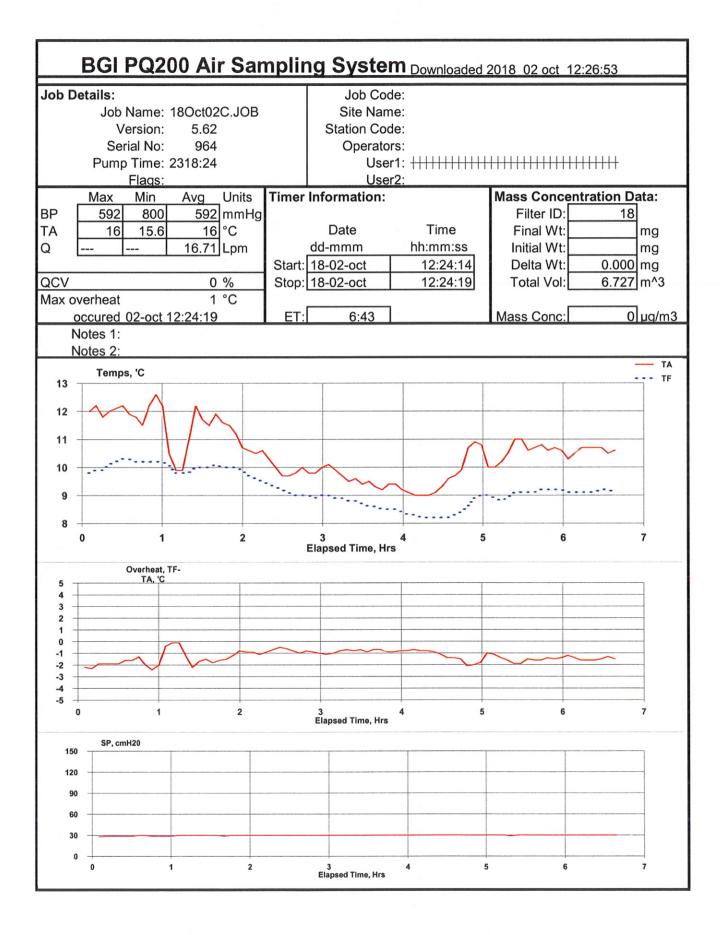
Collocated Monitor 964C

PM₁₀ Sampler Summary

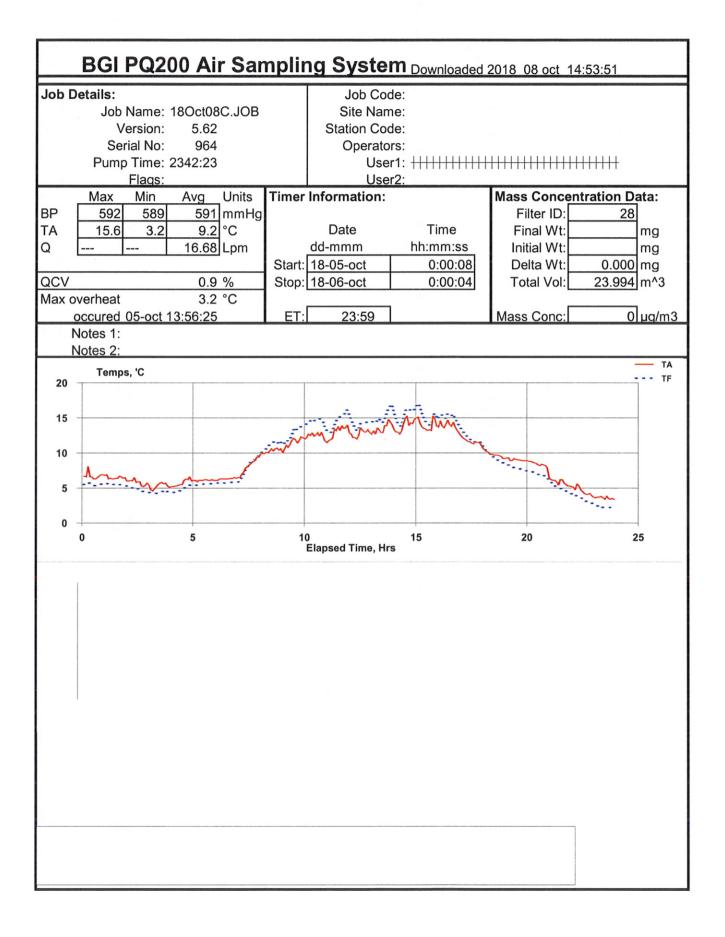
October 1, 2018 - December 31, 2018

AQS ID:

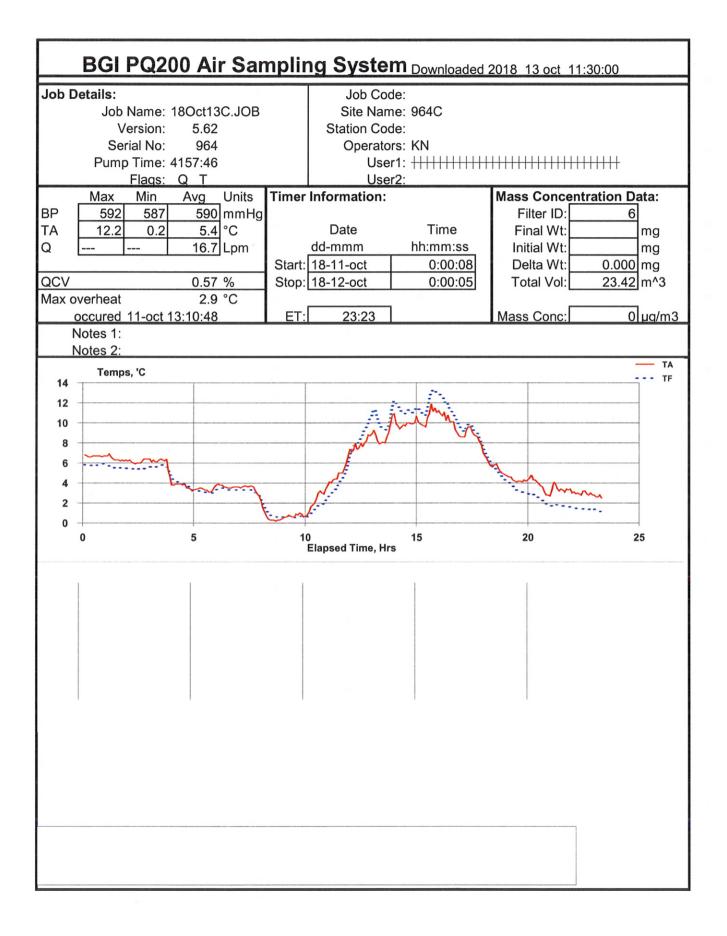
Network: Alton Coal Development

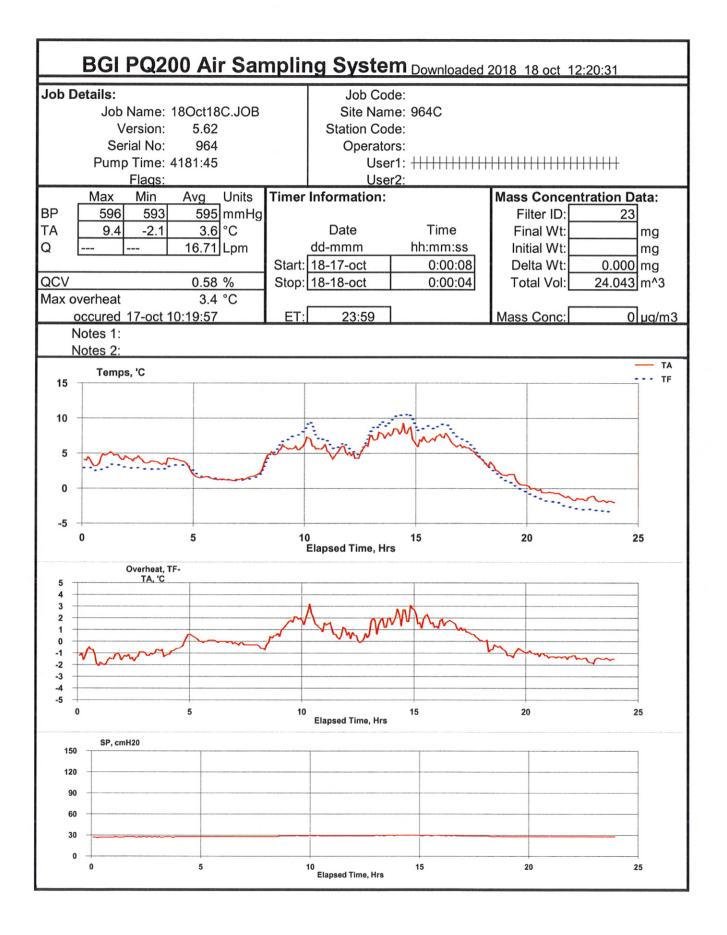

Site: Coal Hollow

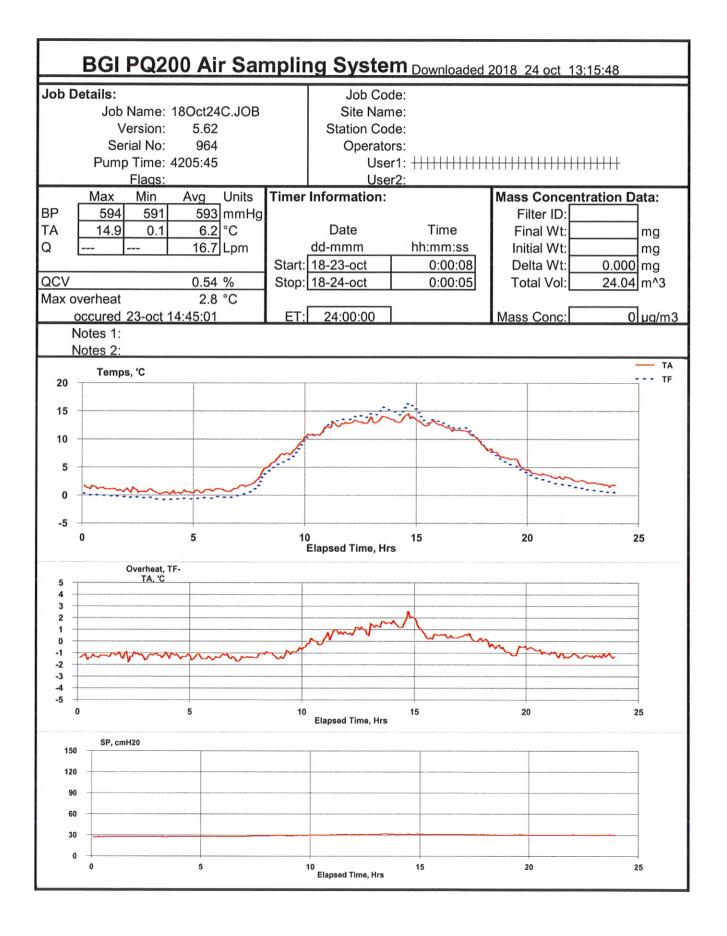
Sampler ID: Coal Hollow-C


Sampler Type: BGI FRM Single

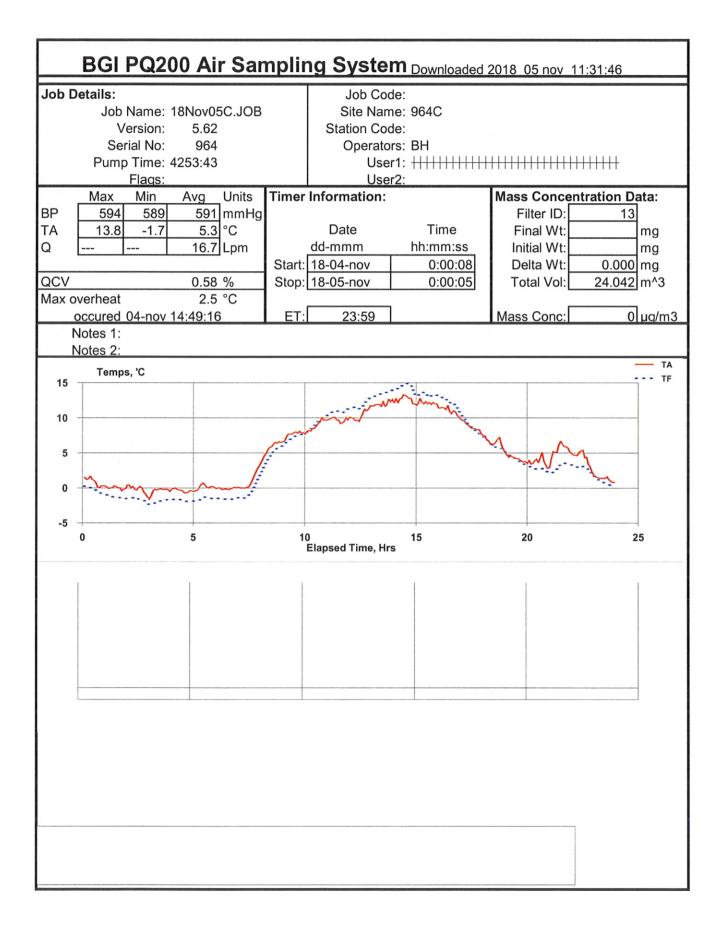
	Filter	Concentration (µg/m3)	Concentration (µg/m3)	Sample Period	Sample Volume	Std Volume	e Tare	Mass Gross	Net		
Date	ID	LTP	STP	(hr:min)	(m3)	(m3)	(mg)	(mg)	(mg)	Flag	Comments
10/05/18	P2950125	3.2	3.9	23:59	24.0	19.7	389.4343	389.5127	0.0784		
10/11/18	P2950419	3.7	4.5	23:23	23.4	19.5	401.2496	401.3379	0.0883	FE	
10/17/18	P2950424	4.9	5.8	23:59	24.0	20.3	388.4740	388.5927	0.1187		
10/23/18	P2951630	4.4	5.2	24:00	24.0	20.0	392.2922	392.3981	0.1059		
10/29/18	P2951635	20.0	24.4	23:59	24.0	19.8	394.9893	395.4721	0.4828		
11/04/18	P2951918	4.8	5.7	23:59	24.0	20.0	392.7097	392.8256	0.1159		
11/10/18	P2951923	7.1	8.4	23:41	23.7	20.1	398.2643	398.4337	0.1694	FE	
11/16/18	P2951928	Invalid - AN	Invalid - AN	22:08	22.2	18.6	399.8122	401.6370	1.8248	SP,FE	
11/22/18	P2952182	Invalid - AN	Invalid - AN	6:10	6.2	5.4	394.8228	395.3407	0.5179	SP	
11/28/18	P2952187	Invalid - AN	Invalid - AN	7:31	7.5	6.4	384.5929	384.6595	0.0666	SP,FE	
12/04/18	P2952456	Invalid - AN	Invalid - AN	0:39	0.7	0.6	389.9278	389.9481	0.0203	SP,FE	
12/10/18	P2952460	Invalid - AN	Invalid - AN	0:05	0.1	0.1		397.1599		SP,FE,CV	
12/16/18	P2952667	1.5	1.8	24:00	24.0	20.4		393.1583			
12/22/18	P2952673	5.3	6.2	23:59	24.0	20.4		391.8017			
12/28/18	P2952678	Invalid - AN	Invalid - AN	10:27	10.5	9.1	391.6550	391.7080	0.0530	SP,FE	
	# Valid	Recovery	Average	St. Dev.	Max	Min					
	9	60%	7.3	6.6	24.4	1.8					

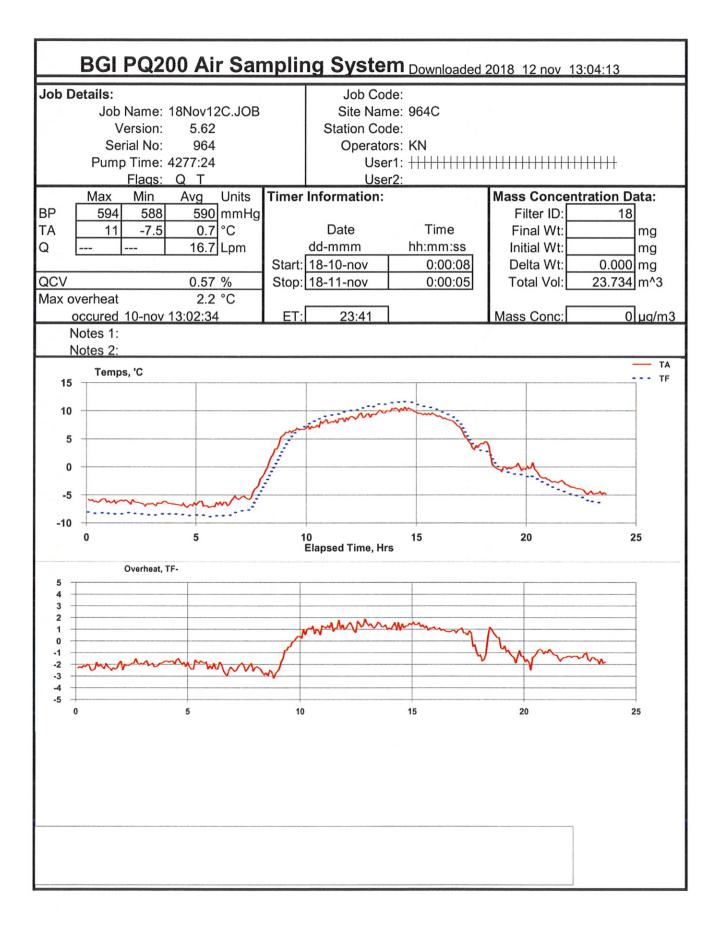

Inter-Mountain Laboratories' (IML) data validation is limited by the provided information. Data have been validated based on laboratory QC, field observations and other information available to IML. Additional data validation based on information not provided to IML may be required. According to 40 CFR 58.15 final responsibilities for data review and validation lies with each agency submitting data to AQS.


18-29-sep	0:05:08	593	12.0	10.1	-1.9	29	16.71
18-29-sep	1:05:08	593	11.1	10.0	-1.2	30	16.71
18-29-sep	2:05:08	593	10.1	9.2	-0.8	30	16.72
18-29-sep	3:05:08	593	9.5	8.7	-0.8	30	16.71
18-29-sep	4:05:08	593	9.7	8.4	-1.3	30	16.71
18-29-sep	5:05:08	593	10.6	9.1	-1.5	30	16.71
18-29-sep	6:05:08	593	10.6	9.1	-1.5	30	16.71

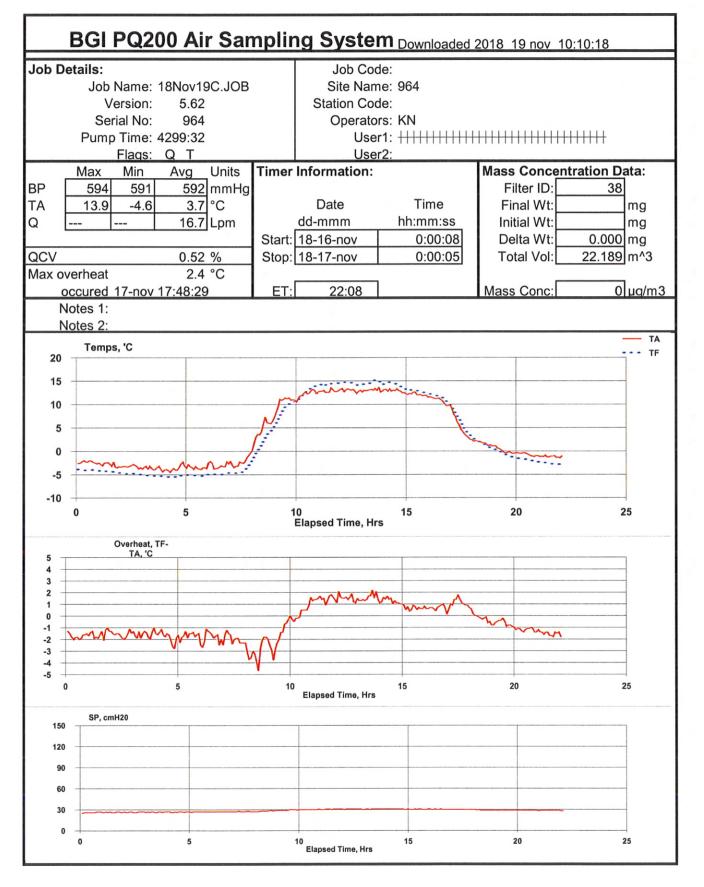

18-05-oct	0:06:08	591	6.8	5.5	-1.3	25	16.60
18-05-oct	1:06:08	591	6.4	5.5	-1.0	26	16.67
18-05-oct	2:06:08	591	5.8	4.8	-1.0	26	16.69
18-05-oct	3:06:08	591	5.3	4.4	-0.9	26	16.71
18-05-oct	4:06:08	591	5.8	4.9	-0.9	26	16.52
18-05-oct	5:06:08	592	6.1	5.5	-0.6	27	16.60
18-05-oct	6:06:08	592	6.3	5.7	-0.6	27	16.70
18-05-oct	7:06:08	592	8.3	8.2	-0.1	27	16.67
18-05-oct	8:06:08	592	10.3	11.1	0.8	27	16.70
18-05-oct	9:06:08	592	11.6	12.8	1.2	27	16.64
18-05-oct	10:06:08	592	12.4	14.4	2.0	28	16.63
18-05-oct	11:06:08	592	13.1	14.6	1.5	28	16.71
18-05-oct	12:06:08	592	12.8	14.1	1.3	28	16.71
18-05-oct	13:06:08	592	13.6	15.2	1.7	28	16.70
18-05-oct	14:06:08	591	14.0	15.4	1.3	28	16.72
18-05-oct	15:06:08	591	13.9	15.1	1.2	28	16.72
18-05-oct	16:06:08	591	13.8	15.0	1.2	28	16.72
18-05-oct	17:06:08	591	11.5	11.9	0.4	28	16.71
18-05-oct	18:06:08	591	9.7	9.4	-0.3	28	16.71
18-05-oct	19:06:08	591	9.0	7.9	-1.2	27	16.70
18-05-oct	20:06:08	591	8.3	6.9	-1.3	27	16.71
18-05-oct	21:06:08	591	5.8	4.9	-0.8	27	16.72
18-05-oct	22:06:08	591	4.5	3.4	-1.1	27	16.71
18-05-oct	23:06:08	591	3.6	2.3	-1.3	27	16.70

18-11-oct	0:05:08	589	6.7	5.8	-0.9	29	16.69
		589	6.4	5.5	-0.9	30	16.71
18-11-oct	1:05:08						
18-11-oct	2:05:08	589	6.2	5.4	-0.7	30	16.71
18-11-oct	3:05:08	589	5.8	5.5	-0.3	30	16.71
18-11-oct	4:05:08	589	3.7	3.9	0.2	30	16.70
18-11-oct	5:05:08	589	3.4	3.1	-0.3	30	16.72
18-11-oct	6:05:08	589	3.6	3.4	-0.3	30	16.72
18-11-oct	7:05:08	590	3.3	3.1	-0.2	30	16.71
18-11-oct	8:05:08	591	0.5	0.9	0.4	30	16.72
18-11-oct	9:05:08	591	0.7	0.6	-0.1	30	16.73
18-11-oct	10:05:08	591	2.4	1.5	-0.9	30	16.72
18-11-oct	11:05:08	591	5.1	4.2	-1.0	30	16.71
18-11-oct	12:05:08	590	8.0	8.8	0.8	31	16.71
18-11-oct	13:05:08	590	9.0	10.3	1.4	31	16.71
18-11-oct	14:05:08	590	9.9	11.3	1.4	31	16.72
18-11-oct	15:05:08	590	10.6	12.0	1.4	32	16.71
18-11-oct	16:05:08	590	10.0	11.3	1.3	31	16.72
18-11-oct	17:05:08	590	8.7	9.1	0.4	31	16.71
18-11-oct	18:05:08	590	5.6	5.6	-0.1	31	16.71
18-11-oct	19:05:08	591	4.3	3.4	-0.9	31	16.71
18-11-oct	20:05:08	591	3.7	2.4	-1.3	31	16.71
18-11-oct	21:05:08	592	3.4	1.7	-1.7	30	16.71
18-11-oct	22:05:08	592	3.0	1.4	-1.6	31	16.71
18-11-oct	23:05:08	592	2.6	1.2	-1.4	31	16.71

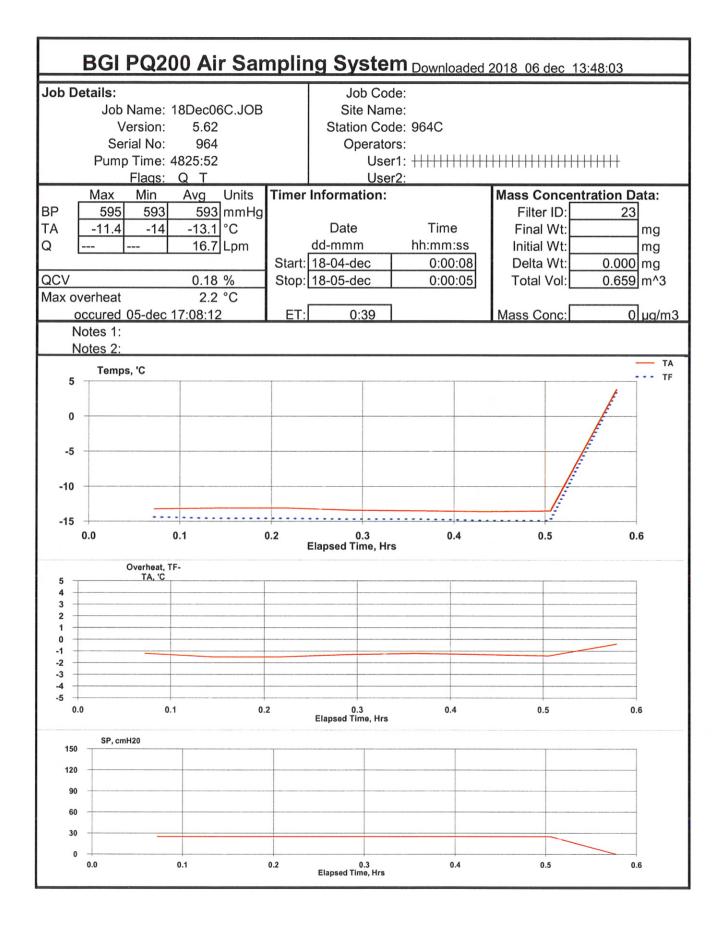

18-17-oct	0:05:08	595	4.0	2.8	-1.2	27	16.71
18-17-oct	1:05:08	595	4.7	3.2	-1.5	28	16.72
18-17-oct	2:05:08	595	4.0	2.8	-1.2	28	16.71
18-17-oct	3:05:08	595	3.8	2.8	-1.0	28	16.71
18-17-oct	4:05:08	595	3.5	3.1	-0.3	28	16.72
18-17-oct	5:05:08	595	1.5	1.7	0.1	28	16.71
18-17-oct	6:05:08	596	1.2	1.2	0.0	28	16.71
18-17-oct	7:05:08	596	1.7	1.4	-0.3	28	16.71
18-17-oct	8:05:08	596	4.8	4.8	0.0	29	16.71
18-17-oct	9:05:08	596	5.8	7.5	1.7	29	16.71
18-17-oct	10:05:08	596	6.1	7.9	1.8	29	16.72
18-17-oct	11:05:08	596	5.1	6.0	0.9	29	16.72
18-17-oct	12:05:08	596	5.5	5.9	0.4	29	16.72
18-17-oct	13:05:08	595	7.6	9.2	1.6	30	16.71
18-17-oct	14:05:08	595	7.9	10.2	2.3	30	16.71
18-17-oct	15:05:08	595	6.9	8.6	1.7	30	16.70
18-17-oct	16:05:08	595	6.8	8.3	1.5	29	16.71
18-17-oct	17:05:08	595	5.2	5.8	0.6	29	16.71
18-17-oct	18:05:08	596	2.8	2.4	-0.4	28	16.70
18-17-oct	19:05:08	596	1.2	0.2	-1.0	28	16.72
18-17-oct	20:05:08	596	-0.3	-1.4	-1.1	28	16.72
18-17-oct	21:05:08	596	-1.0	-2.3	-1.3	28	16.71
18-17-oct	22:05:08	596	-1.5	-3.0	-1.5	28	16.72
18-17-oct	23:05:08	596	-1.8	-3.3	-1.5	28	16.70

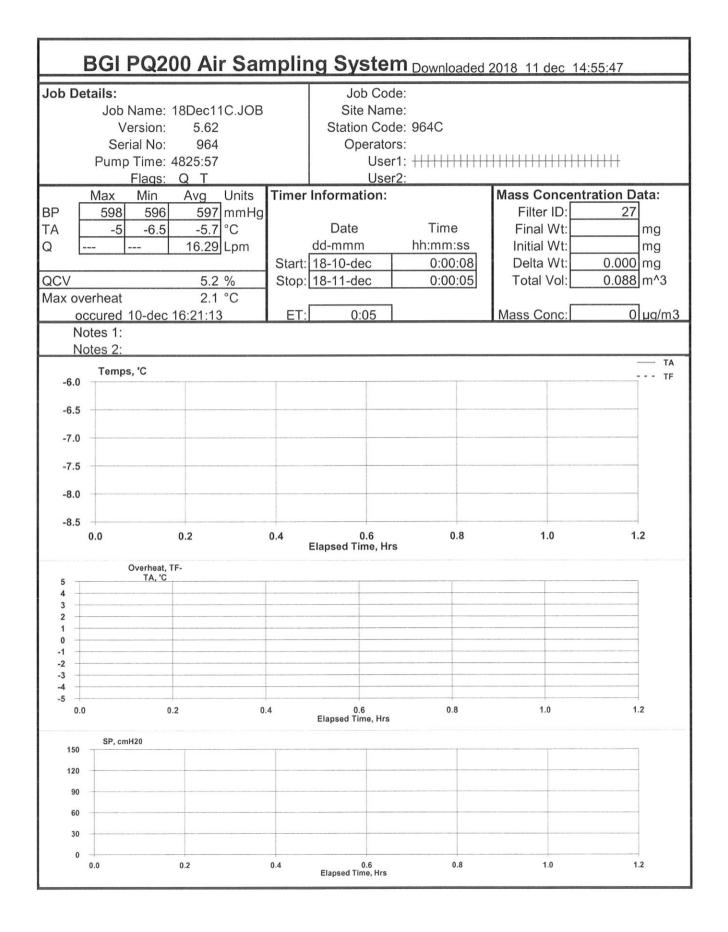

18-23-oct	0:04:53	593	1.4	0.1	-1.3	28	16.71
18-23-oct	1:04:53	593	1.0	-0.2	-1.2	28	16.71
18-23-oct	2:04:53	593	0.8	-0.4	-1.2	28	16.71
18-23-oct	3:04:53	593	0.5	-0.7	-1.2	28	16.71
18-23-oct	4:04:53	593	0.5	-0.7	-1.2	28	16.71
18-23-oct	5:04:53	593	0.8	-0.6	-1.4	28	16.71
18-23-oct	6:04:53	593	1.0	-0.3	-1.3	28	16.71
18-23-oct	7:04:53	593	2.1	0.7	-1.4	29	16.71
18-23-oct	8:04:53	594	5.8	4.7	-1.1	29	16.71
18-23-oct	9:04:53	594	8.4	7.4	-1.0	30	16.72
18-23-oct	10:04:53	594	11.1	11.0	-0.1	30	16.71
18-23-oct	11:04:53	594	12.6	13.3	0.7	31	16.71
18-23-oct	12:04:53	593	13.2	14.0	0.9	31	16.71
18-23-oct	13:04:53	593	13.5	15.0	1.5	31	16.71
18-23-oct	14:04:53	593	13.7	15.4	1.7	31	16.72
18-23-oct	15:04:53	592	12.9	13.6	0.8	31	16.71
18-23-oct	16:04:53	592	12.0	12.4	0.4	31	16.72
18-23-oct	17:04:53	592	10.7	11.0	0.3	31	16.71
18-23-oct	18:04:53	592	7.7	7.4	-0.3	30	16.71
18-23-oct	19:04:53	593	5.9	5.1	-0.8	30	16.71
18-23-oct	20:04:53	593	3.9	3.1	-0.8	30	16.71
18-23-oct	21:04:53	593	3.2	2.0	-1.2	30	16.71
18-23-oct	22:04:53	593	2.5	1.2	-1.2	30	16.71
18-23-oct	23:04:53	593	1.9	0.7	-1.2	30	16.70

BGI PQ200 Air Sampling System Downloaded 2018 30 oct 13:27:17									
Job Details:		Job Co	de:						
Job Name: 18Oct30C.JOB		Site Nan	ne:						
Version: 5.62		Station Cod	de:						
Serial No: 964		Operato	rs:						
Pump Time: 4229:44		Use	r1: ++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	++++++				
Flags:		Use	r2:						
	imer	Information:		Mass Concen					
BP <u>595 590 592</u> mmHg				Filter ID:	42				
TA <u>17.9</u> 2.3 9.4 °C		Date	Time	Final Wt:	mg				
Q 16.7 Lpm		dd-mmm	hh:mm:ss	Initial Wt:	mg				
		18-29-oct	0:00:08	Delta Wt:	0.000 mg				
	Stop:	18-30-oct	0:00:05	Total Vol:	24.041 m^3				
Max overheat 1.7 °C			1		-				
occured 29-oct 12:29:51	ET:	23:59		Mass Conc:	0 µq/m3				
Notes 1:									
Notes 2:									
1									
Overheat, TF-									
L Overneat, IF*									

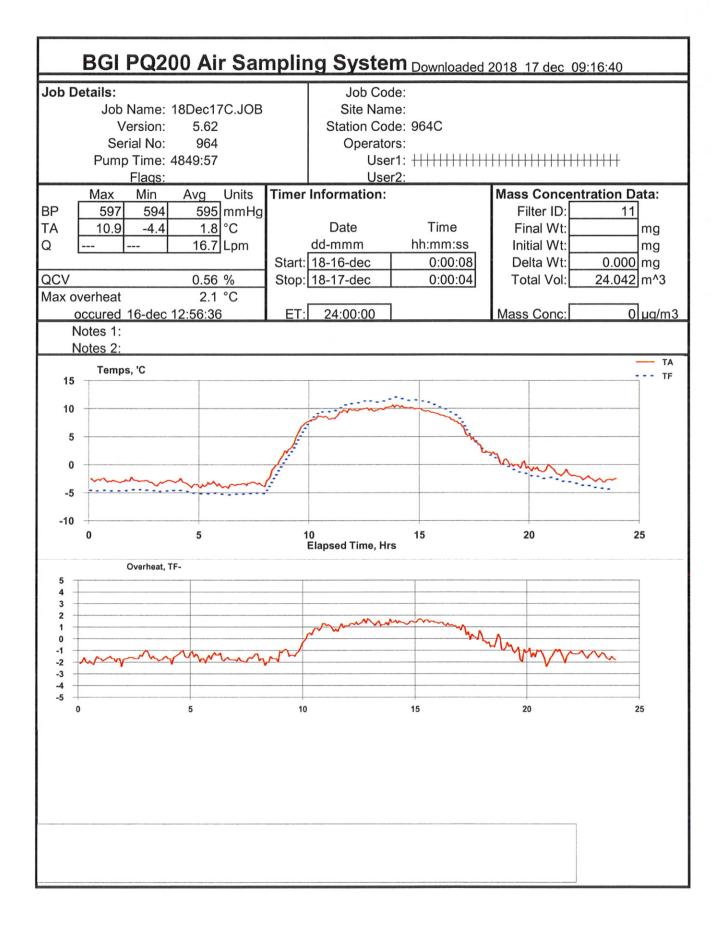

18-29-oct	0:05:08	594	6.1	4.2	-2.0	30	16.72
18-29-oct	1:05:08	594	6.1	4.6	-1.5	30	16.70
18-29-oct	2:05:08	594	5.8	4.5	-1.3	31	16.71
18-29-oct	3:05:08	593	5.6	4.3	-1.3	31	16.71
18-29-oct	4:05:08	593	5.4	3.9	-1.5	31	16.72
18-29-oct	5:05:08	593	5.5	4.0	-1.5	31	16.73
18-29-oct	6:05:08	593	4.3	3.3	-1.0	31	16.71
18-29-oct	7:05:08	593	4.8	3.2	-1.7	31	16.72
18-29-oct	8:05:08	594	9.3	6.8	-2.6	31	16.70
18-29-oct	9:05:08	594	13.3	11.6	-1.6	32	16.71
18-29-oct	10:05:08	594	14.2	14.7	0.4	33	16.72
18-29-oct	11:05:08	593	15.5	16.3	0.8	33	16.72
18-29-oct	12:05:08	592	16.4	17.4	1.0	34	16.71
18-29-oct	13:05:08	592	16.9	18.0	1.1	34	16.71
18-29-oct	14:05:08	592	17.1	18.3	1.1	34	16.71
18-29-oct	15:05:08	591	16.8	18.0	1.2	34	16.71
18-29-oct	16:05:08	591	15.7	16.7	1.0	34	16.71
18-29-oct	17:05:08	591	12.2	13.0	0.8	33	16.71
18-29-oct	18:05:08	592	9.4	8.7	-0.8	33	16.71
18-29-oct	19:05:08	591	7.1	6.5	-0.7	33	16.71
18-29-oct	20:05:08	591	5.9	4.8	-1.1	32	16.71
18-29-oct	21:05:08	591	4.2	3.3	-0.8	32	16.71
18-29-oct	22:05:08	591	3.8	2.4	-1.4	32	16.70
18-29-oct	23:05:08	591	3.2	2.1	-1.1	32	16.71

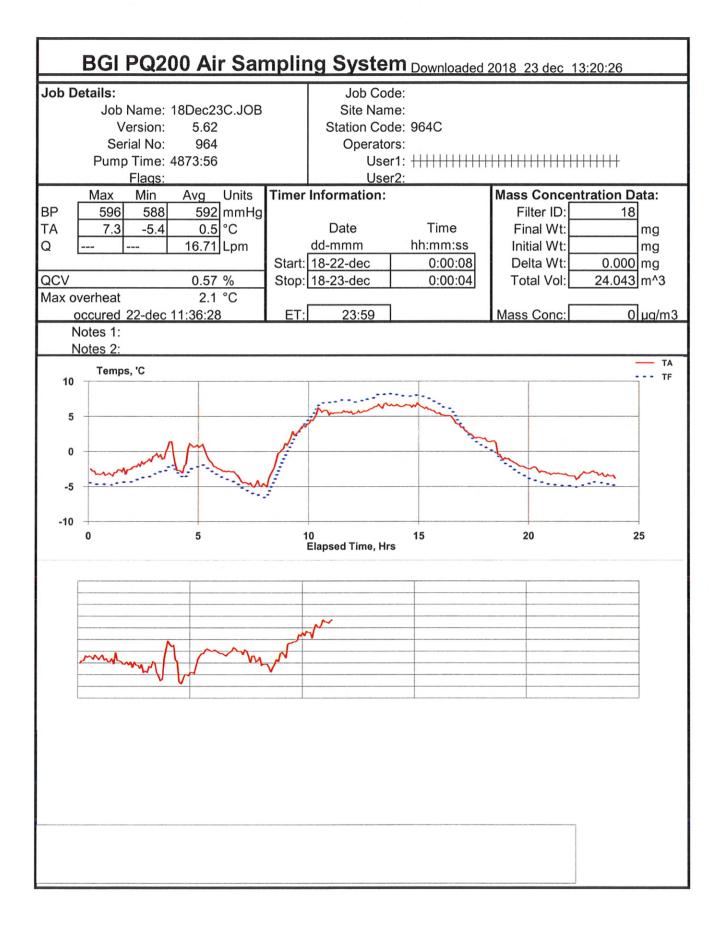
18-04-nov	0:05:08	594	0.8	-0.3	-1.1	27	16.71
18-04-nov	1:05:08	594	0.0	-1.3	-1.4	28	16.71
18-04-nov	2:05:08	594	-0.3	-1.7	-1.4	28	16.70
18-04-nov	3:05:08	593	-0.3	-2.0	-1.7	28	16.71
18-04-nov	4:05:08	593	-0.4	-1.8	-1.4	28	16.71
18-04-nov	5:05:08	593	0.1	-1.6	-1.7	28	16.71
18-04-nov	6:05:08	593	-0.1	-1.6	-1.5	28	16.70
18-04-nov	7:05:08	593	1.1	-0.4	-1.5	28	16.72
18-04-nov	8:05:08	593	5.8	4.7	-1.2	29	16.71
18-04-nov	9:05:08	592	7.7	7.2	-0.5	30	16.71
18-04-nov	10:05:08	592	9.0	9.2	0.2	30	16.70
18-04-nov	11:05:08	592	9.8	10.9	1.1	30	16.71
18-04-nov	12:05:08	591	10.5	11.9	1.3	31	16.71
18-04-nov	13:05:08	591	12.1	13.5	1.5	31	16.72
18-04-nov	14:05:08	590	12.6	14.3	1.7	31	16.71
18-04-nov	15:05:08	590	12.1	13.3	1.2	31	16.72
18-04-nov	16:05:08	590	10.9	12.1	1.2	30	16.71
18-04-nov	17:05:08	589	8.6	8.7	0.1	30	16.72
18-04-nov	18:05:08	589	6.4	6.1	-0.3	30	16.71
18-04-nov	19:05:08	589	4.1	4.0	-0.1	30	16.72
18-04-nov	20:05:08	589	3.7	2.7	-1.0	29	16.71
18-04-nov	21:05:08	589	5.5	3.0	-2.5	29	16.70
18-04-nov	22:05:08	589	4.1	2.8	-1.3	29	16.72
18-04-nov	23:05:08	589	1.3	0.7	-0.5	29	16.71

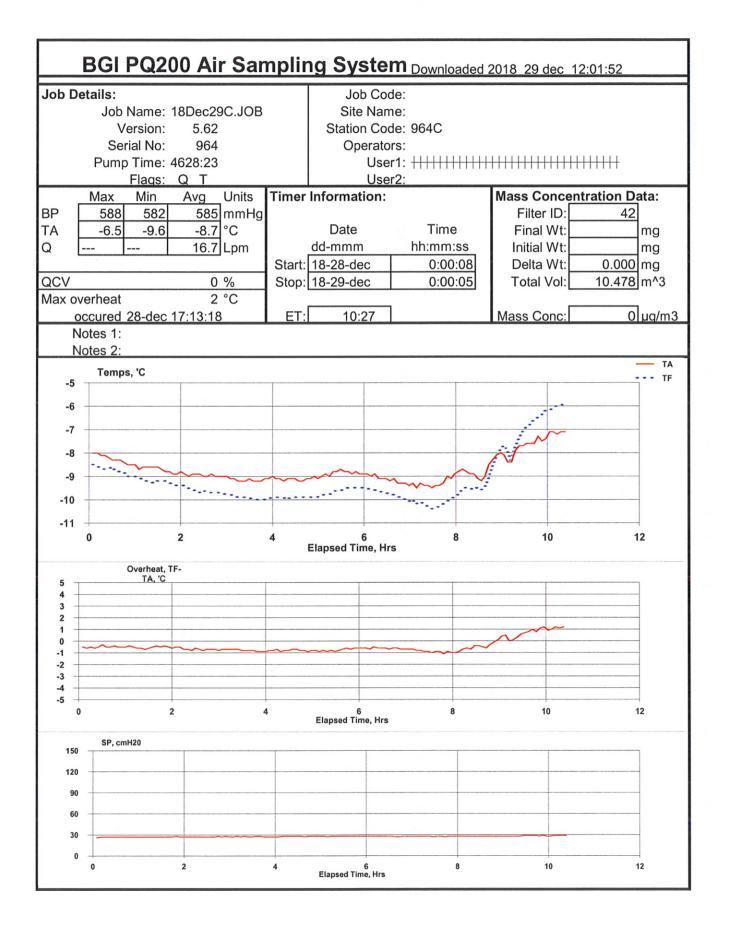

18-10-nov	0:05:08	594	-6.0	-8.2	-2.2	30	16.71
18-10-nov	1:05:08	593	-6.2	-8.4	-2.2	31	16.71
18-10-nov	2:05:08	593	-6.4	-8.4	-2.0	31	16.70
18-10-nov	3:05:08	593	-6.5	-8.4	-1.9	31	16.70
18-10-nov	4:05:08	592	-6.8	-8.6	-1.8	31	16.72
18-10-nov	5:05:08	592	-6.7	-8.7	-2.0	31	16.72
18-10-nov	6:05:08	592	-6.1	-8.5	-2.4	31	16.70
18-10-nov	7:05:08	592	-4.4	-6.6	-2.3	32	16.71
18-10-nov	8:05:08	592	2.5	-0.2	-2.7	33	16.72
18-10-nov	9:05:08	591	6.5	5.9	-0.6	34	16.71
18-10-nov	10:05:08	591	7.5	8.4	0.9	35	16.71
18-10-nov	11:05:08	591	8.3	9.5	1.2	35	16.71
18-10-nov	12:05:08	590	9.1	10.4	1.3	35	16.72
18-10-nov	13:05:08	590	9.9	11.1	1.3	35	16.72
18-10-nov	14:05:08	589	10.2	11.5	1.3	35	16.71
18-10-nov	15:05:08	589	9.4	10.7	1.3	35	16.72
18-10-nov	16:05:08	589	8.2	9.1	0.9	35	16.71
18-10-nov	17:05:08	589	4.5	4.8	0.3	35	16.71
18-10-nov	18:05:08	589	1.4	1.3	-0.2	34	16.71
18-10-nov	19:05:08	589	-0.1	-1.2	-1.1	34	16.71
18-10-nov	20:05:08	589	-1.0	-2.3	-1.3	34	16.71
18-10-nov	21:05:08	589	-2.8	-4.0	-1.2	34	16.71
18-10-nov	22:05:08	589	-4.1	-5.4	-1.4	33	16.72
18-10-nov	23:05:08	589	-4.7	-6.4	-1.7	33	16.71


18-16-nov	0:05:08	594	-2.3	-4.1	-1.7	26	16.71
18-16-nov	1:05:08	594	-2.9	-4.4	-1.5	26	16.71
18-16-nov	2:05:08	594	-3.3	-4.9	-1.6	27	16.71
18-16-nov	3:05:08	594	-3.7	-5.3	-1.6	27	16.71
18-16-nov	4:05:08	593	-3.6	-5.4	-1.8	27	16.71
18-16-nov	5:05:08	593	-3.5	-5.2	-1.7	27	16.71
18-16-nov	6:05:08	593	-3.0	-4.9	-1.9	27	16.71
18-16-nov	7:05:08	593	-2.1	-4.0	-1.9	27	16.70
18-16-nov	8:05:08	593	5.1	2.1	-3.0	28	16.71
18-16-nov	9:05:08	593	10.7	9.0	-1.7	29	16.71
18-16-nov	10:05:08	593	12.4	12.8	0.4	30	16.71
18-16-nov	11:05:08	592	12.9	14.3	1.5	31	16.71
18-16-nov	12:05:08	592	12.9	14.5	1.5	31	16.71
18-16-nov	13:05:08	592	13.1	14.6	1.5	31	16.70
18-16-nov	14:05:08	592	12.8	14.1	1.3	31	16.72
18-16-nov	15:05:08	592	12.1	12.8	0.7	30	16.70
18-16-nov	16:05:08	592	10.8	11.4	0.6	30	16.71
18-16-nov	17:05:08	592	5.0	6.0	1.1	30	16.71
18-16-nov	18:05:08	592	1.6	1.5	-0.2	29	16.71
18-16-nov	19:05:08	592	0.0	-0.7	-0.7	29	16.71
18-16-nov	20:05:08	592	-0.7	-1.9	-1.2	29	16.71
18-16-nov	21:05:08	592	-1.2	-2.7	-1.5	29	16.71
18-16-nov	22:05:08	591	-1.1	-2.9	-1.8	28	16.70

BGI PQ200 Air Sar	nplir	n <mark>g Syste</mark> r	n Downloaded	2018 26 nov 10):59:40
Job Details: Job Name: 18Nov26C.JOB Version: 5.62 Serial No: 964		Job Code Site Name Station Code Operator	e: 964C e: s: KN		
Pump Time: 4561:42 Flags: Q T		User			
Max Min Avg Units BP 595 593 594 mmHg TA -3.8 -8.2 -6.1 °C Q 16.7 Lpm QCV 0.07 % %	Start:	Information: Date dd-mmm 18-20-nov 18-21-nov	Time hh:mm:ss 0:00:08 0:00:05	Mass Concent Filter ID: Final Wt: Initial Wt: Delta Wt: Total Vol:	tration Data: 6 mg 0.000 6.176 m^3
Max overheat 3.8 °C occured 24-nov 15:23:44	ET:	6:10		Mass Conc:	0 µg/m3
Notes 1:	<u> </u>	0.10			
Notes 2:					-
	√	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
Overheat, TF-					


18-20-nov	0:04:29	594	-5.4	-7.3	-1.9	29	16.71
18-20-nov	1:04:29	594	-6.2	-7.8	-1.7	30	16.71
18-20-nov	2:04:29	594	-5.8	-7.8	-2.0	30	16.71
18-20-nov	3:04:29	594	-6.3	-7.9	-1.5	30	16.72
18-20-nov	4:04:29	594	-6.4	-8.2	-1.9	30	16.71
18-20-nov	5:04:29	594	-6.9	-8.5	-1.6	30	16.71
18-20-nov	6:04:29	594	-6.8	-8.6	-1.8	30	16.70


18-04-dec	0:05:08	594	-13.3	-14.7	-1.3	25	16.70
18-06-dec	13:41:39	589	3.8	3.4	-0.4		0.00


18-10-dec	0:05:08	598	-6.4	-8.2	-1.8	28	16.77
-----------	---------	-----	------	------	------	----	-------

						and the second second second second	
18-16-dec	0:04:52	597	-2.8	-4.6	-1.9	27	16.71
18-16-dec	1:04:52	596	-2.9	-4.7	-1.8	28	16.71
18-16-dec	2:04:52	596	-3.0	-4.6	-1.5	28	16.71
18-16-dec	3:04:52	596	-3.1	-4.7	-1.6	28	16.71
18-16-dec	4:04:52	596	-3.4	-4.9	-1.5	28	16.70
18-16-dec	5:04:52	597	-3.6	-5.2	-1.6	28	16.71
18-16-dec	6:04:52	597	-3.7	-5.3	-1.6	28	16.71
18-16-dec	7:04:52	597	-3.4	-5.1	-1.7	28	16.71
18-16-dec	8:04:52	597	-0.1	-1.9	-1.8	28	16.71
18-16-dec	9:04:52	597	5.5	4.4	-1.1	30	16.70
18-16-dec	10:04:52	597	8.3	9.0	0.6	31	16.71
18-16-dec	11:04:52	597	9.2	10.2	1.0	31	16.72
18-16-dec	12:04:52	596	9.8	11.2	1.4	31	16.71
18-16-dec	13:04:52	595	10.1	11.5	1.3	31	16.71
18-16-dec	14:04:52	595	10.2	11.6	1.4	32	16.72
18-16-dec	15:04:52	595	9.4	10.9	1.5	31	16.71
18-16-dec	16:04:52	595	8.0	9.2	1.2	31	16.71
18-16-dec	17:04:52	596	4.2	4.7	0.4	30	16.71
18-16-dec	18:04:52	596	1.5	1.1	-0.4	30	16.71
18-16-dec	19:04:52	595	-0.1	-1.1	-1.0	29	16.71
18-16-dec	20:04:52	596	-0.8	-2.2	-1.4	29	16.71
18-16-dec	21:04:52	595	-1.4	-2.8	-1.4	29	16.71
18-16-dec	22:04:52	595	-2.3	-3.6	-1.3	29	16.72
18-16-dec	23:04:52	595	-2.8	-4.3	-1.5	29	16.71

18-22-dec	0:05:08	590	-3.1	-4.7	-1.6	30	16.70
18-22-dec	1:05:08	590	-2.8	-4.5	-1.7	31	16.71
18-22-dec	2:05:08	591	-1.5	-3.8	-2.2	31	16.71
18-22-dec	3:05:08	591	-0.4	-2.6	-2.2	31	16.71
18-22-dec	4:05:08	591	-0.6	-2.9	-2.3	31	16.71
18-22-dec	5:05:08	591	-1.2	-2.7	-1.5	31	16.72
18-22-dec	6:05:08	591	-3.3	-4.3	-1.1	31	16.71
18-22-dec	7:05:08	592	-4.7	-6.0	-1.3	31	16.71
18-22-dec	8:05:08	592	-1.4	-3.4	-2.0	31	16.71
18-22-dec	9:05:08	593	3.0	2.6	-0.4	33	16.71
18-22-dec	10:05:08	593	5.4	6.3	0.9	34	16.71
18-22-dec	11:05:08	593	5.5	7.2	1.6	34	16.70
18-22-dec	12:05:08	593	5.8	7.3	1.5	34	16.71
18-22-dec	13:05:08	593	6.6	8.1	1.5	34	16.72
18-22-dec	14:05:08	593	6.5	7.9	1.4	34	16.71
18-22-dec	15:05:08	594	5.9	7.3	1.5	34	16.71
18-22-dec	16:05:08	594	4.5	5.3	0.9	33	16.72
18-22-dec	17:05:08	594	2.2	1.7	-0.5	33	16.71
18-22-dec	18:05:08	594	0.3	-0.5	-0.8	33	16.71
18-22-dec	19:05:08	595	-1.9	-3.0	-1.1	32	16.71
18-22-dec	20:05:08	595	-2.8	-4.4	-1.6	32	16.73
18-22-dec	21:05:08	595	-3.3	-4.9	-1.6	32	16.71
18-22-dec	22:05:08	595	-3.2	-4.8	-1.5	32	16.71
18-22-dec	23:05:08	595	-3.4	-4.6	-1.2	32	16.71

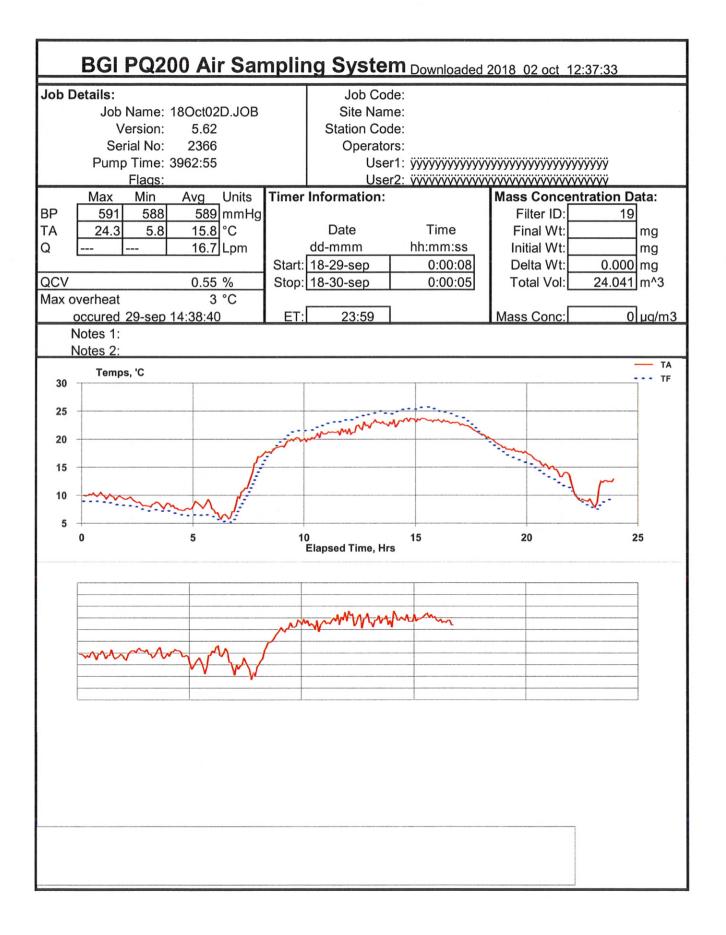
18-28-dec	0:05:08	584	-8.3	-8.8	-0.5	27	16.71
18-28-dec	1:05:08	584	-8.7	-9.2	-0.5	27	16.71
18-28-dec	2:05:08	585	-9.0	-9.6	-0.7	27	16.71
18-28-dec	3:05:08	585	-9.1	-9.9	-0.8	27	16.71
18-28-dec	4:05:08	585	-9.1	-9.9	-0.8	28	16.71
18-28-dec	5:05:08	585	-8.9	-9.6	-0.8	28	16.71
18-28-dec	6:05:08	585	-9.1	-9.8	-0.6	28	16.71
18-28-dec	7:05:08	586	-9.3	-10.2	-0.9	28	16.72
18-28-dec	8:05:08	586	-8.7	-9.2	-0.5	28	16.71
18-28-dec	9:05:08	587	-7.8	-7.1	0.6	28	16.71
18-28-dec	10:05:08	587	-7.1	-6.0	1.1	29	16.71

Compliance Monitor 2366D

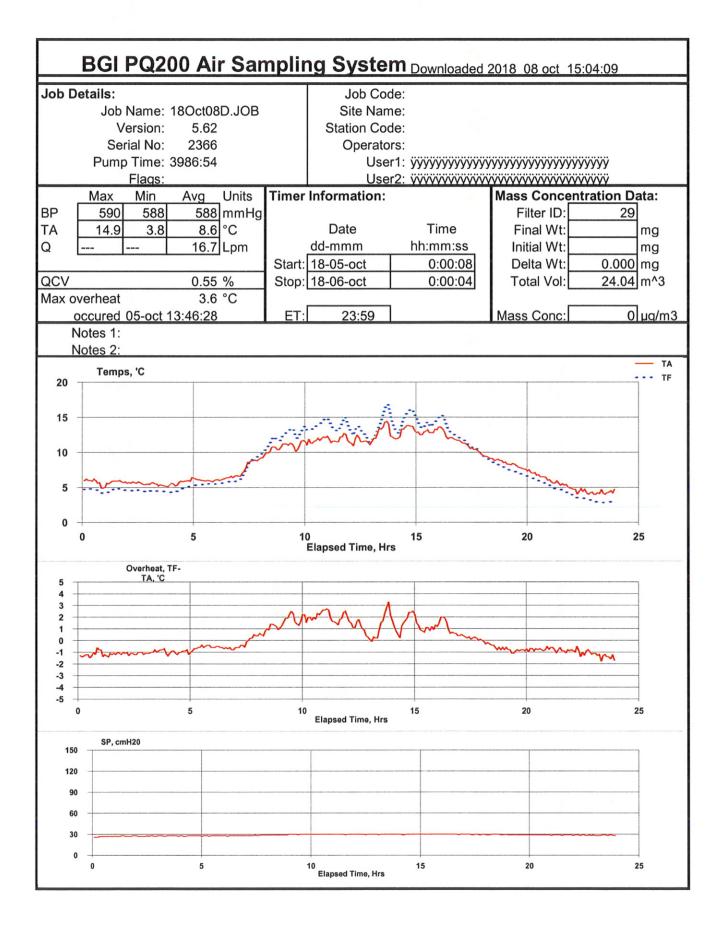
PM₁₀ Sampler Summary

October 1, 2018 - December 31, 2018

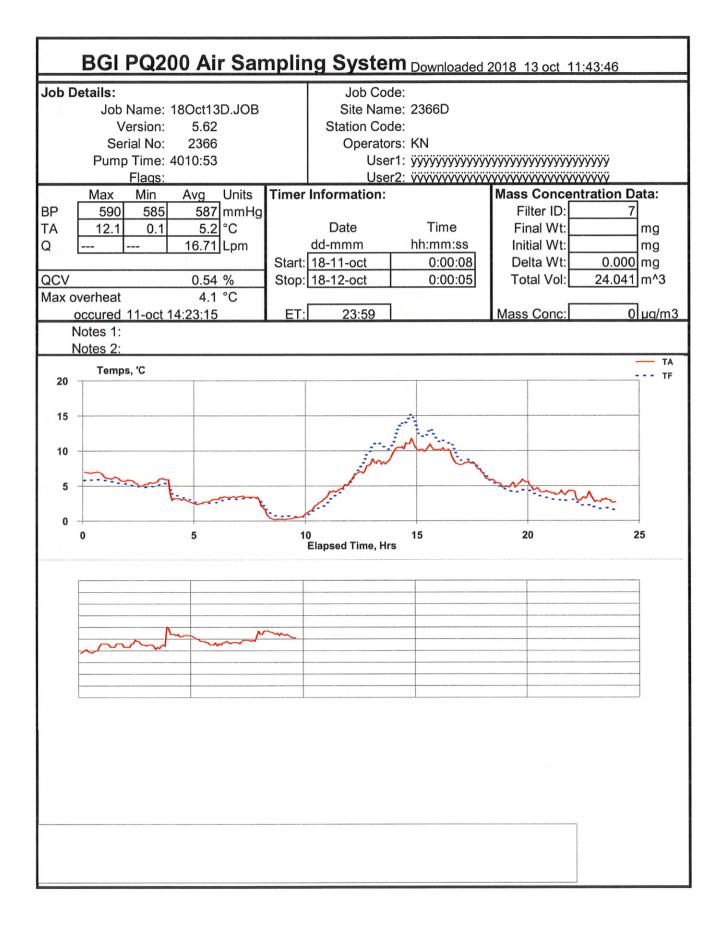
Network: Alton Coal Development

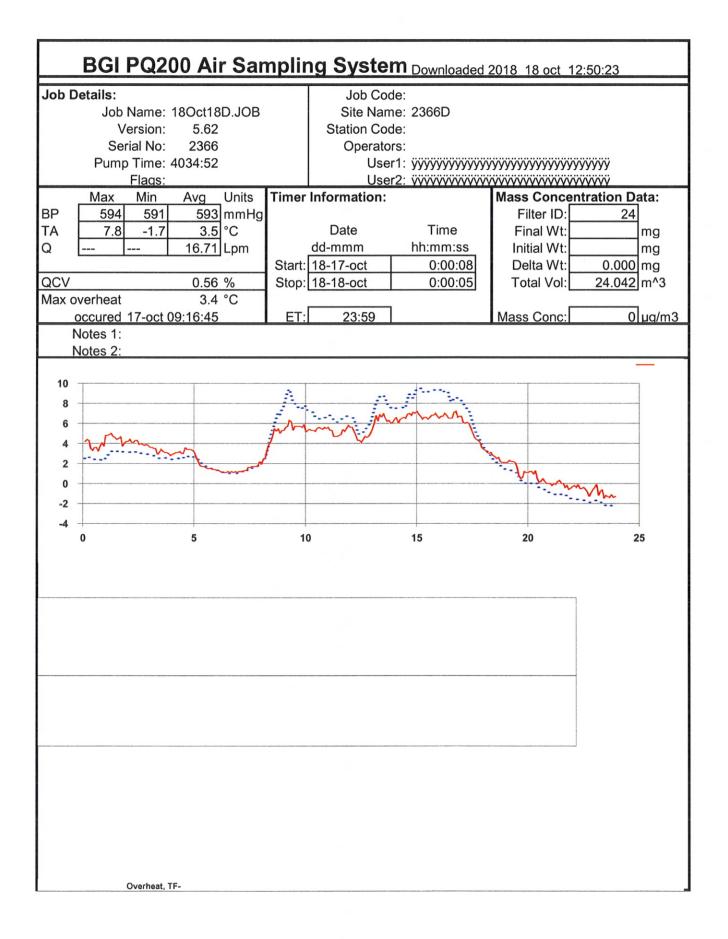

Site: Coal Hollow

AQS ID:

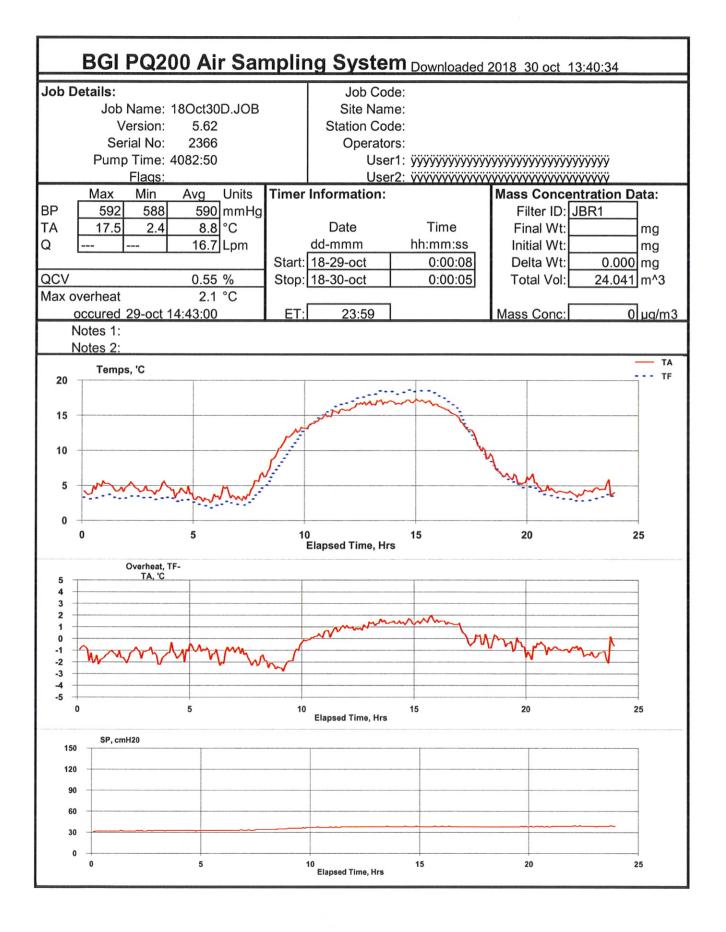

Sampler ID: Coal Hollow-D Sampler Type: BGI FRM Single

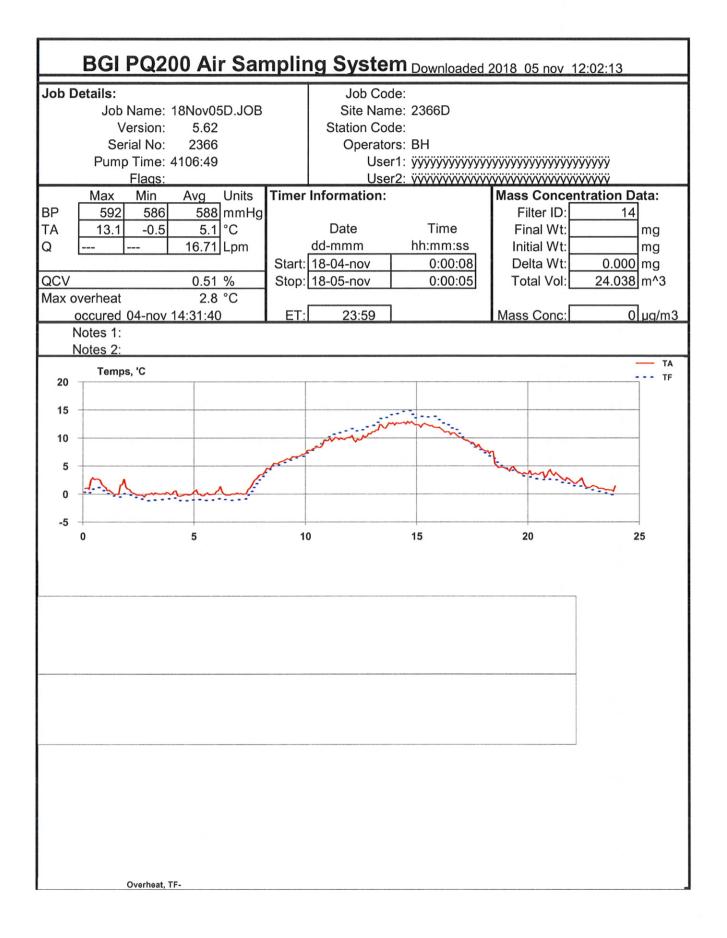
	Filter	Concentration (µg/m3)	Concentration (µg/m3)	Sample Period	Sample Volume	Std Volume	Tare	Mass Gross	Net		
Date	ID	LTP	STP	(hr:min)	(m3)	(m3)	(mg)	(mg)	(mg)	Flag	Comments
10/05/18	P2950126	5.5	6.7	23:59	24.0	19.7	383.5001	383.6330	0.1329		
10/11/18	P2950420	5.8	7.0	23:59	24.0	19.9	394.9924	395.1319	0.1395		
10/17/18	P2950425	14.9	17.8	23:59	24.0	20.2	389.7746	390.1347	0.3601		
10/23/18	P2951631	Invalid - Al	Invalid - Al				394.6530	394.7436	0.0906	SP,MD	Data corrupt
10/29/18	P2951636	76.4	93.1	23:59	24.0	19.7	395.7656	397.6038	1.8382		
11/04/18	P2951919	4.8	5.8	23:59	24.0	19.9		397.4619			
11/10/18	P2951924	34.1	40.6	23:59	24.0	20.2		391.5564			
11/16/18	P2951929	34.9	41.9	23:59	24.0	20.0		397.6522			
11/22/18	P2952183	12.2	14.4	23:59	24.0	20.3		393.7478			
11/28/18	P2952189	159.8	191.6	23:59	24.0	20.0		401.6494			
12/04/18	P2952457	2.8	3.2	23:59	24.0	21.1		397.1747			
12/10/18	P2952462	8.1	9.5	23:59	24.0	20.5		394.1314			
12/16/18	P2952669	7.6	9.0	23:59	24.0	20.3		389.0480			
12/22/18	P2952674	10.2	12.1	24:00	24.0	20.3		390.8919			
12/28/18	P2952679	24.0	27.6	23:59	24.0	20.9	394.3590	394.9362	0.5772		
11/26/18	P2952188		Field Bla	nk			400.6414	400.6499	0.0085		
	# Valid 14	Recovery 93%	Average 34.3	St. Dev. 51.2	Max 191.6	Min 3.2					


Inter-Mountain Laboratories' (IML) data validation is limited by the provided information. Data have been validated based on laboratory QC, field observations and other information available to IML. Additional data validation based on information not provided to IML may be required. According to 40 CFR 58.15 final responsibilities for data review and validation lies with each agency submitting data to AQS.

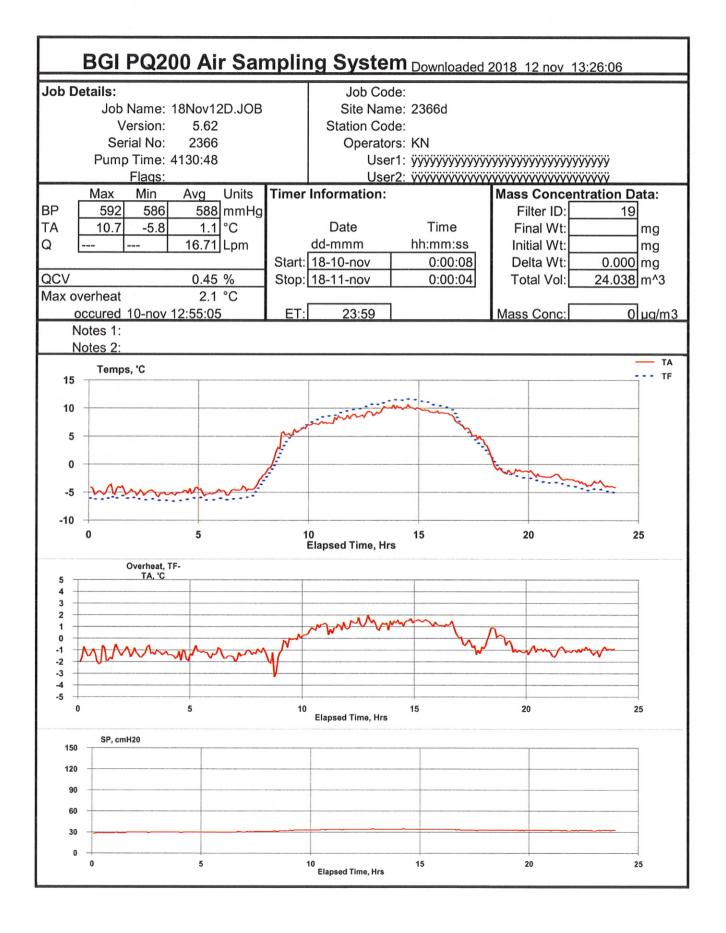

18-29-sep	0:05:08	590	10.1	8.9	-1.2	29	16.72
18-29-sep	1:05:08	590	9.6	8.4	-1.2	30	16.72
18-29-sep	2:05:08	590	8.7	7.8	-1.0	30	16.71
18-29-sep	3:05:08	590	8.3	7.2	-1.1	31	16.71
18-29-sep	4:05:08	591	7.6	6.5	-1.1	31	16.71
18-29-sep	5:05:08	591	8.2	6.4	-1.8	31	16.71
18-29-sep	6:05:08	591	6.9	5.6	-1.3	31	16.72
18-29-sep	7:05:08	591	13.2	10.9	-2.3	32	16.71
18-29-sep	8:05:08	591	18.0	17.7	-0.4	33	16.70
18-29-sep	9:05:08	591	19.8	21.0	1.3	34	16.71
18-29-sep	10:05:08	591	20.5	22.0	1.5	34	16.71
18-29-sep	11:05:08	590	21.3	23.2	1.8	35	16.72
18-29-sep	12:05:08	590	22.0	24.0	1.9	35	16.71
18-29-sep	13:05:08	590	22.9	24.6	1.7	35	16.71
18-29-sep	14:05:08	589	23.2	25.2	2.0	35	16.71
18-29-sep	15:05:08	589	23.5	25.5	2.0	35	16.71
18-29-sep	16:05:08	589	23.0	24.5	1.5	35	16.71
18-29-sep	17:05:08	589	21.8	22.5	0.7	35	16.71
18-29-sep	18:05:08	589	19.6	19.0	-0.6	35	16.71
18-29-sep	19:05:08	589	17.9	16.5	-1.4	35	16.71
18-29-sep	20:05:08	589	16.1	14.5	-1.5	34	16.71
18-29-sep	21:05:08	590	14.0	12.1	-1.9	34	16.71
18-29-sep	22:05:08	590	9.3	9.0	-0.3	34	16.71
18-29-sep	23:05:08	590	11.7	8.6	-3.1	34	16.71

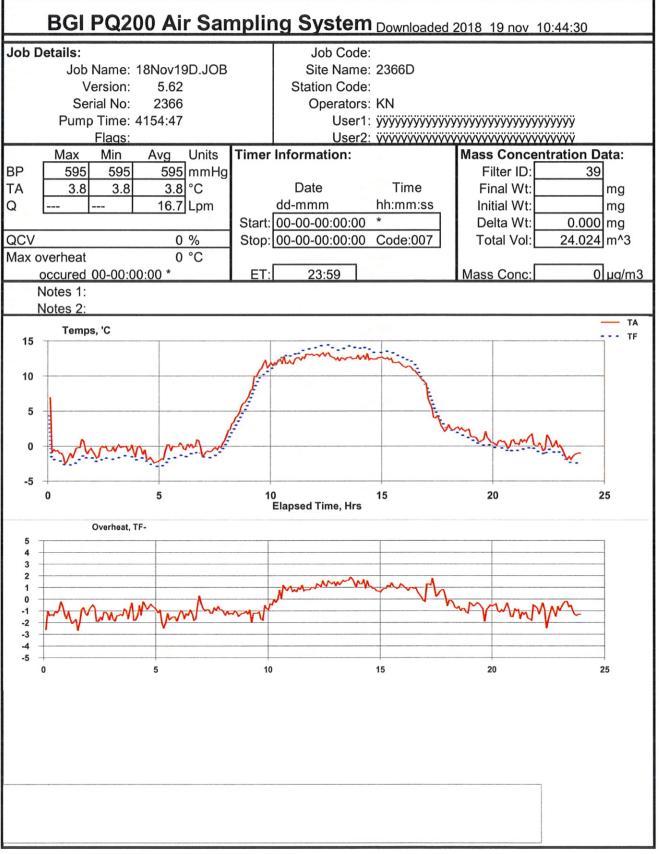
18-05-oct	0:05:08	589	5.7	4.6	-1.1	27	16.71
18-05-oct	1:05:08	589	5.8	4.6	-1.2	27	16.71
18-05-oct	2:05:08	589	5.6	4.5	-1.1	27	16.71
18-05-oct	3:05:08	589	5.4	4.4	-1.0	28	16.72
18-05-oct	4:05:08	589	5.8	4.8	-1.0	28	16.71
18-05-oct	5:05:08	589	6.0	5.4	-0.6	28	16.72
18-05-oct	6:05:08	589	6.4	5.7	-0.6	28	16.72
18-05-oct	7:05:08	589	8.3	8.2	-0.1	29	16.72
18-05-oct	8:05:08	590	10.3	11.3	1.0	29	16.70
18-05-oct	9:05:08	590	11.1	12.9	1.8	30	16.71
18-05-oct	10:05:08	590	11.8	13.9	2.1	30	16.70
18-05-oct	11:05:08	589	11.9	13.8	2.0	30	16.71
18-05-oct	12:05:08	589	11.6	12.6	1.1	30	16.71
18-05-oct	13:05:08	589	13.0	14.4	1.4	30	16.71
18-05-oct	14:05:08	589	13.1	14.6	1.5	30	16.71
18-05-oct	15:05:08	588	13.0	14.0	1.1	30	16.71
18-05-oct	16:05:08	588	12.2	13.3	1.1	30	16.70
18-05-oct	17:05:08	588	10.5	10.7	0.2	30	16.71
18-05-oct	18:05:08	589	9.0	8.5	-0.5	30	16.71
18-05-oct	19:05:08	589	8.0	7.1	-0.9	29	16.71
18-05-oct	20:05:08	589	6.7	5.9	-0.8	29	16.72
18-05-oct	21:05:08	589	5.4	4.6	-0.8	29	16.71
18-05-oct	22:05:08	589	4.4	3.4	-1.0	29	16.71
18-05-oct	23:05:08	589	4.3	2.9	-1.4	28	16.72

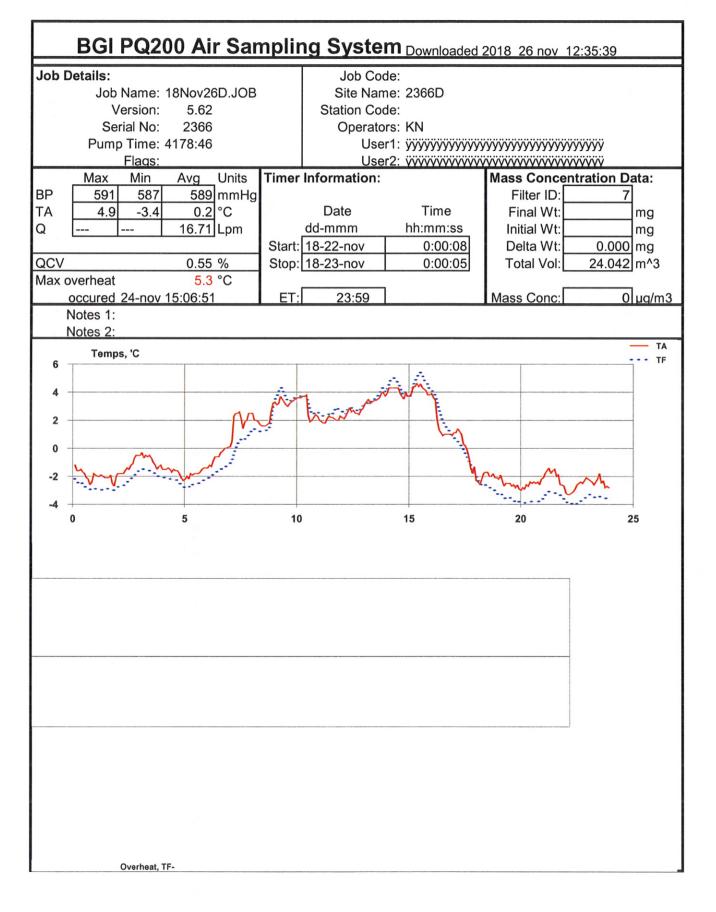

18-11-oct	0:05:08	587	6.8	5.8	-1.0	29	16.73
18-11-oct	1:05:08	586	6.0	5.5	-0.5	30	16.70
18-11-oct	2:05:08	586	5.4	4.9	-0.5	30	16.71
18-11-oct	3:05:08	586	5.4	5.0	-0.4	30	16.70
18-11-oct	4:05:08	587	3.0	3.3	0.3	30	16.70
18-11-oct	5:05:08	587	2.7	2.5	-0.2	30	16.71
18-11-oct	6:05:08	587	3.4	3.0	-0.4	30	16.71
18-11-oct	7:05:08	588	3.3	3.2	-0.1	30	16.70
18-11-oct	8:05:08	588	0.6	1.1	0.5	30	16.71
18-11-oct	9:05:08	588	0.5	0.6	0.1	30	16.71
18-11-oct	10:05:08	588	2.4	1.7	-0.7	30	16.71
18-11-oct	11:05:08	588	4.7	4.1	-0.5	30	16.70
18-11-oct	12:05:08	588	7.2	8.1	0.9	31	16.71
18-11-oct	13:05:08	587	8.7	10.8	2.1	32	16.71
18-11-oct	14:05:08	587	10.8	14.0	3.2	32	16.71
18-11-oct	15:05:08	587	10.2	12.2	2.0	32	16.71
18-11-oct	16:05:08	587	9.2	10.4	1.2	32	16.71
18-11-oct	17:05:08	588	7.8	8.1	0.3	31	16.71
18-11-oct	18:05:08	588	5.5	5.4	-0.1	31	16.71
18-11-oct	19:05:08	589	5.3	4.3	-1.0	31	16.71
18-11-oct	20:05:08	589	4.4	3.6	-0.7	31	16.71
18-11-oct	21:05:08	589	4.0	2.9	-1.1	31	16.70
18-11-oct	22:05:08	590	3.3	2.3	-1.0	31	16.70
18-11-oct	23:05:08	590	2.9	1.7	-1.2	31	16.71

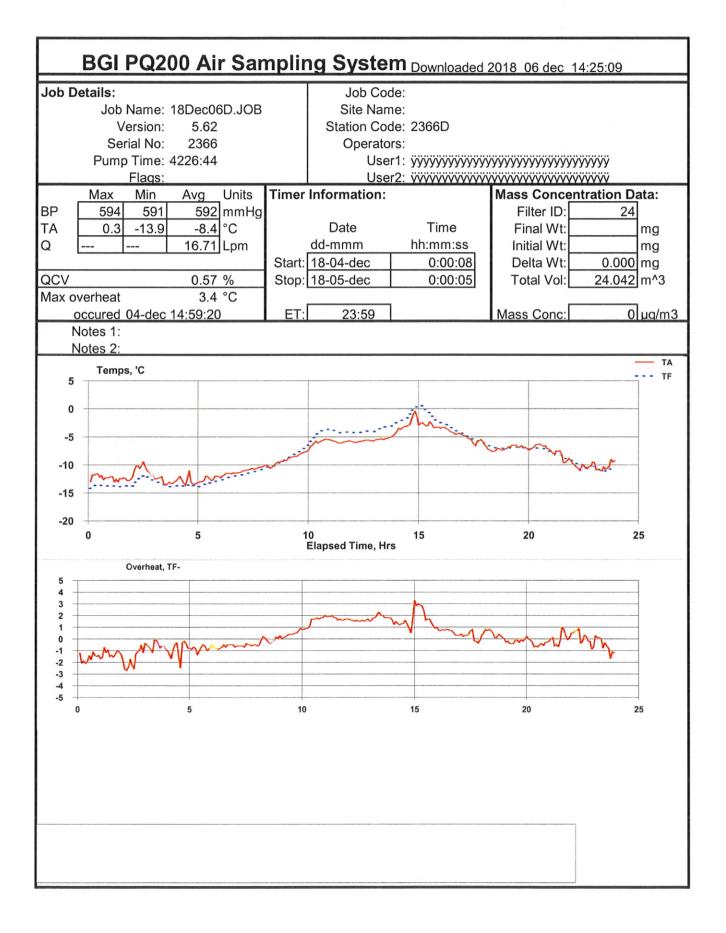

18-17-oct	0:05:08	593	3.9	2.5	-1.4	26	16.71
18-17-oct	1:05:08	592	4.5	3.1	-1.3	27	16.71
18-17-oct	2:05:08	592	4.0	3.1	-1.0	27	16.70
18-17-oct	3:05:08	592	3.2	2.6	-0.6	27	16.71
18-17-oct	4:05:08	593	3.2	2.6	-0.7	27	16.71
18-17-oct	5:05:08	593	1.7	1.8	0.1	27	16.71
18-17-oct	6:05:08	593	1.2	1.1	-0.1	27	16.71
18-17-oct	7:05:08	593	1.6	1.5	-0.1	27	16.71
18-17-oct	8:05:08	593	4.4	5.2	0.8	28	16.70
18-17-oct	9:05:08	593	5.7	8.1	2.4	29	16.72
18-17-oct	10:05:08	593	5.4	6.8	1.4	29	16.71
18-17-oct	11:05:08	593	5.2	6.5	1.3	29	16.71
18-17-oct	12:05:08	593	4.8	5.7	0.9	28	16.71
18-17-oct	13:05:08	593	6.4	8.0	1.6	29	16.71
18-17-oct	14:05:08	593	6.7	8.2	1.4	29	16.71
18-17-oct	15:05:08	593	6.7	9.3	2.6	29	16.71
18-17-oct	16:05:08	593	6.8	8.7	2.0	29	16.71
18-17-oct	17:05:08	593	4.9	5.9	1.0	29	16.72
18-17-oct	18:05:08	593	2.6	2.3	-0.3	28	16.72
18-17-oct	19:05:08	593	1.5	0.8	-0.7	28	16.71
18-17-oct	20:05:08	594	0.5	-0.4	-0.9	28	16.70
18-17-oct	21:05:08	594	-0.2	-1.2	-1.1	28	16.72
18-17-oct	22:05:08	594	-0.6	-1.7	-1.2	28	16.71
18-17-oct	23:05:08	594	-1.1	-2.1	-1.0	28	16.71

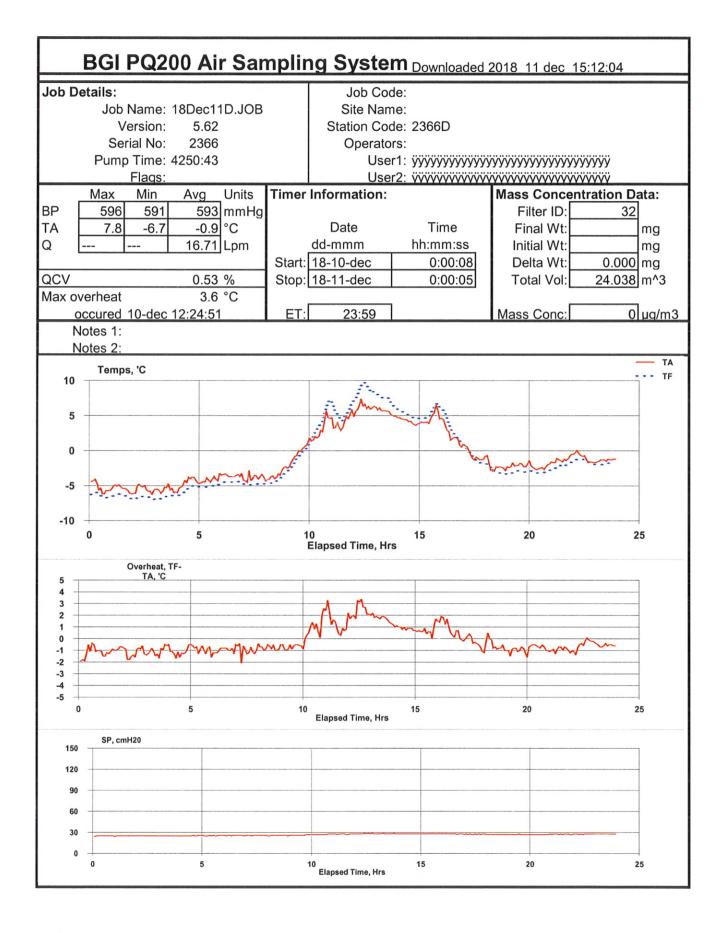
BGI PQ200 A	ir Sampli	ng System	Downloaded 2	2018 29 dec 12:0	1:52
Job Details: Job Name: 18Oct2 Version: Serial No:	24D.JOB	Job Code Site Name Station Code Operators	:		
Pump Time: Flags:		User1 User2	: ++++++++++++++++++++++++++++++++++++		++++
Max Min Avg BP 0 0 TA 0 0 Q QCV	Units Timer 0 mmHg 0 °C 0 Lpm 5 Start 0 % Stop 0 °C ET	r Information: Date dd-mmm	Time hh:mm:ss	Mass Concentra Filter ID: Final Wt: Initial Wt: Delta Wt: Total Vol: Mass Conc:	tion Data: mg 0.000 mg 0 m^3
Notes 1: Notes 2:					

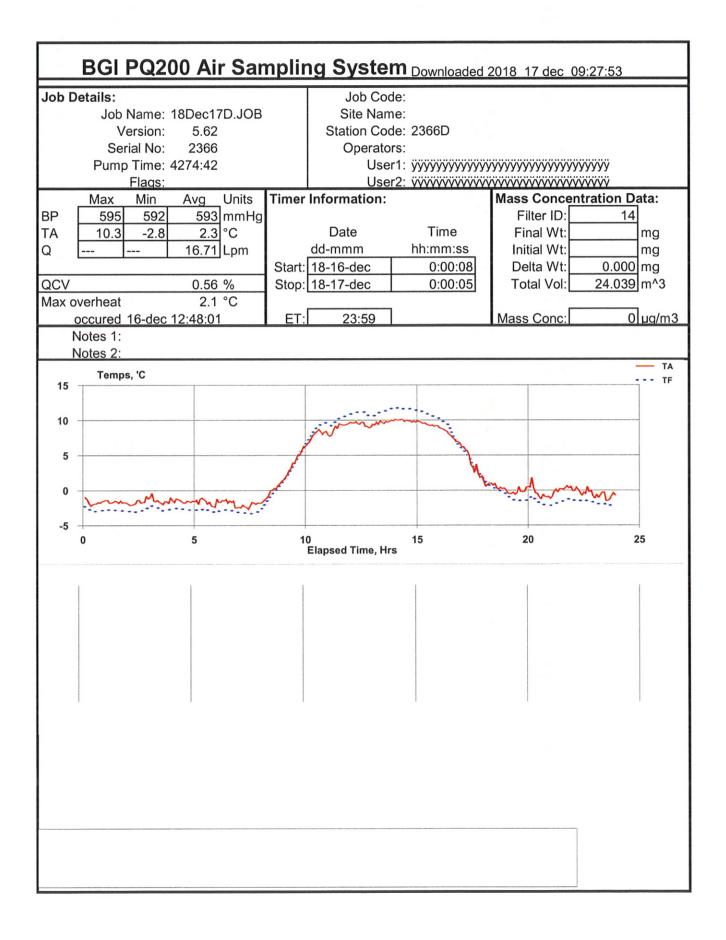

yy-dd-mmm	hh:mm:ss	mmHg	°C	°C	°C	cmH2O	aLpm

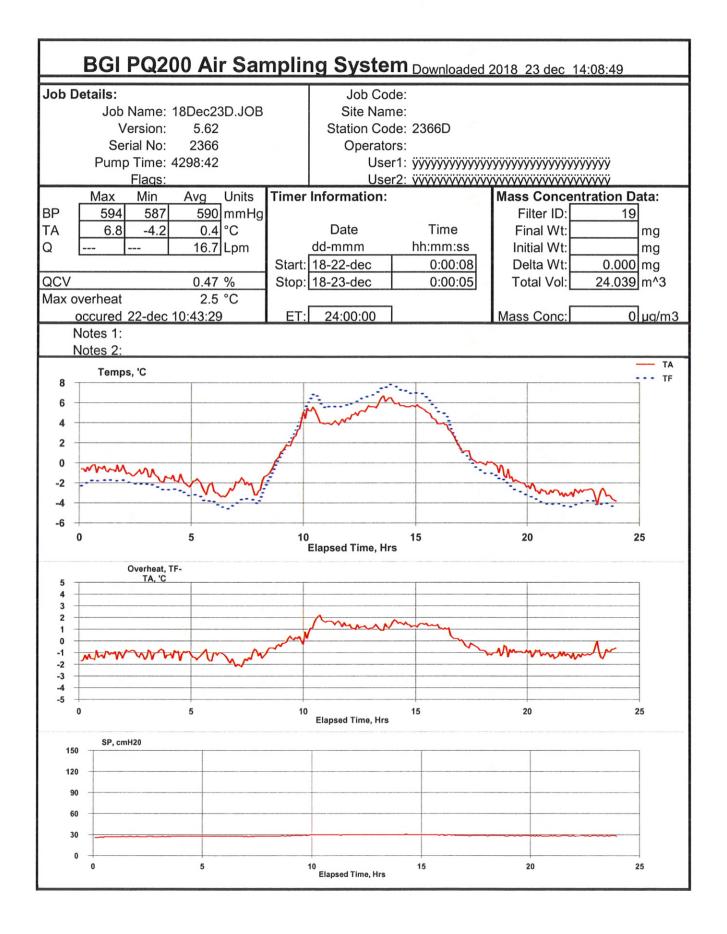

18-29-oct	0:05:08	592	4.6	3.2	-1.4	32	16.71
18-29-oct	1:05:08	592	4.7	3.3	-1.4	32	16.72
18-29-oct	2:05:08	591	4.7	3.4	-1.3	33	16.71
18-29-oct	3:05:08	591	4.6	3.2	-1.4	33	16.71
18-29-oct	4:05:08	591	4.0	2.9	-1.1	33	16.71
18-29-oct	5:05:08	591	3.1	2.1	-1.0	33	16.71
18-29-oct	6:05:08	591	3.8	2.4	-1.3	33	16.71
18-29-oct	7:05:08	591	4.4	2.9	-1.5	34	16.72
18-29-oct	8:05:08	591	8.5	6.3	-2.1	35	16.71
18-29-oct	9:05:08	591	12.5	10.9	-1.6	36	16.72
18-29-oct	10:05:08	591	14.2	14.3	0.1	37	16.71
18-29-oct	11:05:08	590	15.5	16.3	0.8	38	16.71
18-29-oct	12:05:08	590	16.6	17.5	0.9	38	16.72
18-29-oct	13:05:08	589	16.9	18.3	1.4	38	16.71
18-29-oct	14:05:08	589	16.9	18.3	1.4	38	16.71
18-29-oct	15:05:08	589	16.8	18.4	1.6	38	16.71
18-29-oct	16:05:08	589	15.4	16.7	1.3	38	16.70
18-29-oct	17:05:08	589	12.1	12.1	0.0	38	16.72
18-29-oct	18:05:08	589	7.9	7.8	-0.1	38	16.71
18-29-oct	19:05:08	589	5.9	5.3	-0.6	38	16.71
18-29-oct	20:05:08	589	5.1	4.3	-0.8	38	16.71
18-29-oct	21:05:08	589	4.2	3.2	-0.9	39	16.71
18-29-oct	22:05:08	589	4.0	2.9	-1.1	39	16.71
18-29-oct	23:05:08	589	4.5	3.4	-1.1	39	16.71


18-04-nov	0:05:08	592	1.9	0.7	-1.3	25	16.71
18-04-nov	1:05:08	591	0.8	-0.2	-1.0	25	16.71
18-04-nov	2:05:08	591	0.0	-0.8	-0.7	26	16.71
18-04-nov	3:05:08	591	0.1	-1.0	-1.1	25	16.71
18-04-nov	4:05:08	591	0.0	-1.1	-1.1	25	16.71
18-04-nov	5:05:08	591	0.1	-1.1	-1.1	26	16.71
18-04-nov	6:05:08	590	0.2	-1.0	-1.2	26	16.71
18-04-nov	7:05:08	590	1.5	0.5	-1.1	26	16.71
18-04-nov	8:05:08	590	5.0	4.6	-0.4	27	16.71
18-04-nov	9:05:08	590	6.7	6.3	-0.4	27	16.71
18-04-nov	10:05:08	590	8.5	8.5	0.0	27	16.72
18-04-nov	11:05:08	589	9.9	10.9	1.0	28	16.70
18-04-nov	12:05:08	589	10.2	11.6	1.5	28	16.70
18-04-nov	13:05:08	588	12.0	13.4	1.4	28	16.70
18-04-nov	14:05:08	588	12.6	14.4	1.8	28	16.71
18-04-nov	15:05:08	587	12.1	13.7	1.5	28	16.72
18-04-nov	16:05:08	587	10.8	11.9	1.1	28	16.71
18-04-nov	17:05:08	587	8.9	8.8	-0.2	28	16.70
18-04-nov	18:05:08	587	6.0	6.0	0.0	28	16.71
18-04-nov	19:05:08	587	4.0	3.8	-0.2	27	16.70
18-04-nov	20:05:08	587	3.7	2.7	-1.0	27	16.72
18-04-nov	21:05:08	587	3.0	2.1	-0.8	27	16.71
18-04-nov	22:05:08	587	1.8	1.1	-0.7	27	16.71
18-04-nov	23:05:08	587	0.9	0.2	-0.7	27	16.71


18-10-nov	0:05:08	592	-4.7	-6.2	-1.5	29	16.71
18-10-nov	1:05:08	591	-4.7	-6.0	-1.3	30	16.71
18-10-nov	2:05:08	591	-5.0	-6.2	-1.2	30	16.72
18-10-nov	3:05:08	590	-5.3	-6.5	-1.1	30	16.71
18-10-nov	4:05:08	590	-4.8	-6.2	-1.5	30	16.72
18-10-nov	5:05:08	590	-5.1	-6.3	-1.2	30	16.71
18-10-nov	6:05:08	590	-4.7	-6.2	-1.4	30	16.70
18-10-nov	7:05:08	589	-3.6	-4.9	-1.3	31	16.72
18-10-nov	8:05:08	589	2.4	0.7	-1.7	32	16.70
18-10-nov	9:05:08	589	6.1	5.9	-0.2	33	16.71
18-10-nov	10:05:08	589	7.3	8.1	0.8	34	16.71
18-10-nov	11:05:08	588	8.3	9.2	0.9	34	16.71
18-10-nov	12:05:08	588	8.9	10.2	1.4	34	16.70
18-10-nov	13:05:08	587	9.9	11.1	1.2	34	16.72
18-10-nov	14:05:08	586	10.1	11.5	1.4	34	16.70
18-10-nov	15:05:08	586	9.4	10.8	1.4	34	16.71
18-10-nov	16:05:08	586	8.2	9.1	0.9	34	16.71
18-10-nov	17:05:08	586	5.2	4.6	-0.6	33	16.71
18-10-nov	18:05:08	587	0.1	0.2	0.2	33	16.71
18-10-nov	19:05:08	587	-1.3	-2.1	-0.9	33	16.71
18-10-nov	20:05:08	587	-2.0	-3.0	-1.0	33	16.73
18-10-nov	21:05:08	587	-2.4	-3.5	-1.1	33	16.71
18-10-nov	22:05:08	587	-3.3	-4.4	-1.0	33	16.70
18-10-nov	23:05:08	587	-3.7	-4.7	-1.0	33	16.70


18-19-nov	10:36:24	591	2.6	1.7	-1.0	28	16.59
18-16-nov	11:40:08	589	13.1	14.1	1.1	32	16.71
18-16-nov	12:40:08	589	12.5	14.0	1.4	32	16.70
18-16-nov	13:40:08	589	12.6	14.0	1.4	32	16.71
18-16-nov	14:40:08	589	12.4	13.3	0.9	32	16.71
18-16-nov	15:40:08	589	11.3	12.3	1.0	32	16.70
18-16-nov	16:40:08	589	6.8	7.5	0.7	31	16.71
18-16-nov	17:40:08	589	2.5	2.4	-0.1	30	16.71
18-16-nov	18:40:08	589	1.4	0.8	-0.7	30	16.71
18-16-nov	19:40:08	589	0.7	-0.1	-0.9	30	16.71
18-16-nov	20:40:08	589	0.5	-0.6	-1.1	30	16.72
18-16-nov	21:40:08	589	0.5	-0.7	-1.2	30	16.71
18-16-nov	22:40:08	589	-0.7	-1.4	-0.7	30	16.72
18-16-nov	23:40:08	589	-1.1	-2.4	-1.3	30	16.69


18-22-nov	0:05:08	591	-1.9	-2.7	-0.8	26	16.70
18-22-nov	1:05:08	591	-2.1	-2.9	-0.8	27	16.72
18-22-nov	2:05:08	590	-1.2	-2.2	-1.0	27	16.71
18-22-nov	3:05:08	589	-0.9	-1.7	-0.8	27	16.71
18-22-nov	4:05:08	589	-1.7	-2.3	-0.6	28	16.70
18-22-nov	5:05:08	589	-1.7	-2.5	-0.8	27	16.71
18-22-nov	6:05:08	589	-0.5	-1.6	-1.1	28	16.72
18-22-nov	7:05:08	589	2.1	0.4	-1.7	28	16.71
18-22-nov	8:05:08	589	2.1	1.6	-0.5	28	16.71
18-22-nov	9:05:08	589	3.3	3.7	0.4	29	16.72
18-22-nov	10:05:08	589	2.8	3.1	0.3	29	16.71
18-22-nov	11:05:08	589	2.1	2.5	0.5	29	16.71
18-22-nov	12:05:08	588	2.6	2.7	0.1	29	16.71
18-22-nov	13:05:08	588	3.6	3.7	0.1	29	16.72
18-22-nov	14:05:08	588	4.0	4.3	0.3	29	16.71
18-22-nov	15:05:08	588	4.2	4.7	0.5	29	16.71
18-22-nov	16:05:08	588	1.5	2.2	0.6	29	16.70
18-22-nov	17:05:08	589	-0.2	-0.5	-0.3	29	16.72
18-22-nov	18:05:08	589	-2.1	-2.8	-0.7	29	16.71
18-22-nov	19:05:08	589	-2.6	-3.6	-1.0	28	16.71
18-22-nov	20:05:08	590	-2.5	-3.8	-1.3	28	16.71
18-22-nov	21:05:08	590	-2.1	-3.3	-1.3	28	16.72
18-22-nov	22:05:08	590	-2.7	-3.8	-1.1	28	16.72
18-22-nov	23:05:08	590	-2.4	-3.5	-1.0	28	16.71


18-04-dec	0:05:08	592	-12.1	-13.8	-1.6	28	16.71
18-04-dec	1:05:08	592	-12.6	-13.9	-1.3	29	16.71
18-04-dec	2:05:08	592	-10.9	-12.5	-1.7	29	16.72
18-04-dec	3:05:08	592	-12.9	-13.6	-0.6	29	16.71
18-04-dec	4:05:08	592	-12.8	-13.7	-0.9	29	16.71
18-04-dec	5:05:08	592	-12.4	-13.2	-0.8	30	16.71
18-04-dec	6:05:08	593	-11.5	-12.2	-0.7	30	16.71
18-04-dec	7:05:08	593	-10.6	-11.2	-0.6	30	16.72
18-04-dec	8:05:08	593	-9.8	-9.8	-0.1	31	16.72
18-04-dec	9:05:08	594	-8.2	-7.7	0.4	31	16.71
18-04-dec	10:05:08	594	-5.9	-4.4	1.5	31	16.71
18-04-dec	11:05:08	593	-5.9	-4.1	1.8	32	16.71
18-04-dec	12:05:08	593	-5.8	-4.2	1.6	32	16.70
18-04-dec	13:05:08	593	-5.1	-3.3	1.9	32	16.71
18-04-dec	14:05:08	592	-2.6	-1.1	1.4	32	16.70
18-04-dec	15:05:08	592	-3.0	-1.0	1.9	32	16.71
18-04-dec	16:05:08	592	-4.1	-3.5	0.6	32	16.72
18-04-dec	17:05:08	592	-5.7	-5.5	0.2	32	16.71
18-04-dec	18:05:08	592	-7.3	-6.9	0.4	32	16.72
18-04-dec	19:05:08	592	-6.8	-7.0	-0.2	32	16.71
18-04-dec	20:05:08	592	-6.8	-7.2	-0.4	32	16.71
18-04-dec	21:05:08	592	-8.6	-8.5	0.1	32	16.71
18-04-dec	22:05:08	592	-10.3	-10.2	0.1	31	16.72
18-04-dec	23:05:08	592	-10.3	-10.9	-0.5	31	16.71

18-10-dec	0:05:08	595	-5.3	-6.4	-1.1	25	16.73
18-10-dec	1:05:08	595	-5.5	-6.5	-1.1	25	16.72
18-10-dec	2:05:08	595	-5.5	-6.7	-1.2	25	16.71
18-10-dec	3:05:08	595	-5.6	-6.6	-1.0	25	16.70
18-10-dec	4:05:08	594	-4.4	-5.6	-1.1	25	16.71
18-10-dec	5:05:08	594	-4.1	-5.0	-1.0	26	16.71
18-10-dec	6:05:08	594	-3.6	-4.5	-0.9	26	16.71
18-10-dec	7:05:08	594	-3.9	-4.8	-1.0	26	16.70
18-10-dec	8:05:08	594	-3.3	-4.1	-0.8	26	16.71
18-10-dec	9:05:08	594	-0.2	-0.9	-0.7	26	16.70
18-10-dec	10:05:08	594	3.2	4.3	1.1	27	16.71
18-10-dec	11:05:08	594	4.1	5.5	1.3	28	16.71
18-10-dec	12:05:08	592	6.2	8.6	2.4	28	16.71
18-10-dec	13:05:08	592	5.4	7.1	1.7	28	16.71
18-10-dec	14:05:08	592	4.1	5.0	0.9	28	16.71
18-10-dec	15:05:08	591	4.7	5.5	0.8	28	16.72
18-10-dec	16:05:08	591	2.0	3.0	0.9	28	16.71
18-10-dec	17:05:08	591	-0.7	-0.9	-0.2	28	16.71
18-10-dec	18:05:08	592	-2.3	-2.9	-0.6	27	16.72
18-10-dec	19:05:08	592	-2.0	-3.1	-1.0	27	16.71
18-10-dec	20:05:08	592	-2.3	-3.1	-0.7	27	16.71
18-10-dec	21:05:08	591	-1.2	-2.1	-0.9	28	16.71
18-10-dec	22:05:08	592	-1.0	-1.5	-0.5	28	16.71
18-10-dec	23:05:08	592	-1.3	-1.9	-0.6	28	16.71

18-16-dec	0:05:08	594	-1.7	-2.8	-1.1	26	16.71
18-16-dec	1:05:08	594	-1.7	-2.9	-1.2	26	16.72
18-16-dec	2:05:08	594	-1.6	-2.9	-1.3	26	16.71
18-16-dec	3:05:08	594	-1.5	-2.6	-1.1	26	16.71
18-16-dec	4:05:08	594	-1.6	-2.7	-1.1	26	16.71
18-16-dec	5:05:08	594	-1.7	-2.9	-1.2	26	16.70
18-16-dec	6:05:08	594	-1.8	-2.9	-1.1	26	16.71
18-16-dec	7:05:08	594	-2.1	-3.2	-1.1	26	16.71
18-16-dec	8:05:08	594	0.0	-0.5	-0.5	27	16.71
18-16-dec	9:05:08	594	4.2	4.0	-0.2	28	16.70
18-16-dec	10:05:08	594	7.9	8.7	0.7	28	16.72
18-16-dec	11:05:08	594	9.0	10.1	1.1	28	16.71
18-16-dec	12:05:08	594	9.4	10.9	1.5	29	16.71
18-16-dec	13:05:08	593	9.7	11.2	1.5	29	16.71
18-16-dec	14:05:08	593	9.9	11.6	1.7	29	16.72
18-16-dec	15:05:08	593	9.3	10.8	1.4	29	16.71
18-16-dec	16:05:08	593	7.6	8.2	0.6	29	16.71
18-16-dec	17:05:08	593	3.6	3.7	0.1	28	16.72
18-16-dec	18:05:08	593	0.5	0.3	-0.3	28	16.72
18-16-dec	19:05:08	593	-0.2	-1.4	-1.2	27	16.71
18-16-dec	20:05:08	593	-0.4	-1.7	-1.3	27	16.71
18-16-dec	21:05:08	593	0.1	-1.7	-1.7	27	16.71
18-16-dec	22:05:08	593	-0.3	-1.6	-1.3	27	16.71
18-16-dec	23:05:08	593	-0.8	-2.1	-1.2	27	16.71

18-22-dec	0:04:56	588	-0.6	-1.9	-1.4	27	16.70
18-22-dec	1:04:56	588	-0.6	-1.8	-1.1	27	16.71
18-22-dec	2:04:56	589	-1.0	-2.1	-1.1	27	16.71
18-22-dec	3:04:56	589	-1.4	-2.5	-1.1	28	16.71
18-22-dec	4:04:56	589	-1.8	-2.9	-1.1	28	16.72
18-22-dec	5:04:56	589	-2.2	-3.6	-1.3	28	16.72
18-22-dec	6:04:56	589	-2.9	-4.3	-1.4	28	16.72
18-22-dec	7:04:56	589	-2.3	-3.8	-1.5	28	16.71
18-22-dec	8:04:56	590	-0.7	-1.5	-0.8	28	16.71
18-22-dec	9:04:56	591	2.6	2.7	0.1	29	16.71
18-22-dec	10:04:56	591	4.7	6.1	1.4	30	16.71
18-22-dec	11:04:56	591	4.1	5.6	1.5	30	16.71
18-22-dec	12:04:56	591	5.1	6.2	1.2	30	16.71
18-22-dec	13:04:56	591	6.1	7.3	1.2	30	16.72
18-22-dec	14:04:56	591	5.7	7.2	1.5	30	16.70
18-22-dec	15:04:56	591	5.0	6.4	1.4	30	16.71
18-22-dec	16:04:56	592	3.1	3.7	0.7	29	16.72
18-22-dec	17:04:56	592	0.6	0.2	-0.4	29	16.70
18-22-dec	18:04:56	592	-0.3	-1.3	-1.0	29	16.72
18-22-dec	19:04:56	593	-1.7	-2.6	-0.9	29	16.71
18-22-dec	20:04:56	593	-2.7	-3.7	-1.0	28	16.72
18-22-dec	21:04:56	593	-3.0	-4.2	-1.2	29	16.71
18-22-dec	22:04:56	593	-2.8	-4.0	-1.2	29	16.70
18-22-dec	23:04:56	593	-3.3	-4.2	-0.8	29	16.72

BGI PQ200 Air Sar	nplin	g Syste	m Downloaded	2018 29 dec 12:	16:30
Job Details: Job Name: 18Dec29D.JOB Version: 5.62 Serial No: 2366		Job Coo Site Nam Station Coo Operato	ne: le: 2366D rs:	2 2 -	
Pump Time: 4322:41 Flags:				<u> </u>	
Max Min Avg Units BP 590 581 585 mmHg TA -4.9 -11.4 -8.7 °C Q 16.71 Lpm QCV 0.54 % Max overheat 2.6 °C °C occured 28-dec 13:44:35 Notes 1:	Start:	nformation: Date dd-mmm 18-28-dec 18-29-dec 23:59	Time hh:mm:ss 0:00:08 0:00:04	Mass Concentr Filter ID: JB Final Wt: Initial Wt: Delta Wt: Total Vol: Mass Conc:	ation Data:
Notes 2: Temps, 'C					—— ТА ТГ
-2 -4 -6 -8 -10 -12 -14 0 5			15	20	25
	E	lapsed Time, Hr	5		

18-28-dec	0:05:08	582	-8.7	-9.1	-0.4	27	16.70
18-28-dec	1:05:08	582	-9.0	-9.5	-0.4	27	16.71
18-28-dec	2:05:08	583	-9.5	-10.0	-0.6	27	16.71
18-28-dec	3:05:08	583	-9.6	-10.3	-0.7	27	16.71
18-28-dec	4:05:08	583	-9.6	-10.3	-0.6	27	16.71
18-28-dec	5:05:08	583	-9.5	-10.1	-0.6	28	16.70
18-28-dec	6:05:08	584	-9.7	-10.1	-0.5	28	16.69
18-28-dec	7:05:08	584	-9.8	-10.4	-0.6	28	16.70
18-28-dec	8:05:08	585	-9.3	-9.7	-0.4	28	16.72
18-28-dec	9:05:08	585	-8.4	-7.7	0.7	29	16.71
18-28-dec	10:05:08	585	-7.6	-6.4	1.2	29	16.71
18-28-dec	11:05:08	585	-6.6	-5.0	1.6	29	16.72
18-28-dec	12:05:08	585	-6.3	-4.6	1.6	30	16.72
18-28-dec	13:05:08	585	-5.8	-4.0	1.8	30	16.71
18-28-dec	14:05:08	586	-5.5	-3.8	1.7	30	16.71
18-28-dec	15:05:08	586	-6.0	-4.5	1.5	30	16.72
18-28-dec	16:05:08	587	-7.4	-6.5	0.8	30	16.71
18-28-dec	17:05:08	587	-9.1	-9.5	-0.4	29	16.72
18-28-dec	18:05:08	588	-9.9	-10.6	-0.7	29	16.71
18-28-dec	19:05:08	588	-10.2	-11.0	-0.8	29	16.71
18-28-dec	20:05:08	589	-10.5	-11.4	-0.9	29	16.72
18-28-dec	21:05:08	589	-10.7	-11.6	-0.9	29	16.71
18-28-dec	22:05:08	589	-10.9	-11.8	-0.9	29	16.71
18-28-dec	23:05:08	590	-11.1	-12.0	-0.8	29	16.71

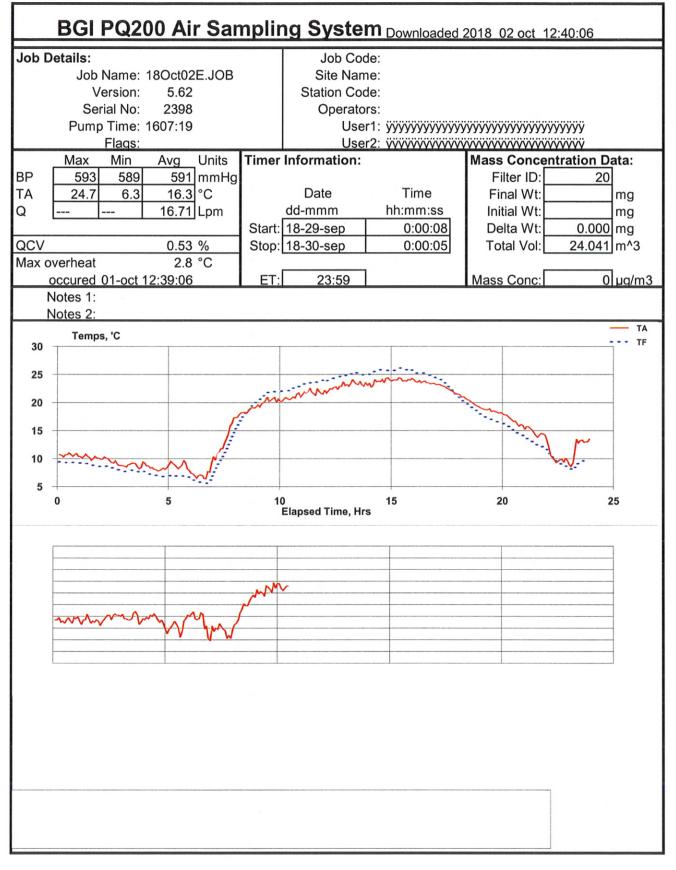
Collocated Monitor 2398E

PM₁₀ Sampler Summary

October 1, 2018 - December 31, 2018

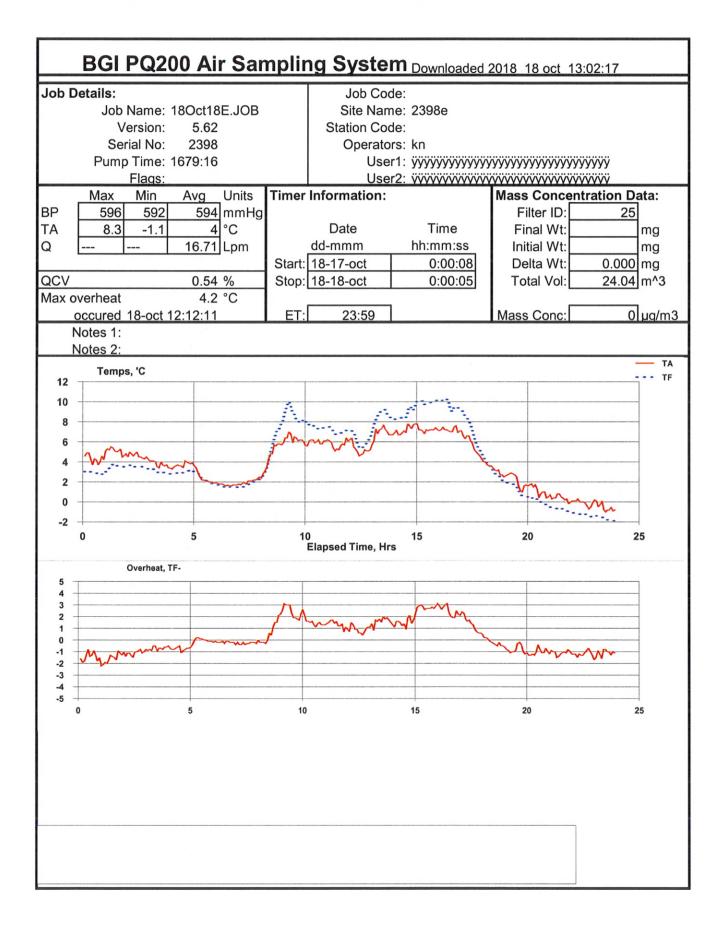
AQS ID:

Network: Alton Coal Development

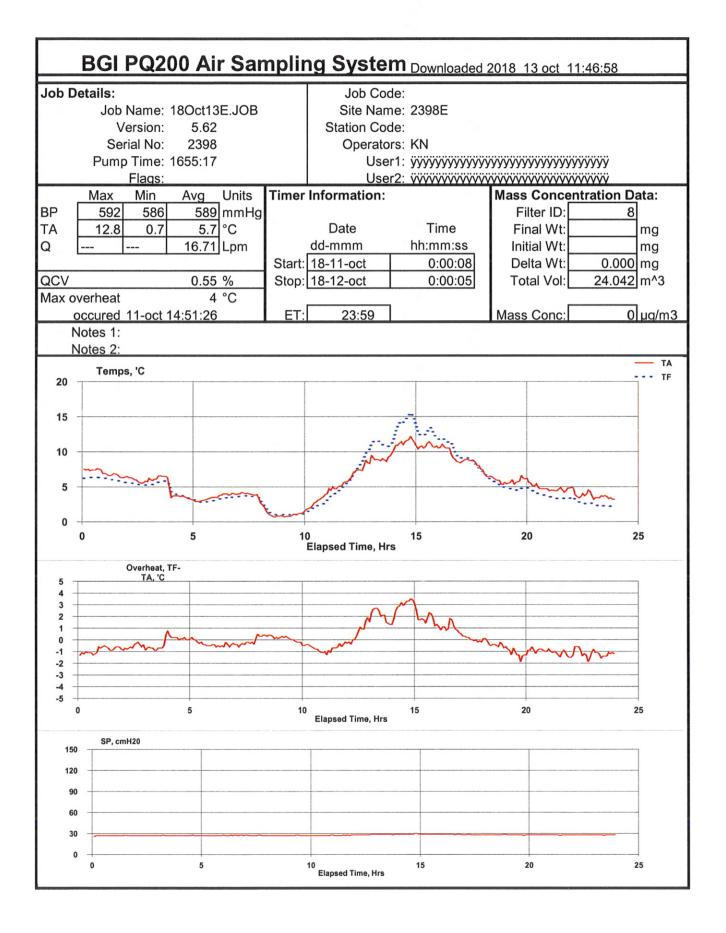

Site: Coal Hollow

Sampler ID: Coal Hollow-E

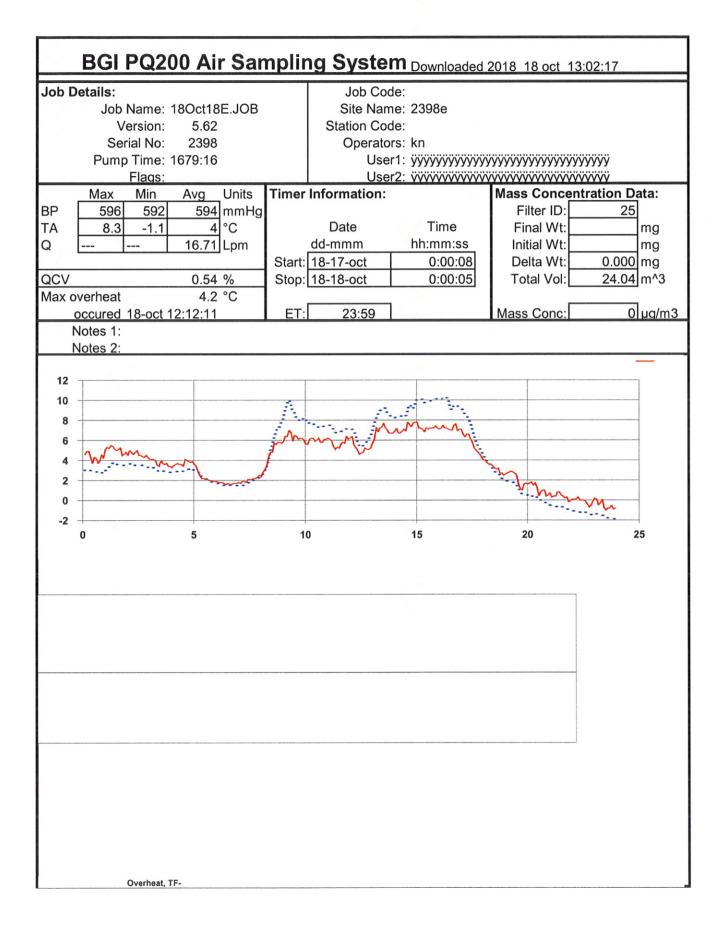
Sampler Type: BGI FRM Single

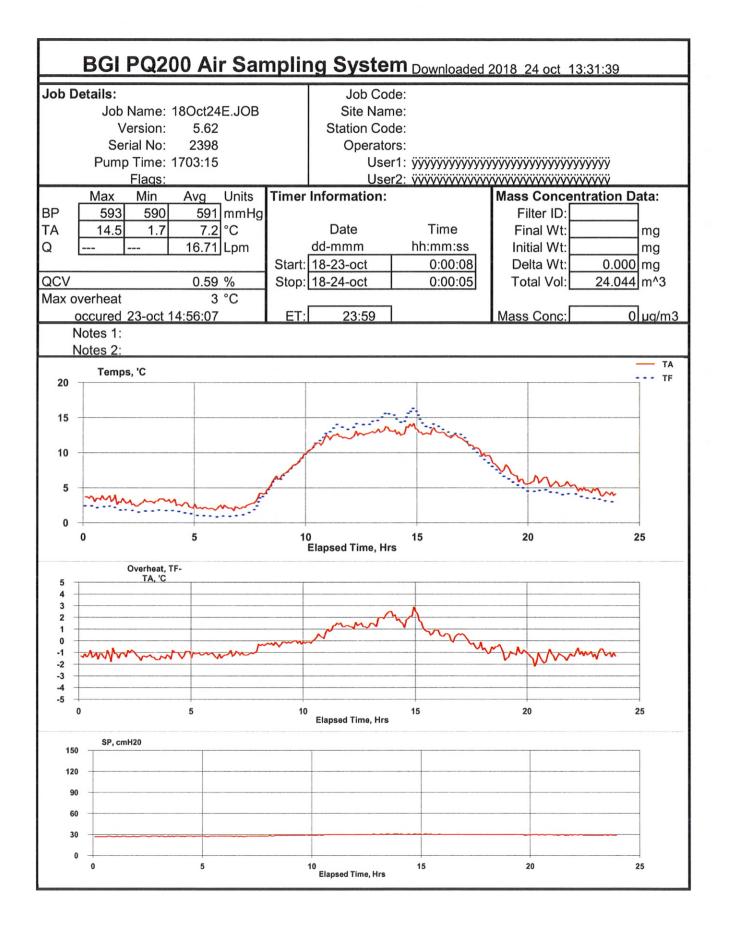

	Filter	Concentration (µg/m3)	Concentration (µg/m3)	Sample Period	Sample Volume	Std Volume	Tare	Mass Gross	Net		
Date	ID	LTP	STP	(hr:min)	(m3)	(m3)	(mg)	(mg)	(mg)	Flag	Comments
10/05/18	P2950127	5.0	6.2	23:59	24.0	19.7	394.3662	394.4886	0.1224		
10/11/18	P2950421	5.5	6.6	23:59	24.0	19.9	391.4853	391.6185	0.1332		
10/17/18	P2950426	14.3	17.0	23:59	24.0	20.2	390.7927	391.1371	0.3444		
10/23/18	P2951632	3.9	4.7	23:59	24.0	19.9	392.2438	392.3389	0.0951		
10/29/18	P2951637	Invalid - AG	Invalid - AG	13:29	13.5	11.1	394.0511	395.2278	1.1767	SP	
11/04/18	P2951920	4.7	5.7	23:59	24.0	19.9	397.8135	397.9287	0.1152		
11/10/18	P2951925	40.6	48.4	23:59	24.0	20.2	396.4090	397.3857	0.9767		
11/16/18	P2951930	24.9	29.9	23:59	24.0	20.0		395.8006			
11/22/18	P2952184	11.0	13.1	24:00	24.0	20.3	392.3320	392.5988	0.2668		
11/28/18	P2952191	176.1	211.2	23:59	24.0	20.0	398.3554	402.5907	4.2353		
12/04/18	P2952458	2.7	3.1	23:59	24.0	21.1	396.9192	396.9851	0.0659		
12/10/18	P2952463	7.9	9.3	23:59	24.0	20.5	393.7009	393.8929	0.1920		
12/16/18	P2952670	6.5	7.7	23:59	24.0	20.3		384.4488			
12/22/18	P2952675	12.0	14.1	24:00	24.0	20.3		395.5444			
12/28/18	P2952680	18.6	21.5	23:59	24.0	20.8	399.2334	399.6819	0.4485		
11/26/18	P2952190		Field Bla	nk			395.5004	395.5174	0.0170		
	# Valid 14	Recovery 93%	Average 28.5	St. Dev. 54.0	Max 211.2	Min 3.1					

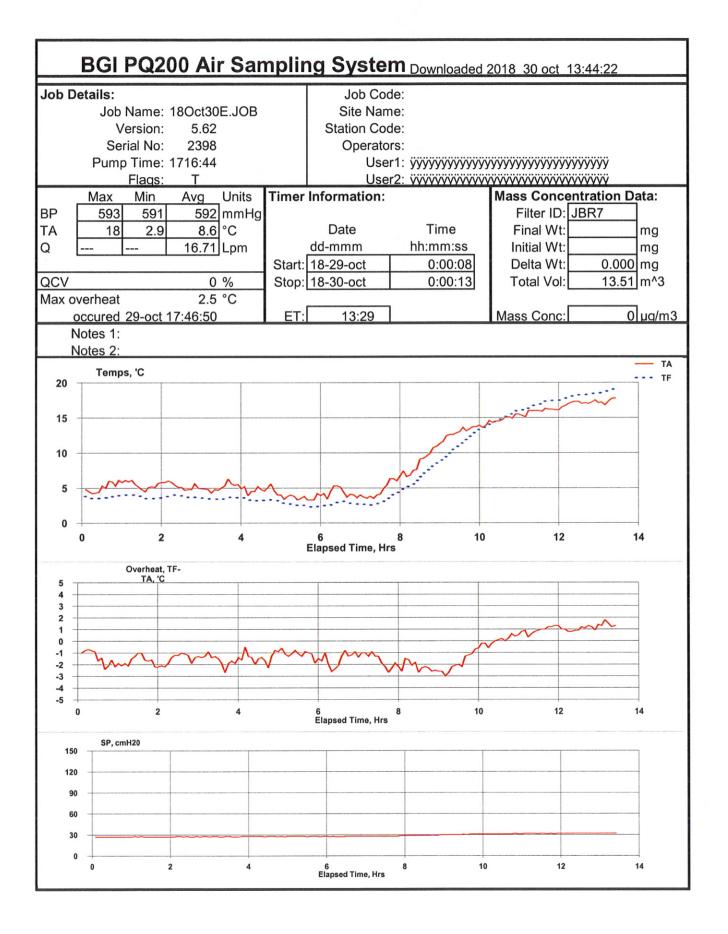
Inter-Mountain Laboratories' (IML) data validation is limited by the provided information. Data have been validated based on laboratory QC, field observations and other information available to IML. Additional data validation based on information not provided to IML may be required. According to 40 CFR 58.15 final responsibilities for data review and validation lies with each agency submitting data to AQS.

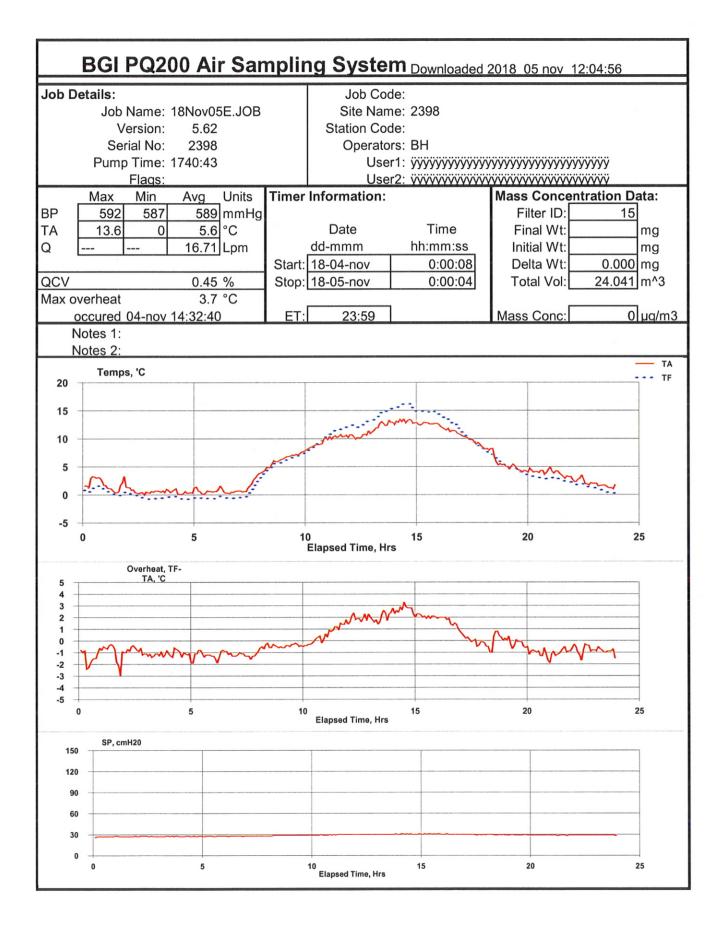


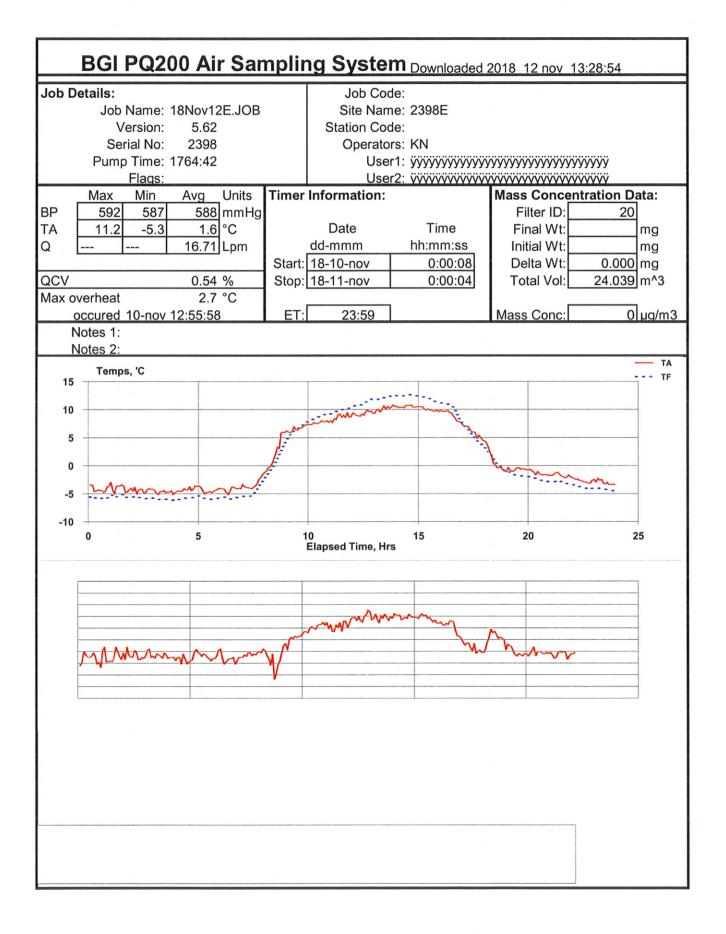
.


18-29-sep	0:05:08	591	10.6	9.3	-1.3	30	16.71
18-29-sep	1:05:08	591	10.2	8.8	-1.3	31	16.71
18-29-sep	2:05:08	591	9.3	8.2	-1.1	31	16.71
18-29-sep	3:05:08	591	8.9	7.7	-1.1	32	16.71
18-29-sep	4:05:08	591	8.3	7.0	-1.3	32	16.70
18-29-sep	5:05:08	591	8.7	6.9	-1.8	33	16.71
18-29-sep	6:05:08	591	7.5	6.0	-1.5	33	16.71
18-29-sep	7:05:08	592	13.6	11.4	-2.2	33	16.70
18-29-sep	8:05:08	592	18.6	18.3	-0.3	34	16.71
18-29-sep	9:05:08	593	20.3	21.6	1.3	36	16.71
18-29-sep	10:05:08	592	20.9	22.4	1.5	36	16.71
18-29-sep	11:05:08	592	21.9	23.6	1.7	36	16.71
18-29-sep	12:05:08	592	22.7	24.4	1.7	36	16.71
18-29-sep	13:05:08	592	23.4	25.0	1.7	36	16.71
18-29-sep	14:05:08	591	23.8	25.6	1.8	37	16.70
18-29-sep	15:05:08	591	24.1	25.8	1.8	37	16.70
18-29-sep	16:05:08	591	23.5	25.0	1.5	37	16.72
18-29-sep	17:05:08	591	22.4	22.9	0.5	36	16.71
18-29-sep	18:05:08	590	20.2	19.4	-0.8	36	16.71
18-29-sep	19:05:08	591	18.5	17.0	-1.5	36	16.70
18-29-sep	20:05:08	591	16.6	15.1	-1.6	36	16.70
18-29-sep	21:05:08	591	14.6	12.6	-2.0	36	16.70
18-29-sep	22:05:08	591	9.9	9.5	-0.5	36	16.71
18-29-sep	23:05:08	591	12.2	9.1	-3.1	35	16.72

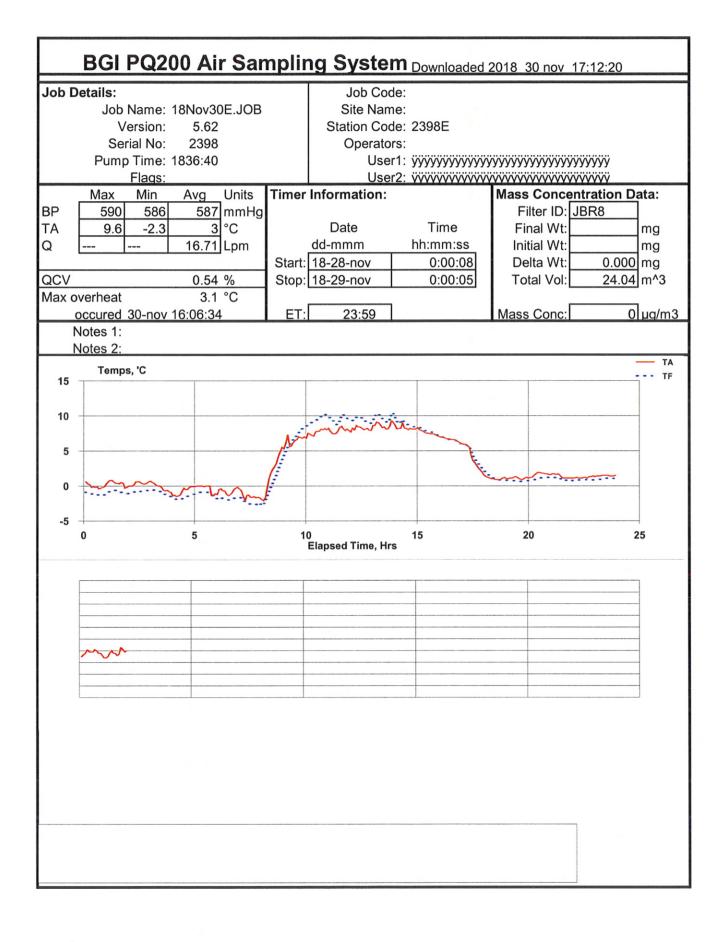

18-17-oct	0:05:08	594	4.4	2.9	-1.5	25	16.72
18-17-oct	1:05:08	594	5.0	3.5	-1.5	26	16.71
18-17-oct	2:05:08	594	4.6	3.5	-1.1	26	16.71
18-17-oct	3:05:08	594	3.7	3.0	-0.7	26	16.71
18-17-oct	4:05:08	594	3.7	3.0	-0.7	26	16.71
18-17-oct	5:05:08	594	2.3	2.2	0.0	26	16.71
18-17-oct	6:05:08	595	1.7	1.5	-0.2	26	16.71
18-17-oct	7:05:08	595	2.1	1.8	-0.3	26	16.70
18-17-oct	8:05:08	595	4.8	5.5	0.7	27	16.72
18-17-oct	9:05:08	595	6.3	8.7	2.4	28	16.70
18-17-oct	10:05:08	595	6.0	7.5	1.5	28	16.71
18-17-oct	11:05:08	595	5.7	7.0	1.3	28	16.71
18-17-oct	12:05:08	595	5.2	6.1	0.9	28	16.71
18-17-oct	13:05:08	595	7.0	8.6	1.6	28	16.71
18-17-oct	14:05:08	595	7.3	8.8	1.6	28	16.71
18-17-oct	15:05:08	595	7.2	10.0	2.8	28	16.72
18-17-oct	16:05:08	595	7.2	9.7	2.5	28	16.71
18-17-oct	17:05:08	595	5.5	6.8	1.3	28	16.71
18-17-oct	18:05:08	595	3.2	3.0	-0.2	27	16.71
18-17-oct	19:05:08	595	2.1	1.3	-0.8	27	16.71
18-17-oct	20:05:08	595	1.1	0.0	-1.0	27	16.72
18-17-oct	21:05:08	595	0.3	-0.8	-1.1	27	16.72
18-17-oct	22:05:08	595	-0.1	-1.3	-1.2	27	16.71
18-17-oct	23:05:08	595	-0.6	-1.7	-1.1	27	16.70

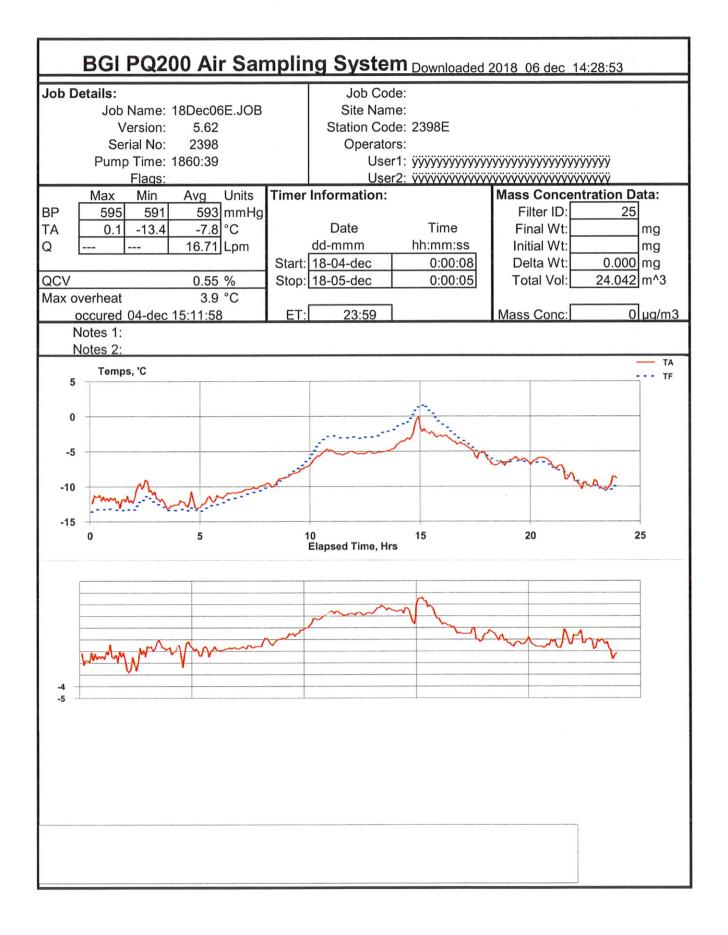

18-11-oct	0:05:08	588	7.4	6.3	-1.1	27	16.71
18-11-oct	1:05:08	588	6.6	5.9	-0.7	27	16.71
18-11-oct	2:05:08	588	5.9	5.4	-0.6	27	16.71
18-11-oct	3:05:08	588	6.0	5.5	-0.5	27	16.72
18-11-oct	4:05:08	588	3.5	3.7	0.1	27	16.71
18-11-oct	5:05:08	588	3.2	2.9	-0.3	27	16.71
18-11-oct	6:05:08	589	3.9	3.4	-0.5	28	16.71
18-11-oct	7:05:08	589	3.8	3.6	-0.2	27	16.72
18-11-oct	8:05:08	590	1.2	1.5	0.3	27	16.71
18-11-oct	9:05:08	590	1.0	1.0	0.0	27	16.72
18-11-oct	10:05:08	590	2.9	2.2	-0.7	27	16.71
18-11-oct	11:05:08	590	5.2	4.5	-0.6	27	16.71
18-11-oct	12:05:08	590	7.7	8.4	0.7	28	16.71
18-11-oct	13:05:08	589	9.1	11.2	2.0	29	16.71
18-11-oct	14:05:08	589	11.3	14.3	3.0	29	16.72
18-11-oct	15:05:08	589	10.8	12.6	1.8	29	16.71
18-11-oct	16:05:08	589	9.8	10.8	1.1	29	16.71
18-11-oct	17:05:08	589	8.4	8.5	0.1	28	16.71
18-11-oct	18:05:08	590	6.1	5.7	-0.3	28	16.71
18-11-oct	19:05:08	590	5.8	4.7	-1.2	28	16.72
18-11-oct	20:05:08	591	5.0	4.1	-0.9	28	16.71
18-11-oct	21:05:08	591	4.6	3.4	-1.2	28	16.71
18-11-oct	22:05:08	591	3.9	2.8	-1.1	28	16.71
18-11-oct	23:05:08	591	3.4	2.2	-1.3	28	16.71

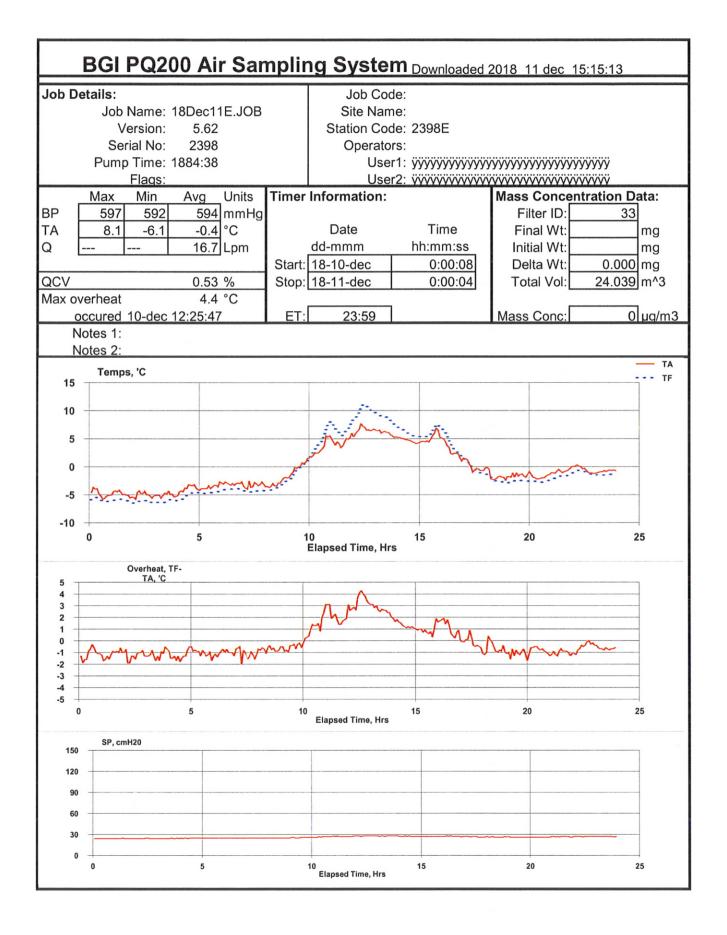

18-17-oct	0:05:08	594	4.4	2.9	-1.5	25	16.72
18-17-oct	1:05:08	594	5.0	3.5	-1.5	26	16.72
18-17-oct	2:05:08	594	4.6	3.5	-1.1	26	16.71
18-17-oct	3:05:08	594	3.7	3.0	-0.7	26	16.71
18-17-oct	4:05:08	594	3.7	3.0	-0.7	26	16.71
18-17-oct	5:05:08	594	2.3	2.2	0.0	26	16.71
18-17-oct	6:05:08	595	1.7	1.5	-0.2	26	16.71
18-17-oct	7:05:08	595	2.1	1.8	-0.3	26	16.70
18-17-oct	8:05:08	595	4.8	5.5	0.7	27	16.72
18-17-oct	9:05:08	595	6.3	8.7	2.4	28	16.72
18-17-oct	10:05:08	595	6.0	7.5	1.5	28	16.71
18-17-oct	11:05:08	595	5.7	7.0	1.3	28	16.71
18-17-oct	12:05:08	595	5.2	6.1	0.9	28	16.71
18-17-oct	13:05:08	595	7.0	8.6	1.6	28	16.71
18-17-oct	14:05:08	595	7.3	8.8	1.6	28	16.71
18-17-oct	15:05:08	595	7.2	10.0	2.8	28	16.72
18-17-oct	16:05:08	595	7.2	9.7	2.5	28	16.71
18-17-oct	17:05:08	595	5.5	6.8	1.3	28	16.71
18-17-oct	18:05:08	595	3.2	3.0	-0.2	27	16.71
18-17-oct	19:05:08	595	2.1	1.3	-0.8	27	16.71
18-17-oct	20:05:08	595	1.1	0.0	-1.0	27	16.72
18-17-oct	21:05:08	595	0.3	-0.8	-1.1	27	16.72
18-17-oct	22:05:08	595	-0.1	-1.3	-1.2	27	16.71
18-17-oct	23:05:08	595	-0.6	-1.7	-1.1	27	16.70

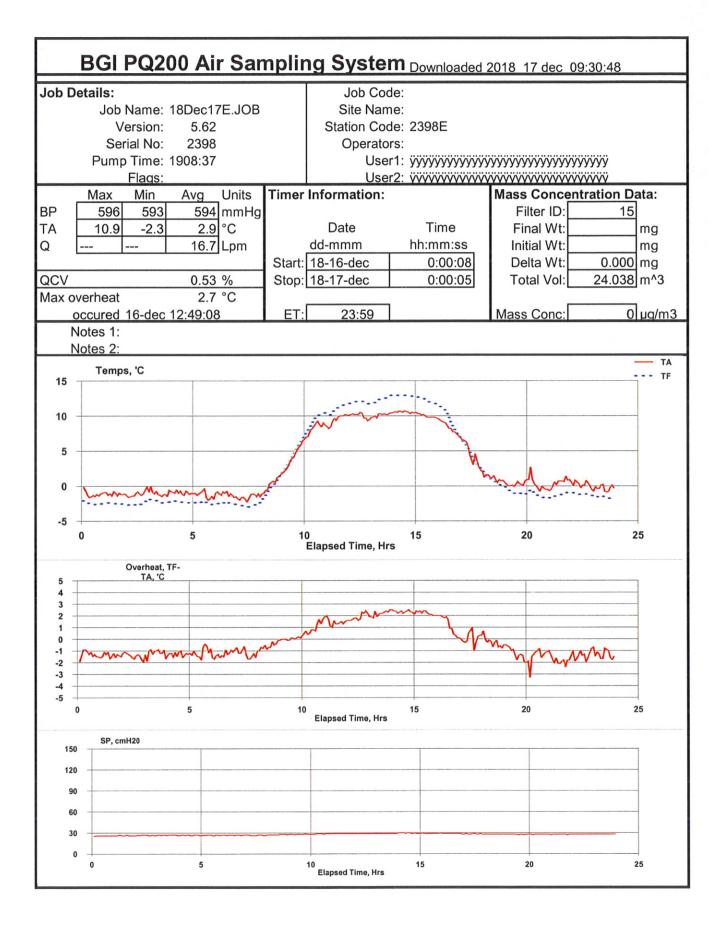

18-23-oct	0:05:08	592	3.5	2.3	-1.2	27	16.72
18-23-oct	1:05:08	592	3.2	2.0	-1.2	27	16.71
18-23-oct	2:05:08	592	2.8	1.6	-1.2	28	16.73
18-23-oct	3:05:08	592	3.1	1.7	-1.4	28	16.72
18-23-oct	4:05:08	592	2.6	1.5	-1.1	28	16.72
18-23-oct	5:05:08	592	2.1	1.0	-1.1	28	16.73
18-23-oct	6:05:08	592	2.2	1.0	-1.2	28	16.72
18-23-oct	7:05:08	592	2.9	1.9	-1.0	28	16.73
18-23-oct	8:05:08	593	5.7	5.4	-0.3	29	16.72
18-23-oct	9:05:08	593	8.4	8.3	-0.1	29	16.73
18-23-oct	10:05:08	593	11.3	11.4	0.2	30	16.71
18-23-oct	11:05:08	593	12.2	13.5	1.2	30	16.72
18-23-oct	12:05:08	592	12.7	14.0	1.3	30	16.71
18-23-oct	13:05:08	592	13.2	15.1	2.0	31	16.72
18-23-oct	14:05:08	592	13.3	15.2	1.9	30	16.71
18-23-oct	15:05:08	591	12.9	14.0	1.1	30	16.71
18-23-oct	16:05:08	591	12.4	12.8	0.4	30	16.72
18-23-oct	17:05:08	591	10.8	10.6	-0.2	30	16.72
18-23-oct	18:05:08	591	8.4	7.7	-0.8	30	16.71
18-23-oct	19:05:08	592	6.5	5.4	-1.1	30	16.73
18-23-oct	20:05:08	592	6.0	4.6	-1.5	30	16.72
18-23-oct	21:05:08	592	5.5	4.1	-1.3	29	16.72
18-23-oct	22:05:08	592	4.8	3.7	-1.1	29	16.73
18-23-oct	23:05:08	592	4.2	3.1	-1.1	29	16.70

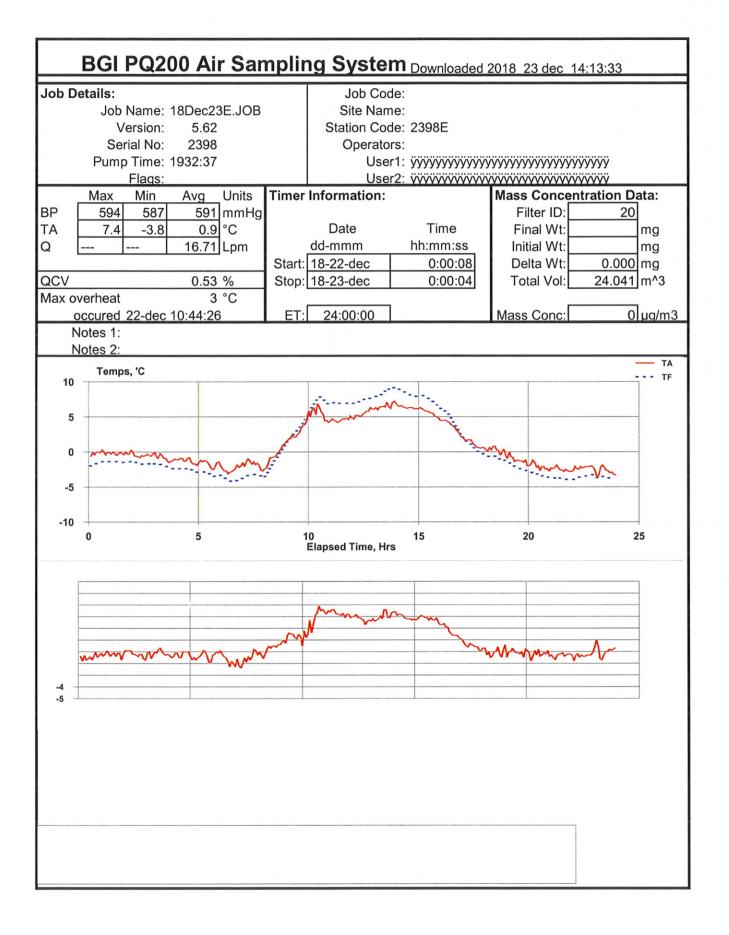

18-29-oct	0:05:08	593	5.1	3.7	-1.5	27	16.72
18-29-oct	1:05:08	593	5.4	3.7	-1.7	27	16.72
18-29-oct	2:05:08	592	5.3	3.8	-1.5	28	16.71
18-29-oct	3:05:08	592	5.1	3.5	-1.6	28	16.72
18-29-oct	4:05:08	592	4.7	3.3	-1.4	28	16.71
18-29-oct	5:05:08	592	3.6	2.5	-1.1	28	16.71
18-29-oct	6:05:08	592	4.3	2.7	-1.6	28	16.71
18-29-oct	7:05:08	592	4.9	3.2	-1.7	28	16.71
18-29-oct	8:05:08	592	8.9	6.6	-2.2	29	16.71
18-29-oct	9:05:08	593	13.0	11.2	-1.8	31	16.72
18-29-oct	10:05:08	592	14.7	14.8	0.1	31	16.71
18-29-oct	11:05:08	592	15.9	16.9	0.9	32	16.70
18-29-oct	12:05:08	592	17.1	18.1	1.0	32	16.72
18-29-oct	13:05:08	591	17.4	18.8	1.4	32	16.72

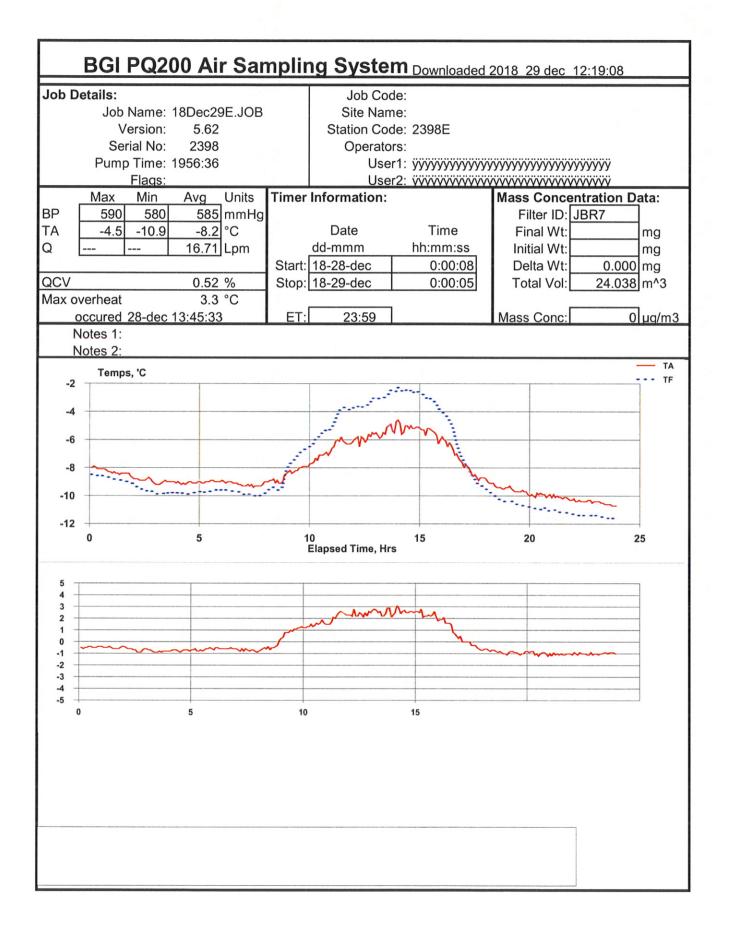

18-04-nov	0:05:08	592	2.4	1.1	-1.4	27	16.71
18-04-nov	1:05:08	592	1.3	0.2	-1.0	27	16.70
18-04-nov	2:05:08	592	0.5	-0.3	-0.8	27	16.72
18-04-nov	3:05:08	591	0.6	-0.5	-1.2	27	16.71
18-04-nov	4:05:08	591	0.5	-0.6	-1.1	27	16.71
18-04-nov	5:05:08	591	0.6	-0.6	-1.2	28	16.71
18-04-nov	6:05:08	591	0.7	-0.5	-1.2	28	16.71
18-04-nov	7:05:08	591	2.0	0.8	-1.2	28	16.71
18-04-nov	8:05:08	591	5.4	5.0	-0.5	29	16.70
18-04-nov	9:05:08	591	7.2	6.8	-0.4	29	16.71
18-04-nov	10:05:08	591	9.0	9.0	0.0	29	16.71
18-04-nov	11:05:08	591	10.4	11.5	1.1	30	16.71
18-04-nov	12:05:08	590	10.6	12.5	2.0	30	16.72
18-04-nov	13:05:08	589	12.5	14.6	2.1	30	16.71
18-04-nov	14:05:08	589	13.1	15.7	2.6	30	16.71
18-04-nov	15:05:08	589	12.6	14.7	2.1	31	16.71
18-04-nov	16:05:08	588	11.4	13.0	1.6	30	16.71
18-04-nov	17:05:08	588	9.5	9.5	0.0	30	16.71
18-04-nov	18:05:08	588	6.6	6.6	0.0	29	16.71
18-04-nov	19:05:08	588	4.6	4.3	-0.2	29	16.71
18-04-nov	20:05:08	588	4.2	3.1	-1.1	29	16.72
18-04-nov	21:05:08	588	3.5	2.6	-0.9	29	16.72
18-04-nov	22:05:08	588	2.3	1.6	-0.8	29	16.71
18-04-nov	23:05:08	588	1.5	0.6	-0.9	29	16.70


18-10-nov	0:05:08	592	-4.1	-5.7	-1.6	26	16.71
18-10-nov	1:05:08	591	-4.2	-5.5	-1.4	26	16.72
18-10-nov	2:05:08	591	-4.4	-5.8	-1.4	27	16.72
18-10-nov	3:05:08	590	-4.7	-6.1	-1.3	27	16.71
18-10-nov	4:05:08	590	-4.1	-5.8	-1.7	27	16.73
18-10-nov	5:05:08	590	-4.5	-5.8	-1.4	27	16.71
18-10-nov	6:05:08	590	-4.2	-5.7	-1.6	27	16.71
18-10-nov	7:05:08	589	-3.1	-4.5	-1.4	28	16.72
18-10-nov	8:05:08	590	2.7	1.0	-1.7	29	16.71
18-10-nov	9:05:08	590	6.7	6.6	-0.1	30	16.71
18-10-nov	10:05:08	590	7.7	8.7	1.0	31	16.71
18-10-nov	11:05:08	589	8.7	9.9	1.2	31	16.73
18-10-nov	12:05:08	589	9.3	11.2	1.9	31	16.71
18-10-nov	13:05:08	588	10.3	12.1	1.9	31	16.72
18-10-nov	14:05:08	588	10.5	12.5	2.0	31	16.70
18-10-nov	15:05:08	587	10.0	11.8	1.8	31	16.72
18-10-nov	16:05:08	587	8.8	10.0	1.2	31	16.70
18-10-nov	17:05:08	587	5.8	5.2	-0.6	30	16.72
18-10-nov	18:05:08	587	0.7	0.8	0.1	30	16.70
18-10-nov	19:05:08	587	-0.7	-1.7	-1.0	30	16.71
18-10-nov	20:05:08	587	-1.4	-2.5	-1.1	30	16.72
18-10-nov	21:05:08	587	-1.8	-3.1	-1.3	30	16.70
18-10-nov	22:05:08	587	-2.7	-3.9	-1.2	30	16.71
18-10-nov	23:05:08	587	-3.0	-4.3	-1.2	29	16.71


18-16-nov	0:05:08	592	-0.7	-1.8	-1.2	28	16.72
18-16-nov	1:05:08	592	0.0	-1.5	-1.5	28	16.71
18-16-nov	2:05:08	592	-0.2	-1.5	-1.3	29	16.71
18-16-nov	3:05:08	591	0.1	-1.2	-1.3	29	16.72
18-16-nov	4:05:08	591	-1.0	-1.9	-0.8	29	16.71
18-16-nov	5:05:08	591	0.2	-1.6	-1.8	29	16.72
18-16-nov	6:05:08	591	0.4	-0.8	-1.2	29	16.71
18-16-nov	7:05:08	591	0.3	-0.7	-1.0	29	16.71
18-16-nov	8:05:08	592	5.0	3.9	-1.1	30	16.73
18-16-nov	9:05:08	592	11.4	10.0	-1.3	31	16.72
18-16-nov	10:05:08	592	12.5	13.3	0.8	32	16.72
18-16-nov	11:05:08	591	13.1	14.4	1.3	32	16.71
18-16-nov	12:05:08	591	13.4	15.0	1.5	33	16.72
18-16-nov	13:05:08	590	13.1	15.0	1.9	33	16.71
18-16-nov	14:05:08	590	13.1	14.6	1.6	32	16.71
18-16-nov	15:05:08	590	12.5	13.9	1.4	33	16.72
18-16-nov	16:05:08	590	11.0	11.7	0.7	32	16.71
18-16-nov	17:05:08	590	4.6	5.5	0.9	32	16.72
18-16-nov	18:05:08	590	2.9	2.2	-0.7	31	16.72
18-16-nov	19:05:08	590	1.6	0.8	-0.8	31	16.72
18-16-nov	20:05:08	590	0.9	-0.1	-1.0	31	16.71
18-16-nov	21:05:08	590	1.2	-0.1	-1.2	31	16.72
18-16-nov	22:05:08	590	0.8	-0.4	-1.1	31	16.71
18-16-nov	23:05:08	590	-0.7	-1.6	-0.9	31	16.72


18-28-nov	0:05:08	589	0.0	-1.2	-1.2	29	16.70
18-28-nov	1:05:08	589	0.4	-0.9	-1.2	30	16.70
18-28-nov	2:05:08	589	0.4	-0.8	-1.2	31	16.71
18-28-nov	3:05:08	588	-0.4	-1.0	-0.7	31	16.72
18-28-nov	4:05:08	588	-0.7	-1.6	-1.0	31	16.71
18-28-nov	5:05:08	588	-0.4	-1.1	-0.7	32	16.72
18-28-nov	6:05:08	588	-0.7	-1.8	-1.1	32	16.72
18-28-nov	7:05:08	587	-1.5	-2.4	-0.9	31	16.73
18-28-nov	8:05:08	588	2.3	0.6	-1.7	32	16.71
18-28-nov	9:05:08	588	6.5	6.9	0.3	34	16.71
18-28-nov	10:05:08	588	7.8	9.5	1.8	34	16.71
18-28-nov	11:05:08	588	7.9	9.5	1.6	34	16.69
18-28-nov	12:05:08	587	8.2	9.4	1.2	34	16.71
18-28-nov	13:05:08	586	8.6	9.8	1.1	34	16.70
18-28-nov	14:05:08	586	8.2	8.8	0.5	34	16.72
18-28-nov	15:05:08	586	7.5	7.7	0.2	34	16.71
18-28-nov	16:05:08	587	6.6	6.5	0.0	34	16.72
18-28-nov	17:05:08	587	3.8	4.2	0.5	34	16.71
18-28-nov	18:05:08	587	1.0	1.1	0.1	34	16.71
18-28-nov	19:05:08	587	1.1	0.7	-0.4	34	16.71
18-28-nov	20:05:08	587	1.6	1.0	-0.7	33	16.72
18-28-nov	21:05:08	587	1.3	0.9	-0.4	33	16.70
18-28-nov	22:05:08	587	1.2	0.8	-0.4	34	16.70
18-28-nov	23:05:08	586	1.4	1.0	-0.5	34	16.71


18-04-dec	0:05:08	593	-11.7	-13.3	-1.6	26	16.72
18-04-dec	1:05:08	593	-12.1	-13.4	-1.3	26	16.71
18-04-dec	2:05:08	592	-10.3	-12.1	-1.8	27	16.71
18-04-dec	3:05:08	593	-12.5	-13.1	-0.6	27	16.72
18-04-dec	4:05:08	593	-12.4	-13.3	-0.9	27	16.72
18-04-dec	5:05:08	593	-11.9	-12.8	-1.0	27	16.71
18-04-dec	6:05:08	593	-10.9	-11.7	-0.8	27	16.71
18-04-dec	7:05:08	593	-10.1	-10.8	-0.6	27	16.72
18-04-dec	8:05:08	594	-9.3	-9.4	-0.2	28	16.72
18-04-dec	9:05:08	594	-7.7	-7.2	0.5	28	16.72
18-04-dec	10:05:08	594	-5.4	-3.7	1.6	29	16.71
18-04-dec	11:05:08	594	-5.3	-3.0	2.2	29	16.71
18-04-dec	12:05:08	594	-5.3	-3.0	2.2	29	16.72
18-04-dec	13:05:08	594	-4.8	-2.1	2.6	29	16.72
18-04-dec	14:05:08	593	-2.4	-0.1	2.3	30	16.71
18-04-dec	15:05:08	593	-2.5	0.4	2.8	30	16.71
18-04-dec	16:05:08	593	-3.5	-2.5	1.0	29	16.73
18-04-dec	17:05:08	593	-5.1	-4.7	0.4	29	16.71
18-04-dec	18:05:08	593	-6.7	-6.3	0.4	29	16.71
18-04-dec	19:05:08	593	-6.2	-6.5	-0.3	29	16.72
18-04-dec	20:05:08	593	-6.2	-6.7	-0.5	29	16.71
18-04-dec	21:05:08	592	-7.9	-8.1	-0.1	28	16.72
18-04-dec	22:05:08	593	-9.7	-9.7	0.0	28	16.71
18-04-dec	23:05:08	592	-9.7	-10.4	-0.6	28	16.71


18-10-dec	0:05:08	596	-4.9	-6.0	-1.1	24	16.70
18-10-dec	1:05:08	596	-4.9	-6.0	-1.2	24	16.71
18-10-dec	2:05:08	596	-5.0	-6.3	-1.3	24	16.71
18-10-dec	3:05:08	595	-5.1	-6.2	-1.1	24	16.70
18-10-dec	4:05:08	595	-3.9	-5.1	-1.3	25	16.71
18-10-dec	5:05:08	595	-3.5	-4.6	-1.1	25	16.71
18-10-dec	6:05:08	595	-3.0	-4.0	-1.0	25	16.72
18-10-dec	7:05:08	595	-3.3	-4.4	-1.1	25	16.71
18-10-dec	8:05:08	595	-2.9	-3.6	-0.7	25	16.71
18-10-dec	9:05:08	595	0.1	-0.5	-0.5	26	16.71
18-10-dec	10:05:08	596	3.5	4.8	1.3	27	16.72
18-10-dec	11:05:08	595	4.6	6.7	2.1	27	16.70
18-10-dec	12:05:08	594	6.7	10.0	3.4	28	16.71
18-10-dec	13:05:08	594	5.9	8.4	2.6	28	16.71
18-10-dec	14:05:08	593	4.6	5.9	1.3	27	16.72
18-10-dec	15:05:08	593	5.2	6.2	1.0	27	16.71
18-10-dec	16:05:08	593	2.7	3.7	1.1	27	16.71
18-10-dec	17:05:08	593	-0.1	-0.3	-0.2	27	16.72
18-10-dec	18:05:08	593	-1.8	-2.4	-0.6	26	16.71
18-10-dec	19:05:08	593	-1.5	-2.6	-1.1	26	16.72
18-10-dec	20:05:08	593	-1.8	-2.6	-0.8	26	16.72
18-10-dec	21:05:08	593	-0.7	-1.7	-1.0	27	16.72
18-10-dec	22:05:08	593	-0.5	-1.1	-0.5	27	16.71
18-10-dec	23:05:08	593	-0.8	-1.5	-0.7	27	16.71

18-16-dec	0:05:08	595	-1.1	-2.5	-1.3	26	16.71
18-16-dec	1:05:08	595	-1.2	-2.5	-1.4	26	16.71
18-16-dec	2:05:08	595	-1.1	-2.5	-1.5	27	16.71
18-16-dec	3:05:08	595	-1.0	-2.2	-1.2	27	16.71
18-16-dec	4:05:08	595	-1.0	-2.2	-1.3	27	16.72
18-16-dec	5:05:08	595	-1.3	-2.4	-1.2	27	16.71
18-16-dec	6:05:08	595	-1.2	-2.5	-1.3	27	16.71
18-16-dec	7:05:08	595	-1.6	-2.8	-1.2	27	16.71
18-16-dec	8:05:08	595	0.4	-0.1	-0.6	27	16.72
18-16-dec	9:05:08	596	4.4	4.5	0.1	28	16.72
18-16-dec	10:05:08	596	8.4	9.4	1.0	29	16.71
18-16-dec	11:05:08	596	9.6	11.0	1.4	29	16.72
18-16-dec	12:05:08	595	10.0	11.9	1.9	29	16.72
18-16-dec	13:05:08	595	10.2	12.4	2.2	29	16.70
18-16-dec	14:05:08	595	10.5	12.9	2.3	30	16.72
18-16-dec	15:05:08	595	9.9	12.1	2.2	29	16.71
18-16-dec	16:05:08	594	8.2	9.4	1.2	29	16.71
18-16-dec	17:05:08	595	4.3	4.4	0.1	28	16.71
18-16-dec	18:05:08	594	1.0	0.7	-0.3	28	16.71
18-16-dec	19:05:08	594	0.3	-1.0	-1.3	28	16.71
18-16-dec	20:05:08	594	0.1	-1.3	-1.4	28	16.70
18-16-dec	21:05:08	594	0.5	-1.3	-1.8	28	16.71
18-16-dec	22:05:08	594	0.1	-1.2	-1.3	28	16.71
18-16-dec	23:05:08	594	-0.3	-1.7	-1.4	28	16.71

18-22-dec	0:04:46	589	-0.1	-1.6	-1.4	29	16.69
18-22-dec	1:04:46	589	-0.2	-1.4	-1.2	30	16.71
18-22-dec	2:04:46	589	-0.5	-1.7	-1.2	30	16.71
18-22-dec	3:04:46	589	-1.0	-2.1	-1.1	30	16.71
18-22-dec	4:04:46	589	-1.3	-2.5	-1.2	30	16.70
18-22-dec	5:04:46	590	-1.7	-3.2	-1.5	30	16.71
18-22-dec	6:04:46	590	-2.4	-4.0	-1.5	30	16.72
18-22-dec	7:04:46	590	-1.8	-3.4	-1.6	30	16.72
18-22-dec	8:04:46	591	-0.2	-1.0	-0.8	31	16.70
18-22-dec	9:04:46	591	3.1	3.3	0.2	32	16.71
18-22-dec	10:04:46	592	5.4	7.0	1.7	33	16.70
18-22-dec	11:04:46	593	4.6	6.9	2.3	33	16.71
18-22-dec	12:04:46	592	5.5	7.4	1.9	33	16.71
18-22-dec	13:04:46	592	6.6	8.5	2.0	33	16.70
18-22-dec	14:04:46	592	6.3	8.3	2.0	33	16.71
18-22-dec	15:04:46	593	5.5	7.4	1.9	33	16.71
18-22-dec	16:04:46	593	3.6	4.5	0.9	32	16.70
18-22-dec	17:04:46	593	1.1	0.7	-0.5	31	16.71
18-22-dec	18:04:46	593	0.2	-0.8	-1.1	31	16.71
18-22-dec	19:04:46	593	-1.1	-2.2	-1.0	31	16.71
18-22-dec	20:04:46	594	-2.1	-3.3	-1.2	31	16.71
18-22-dec	21:04:46	594	-2.5	-3.8	-1.3	31	16.71
18-22-dec	22:04:46	594	-2.2	-3.6	-1.4	31	16.71
18-22-dec	23:04:46	594	-2.8	-3.7	-0.9	31	16.70

Hourly

18-28-dec	0:05:08	582	-8.1	-8.6	-0.5	25	16.71
18-28-dec	1:05:08	582	-8.5	-9.0	-0.5	25	16.70
18-28-dec	2:05:08	583	-8.9	-9.6	-0.7	26	16.72
18-28-dec	3:05:08	583	-9.0	-9.9	-0.8	26	16.71
18-28-dec	4:05:08	583	-9.1	-9.8	-0.7	26	16.70
18-28-dec	5:05:08	583	-9.0	-9.7	-0.7	26	16.71
18-28-dec	6:05:08	584	-9.1	-9.7	-0.6	26	16.71
18-28-dec	7:05:08	584	-9.2	-10.0	-0.7	26	16.71
18-28-dec	8:05:08	584	-8.8	-9.2	-0.4	26	16.70
18-28-dec	9:05:08	585	-8.1	-7.1	1.0	27	16.70
18-28-dec	10:05:08	585	-7.2	-5.7	1.5	28	16.71
18-28-dec	11:05:08	585	-6.2	-4.0	2.1	28	16.72
18-28-dec	12:05:08	585	-5.8	-3.5	2.4	28	16.73
18-28-dec	13:05:08	586	-5.3	-2.8	2.5	28	16.70
18-28-dec	14:05:08	586	-5.2	-2.5	2.6	28	16.71
18-28-dec	15:05:08	587	-5.6	-3.3	2.3	28	16.72
18-28-dec	16:05:08	587	-6.9	-5.6	1.3	28	16.71
18-28-dec	17:05:08	587	-8.5	-8.8	-0.3	27	16.71
18-28-dec	18:05:08	588	-9.3	-10.1	-0.8	27	16.71
18-28-dec	19:05:08	588	-9.7	-10.6	-0.9	27	16.71
18-28-dec	20:05:08	589	-10.0	-10.9	-1.0	27	16.72
18-28-dec	21:05:08	589	-10.1	-11.2	-1.1	27	16.72
18-28-dec	22:05:08	590	-10.4	-11.4	-1.0	27	16.71
18-28-dec	23:05:08	590	-10.6	-11.5	-1.0	27	16.72

APPENDIX C

Precision and Single-Point Flow Rate Checks

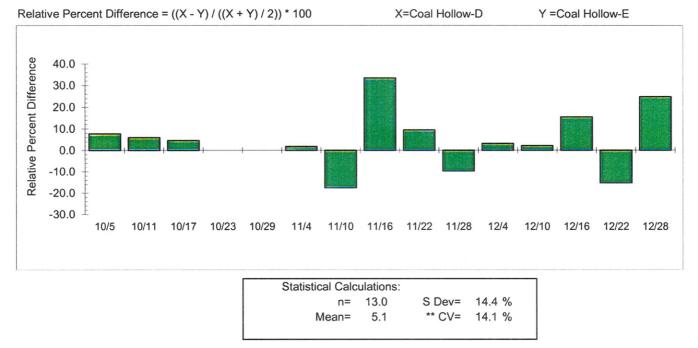
Alton Coal Development Coal Hollow

Precision Report For Collocated Samplers

STP PM10 Concentrations(µg/m³) October 1, 2018 - December 31, 2018

Date	10/5	10/11	10/17	10/23	10/29	11/4	11/10	11/16	11/22	11/28	12/4	12/10	12/16	12/22	12/28
Coal Hollow-B Coal Hollow-C	3.9	4.5	5.8	5.2	19.2 24.4	5.6 5.7	8.0 8.4			6.5	2.4	7.3	1.7 1.8	5.7 6.2	4.1
Rel. %Diff.	*	*	*	*	-23.9	-1.8	-4.9	*	*	*	*	*	*	-8.4	*
Relative Percent D	Difference =	= ((X - Y) / ((X +	Y) / 2))) * 100			X=Coa	al Hollo	w-B		Y =Coa	al Hollo	w-C	
30.0 20.0 10.0 -10.0 -30.0 10/2	5 10/11	10/17	10/23	10/29	11/4	11/10	11/16	5 11/2	2 11/2	28 12/	4 12	//10 12	216 1	2/22 1	2/28
						cal Cal n= Vean=	culation 4.0 -9.7	5	6 Dev= ** CV=	9.8 15.7					

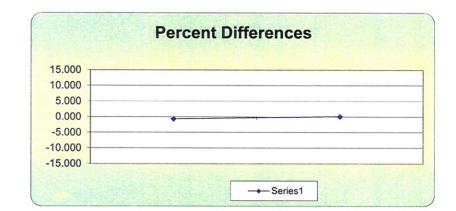
* Both sample concentrations must be greater than or equal to 3 μg/m³ to be used for these precision calculations. For a detailed discussion of these precision calculations, refer to 40 CFR 58, Appendix A.

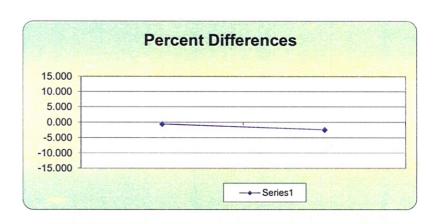

** CV - Upper 90% Confidence bound for Coefficient of Variation

Alton Coal Development Coal Hollow

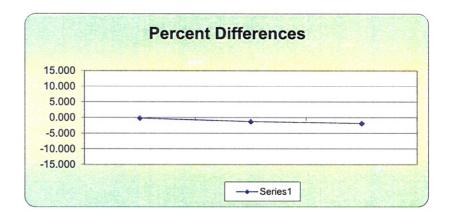
Precision Report For Collocated Samplers

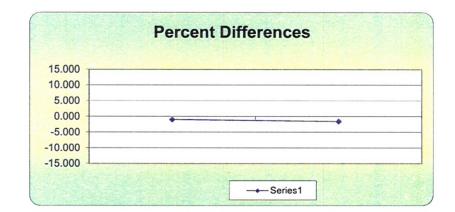
STP PM10 Concentrations(µg/m³) October 1, 2018 - December 31, 2018

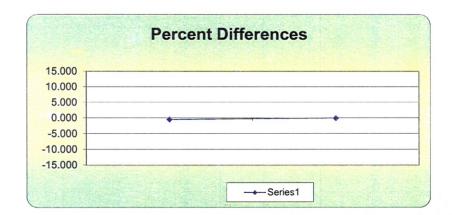

Date	10/5	10/11	10/17	10/23	10/29	11/4	11/10	11/16	11/22	11/28	12/4	12/10	12/16	12/22	12/28
Coal Hollow-D Coal Hollow-E	6.7 6.2	7.0 6.6	17.8 17.0	4.7	93.1	5.8 5.7	10000	1000000000000		191.6 211.2			0.0	12.1 14.1	21.0
Rel. %Diff.	7.8	5.9	4.6	*	*	1.7	-17.5	33.4	9.5	-9.7	3.2	2.1	15.6	-15.3	24.8


* Both sample concentrations must be greater than or equal to 3 µg/m³ to be used for these precision calculations. For a detailed discussion of these precision calculations, refer to 40 CFR 58, Appendix A.

** CV - Upper 90% Confidence bound for Coefficient of Variation


Site ID: Monitor	962A	Pollutant typ	e:			E	Bias (%)	
Meas Val (Y)	Audit Val (X)	d (Eqn. 1)	25th Percentile	d ²	d	d ²		
16.7	16.8	-0.595	-0.401	0.354	0.595	0.354		
16.7	16.67	0.180	75th Percentile	0.032	0.180	0.032 n	∑∣d∣	"AB" (Eqn 4)
State of the second			-0.014			2	0.775	0.388
						n-1	$\sum \mathbf{d} ^2$	"AS" (Eqn 5)
						1	0.387	0.294
							Bias (%) (Eqn 3) 1.7	Both Signs Positive FALSE
						5	Signed Bias (%)	Both Signs Negative
						-	1.7	TRUE


Site ID: Monitor	963B	Pollutant typ	e:					Bias (%)	
Meas Val (Y)	Audit Val (X)	d (Eqn. 1)	25th Percentile	d ²	d	d ²			
16.7	16.78	-0.477	-1.874	0.227	0.477	0.227			
16.7	17.1	-2.339	75th Percentile	5.472	2.339	5.472	n	∑∣d∣	"AB" (Eqn 4)
			-0.942				2	2.816	1.408
							n-1	$\sum \mathbf{d} ^2$	"AS" (Eqn 5)
							1	5.699	1.317
						-	L	7.29	Both Signs Positive FALSE Both Signs Negative
								-7.29	TRUE


Site ID: Monitor	964C	Pollutant typ	e:		Bias (%)				
Meas Val (Y)	Audit Val (X)	d (Eqn. 1)	25th Percentile	d ²	d	d ²			
16.7	16.72	-0.120	-1.532	0.014	0.120	0.014			
16.7	16.91	-1.242	75th Percentile	1.542	1.242	1.542	n	∑ d	"AB" (Eqn 4)
16.7	17.01	-1.822	-0.681	3.321	1.822	3.321	3	3.184	1.061
							n-1	$\sum \mathbf{d} ^2$	"AS" (Eqn 5)
							2	4.878	0.866
							Γ	Bias (%) (Eqn 3) 2.52	Both Signs Positive FALSE
									Both Signs Negative TRUE

Site ID: Monitor	2366D	Pollutant typ	e:					Bias (%)]
Meas Val (Y)	Audit Val (X)	d (Eqn. 1)	25th Percentile	d ²	d	d ²			
16.7	16.85	-0.890	-1.183	0.792	0.890	0.792			
16.7	16.95	-1.475	75th Percentile	2.175	1.475	2.175	n	∑ d	"AB" (Eqn 4)
16.7	16.62	0.481	-0.204	0.232	0.481	0.232	3	2.846	0.949
							n-1	$\sum \mathbf{d} ^2$	"AS" (Eqn 5)
							2	3.200	0.499
						·	[1.79	
								Signed Bias (%) -1.79	Both Signs Negative TRUE

Site ID: Monitor	2398E	Pollutant typ	e:				1	Bias (%)	
Meas Val (Y)	Audit Val (X)	d (Eqn. 1)	25th Percentile	d ²	d	d ²			
16.7	16.77	-0.417	-0.209	0.174	0.417	0.174			
16.7	16.7	0.000	75th Percentile	0.000	0.000	0.000	n	Σ d	"AB" (Eqn 4)
16.7	16.64	0.361	0.180	0.130	0.361	0.130	3	0.778	0.259
							n-1	$\Sigma d ^2$	"AS" (Eqn 5)
							2	0.304	0.226
							Г	Bias (%) (Eqn 3)	Both Signs Positive
							L	0.64	FALSE
							3	Signed Bias (%)	Both Signs Negative
							-	+/-0.64	FALSE

APPENDIX D

Field Data Sheets

Background Monitor 962A

Date	Time	Displayed Date	Displayed Time	Collected Filter ID#	New Filter ID#		Sample Start Date	Sampler Initials
10-02-18		10-02-18	1211	10	21	M-M	10-05-18	JKSR
10-08-18	1512	10-08-18	1411	21	4	U-M	6-11-18	
10-13-18	1215	10-13-18	1(14	4	9		10-17-18	
10-15-18	1103	10-18-18	1002	9	26	In-in	10-23-18	RAA
10-24-18		10-24-18	and the second se	26	34	M-M	10-29-18	the second discount of
10-30-18	1415	10-30-18	1313	34	10	M-M	11-4-18	For
11 5 14			1327	١				
11-5-18	1059	1-5-18	1059	D	16	nm	11-10-18	BH
1-12-18	12.48	11-12-18	1246	16	36	M-M		and the second second second second
11-19-18	09.76	11-17-18	19.84	36	4	nn-m	11-22-18	KN
11-26-18	10.34	. / :	10.32	4	21	M-M	11/28/18	KN
11/30/18	1040	11/50/18	1038	21	9	m-m	12/4/18	BH
12/6/18	1327	12/6/18	1324	9	31	M-m	12/10/18	BA
12/11/18	1438	12/11/18	1435	31	10	M-M	12/16/18	BH
11/1/12	900	12/17/18	857	10	16	M-m	12/22/18	BA
12/23/18	1246	12/23/18	1243	16	34	111-M	12/28/18	BA
2/29/18	1147	12/29/18	1144	34	4	mm	112/19	BA
		IP/		A	29	M-M	1/8/19	
							1. A.	

Table I - Every 6th Day Sampling

Table II - Monthly Leak Test

Date	Time 1/ 19	Initial SP Value į 34	Final SP Value 1/32	Pass/Fail P	Initials BV	Maintenance Cleaned Monutald

Table III - Monthly Flow Rate Verification

Date	Time	Monitor Flow (Q Lpm)	Monitor Baro Pressure (mmHg)	Delta Cal Baro Pressure (mmHg)	Monitor Temp (A)	Delta Cal Temp (Ta)		Delta Cal Flow (Qa)	Accuracy	Initials
12/14/18	1123	16.7	589	590	3.1	5.0	13,97	16,80	-0.60	BH
										1

1 8

0

Compliance Monitor 963B

Party of the local division of the local div		in Duy O	amping						
Date	Time	Displayed Date	Displayed Time	Collected Filter ID#	New Filter ID#		Sample Start Date	Sampler Initials	
10-02-18 10-08-18 10-13-18 10-24-18 10-24-18 10-30-18 11-5-13 11-5-13 11-12-18 11-26-18	1453 1228 101 Didn't Ray 1432 ULB1 104	10-02-18 10-08-18 10-13+18 10-13-18 10-24-18 10-30-18 11-5-18 11-5-18 11-2-18	14 53 1201 1201 1301 1301 130 1303	13 22 5 12 27 35 11 17 17	22 5 12 27 35 11 17 37 4	M-M M-M M-M M-M M-M	10-05-18 10-11-18 10-12-18 10-23 10-29-18 11-4-18 U-10-18 U-16-18	JKSR KA BH JKSR ISA BA KN	et code
11/30/13 12/6/18 12/11/16 12/17/16 12/23/18 12/29/18	1056 1657 1347 1456 917 1321 1204	11-26-18 11/3-118 12/16/18 12/11/16 12/17/16 12/27/18 12/29/19	1051 1656 1346 1455 916 1319 1202	5 22 12 26 13 17 35 5	27 12 26 13 17 35 5 36	<u>м</u> -т <u>т-т</u> <u>М</u> -т М-т М-т М-т М-т И-т	11-28-18 12/4/15 12/16/18 12/16/18 12/22/15 12/28/18 1/2/19 1/8/19	KA BA BA BA BA SH SH BA	I nokillep Ne u

Table I - Every 6th Day Sampling

Table II - Monthly Leak Test

		Initial SP	Final SP		1	
Date	Time	Value	Value	Pass/Fail	Initials	Maintenance
10-18-13	103	75	92	P	BH	Clean manifold
12/13/18	1435	95114	110	P	Brt	Deput Manifild

Table III - Monthly Flow Rate Verification

Date	Time	Monitor Flow (Q Lpm)	Monitor Baro Pressure (mmHg)	Delta Cal Baro Pressure (mmHg)	Monitor Temp (A)	Delta Cal Temp (Ta)		Delta Cal Flow (Qa)	Accuracy	Initials
10-18-18	1:12	16.70	593	<i>594</i>	10,5	11.1	13.8	16:78	-0:48	BH-
12/13/16	1440	14.2	594	595	7.2	8.2	14.19	17,10	-2.34	B4

code Not Run

allet New Pamp miter

Co-located Monitor 964C

Table I -	Every 6	th Day S	ampling						
Date	Time	Displayed Date	Displayed Time	Collected Filter ID#	New Filter ID#	Start Time	Sample Start Date	Sampler Initials	
10-02-18	1327	10-02-18	1226	18	28	M-M	10-05-18	JKSR	still Running
10-08-18	1555	10-08-18	1454	28	6	M-M	10-11-18	JKSR	
10-13-18	1235	10-13-18	11:33	6	23	M-m	10-17 -	KN	
18-18-18	1:22	10-18-18	1220	23	31	m-m	10-23-18	BI	
10-24-18	1417	10-24-18	the second se	31	42	11-11	10-29-18	JICSR	-
10-30-18	1429	10-30-18	1327	42	13	M-m	11-4-18	BA	
11-5-18	1133	11-5-18	1132	13	IB	mm	N-10-18	BA	
11-12-18	13:09	11-12-18		18	38	M-M	11-16-18	KN	
11 5 3	. 204	1. 11:18	1. ch		5	14 11	Profee Me	KAI	QTat 6: 10 Rantine
11-26-18	1100	11.26-18	1058	6	28	m-nn	11-28-18		
11/30/18	1700	11/32/15	1658	28	23	W-m	12/4/18	Bit	
12/6/18	1351	12/6/18	1345	23	27	M-M	12/10/18	BA	Replaced flow control volke QT
12/11/18	1459	12/11/18	1456	27		M-M	12/16/18	BA	Replaced flow combol volke QT AT error Replaced pump motor and volatte pump
12/17/18	920	12/17/18	916	11	18	W-m	12/22/18	\$14	motor and rebuilt prime
12/23/18	1324	12/23/18		15	42	M-1-11	12/28/18	DA	
12/29/18	1205	12/29/18	1202	42	6	M-m	1/2/19	B14	QT Flogs
				6	37	M-m	1/8/19		

Table L Eveny 6th Day Sempling

Table II - Monthly Leak Test

		Initial SP	Final SP			
Date	Time	Value	Value	Pass/Fail	Initials	Maintenance
10-18-18	1:23	111	110	Pass	BA	Cleanat man, fold
12/13/18	H58	96	95	P	i514	Cleared Man fold

Table III - Monthly Flow Rate Verification

Date	Time	Monitor Flow (Q Lpm)	Monitor Baro Pressure (mmHg)	Delta Cal Baro Pressure (mmHg)	Monitor Temp (A)	Delta Cal Temp (Ta)		Delta Cal Flow (Qa)	Accuracy	Initials
10-18-15	130	16.70	595	594	io.i	10,8	13,49	16.72	-0.12	BA
12/13/18	1515	16.70	596	595	6.0	2,3	14,16	17,01	-1.82	BA

Compliance Monitor 2366D

lable I -	Every 6	th Day S	ampling			2 ⁻			
Date	Time	Displayed Date	Displayed Time	Collected Filter ID#	New Filter ID#		Sample Start Date	Sampler Initials	
10-02-18	1339	10-02-18	1237	2019	29	M-M	10-05-18	JKSR	
10-08-18	1606	10-08-18		29	7	M-M	10-11-18	JKSR	
10-13-18	1244	10-13-18	1142	7	2'4	m-m	10-17-18	ICN	
+0-18-18	1103-	10-15-13	1012	9	-26-	-m-m-	10-23-18	-Fb-	
10-18-18	153	10-18-18	1250	24	32	im-m	10-23-1	5A	
10-24-18	1432	10-24-18	1330	32	JBR	U-M	18-29-18	JKSR	-
10-30-18	1442	10-30-18	1341	JBRI	14	M-M	11-4-18	13H	
11-5-18	1204	1-5-18	1201	14	19	M-M	11-10-18	BW	
11-12-18	1329	11-12-18	13:26	19	27	M-nn	11-16-18	K.N.	
11-14-15	1. 19	1: 5 33	÷		7	11-11	li juli	<n.< td=""><td></td></n.<>	
11-26-18	1239	11.26.18	1236	2	29	1232	12-25 8	KMIFN	Blank
11-26-18	1242	11-26-18	1238	29	30	nn-m	12-28-18		
11-30/18	1712	11/30/18	1708	30	24	m-m	12/4/18	84	
12/6/18	1429	12/6/18	1425	24	32	M-M	12/10/18	BA	
12/11/18	1516	12/11/18	1512	32	14	M-M	12/16/18	1344	
12/17/18	932	12/17/18	928	14	19	in-m	12/22/18	BIL	
12/23/18	14/3	12/23/18	1409	19	JBR1	M-M	12/28/18	BH	
12/29/18	1221	12/29/18	HZIG	JBRI	7	m -m	1/2/19	BH	
				7	38	M-M	118/19	BX	

Table I - Every 6th Day Sampling

Table II - Monthly Leak Test

		Initial SP	Final SP			
Date	Time	Value	Value	Pass/Fail	Initials	Maintenance
10-18-18	1:08	95	92	Pass	KN	Clean Manifold
10-18-18	156	#101	97	P	BH	Clean Monifold
12/17/18	1053	113	110	P	BU	Cleaned Manifold

Table III - Monthly Flow Rate Verification

Date	Time	Monitor Flow (Q Lpm)	Monitor Baro Pressure (mmHg)	Delta Cal Baro Pressure (mmHg)	Monitor Temp (A)	Delta Cal Temp (Ta)	Delta Cal Flow (Qs)	Delta Cal Flow (Qa)	Accuracy	Initials
40-18-18-	1:12-	16.70-	593	594	10,5	11.1-	13.8	16.78		Kai
10/18/18	203	16.70	592	593	10.0	11.2	13,76	16,83	-0.89	BA
12/17/18	1058	16.7	692	592.5	4,1	9,8	13,65	16:62	0148	BH

Co-located Monitor 2398E

TableT									
Date	Time	Displayed Date	Displayed Time	Collected Filter ID#	New Filter ID#		Sample Start Date	Sampler Initials	
10-02-18	1341	10-02-18	1240	20	30	M-M	10-05-18	IKSR	
10-08-18	1608	10-08-18	1506	30	8	M-M		JKSR	
10-13-18	1249	10-13-18	11 48	8	25	m-m	10-17-18		
10-15-18	1411	10/18/18	1309	25	33	m-m	10/23/13		
10.24-18	1433	10-24-18	1331	33	JBR 7	M-M	10-29-18		
10-30-18	1345	10-30-18	1344	JBR7	15	iM-in	11-4-18	BH	
11-5-18	1207	11-5-18	1205	15	ZO	M-m	11-10-13		
11.12-18	1334	11-12-18	1332	20	40	m-m	11-16-18	the second s	
11 - King	1:00 6	1 412	11.4.7	48	P	M-m	1 2 6	KN	
11.26-18	12.46	11-26-18	1244	8	41	1246	11-2648	KN	Field Black
11-26-18	1247	1126-18	12.45	41	JP8	M-M	11-28-18		
11/30/18	1715	11/30/18	1712	JBRS	25	M-m	12/4/18	Bit	
12/6/18	1433	12/0/18	1430	25	33	n-m	12/10/18	BĦ	
12/11/18	1518	12/11/18	1515	33	15	W-M	12/16/18	BH-	
12/17/18	934	2/17/18	930	15	20	M-M	12/22/15	BH	
2/23/18	(417	12/23/18	1413	20	JBRT	M-M	12/28/18	BA	
12/29/18	1223	12/29/18	1219	JBR:7	8	M-M	11/2/19	BH	
				8	39	1/11-11	1/8/19	RA	
				100					

Table I - Every 6th Day Sampling

18 Bie

Table II - Monthly Leak Test

		Initial SP	Final SP			
Date	Time	Value	Value	Pass/Fail	Initials	Maintenance
10/18/18	1412	101	100	P	Eff	Clean Marihild
12/17/18	1102	97	95	P	the second se	Cliand Markeld

Table III - Monthly Flow Rate Verification

Date	Time	Monitor Flow (Q Lpm)	Monitor Baro Pressure (mmHg)	Delta Cal Baro Pressure (mmHg)	Monitor Temp (A)	Delta Cal Temp (Ta)	Delta Cal Flow (Qs)	Delta Cal Flow (Qa)	Accuracy	Initials
10/15/18	1417	16,70	595	593	10.8	11.3	13,71	16.77	-0.42	BH
12/17/13	1105	16,70	593	592	510	7.1	13,78	16,64	0,64	BY
		Control of Control Annual Visit on State and								

C

APPENDIX E

Independent PM₁₀ Sampler Performance Audit Report

AUDIT REPORT FOR

ALTON COAL DEVELOPMENT, LLC COAL HOLLOW MINE ALTON, UTAH FOURTH QUARTER 2018

Prepared for

Kirk Nicholes Alton Coal Development, LLC 463 N 100 W Cedar City, Utah, 84721

Prepared by

1901 Sharp Point Drive, Suite F Fort Collins, CO 80525 970-484-7941

Site Audited: November 19, 2018

TABLE OF CONTENTS

Sectio	n		Page
1.0	INTRO	DUCTION	1-1
2.0	2.1	T METHODS AND EQUIPMENT Particulate Samplers Meteorological Parameters	2-1 2-1 2-2
3.0	AUDIT	RESULTS	3-1
APPE	NDIX A	Audit Data Forms	A-1
APPE	NDIX B	Audit Standards Certifications	B-1

LIST OF TABLES

Table Page 1-1 Site Location Information 1-1 Summary of Particulate Audit Results 1-1 1-2 Summary of Meteorological Audit Results 1-1 1-3 2-1 Particulate Samplers, Audit Methods and Acceptance Criteria 2-1 2-2 Particulate Samplers, Audit Equipment 2-2 Meteorological Sensors, Audit Ranges and Acceptance Criteria 2-3 2-3 Meteorological Equipment 2-4 2-4

1.0 INTRODUCTION

Air Resource Specialists, Inc. (ARS) conducted a performance audit of Alton Coal Development, LLC ambient air quality monitoring systems on November 19, 2018. The monitoring sites are located at the Coal Hollow Mine near Alton, Utah.

Table 1-1

Site Location Information

	Primary CHM	Background	Primary NPL	Meteorological
Latitude	37° 24' 5.0" N	37° 24' 20.9" N	37° 24' 43" N	37° 23' 53.2" N
Longitude	112° 27' 21.0" W	112° 26' 1.1" W	112° 27' 30.6" W	112° 26' 43.1" W
UTM	12S 371147	12S 373119	12S 370928	12S 372073
	4140396	4140856	4141570	4140018
Elevation	6,890 feet MSL	7,158 feet MSL	6,959 feet MSL	7,007 feet MSL

Audit results for the particulate samplers are summarized in Table 1-2. Audit results for the meteorological measurements are summarized in Table 1-3. Detailed discussions of performance audit findings and other findings can be found in Section 3.0.

Table 1-2

Summary of Particulate Sampler Audit Results

	Parameter	Instrument	Within Accuracy Goal
Primary CHM	PM ₁₀	BGI PQ200S	No
	PM ₁₀ (collocated)	BGI PQ200S	Yes
Background #1	PM ₁₀	BGI PQ200S	Yes
Primary NPL	PM ₁₀	BGI PQ200	Yes
	PM ₁₀ (collocated)	BGI PQ200	Yes

Table 1-3

Summary of Meteorological Audit Results

Parameter	Sensor	Within Accuracy Goal
Wind Speed	Met-One 34B	Yes
Wind Direction	Met-One 34B	Yes
Temperature	Campbell Scientific 107	Yes
Precipitation	Hydrological Services TB4	Yes

Details of the audit are presented in the following sections:

Section 2.0	Audit Methods and Equipment
Section 3.0	Audit Results
Appendix A	Audit Data Forms
Appendix B	Audit Standards Certifications

Any questions related to this audit or audit report should be addressed to:

Christian A. Kirk Quality Assurance Officer / Lead Auditor **Air Resource Specialists, Inc.** 1901 Sharp Point Drive, Suite F Fort Collins, Colorado 80525 Telephone: 970-484-7941 Fax: 970-484-3423 E-mail: <u>ckirk@air-resource.com</u>

2.0 AUDIT METHODS

Audit procedures, audit challenge ranges, and acceptance criteria are described below. These ranges and limits conform to EPA's PSD guidelines. Audit results were verbally communicated to the site operator prior to departure from the site. A follow-up e-mail summarizing audit findings was also sent to Alton Coal Development, LLC personnel. Audit details are provided in Appendix A.

Guidance from the following EPA documents was used to establish the audit procedures:

- 40 CFR 58, Appendix B. Quality Assurance Requirements for Prevention of Significant Deterioration (PSD) Air Monitoring
- EPA Quality Assurance Handbook for Air Pollution Measurement Systems:
 - Volume I. A Field Guide to Environmental Quality Assurance
 - Volume II. Ambient Air Quality Monitoring Program
 - Volume IV. Meteorological Measurements
- EPA Meteorological Monitoring Guidance for Regulatory Modeling Applications

2.1 PARTICULATE SAMPLERS (FRM PM₁₀)

The filter-based FRM PM_{10} particulate samplers are audited in their normal operating mode. ARS audits the samplers with a BGI deltaCal audit standard which measures flow, temperature, and barometric pressure. Prior to conducting the flow audit, a system leak check is performed in accordance with the manufacturer's specifications. The observed volumetric operational flow and design flow of the sampler are compared to the audit flows measured by the audit standard. Differences between the operational sampler flow and audit flow that are greater than $\pm 10\%$ are considered out of tolerance. Differences between the designated design flow and the audit flow greater than $\pm 10\%$ are considered out of tolerance. In addition to the flow audits, observed ambient temperature, filter temperature, and barometric pressure measurements of the particulate samplers are also audited by comparison to the audit standard. A temperature difference greater than $\pm 2^{\circ}$ C and a barometric pressure difference greater than ± 10 mm Hg are considered out of tolerance. Audit methods and acceptable criteria for the particulate samplers are summarized in Table 2-1.

Table 2-1

Particulate Samplers Audit Acceptance Criteria

Parameter	Audit Method	Acceptance Criteria
FRM PM ₁₀	Leak Check	Manufacturer specs
	Audit flow to actual sampler flow	<u>≤</u> ± 10%
	Design criteria flow to audit flow	≤± 10%
	Audit temperature to sampler temperature	$\leq \pm 2 ^{\circ}C$
	Audit temperature to sampler filter temperature	$\leq \pm 2 ^{\circ}C$
	Audit barometric pressure to sampler pressure	≤±10mm Hg

Table 2-2

Particulate Samplers Audit Equipment

References	References Manufacturer		Serial Number	Expiration Date	
FRM Flow	BGI	DeltaCal	141170	5/22/2019	

2.2 METEOROLOGICAL PARAMETERS

Meteorological measurement systems are audited in accordance with (and accuracy goals were obtained from) the EPA's *Quality Assurance Handbook for Air Pollution Measurement Systems: Volume IV – Meteorological Measurements*, (March 2008). ARS uses National Institute of Standards and Technologies (NIST) traceable test equipment for all meteorological parameters. All equipment is recertified annually. Audit ranges and acceptable criteria for each parameter are summarized in Table 2-3.

2.2.1 Wind Speed

Wind speed sensors are audited using an R.M. Young model 18802 (high RPM) or 18811 (low RPM) pulsed motor wind speed calibrator. Each sensor is tested at zero and five shaft revolution speeds. The equivalent wind speed is calculated corresponding to the sensor manufacturer's specified values for shaft speed versus wind velocity and compared to readings obtained from the on-site datalogger.

2.2.2 Wind Direction

Wind direction sensor audits include the verification of sensor orientation, linearity, and starting threshold (bearing integrity). The sensor orientation accuracy is verified by a reference. The reference can be an internal reference (a tower-mounted alignment vane) or external (pointing at landmarks from the sensor). Accuracy of the references is verified by the solar azimuth method for the determination of true north. Using a compass and the site latitude and longitude, a computer model outputs the sun's azimuth for that exact time of day. The compass is adjusted to that azimuth, effectively correcting for the compass to the local magnetic declination (which may include local magnetic field disturbances). The sensor orientation accuracy is checked by aligning the wind direction vane to and from each landmark reference, recording sensor responses from the on-site datalogger.

Potentiometer linearity is tested by verifying the change in response between two successive orientations across eight points on a calibrated disc mounted atop the sensor. For example, any two adjacent orientations on the eight-point disc are separated by 45 degrees. The difference in the datalogger response for these two adjacent orientations is compared to this value.

2.2.3 Ambient Temperature

Temperature sensors that are non-immersible are audited by collocation of the audit sensor under ambient conditions utilizing similar methods of sensor aspiration. Collocated comparisons are typically carried out using hourly averages. Audit data are collected by a datalogger provided by the auditor. Temperature sensors that are immersible are audited by comparison to the audit sensor in water baths. The test baths are typically at 0°C, near ambient conditions (or approximately 25°C), and near the full scale of the sensor (typically near 50°C). Data observed on the on-site datalogger are used to assess the accuracy of sensors. Sensor aspirators are inspected for proper function, including fan function and flow direction.

2.2.4 Precipitation

The tipping bucket style precipitation gauges are audited with a volumetric precipitation gauge calibrator by transferring a known amount of water through the gauge orifice at a maximum rate equivalent to 2.0 inches/hour of precipitation. The total values from the on-site datalogger values are compared to the actual introduced volume. The level and cleanliness of the sensor is observed where possible.

Table 2-3

Audit Method	Acceptance Criteria
Accuracy at five speeds with anemometer drive	$\leq \pm 0.2 \text{ m/s}$
Starting threshold with torque gauge	Manufacturer specs
Accuracy with compass	$\leq \pm 5^{\circ}$
Linearity	$\leq \pm 5^{\circ}$
Starting threshold with torque gauge	Manufacturer specs
Accuracy via collocation in ambient conditions	$\leq \pm 0.5$ °
Accuracy via collocation in three water baths	$\leq \pm 0.5$ °
Accuracy via known volume of water	≤± 10%
	Accuracy at five speeds with anemometer drive Starting threshold with torque gauge Accuracy with compass Linearity Starting threshold with torque gauge Accuracy via collocation in ambient conditions Accuracy via collocation in three water baths

Meteorological Sensors Audit Ranges and Acceptance Criteria

Table 2-4

Meteorological Audit Equipment

References	Manufacturer	Model Number	Serial Number	Expiration Date
Wind Speed (low rpm)	R.M. Young	18811	CA03912	12/14/2018
Wind Direction Orientation	Brunton	Transit	5103212072	N/A
Temperature (immersible)	Eutechnics	4400	307635	2/28/2019
Precipitation	R.M. Young	52260	N/A	N/A

3.0 AUDIT RESULTS

Audit findings and recommendations are discussed below. Detailed audit results are provided in Appendix A.

Performance Audit Results

The Primary CHM PM_{10} instrument (serial number 963B) did not pass the flow performance audit and was found with a non-functional pump.

APPENDIX A

AUDIT DATA FORMS

TEMPERATURE / DELTA-TEMPERATURE SYSTEM AUDIT

ABBR. n/a	CLIENT Alton Coal	AUDITOR	M Gosselin	DATE
SITE NAME	Alton Coal- Coal Hollow			
Network type	Alton Coal-Coal Hollow			
	MANUFACTURER	MODEL	SERIAL NUMBER	EXPIRATION DATE
Temperature Reference	Eutechnics	4400	307635	2/28/2019
2m Temperat	ture Sensor	of the state of the Park of		
anufacturer	Campbell Scientific	List sensors		
odel	107	according to		
erial Number	10755-14/WO #1272	height on tower, from highest to		
		lowest.		
		iowest.		
		Temp. Deltas		
The second second second second				
		i		
	-11-			
在进展的中心主义的影响 。				
CALIBRATION ACC	EPTANCE CRITERIA (<=)			
Ambient Temperature Di	CALL PROPERTY AND A REAL PROPERTY AND A			
Vertical Temperature Di	AT TACHAR SHOT TO PERSON AND ADDRESS PARSING			
				0
AS FOUND 2m	Temperature	The state of the state of the state		

AS FOUND	Temperature			学校的资源和资源的考虑的资源	
Bath Temp (°C)	DAS	Diffe	rence		
0.11	0.25	0.14	PASS		
30.49	30.38	-0.11	PASS		
21.19	21.38	0.19	PASS		
MAX ABS Diffe	erence	0.19	PASS		

		and the second		Ash Levels		
	Contraction of the					a state
	a second				and the state	
MAX ABS Difference	· ····································	6. 19.000	See Baste	Service a	Sec. Sec.	and the second

Aspirator fan functional 2m?	i sili	Yes	No	J N/
		Yes	No	N/
		Yes	No	N/A
		Yes [No	N/4

Yes No NA
Each Temperature Difference = Upper - Lower

Air Resource

WIND SPEED SENSOR AUDIT

ABBR.	n/a	CLIENT	Alton Coal	FIELD SPECIALIST	M Gosselin	DATE	11/19/2018
SITE NA	ME	Alton Coal- 0	Coal Hollow				
Network	type	Alton Coal- (Coal Hollov				

	MANUFACTURER	MODEL	SERIAL NUMBER	EXPIRATION DATE
Wind Speed Reference				
Wind Speed Torque Gauge	RM Young	18310		

Met One - 034B	
E2281	

AUDIT CRITERIA (<=)	Section and
Wind Speed Difference (m/s)	0.20
Wind Speed Difference (%)	N/A

Select UNITS m/s

		Wind Speed			
Motor Speed (rpm)	Target Speed	d DAS Differ			nce
	0.000	0.000	N/A	N/A	N/A
100	2.943	2.920	-0.02	addin and	PASS
200	5.607	5.630	0.02		PASS
300	8.270	8.300	0.03	States	PASS
600	16.260				
1800	48.220			Section of the	Section.

Starting Threshold	TORQUE
Torque <= 0.2 g-cm	0.2
	NO ACTION
	REQUIRED

Heater sleeve functional? Ves No V N/A

WIND DIRECTION AUDIT

0.00

Degrees

338

158

73

253

http://www.ngdc.noaa.gov/geomag-web/#declination

Landmarks

building to the east

from building to the east

from center of right rock saddle

to center of right rock saddle

ABBR.	n/a	CLIENT Alton Coal	AUDITOR	M Gosselin	DATE 11/19/2018
SITE N	AME	Alton Coal- Coal Hollow			
Network	k type	Alton Coal- Coal Hollow			

Mag. Dec. from NOAA (deg/min/sec)

1	MANUFACTURER	MODEL	SERIAL NUMBER	EXPIRATION DATE
Direction Alignment Reference	Brunton	Transit	5103212072	in a particular state of the second state of the second state of the second state of the second state of the se
Direction Linearity Reference	RM Young	18212	n/a	
Direction Torque Gauge	RM Young	18331	n/a	Martin Contractor of the State

Met One - 034B	
E2281	

Local Magnetic Declination	n (degrees)	11.5
Method	solar azimut	th

AUDIT CRITERIA (<=)					
Cross-arm Alignment Error (degrees)	Cross-arm Alignment Error (degrees) 2				
Total Align. Diff (degrees)	5				
Sensor Linearity (degrees)	5				

Reference Alignment Error (degrees)	0.0	PASS
-------------------------------------	-----	------

SENSOR ALIGNMENT

Reference	Degrees	DAS	Difference
From the North	0		
From the South	180		
From the East	90		
From the West	270		國家制 635月86年736
Total Alignment	MAX ABS	6 Diff	and the second

OR

SENSOR A	LIGNMEN	T		
Landmark	Degrees	DAS	Diffe	rence
building to the east	338	339.0	().9
om building to the ea	158	156.0	-2.0	
center of right rock s	73	74.1	1.1	
enter of right rock sa	253	251.0		2.0
Total Alignment	MAX ABS	Diff	2.0	PASS

SE	NSOR LINEA	RITY	
Point	DAS	Difference	
84561 State		N/A	
2		No. Contraction of the	1111月1
3			
4		为有人们的政治人	
5		A SAME AND A SAME	A 449344
6		Salar Salar Para	
7			A Market
8		and the second	有 经济的 外
A 12 1		al a state of the	4 物語会
MAX D	ifference		
			Sec. Sec. 6

Assessment of the

Starting Threshold		TORQUE
Torque <=	6.5 g-cm	

Heater sleeve functional? Yes No VA

Air Resource

PRECIPITATION SENSOR AUDIT

ABBR.	n/a	CLIENT	Alton Coal	AUDITOR	M Gosselin	DATE 11/19/2018
SITE NA	ME	Alton Coal	- Coal Hollow			
Network	type	Alton Coal	Coal Hollow			

	MANUFACTURER	MODEL	SERIAL NUMBER	EXPIRATION DATE
Precipitation Reference	RM Young	52260	n/a	

Manufacturer Hydrological Services		
Model	TB4	
Serial Number	mber 05-94	

AUDIT CRITERIA (<=)
Difference from Input Volume (%)
10%

	Reference Chart			Input Volume (mL)		1000	
	Manufacturer	Model	Diameter (in.)	mm/tip	mL/tip	DAS target	
	Met One	385	12	0.254	18.53	13.71	
	RM Young	52202	6.2825	0.100	2.00	50.00	
	Climatronics	100097-1-G0-H0	8	0.254	8.24	30.84	
	Climatronics	100508	9.66	0.100	4.73	21.15	
Х	Hydrological Serv.	TB4	8	0.254	8.24	30.84	
					and the state		

	Conv	ersions	
Value	Units		
1.000	inch	25.40	mm
30.84	mm	1.214	inch

		Precipitation		
Reference (mL)	Target (mm)	DAS (mm)	Difference	
1000	30.84	29.72	-3.6%	PASS

Heater functional? Yes No VA

ABBR.	n/a	CLIENT Alton Coal	AUDITOR	M Gosselin	DATE 11/19/2018
SITE N	AME	Alton Coal- Coal Hollow			
Network	k type	Alton Coal- Coal Hollov			

	MANUFACTURER	MODEL	SERIAL NUMBER	EXPIRATION DATE
PM Flow Standard #1	BGI	DeltaCal	141170	5/22/2019
PM Temperature Standard #1	BGI	DeltaCal	141170	5/22/2019
PM Barometric Pressure Standard #1	BGI	DeltaCal	141170	5/22/2019

MANUFACTURER	BGI
MODEL	PQ200S
SERIAL NUMBER	N963B

Date ar	nd Time	correct?
CALL STATES	Yes	No
lf no	o, time o	off by:
	0 min	

SETTINGS Total Flow 16.70

Automated LEAK CHECK			
Vacuum Loss Rate	Pass/Fail		

	FLOW VERIFICATION				
NA STATE AND	Reference	Instrument	Actual Diff	Design Diff	Cast 1
Total Flow				2022	

AUDIT CRITERIA (<=)		
Actual Flow % Diff	10%	
Design Flow % Diff	10%	

	AMBIENT T	EMPERATURE	SENSOR (°C)	
	Reference	Instrument	Difference	100
Sector Harry				Consect 1

ſ	FILTER TEMPERATURE SENSOR (°C)			
1	Reference	Instrument	Difference	
No. Strategy of Sand			The second second	1997

PRESS	URE SENSOR	(mmHg)	
Reference	Instrument	Difference	
			教育

Temperature Difference (°C) 2

AUDIT CRITERIA (<=)

AUDIT CRITERIA (<=)	
Temperature Difference (°C)	2

1	AUDIT CRITERIA (<=)	
-	AUDIT CRITERIA (S-)	Same and
	Pressure Difference (mmHg)	10

NOTES: pump dead, failed leak and flow checks.

ABBR.	n/a	CLIENT Alton Coal	AUDITOR	M Gosselin	DATE 11/19/2018
SITE N	IAME	Alton Coal- Coal Hollow			
Networ	k type	Alton Coal- Coal Hollov			

	MANUFACTURER	MODEL	SERIAL NUMBER	EXPIRATION DATE
PM Flow Standard #1	BGI	DeltaCal	141170	5/22/2019
PM Temperature Standard #1	BGI	DeltaCal	141170	5/22/2019
PM Barometric Pressure Standard #1	BGI	DeltaCal	141170	5/22/2019

MANUFACTURER	BGI
MODEL	PQ200S
SERIAL NUMBER	N964C

Da	te and Time	correct?
	Yes	No
	If no, time o	off by:
	-2 min	

SETTINGS Total Flow 16.70

	Automated LEAK CHECK		
調査の	Vacuum Loss Rate	Pass/Fail	
	1.0	PASS	

	and the second	FLOW VEF	RIFICATI	ON	
	Reference	Instrument	Actual Diff	Design Diff	100
Total Flow	16.91	16.70	-1.2%	1.3%	PASS

AUDIT CRITERIA (<=)				
Actual Flow % Diff	10%			
Design Flow % Diff	10%			

AUDIT CRITERIA (<=)

AUDIT CRITERIA (<=)

AUDIT CRITERIA (<=)

2

2

10

Temperature Difference (°C)

Temperature Difference (°C)

Pressure Difference (mmHg)

	AMBIENT TEMPERATURE SENSOR (°C)			
	Reference	Instrument	Difference	
在内心的时候	7.1	6.8	-0.3	PASS

	FILTER TEMPERATURE SENSOR (°C)			
	Reference	Instrument	Difference	
STREET, PARTY PARTY	6.9	6.8	-0.1	PASS

	PRESSURE SENSOR (mmHg)			
	Reference	Instrument	Difference	1
北京新台湾中小州	593.0	595.0	2.0	PASS

NOTES: erradict flow 16.65-16.82

ABBR.	n/a	CLIENT Alton Coal	AUDITOR	M Gosselin	DATE	11/19/2018
SITE N/	AME	Alton Coal- Coal Hollow				
Network	type	Alton Coal- Coal Hollov				

	MANUFACTURER	MODEL	SERIAL NUMBER	EXPIRATION DATE
PM Flow Standard #1	BGI	DeltaCal	141170	5/22/2019
PM Temperature Standard #1	BGI	DeltaCal	141170	5/22/2019
PM Barometric Pressure Standard #1	BGI	DeltaCal	141170	5/22/2019

MANUFACTURER	BGI
MODEL	PG200S
SERIAL NUMBER	N962

Date ar	nd Time	correct?
	Yes	No
lf no	o, time o	ff by:
	-2 min	

SETTINGS Total Flow 16.70

Automated LEAK	CHECK
Vacuum Loss Rate	Pass/Fail
4.0	PASS

		FLOW VER	RIFICATI	ON	
	Reference	Instrument	Actual Diff	Design Diff	
Total Flow	17.14	16.67	-2.7%	2.6%	PASS

AUDIT CRITERIA (<	=)
Actual Flow % Diff	10%
Design Flow % Diff	10%

ſ	AMBIENT TI	EMPERATURE	SENSOR (°C)	1
	Reference	Instrument	Difference	1
	5.5	5.7	0.2	PASS

	FILTER TE	MPERATURE S	ENSOR (°C)	1
	Reference	Instrument	Difference	1
至其他自然以外的	3.0	2.0	-1.0	PASS

PRESS	URE SENSOR	(mmHg)	
Reference	Instrument	Difference	
587.0	586.0	-1.0	PASS

AUDIT CRITERIA (<=)
Temperature Difference (°C) 2

AUDIT CRITERIA (<=)	
Temperature Difference (°C)	2

AUDIT CRITERIA (<=)	No. State of the
Pressure Difference (mmHg)	10

ABBR.	n/a C	CLIENT AI	ton Coal	AUDITO	R M Gos	selin DATE	法的基本和利用的	11/19/20 ⁻
SITE NAM	The second second second second	on Coal- Coa						
Network ty	pe Alto	on Coal- Co	al Hollov					
			and the second	FACTURER	MODEL	SERIAL NUMBER		TION DATE
	ow Standard	and write late the owner		BGI	DeltaCal	141170		2/2019
and the second	erature Standa	FILSE STE BUILDER ALS IN DEL	-	BGI	DeltaCal	141170		2/2019
PM Barometri	c Pressure St	andard #1		BGI	DeltaCal	141170	5/22	2/2019
ANUFACTUR	ER	BGI	1					
ODEL	F	PQ200	1	11000	Date and T	Time correct?		
ERIAL NUMB	ER 2	2366D	1	1412		Yes No		
			-	and the second se	lf no, ti	me off by:		
States S	ETTINGS			r i i i i i i i i i i i i i i i i i i i		min		
tal Flow	16.70	PARSTARL COMPENSION AND P	8					
2		Automated	LEAK CH	IECK				
		Automated uum Loss Rat	and the second se	IECK Pass/Fail				
			and the second se					
		uum Loss Rat 4.0	8	Pass/Fail PASS	10			
		uum Loss Rat 4.0 FLOW VE	e RIFICATI	Pass/Fail PASS ON		AUDIT CRIT	ERIA (<=)	
		uum Loss Rat 4.0	e RIFICATI	Pass/Fail PASS ON		AUDIT CRIT Actual Flow % Diff	'ERIA (<=)	10%
otal Flow	Vac	uum Loss Rat 4.0 FLOW VE	e RIFICATI	Pass/Fail PASS ON	2 2 2 2 3			10% 10%
otal Flow	Vac Reference 16.72	uum Loss Rat 4.0 FLOW VE Instrument 16.95	e RIFICATI Actual Diff 1.4%	Pass/Fail PASS ON Design Diff 0.1% PAS	S	Actual Flow % Diff		in the local design of the local design of the
otal Flow	Vac Reference 16.72	uum Loss Rat 4.0 FLOW VE Instrument 16.95	e RIFICATI Actual Diff 1.4%	Pass/Fail PASS ON Design Diff		Actual Flow % Diff		in the local design of the
stal Flow	Vac Reference 16.72 AMBIEN	uum Loss Rat 4.0 FLOW VE Instrument 16.95 IT TEMPER ce Instr	e RIFICATI Actual Diff 1.4% ATURE S	Pass/Fail PASS ON Design Diff 0.1% PAS SENSOR (°C)		Actual Flow % Diff Design Flow % Diff	ERIA (<=)	in the local design of the
otal Flow	Vac Reference 16.72 AMBIEN Reference 8.1	uum Loss Rat 4.0 FLOW VE Instrument 16.95 IT TEMPER ce Instr	e RIFICATI Actual Diff 1.4% ATURE S ument 3.0	Pass/Fail PASS ON Design Diff 0.1% PAS ENSOR (°C) Difference -0.1		Actual Flow % Diff Design Flow % Diff AUDIT CRIT	ERIA (<=)	10%
otal Flow	Vac Reference 16.72 AMBIEN Reference 8.1 FILTER	uum Loss Rat 4.0 FLOW VE Instrument 16.95 IT TEMPER Ce Instr R TEMPERA	e RIFICATI Actual Diff 1.4% ATURE S ument 3.0 TURE SE	Pass/Fail PASS ON Design Diff 0.1% PAS SENSOR (°C) Difference -0.1 ENSOR (°C)	PASS	Actual Flow % Diff Design Flow % Diff AUDIT CRIT Temperature Difference	ERIA (<=) (°C)	10%
otal Flow	Vac Reference 16.72 AMBIEN Reference 8.1 FILTER Reference	4.0 FLOW VE Instrument 16.95 IT TEMPER Ce Instr R TEMPERA Ce Instr	e RIFICATI Actual Diff 1.4% ATURE S ument 3.0 TURE SE ument	Pass/Fail PASS ON Design Diff 0.1% PAS SENSOR (°C) Difference -0.1 ENSOR (°C) Difference	PASS	Actual Flow % Diff Design Flow % Diff AUDIT CRIT Temperature Difference AUDIT CRIT	ERIA (<=) (°C) ERIA (<=)	<u>10%</u> 2
otal Flow	Vac Reference 16.72 AMBIEN Reference 8.1 FILTER	4.0 FLOW VE Instrument 16.95 IT TEMPER Ce Instr R TEMPERA Ce Instr	e RIFICATI Actual Diff 1.4% ATURE S ument 3.0 TURE SE	Pass/Fail PASS ON Design Diff 0.1% PAS SENSOR (°C) Difference -0.1 ENSOR (°C)	PASS	Actual Flow % Diff Design Flow % Diff AUDIT CRIT Temperature Difference	ERIA (<=) (°C) ERIA (<=)	10%
otal Flow	Vac Reference 16.72 AMBIEN Reference 8.1 FILTER Reference 8.4	uum Loss Rat 4.0 FLOW VE Instrument 16.95 IT TEMPER Ce Instr R TEMPERA Ce Instr	e RIFICATI Actual Diff 1.4% ATURE SE ument 3.0 TURE SE ument 3.8	Pass/Fail PASS ON Design Diff 0.1% PAS ENSOR (°C) Difference -0.1 ENSOR (°C) Difference 0.4	PASS	Actual Flow % Diff Design Flow % Diff AUDIT CRIT Temperature Difference AUDIT CRIT	ERIA (<=) (°C) ERIA (<=)	10% 2
otal Flow	Vac Reference 16.72 AMBIEN Reference 8.1 FILTER Reference 8.4	uum Loss Rat 4.0 FLOW VE Instrument 16.95 IT TEMPER Ce Instr R TEMPERA Ce Instr EESSURE S	e RIFICATI Actual Diff 1.4% ATURE SE ument 3.0 TURE SE ument 3.8	Pass/Fail PASS ON Design Diff 0.1% PAS ENSOR (°C) Difference -0.1 ENSOR (°C) Difference 0.4	PASS	Actual Flow % Diff Design Flow % Diff AUDIT CRIT Temperature Difference AUDIT CRIT	ERIA (<=) (°C) ERIA (<=) (°C)	10% 2

ABBR.	n/a	CLIENT Alton Coal	AUDITOR	M Gosselin	DATE	11/19/2018
SITE N	AME	Alton Coal- Coal Hollow				
Networ	k type	Alton Coal- Coal Hollov				

	MANUFACTURER	MODEL	SERIAL NUMBER	EXPIRATION DATE
PM Flow Standard #1	BGI	DeltaCal	141170	5/22/2019
PM Temperature Standard #1	BGI	DeltaCal	141170	5/22/2019
PM Barometric Pressure Standard #1	BGI	DeltaCal	141170	5/22/2019

MANUFACTURER	BGI
MODEL	PQ200
SERIAL NUMBER	2398E

Date and Time correct?
Yes ✓ No
If no, time off by:
-3 min

SETTINGS Total Flow 16.70

	Automated LEAK CHECK		
	Vacuum Loss Rate	Pass/Fail	
行行的法律法的分析	3.0	PASS	

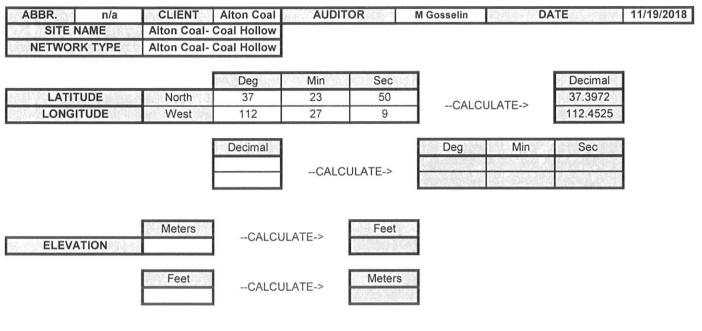
	FLOW VERIFICATION				
	Reference	Instrument	Actual Diff	Design Diff	
Total Flow	16.87	16.70	-1.0%	1.0%	PASS

	AUDIT CRITERIA (<=)		
	Actual Flow % Diff	10%	
f le ch	Design Flow % Diff	10%	

	AMBIENT TEMPERATURE SENSOR (°C)			
	Reference	Instrument	Difference	
中华的深境的新闻	9.4	9.6	0.2	PASS

	FILTER TEMPERATURE SENSOR (°C)			
1	Reference	Instrument	Difference	
els to Takyta ging	7.4	6.7	-0.7	PASS

Г	PRESSURE SENSOR (mmHg)			1
ſ	Reference	Instrument	Difference	1
	592.5	594.0	1.5	PASS


AUDIT CRITERIA (<=)
Temperature Difference (°C) 2

AUDIT CRITERIA (<=)	M. C. MA
Temperature Difference (°C)	2

AUDIT CRITERIA (<=)	
Pressure Difference (mmHg)	10

SITE INFORMATION

Please verify site standards used by the site operator

SITE STANDARDS	MANUFACTURER	MODEL	SERIAL #	Calibration Expiration Date
PM Flow Reference				

Air Resource calibration and verification standards

ABBR.	n/a	CLIENT	Alton Coal	AUDITOR	M Gosselin	DATE	11/19/2018
SITE N	IAME	Alton Coal-	Coal Hollow				
Networ	k type	Alton Coal-	Coal Hollov				

		Contraction of the Contraction o		the second s	and and the second present of the second
		MANUFACTURER	MODEL	SERIAL #	Calibration Expiration Date
Ozone Transf	er Standard				
Gas Dilution Tra	nsfer Standard				
MFC High Flo	w Reference				
MFC Low Flow	w Reference				
Temperature	Reference	Eutechnics	4400	307635	2/28/2019
AT/RH Senso	r Reference				
Barometric Pres	sure Reference				
Wind Speed Refer	rence (high rpm)				
Wind Speed Refe	rence (low rpm)	RM Young	18811	CA03912	12/14/2018
Wind Speed To	orque Gauge	RM Young	18310	and the second second	
Wind Direction Alig	nment Reference	Brunton	Transit	5103212072	
Wind Direction Lin	earity Reference	RM Young	18212	n/a	
Wind Direction	Torque Gauge	RM Young	18331	n/a	
Solar Radiatio	n Reference				
Multiplier	W/m2 / mV				100 A
UV Radiation	Reference				
Multiplier	W/m2 / mV				
Precipitation	Reference				and the second second
Volume 1	000 mL	RM Young	52260	n/a	

PM Flow Standard #1	BGI	DeltaCal	141170	5/22/2019
PM Flow Standard #2	和自己的教育 。在19		影响的影响。	
PM Flow Standard #3				
PM Flow Standard #4		。 針因:對口服為主人。 这		

PM Temperature Standard #1	BGI	DeltaCal	141170	5/22/2019
PM Temperature Standard #2	注册的金属 于14-143			这种特征教授 于,并且
PM Temperature Standard #3				
PM Temperature Standard #4	目的建筑的建筑设计学现在	e Reservation des	Para Recent Control	NAMES OF STREET, ST

PM Barometric Pressure Standard #1	BGI	DeltaCal	141170	5/22/2019
PM Barometric Pressure Standard #2				Constant of the State of the
PM Barometric Pressure Standard #3				
PM Barometric Pressure Standard #4	ha iyo ya ana babaya	1999年夏夏夏日的日本社会	14.00.25.04B220466283	North Market

TEOM MTV Standard		

Orifice ∆P orifice manometer APPENDIX B

AUDIT STANDARDS CERTIFICATIONS

MICRO PRECISION CALIBRATION 22835 INDUSTRIAL PLACE GRASS VALLEY CA 95949 530-268-1860

Certificate of Calibration

Date: Feb 28, 2018

Customer:

Cert No. 512200813278800

AIR RESOURCE SPECIALIST, INC 1901 SHARP POINT DRIVE, SUITE F FORT COLLINS CO 80525

MPC Control #:	AX7278
Asset ID:	N/A
Gage Type:	DIGITAL THERMOMETER
Manufacturer:	EUTECHNICS
Model Number:	4400
Size:	-20 to 130 Deg C
Temp/RH:	70.0°F / 45.0%
Location:	Calibration performed at MPC facility
Calibration No	tes:

Work Order #:	SAC-70093204
Purchase Order #:	a32178
Serial Number:	307635
Department:	N/A
Performed By:	TODD MORRIS
Received Condition:	IN TOLERANCE
Returned Condition:	IN TOLERANCE
Cal. Date:	February 28, 2018
Cal. Interval:	12 MONTHS
Cal. Due Date:	February 28, 2019
at the same of the second second second second second	

Standards Used to Calibrate Equipment

I.D.	Description.	Model	Serial	Manufacturer	Cal. Due Date	Traceability #
CR6700	DOUBLE WELL BATH	7013	79006	HART SCIENTIFIC	Sep 30, 2018	512200813015067
DA8367	PRECISION PLATINUM RESISTANCE THERMOMETER SPRT W/ CASE	8167-25	1803221	LEEDS & NORTHRUP CO.	Aug 1, 2019	512200812443997
N1741	ICE POINT CELL	K140-4	802125	KAYE INSTRUMENTS	Jan 31, 2020	512200813197782

Procedures Used in this Event

Procedure Name MPC-TEM-001 Description

Temperature Sensor and Indicators, General, Oct-31-2017, rev01

Calibrating Technician:

Lodd Morris

TODD MORRIS

QC Approval:

BRIAN GOLD

The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for normal distribution corresponds to a coverage probability of approximately 95%. The standard uncertainty of measurement has been determined in accordance with EA's Publication and NIST Technical Note 1297, 1994 Edition. Services rendered conform with ISO/IEC 17025:2005, ANSI/NCSL Z540-1-1994, ANSI/NCSL Z540.3-2006, MPC Quality Manual, MPC CSD and with customer purchase order instructions.

Calibration cycles and resulting due dates were submitted/approved by the customer. Any number of factors may cause an instrument to drift out of tolerance before the next scheduled calibration. Recalibration cycles should be based on frequency of use, environmental conditions and customer's established systematic accuracy. The information on this report, pertains only to the instrument identified.

All standards are traceable to SI through the National Institute of Standards and Technology (NIST) and/or recognized national or international standards laboratories. Services rendered include proper manufacturer's service instruction and are warranted for no less than thirty (30) days. This report may not be reproduced in part or in a whole without the prior written approval of the issuing MPC lab.

Page 1 of 1

R.M. Young Company 2801 Aero Park Drive Traverse City, Michigan 49686 USA

CERTIFICATE OF CALIBRATION AND TESTING

Model: 18811	Description: Anemometer Drive - 20 to 990 RPM
Serial Number: CA03912	(Comprised of 18820A Control Unit and 18831A Motor Assembly)

R. M. Young Company certifies that the above equipment was inspected and calibrated prior to shipment in accordance with established manufacturing and testing procedures. Standards established by R.M. Young Company for calibrating the measuring and test equipment used in controlling product quality are traceable to the National Institute of Standards and Technology.

Nominal	27106D Output		
Motor RPM	Frequency	Calculated	Indicated
RPM	Hz (1)	RPM (2)	RPM (3)
30.0	5	30.0	30.0
150.0	25	150.0	150.0
300.0	50	300.0	300.0
450.0	75	450.0	450.0
600.0	100	600.0	600.0
750.0	125	750.0	750.0
990.0	165	990.0	990.0
✓	Clockwise and Countercloo	kwise rotation verified.	

(1) Measured output frequency of YOUNG model 27106D standard anemometer attached to motor shaft.

(2) YOUNG model 27106D produces 10 pulsed per revolution of the anemometer shaft.

(3) Indicated on the Control Unit LCD.

* Indicates out of tolerance.

New Unit

Service / Repair Unit No calibration adjustments required As found

Traceable frequency meter used for calibration: Model: 34405A

Serial Number: 53020093

Date: 14 December 2017 Calibration Interval: One year

55 Tested By :

M E T E O R O L O G I C A L I N S T R U M E N T S Tel: 231-946-3980 Fax: 231-946-4772 Email: met.sales@youngusa.com Website: youngusa.com ISO 9001:2008 CERTIFIED Mesa Labs 10 Park Place Butler, NJ 07405

NIST Traceable Calibration Facility, ISO 9001:2008 Registered

CERTIFICATE OF CALIBRATION - NIST TRACEABILITY

(Refer to instruction manual for further details of calibration)

deltaCal Serial Number: 141170 DATE: 25-Apr-2018

Calibration Operator: E. Albujar

Critical Venturi Flow Meter: Max Uncertainity = 0.346% Serial Number: 1 CEESI NVLAP NIST Data File 04BGI151 Serial Number: 2 CEESI NVLAP NIST Data File 04BGI152 Serial Number: 3 CEESI NVLAP NIST Data File 04BGI153 Serial Number: 4 CEESI NVLAP NIST Data File 02BGI004

Room Temperature: +- 0.03°C	C from -5°C -	• 70°C	Room Temp	24.3 °C
Brand: Telatemp Serial N	lumber:		358654	
Std Cal Date 23-	Oct-17	Std C	al Due Date	23-Oct-18
deltaCal:				
Ambient Temperature (set):	24.3 °	С		
Aux (filter) Temperature (set):	24.3 °	С		

Barometric Pressure and Absolute Pressure						
	Vaisala Model PTB330(50-1100) Digital	Accuracy: 0.03371%				

Serial Number	C4310002	·	
Std Cal Date	26-Mar-18	Std Cal Due Date	26-Mar-19
deltaCal:			
Barometric pressure (set):	742.5 r	nm of Hg	

Results of Venturi Calibration

Flow Rate (Q) vs. Pressure Drop (ΔP). Where: Q=Lpm, ΔP = Cm of H2O

Q= 3.81660 ΔP ^ 0.53680 Q= 3.86245 ΔP ^ 0.52151

(12 months from date placed in service)

Overall Uncertainty: 0.35%

Overall Uncertainty: 0.35%

Date Placed In Service <u>5/22/18</u> (To be filled in by operator upon receipt) Recommended Recalibration Date <u>5/22/19</u>

> Revised: March 2016 Cal102-01T1 Rev D

То	Check a delta 1.5-19.5	aCal VER 4.00	E. Albujar	Date	25-Apr-2018	Pre recert	
	Maximum al	llowable erro Serial No.	or at any flow rate is .75%. 141170		BP=	743	mm of Hg
	Reading Abs. P		CV Qa		Qa		
	Crit. Vent. mm of Hg	Room Temp	Flow Lpm		deltaCal Indicated	% Error	
#2	122.19 218.85 296.35 382.58 466.61	22.60 22.60 22.60 22.60 22.60	1.369 2.490 3.390 4.390 5.365		1.557 2.585 3.400 4.424 5.399	13.72 3.80 0.31 0.78 0.64	
#1	170.46 252.99 327.64 387.45 478.02	22.60 22.60 22.60 22.60 22.60	6.733 10.091 13.128 15.561 19.246		6.795 10.075 13.125 16.075 19.351	0.92 -0.16 -0.02 3.30 0.55	

Average % 2.38

To Check a deltaCal

E. Albujar 1.5-19.5 VER 4.00

25-Apr-2018 Date

BP= 742.5 mm of Hg

Maximum allowable error at any flow rate is .75%. Serial No. 141170

	Reading		CV			
	Abs. P		Qa	Q	la	
	Crit. Vent.	Room	Flow	delta	aCal	
	mm of Hg	Temp	Lpm	Indic	cated % Error	·
#2	149.87	24.30	1.701	1.6		
	194.06	24.30	2.217	2.2		
	279.78	24.30				
			3.218	3.1		
	356.20	24.30	4.110	4.1	38 0.6 8	
	464.51	24.30	5.375	5.4	02 0.51	
# 1	156.23	24.30	6.194	6.2	0.53	
	272.79	24.30	10.967	10.9	981 0.13	
	343.84	24.30	13.876	13.8	<mark>899</mark> 0.17	
	431.97	24.30	17.484	17.5	517 0.19	
	478.28	24.30	19.380	19.4	452 0.37	

Average % 0.12