UTAH AIR QUALITY BOARD MEETING
TENTATIVE AGENDA
Wednesday, July 6, 2022 - 1:30 p.m.
195 North 1950 West, Room 1015
Salt Lake City, Utah 84116

Board members may be participating electronically. Interested persons can participate telephonically by
dialing 1 502-513-4235 using access code: 518-497-214#, or via the Internet at meeting link:
https://meet.google.com/ezd-wwkw-zso

I. Call-to-Order

II. Date of the Next Air Quality Board Meeting: September 7, 2022

III. Approval of the Minutes for the May 4, 2022, Board Meeting.

VII. Informational Items.
A. Air Toxics. Presented by Leonard Wright.
B. Compliance. Presented by Harold Burge and Rik Ombach.
D. Other Items to be Brought Before the Board.
E. Board Meeting Follow-up Items.

In compliance with the Americans with Disabilities Act, individuals with special needs (including auxiliary communicative aids and services) should contact Larene Wyss, Office of Human Resources at (801) 536-4281, TDD (801) 536-4284 or by email at lwyss@utah.gov.
ITEM 4
MEMORANDUM

TO: Air Quality Board

THROUGH: Bryce C. Bird, Executive Secretary

FROM: Bo Wood, Rules Coordinator

DATE: June 23, 2022

Utah Code Title 63G-3-305 requires each agency to review and justify each of its rules within five years of a rule’s original effective date or within five years of the filing of the last five-year review. This review process is not a time to revise or amend the rules, but only to verify that the rule is still necessary and allowed under state and federal statutes. As part of this process, we are required to identify any comments received since the last five-year review of each rule. This process is not the time to revisit those comments or to respond to them.

DAQ has completed five-year reviews for R307-230, NOx Emission Limits for Natural Gas-Fired Water Heaters. The results of this review are found in the attached Five-Year Notice of Review and Statement of Continuation forms.

Recommendation: Staff recommends that the Board continue this rule by approving the attached forms to be filed with the Division of Administrative Rules.
FIVE-YEAR NOTICE OF REVIEW AND STATEMENT OF CONTINUATION

Title No. - Rule No.
Utah Admin. Code Ref (R no.): R307-230
Effective Date: Office Use Only
Filing ID: (Office Use Only)

Agency Information

1. Department: Environmental Quality
Agency: Air Quality
Room no.:
Building: Multi-Agency State Office Building
Street address: 195 North 1950 West
City, state and zip: Salt Lake City, Utah, 84116
Mailing address: P.O. Box 144820
City, state and zip: Salt Lake City, UT 84114-4820
Contact person(s):
Name: Bo Wood
Phone: 385-499-3416
Email: rwood@utah.gov

Please address questions regarding information on this notice to the agency.

General Information

2. Rule catchline:

3. A concise explanation of the particular statutory provisions under which the rule is enacted and how these provisions authorize or require this rule:
This rule is authorized by the Section 15A-6-102 of the Utah Code, which prohibits the sale or installation of natural gas water heaters that do not meet the criteria in the statute for controlling NOx emissions.

4. A summary of written comments received during and since the last five-year review of this rule from interested persons supporting or opposing this rule:
No written comments have been received regarding this rule since the last 5 year review.

5. A reasoned justification for continuation of this rule, including reasons why the agency disagrees with comments in opposition to this rule, if any:
The Clean Air Act requires the state of Utah to establish, maintain, and enforce rules to meet air quality health standards through the State Implementation Plan (SIP). This rule is required as part of the PM2.5 SIP to reduce NOx, which is a precursor pollutant to PM2.5.

Agency Authorization Information

To the agency: Information requested on this form is required by Section 63G-3-305. Incomplete forms will be returned to the agency for completion, possibly delaying publication in the Utah State Bulletin.

Agency head or designee, and title: Bryce C. Bird
Date (mm/dd/yyyy): 07/06/2022

Reminder: Text changes cannot be made with this type of rule filing. To change any text, please file an amendment or nonsubstantive change.

R307-230-1. Purpose.
The purpose of R307-230 is to reduce emissions of nitrogen oxides (NOx) from natural gas-fired water heaters.

R307-230 applies to the sale or installation of natural gas-fired water heaters on or after July 1, 2018.

(1) The State Construction and Fire Codes Act, Subsection 15A-6-102, Enacted by Chapter 236, 2017 General Session, is hereby incorporated by reference.
(2) Manufacturers shall use South Coast Air Quality Management District Method 100.1 to comply with the NOx emission limits.

KEY: water heaters, natural gas, NOx, air quality
Date of Last Change: August 3, 2017
Authorizing, and Implemented or Interpreted Law: 19-2-101; 19-2-104; 19-2-107.7
ITEM 5
MEMORANDUM

TO: Air Quality Board

THROUGH: Bryce C. Bird, Director

FROM: Sheila Vance, Environmental Scientist

DATE: June 24, 2022

On April 6, 2022, the Air Quality Board proposed the listed rule amendments for a 30-day public comment period from May 1, 2022, to May 31, 2022. A public hearing was held on May 24, 2022. No comments were received at the hearing, however written comments were received from multiple stakeholders during the public comment period. A summary of those comments, along with staff responses can be found in Attachment A of this memo.

Comments from industry stakeholders focused primarily on four items:

1. the short time for implementation,
2. disagreement with the throughput threshold for requiring storage vessel emission controls,
3. leak detection and repair requirement (LDAR) changes, and
4. the need for a defined process to review site specific sampling.

Comments from environmental advocates focused on:

1. lowering the value for volatile organic compound (VOC) emissions to require storage vessel requirements,
2. increasing LDAR frequency, and
3. banning routine flaring and venting of associated gas from oil extraction operations.
After review and consideration of comments received, the following changes are proposed:

1. That the compliance date for storage vessel controls be extended to December 1, 2023. Since it is likely that UDAQ will not be required to submit a state implementation plan for the area and persistent supply chain issues that make the January 2023 compliance date infeasible, this is a reasonable accommodation.

2. That the requirement for LDAR inspections to occur during specific months be removed. Comments explaining the difficulties of completing required biannual LDAR inspection during specific months were valid. Upon review, UDAQ prefers that sources focus on consistent and high-quality inspections. Moreover, the upcoming EPA oil and gas proposed rules will provide additional inspection requirements and industry is preparing to meet those additional requirements.

3. That the requirement to perform LDAR inspections after well shut-in be removed. Though UDAQ has concerns about the management of well sites after a shut-in of operations, it is reasonable to remove this requirement until further evidence and control strategies have been identified and documented in numerous inspections. Any future rulemaking will go through the advanced notice process.

4. Changes to the timing of removal of material for emergency relief storage vessels was returned to the original language. The UDAQ is concerned with emissions from these vessels but agree that the timing of removal will not achieve significant reductions in emissions. UDAQ will continue to document its findings with emissions from these vessels and look to better solutions to control them. The requirement to provide documentation to UDAQ prior to removal of controls was removed as there is currently a process through the registration of well sites that will allow UDAQ to request information when notified of a change in status for a source.

The changes and clarifications made to each rule are as follows:

R307-506

The proposed rule was changed to extend the date for compliance from January 1, 2023, to December 1, 2023, and to clarify the date of compliance for sources with an Approval Order. A clarification was added regarding first-year VOC control requirements for well sites in operation prior to January 1, 2018. Changes to requirements for emptying emergency relief storage vessels were removed. Changes to recordkeeping requirements were removed.

R307-508

Compliance date clarification made for sources that have an Approval Order.

R307-509

The proposed requirement to perform LDAR inspections in specific months in Duchesne and Uintah counties was removed. The requirement to perform a LDAR inspection after a temporary shut-in was removed.

R307-511

No changes made.
Recommendation: Staff recommends that the Board adopt R307-506. Oil and Gas Industry: Storage Vessel; R307-508. Oil and Gas Industry: VOC Control Devices; R307-509. Oil and Gas Industry: Leak Detection and Repair Requirements; and R307-511. Oil and Gas Industry: Associated Gas Flaring, as amended.
Attachment
A

Comments and Responses
Response to Comments

Ovintiv Comments
Questions and comments excerpted from original document.

Ovintiv Comment #1: Based on the reasons above, Ovintiv requests that the proposed deadline be changed to on or after July 1, 2023. Moreover, we request that the proposed storage tanks control threshold limit of 3,200 barrels or greater of crude oil per year on a rolling 12-month basis be changed to 5,000 barrels.

UDAQ Response. The proposed deadline for compliance with storage vessel controls has been changed from the proposed January 1, 2023, date to December 1, 2023. This will allow more time for design, procurement, and installation of emission control equipment under the current constraints nationally and globally for parts and goods. This date coincides with the beginning of the ozone season that historically begins in December and ends in March. The original date was proposed as action for the potential bump up to a moderate classification for the Uinta Basin nonattainment area and the Clean Air Act requirement for mandatory reductions in VOC emissions. However, as the EPA has proposed a one-year extension to the attainment date for the Uinta Basin NAA and in anticipation of this extension being granted, the mandatory reductions in VOC emissions are not required in a mandatory time frame. UDAQ will continue to look for reductions in emissions and compliance with requirements to ensure that the reduction recently observed in ozone values continues for the Uinta Basin.

The value for storage vessel controls was not changed from the proposed 3,200 barrels or greater of crude oil per year on a rolling 12-month basis. The statistical ‘best fit’ discussion regarding the data obtained from the Uinta Basin VOC composition study can be presented in various ways and methodologies. This may not be the best way to determine a regulatory threshold. The decision to use a throughput value to equate to emissions from a storage vessel was proposed and promulgated in the January 2018 changes to the R307 500 rule series. This change in regulatory direction was to aid in ease of compliance and remove the requirement for sources to obtain and manage an operating permit. As there are several thousand well sites requiring management and oversight by UDAQ personnel, this is perceived as an improved process for both sources and regulators. To allow for this flexibility, UDAQ regulates to a conservative value to ensure the rule captures sites that have emissions that would have been required to control emission under an approval order. Data collected indicates that there are facilities with a throughput value of 3,200 barrels that have storage vessel emissions greater than 4 tons per year (tpy) of VOCs. We acknowledge that there are facilities with that throughput that may have lower than 4 tpy of VOC emissions. To address the conservative value, there is an option for a facility to perform their own sampling and analysis to determine their site-specific emissions. The UDAQ asserts that this is a reasonable exchange for a simpler, quicker permitting process ascertaining the facilities ability to comply with the requirement. This is not unlike other sources in the state which are required to demonstrate emission/PTE quantities for regulatory applicability determinations. The UDAQ staff are available to sources to provide technical support and assistance in determining the applicability of regulations.

Ovintiv Comment #2: Ovintiv requests that UDAQ add to the Proposal to change R-307-4(2)(b)(i) from direct “site-specific” to “representative” sampling data.

UDAQ Response. Though well sites can be very similar in operation and process, they also can vary greatly in aspects that affect emissions of VOCs. Variation in temperature, pressures and maintenance of equipment, geological formation, depth, type, and makeup each contribute to the need for site-specific data. As presented in the Uinta Basin Composition Study, the UDAQ could not determine a single factor that would allow samples to be grouped together by similarity. However, to allow this for potential possibility we have added language that will allow the use of representative data with approval from UDAQ. The
UDAQ anticipates as more data is collected from sampling and analysis work performed by operators, that there is the potential for samples to represent certain geographical areas.

Ovintiv Comment #3: The proposed R-307-506 also reduces the period to empty emergency relief storage vessels from 15-days to 48-hours after receiving fluids. UDAQ did not provide any justification for the dramatic change in time period, and there does not appear to be any air emissions benefit.

UDAQ response. The intent of this proposed change was to discourage the continual use of an emergency relief storage vessel for long term releases. As comments received have been considered, and our understanding of the potential emissions from the use of these emergency relief storage vessels, we agree that this proposed requirement does not meet the intent of achieving meaningful reductions in emissions. The UDAQ will reassess this aspect of storage vessel management and will look to propose alternative language in the near future. Any future rulemaking will be done with advance notice of the alternative prior to any proposed rule changes to the Air Quality Board.

Ovintiv Comment #4: The proposed R-307-509 would significantly modify leak detection and repair (LDAR) monitoring timing requirements. As a result, Ovintiv requests that this modification be removed.

UDAQ response. Through discussion and evaluation of the comments received, we agree at this time that specifying months for LDAR inspections are operationally difficult and potentially affect the quality of inspections. In addition, UDAQ anticipates imminent changes to national requirements for oil and gas exploration and production that will require many of the facilities that would have been impacted by this rule change to be required to perform quarterly LDAR inspections which will have a greater impact on emission reductions than this proposal. As such this language has been removed.

Ovintiv Comment #5: Second, the Proposal adds a requirement that within seven (7) days of the well site becoming operational after being shut-in for seven (7) calendar days, an LDAR monitoring survey shall be conducted. Again, this proposed change is not practical for operations to implement.

UDAQ response. UDAQ has removed this language. This will be reevaluated from the data being collected from compliance inspections and any potential changes in requirements will be presented through advance notice of rulemaking prior to any proposal to the Air Quality Board.

Public Lands Solutions Comments

Questions and comments excerpted from original document.

PLS Comment #1: Rule 307-506, Storage Vessels – DAQ should set a stronger control threshold for volatile organic compounds than the current 4 tons per year standard.

UDAQ response. UDAQ appreciates the comment and at this time will continue to base control requirements on the 4 tpy as this is what is currently considered BACT for these sources. This may be reevaluated in the future based upon changes in the industry or changes in the air quality status of the Uinta Basin.

PLS Comment #2: Rule 307-509, Leak Detection and Repair – DAQ should require instrument-based quarterly leak inspections for all well sites with no approval order exemptions for low-producing sites or sites without controlled tanks or dehydrators. Gas-powered pneumatic controllers should also be included in required quarterly leak detection and repair inspections to curb emissions from malfunctioning equipment.
UDAQ response. UDAQ appreciates the comment and will take this into consideration for future rulemaking. This would be a more stringent requirement than what was proposed in this rulemaking and would require further public comment.

PLS Comment #3: Rule 307-511, Associated Gas Flaring – DAQ should follow the lead of New Mexico and Colorado and ban routine venting and flaring due to lack of infrastructure to capture the gas.

UDAQ response. UDAQ appreciates the comment and will take this into consideration for future rulemaking. This would be a more stringent requirement than what was proposed in this rulemaking and would require further public comment.

XCL Resources Comments
Questions and comments excerpted from original document.

XCL Comment #1: The data does not support the proposed 3,200 barrel per year threshold for controls. The threshold should be no lower than 5,000 barrels per year.

UDAQ response. See response to Ovintiv comment #1.

XCL Comment #2: XCL requests agency review and confirmation of records underpinning the removal of emission controls for storage vessels with throughput less than the control threshold for the final rule.

UDAQ response. The UDAQ has removed the language requiring submittal of data associated with removal of controls. As companies are required to update their registration when control devices are added or removed (R307-505-3(3)(b)), the agency will be notified of such changes at that time and will be able request or review data via that process rather than adding this proposed language. Requests for removal of controls are submitted through our registration database (CAERS) and are already evaluated by UDAQ for accuracy and applicability.

XCL Comment #3: XCL believes the proposed LDAR recheck after a well has been shut in for as little as seven days should be stricken as it is unsupported by the science of record and creates cost and operational burden with de minimis benefits to air quality.

UDAQ response. See response to Ovintiv comment #5.

Utah Petroleum Association Comments
Questions and comments excerpted from original document.

UPA Comment #1: The data do not support the proposed 3,200 barrel per year threshold for controls. The threshold should be no lower than 5,000 barrels per year and possibly greater.

UDAQ response. See response to Ovintiv comment #1. In addition to the previous response, the UPA comments discuss the concern with the conservative value for the throughput threshold driving many operators to take site-specific samples to determine tank emissions and that this will substantially increase UDAQ staff workload and result in small reductions in emissions. The UDAQ is prepared to allocate resources for additional work associated with site-specific sample review over the next 14 months as sources take actions to determine their applicability to the reduced value. UDAQ expects a short-term increase in work load as sources come into compliance with the rulemaking. There is not a requirement for
UDAQ to approve determinations made by operators as to the applicability of tank controls, however we understand that operators will request agency help with review of data. Additionally, UDAQ is committed to continuing to work with other air quality regulators and operators to develop guidelines for sampling and analysis methodologies to provide enhanced confidence in such determinations of applicability. It is true that some sources may not be required to control their emissions following site-specific sampling, however, UDAQ study data indicate that some sources with throughputs between 3,500 and 8,000 barrels of oil produce high VOC emissions. The potential reduction in emissions have been estimated to be about 1,000 tons of VOCs annually. This represents a fairly significant amount of tank emissions, which remain among the top contributing categories to total VOC in the Uinta Basin.

UPA comments provided here also focused on the Uinta Basin Composition Study and the appropriateness of its use for regulatory changes. Some of the comments are specifically addressed:

Improper sampling location, some samples were taken from the sight glass not a sampling port downstream of the separator. There were some instances of this, however the majority of oil well samples were taken from the sample port.

Inadequate sample representativeness criteria. UDAQ has responded to this in our response to UPA comments. Subject matter experts continue to emphasize the importance of regionally-specific sampling to determine acceptance criteria, and because this study was the first of its kind in the Uinta Basin, broad acceptance criteria are utilized until more data can be collected. The use of broad acceptance criteria is supported by EPA and recommended in the Pressurized Hydrocarbon Liquids Sampling and Analysis Study.

Lack of a model performance evaluation – The Study did not collect flash gas or stock tank API gravity. The study did collect 5 flash gas samples and conducted model performance evaluation for those 5 samples.

Our review of UDAQ’s most recent model files suggests that atmospheric pressure in the model runs may have been set at 14.69 psia, the atmospheric pressure at sea level, instead of the 11.6 to 12.3 psia measured at the sampling location elevations. UDAQ has verified that the ProMax configuration for this analysis and the model is indeed ingesting the measured ambient pressure at each site.

There were several comments on the linear “best fit” used to determine throughput. We have chosen a conservative value as mentioned above and we set a low threshold in order to account for these operators with high emissions. While the “best fit” approach is useful to understand general trends in the dataset, it is ultimately a flawed exercise to determine a regulatory threshold. Generally, a “best fit” will bisect the data such that 50% of the data points are above the line and 50% are below, but such a model does not accomplish regulatory goals to reduce emissions that would fall above the line of best fit. The line provided by UDAQ in its analysis is not necessarily well-fitted to the data, but it does provide a reasonable threshold beyond which several sources produced high VOC emissions.

UPA Comment #2: The compliance date for storage vessels of January 1, 2023, will be impossible to meet and should be changed to January 1, 2024.

UDAQ response. See response to Ovintiv Comment #1.

UPA Comment #3: The existing rule language should be modified to allow a site-specific threshold for controls to be set based on “representative” sampling as an alternative to “site-specific” sampling.

UDAQ response. See response to Ovintiv Comment #2.
UPA Comment #4: The requirement to empty emergency relief storage vessels should not be lowered to 48 hours but should be left unchanged from the current 15 days because the proposed change has not been properly justified nor can it be.

UDAQ response. See response to Ovintiv Comment #3.

UPA Comment #5: UPA requests an agency review and confirmation of storage vessel records supporting removal of controls for storage vessels with throughput less than the control threshold.

UDAQ response. See response to XCL Comment #2.

UPA Comment #6: The first-year requirements need to be clarified for existing storage vessels.

UDAQ response. UDAQ agrees with the proposed language change and has made that clarification.

UPA Comment #7: The removal of the exemption for VOC control devices subject to an approval order should have an applicability date of January 1, 2024.

UDAQ response. UDAQ has added an applicability date of December 1, 2023.

UPA Comment #8: The proposed specified year-end monitoring period will result in significant cost to operators without an appreciable improvement in air quality, has not been properly justified, and should be removed from the rule entirely.

UDAQ response. See response to Ovintiv Comment #4.

UPA Comment #9: The effective date for the proposed LDAR changes should be set at August 1, 2023.

UDAQ response. As the LDAR changes have been removed, no compliance date is necessary.

UPA Comment #10: The proposed LDAR recheck after a well has been shut-in for seven days has not been properly justified and should be deleted entirely.

UDAQ response. See response to Ovintiv Comment #5.

UPA Comment #11: (R307-509-3(1)) Proposed changes to the applicability are vague and need to be eliminated or explained.

UDAQ response.

Clean Air Advocates Comments
Questions and comments excerpted from original document.

Clean Air Advocates Comment #1: Rule 307-509, LDAR: Require quarterly leak inspections for all well sites rather than the current semi-annual inspection requirement that is only applicable to sites with controlled tanks and glycol dehydrators; Include gas-powered pneumatic controller in LDAR in order to address emissions from malfunctioning controllers.
UDAQ response. UDAQ appreciates the comment and will take this into consideration for future rulemaking. This would be a more stringent requirement than what was proposed in this rulemaking and would require further public comment.

Clean Air Advocates Comment #2: Rule 307-506, Storage Vessels: Set a control threshold of 2 tpy of VOC rather than the current 4 tpy threshold.

UDAQ response. UDAQ appreciates the comment and at this time will continue to base control requirements on the 4 tpy as this is what is currently considered BACT for these sources. This may be reevaluated in the future based upon changes in the industry or changes in the air quality status of the Uinta Basin.

Clean Air Advocates Comment #3: Rule 307-511, Associated Gas Flaring: Ban routine flaring and venting, defined as flaring or venting of natural gas co-produced with oil due to lack of infrastructure to capture the gas.

UDAQ response. UDAQ appreciates the comment and will take this into consideration for future rulemaking. This would be a more stringent requirement than what was proposed in this rulemaking and would require further public comment.
NOTICE OF PROPOSED RULE

TYPE OF RULE: New ___; Amendment _X_; Repeal ___; Repeal and Reenact ___

Title No. - Rule No. - Section No.
Utah Admin. Code Ref (R no.): R307-506
Changed to Admin. Code Ref. (R no.): R

Agency Information

1. Department: Department of Environmental Quality
Agency: Division of Air Quality
Room no.: MASOB
Building:
Street address: 195 North 1950 West
City, state and zip: Salt Lake City, Utah 84116
Mailing address: P.O. Box 144820
City, state and zip: Salt Lake City, Utah 84114-4820
Contact person(s):
Name: Phone: Email:
Bo Wood 385-499-3416 rwood@utah.gov
Sheila Vance 801-518-3132 svance@utah.gov

Please address questions regarding information on this notice to the agency.

General Information

2. Rule or section catchline:
R307-506. Oil and Gas Industry: Storage Vessel

3. Purpose of the new rule or reason for the change (Why is the agency submitting this filing?):
These amendments are necessary to align current oil and gas rules with new data from studies and compliance inspections. These changes reflect more accurate emission calculations that indicate a previous underestimation of VOC emissions from tanks and other components. The proposed changes will ensure the protection of air quality standards and improve compliance with required emission controls.

4. Summary of the new rule or change (What does this filing do? If this is a repeal and reenact, explain the substantive differences between the repealed rule and the reenacted rule):
This rule modifies the definition of "emergency storage relief vessel", removes an applicability exemption previously granted to producing wells with an approval order issued under R307-401, modifies storage vessel requirements for emission controls and adds a requirement to submit site specific data to UDAQ when it is used.

Fiscal Information

5. Provide an estimate and written explanation of the aggregate anticipated cost or savings to:
A) State budget:
The fiscal impact from these amendments on the state budget for FY22, FY23, and FY24 is estimated to be between a benefit of $9,400 and a cost of $21,620. There are 94 facilities that have an exemption through their approval order and it’s their choice to either keep the approval order or switch to permit-by-rule. Cancelling an existing approval order requires producers to enroll in the permit-by-rule system. The one-time fee to cancel an approval order ranges from $220 to $550. This could increase state revenue by between $20,680 and $51,700, but is offset by the elimination of the $150 approval order annual fee per facility - $14,400 total. The number of facilities that will choose to move to the permit-by-rule system is unknown, but the incentive structure makes switching cost effective in less than 4 years. The exact cost for each facility to switch is also unknown, but DAQ anticipates that the fiscal impact on the state budget will fall within the range outlined above.

B) Local governments:
This rule change is not expected to have any fiscal impact on local governments because this rule is not applicable to them.

C) Small businesses ("small business" means a business employing 1-49 persons):
This rule change may impact up to 8 small businesses that own and operate oil and gas wells in Utah. The one-time cost to implement the control measures required by this rule is approximately $106,000 per well. This estimate comes from a regulatory analysis performed by EPA on the Ouray and Unita Reservation FIP for putting controls on similar tanks. Emission inventory data indicate that as many as 160 wells may be impacted by this action. The proportion of these wells operated by small businesses is unknown, but believed to be small. The fiscal impact of this change is unknown because the number of operating wells and production levels varies greatly in response to global market fluctuation. Facilities with an existing approval order who choose to cancel their permit will also incur a one-time fee between $220 and $550, but will no longer be required to pay an annual fee of $150. The number of facilities that will choose this option is unknown, therefore the fiscal impact on this group is unknown. Existing wells producing more than 8,000 barrels per year are currently required to implement these controls and will experience no fiscal impact from this change. Wells producing less than 3,200 barrels of crude oil or 2,000 barrels of condensate per year are exempt and will see no fiscal impact from this change. Manufacturers, distributors, and installers of emissions control equipment may also receive a benefit from this rulemaking.

D) Non-small businesses ("non-small business" means a business employing 50 or more persons):

This rule change may impact up to 12 non-small businesses that own and operate oil and gas wells in Utah. Emission inventory data indicate that as many as 160 wells may be impacted by this action. The proportion of these wells operated by non-small businesses is unknown. The fiscal impact of this change is unknown because the number of operating wells and production levels varies greatly in response to global market fluctuation. Facilities with an existing approval order who choose to cancel their permit will also incur a one-time fee between $220 and $550, but will no longer be required to pay an annual fee of $150. The number of facilities that will choose this option is unknown, therefore the fiscal impact on this group is unknown. Existing wells producing more than 8,000 barrels per year are currently required to implement these controls and will experience no fiscal impact from this change. Wells producing less than 3,200 barrels of crude oil or 2,000 barrels of condensate per year are exempt and will see no fiscal impact from this change. Manufacturers, distributors, and installers of emissions control equipment may also receive a benefit from this rulemaking.

E) Persons other than small businesses, non-small businesses, state, or local government entities ("person" means any individual, partnership, corporation, association, governmental entity, or public or private organization of any character other than an agency):

This rule change is not expected to have any fiscal impact on persons other than small businesses, non-small businesses, state, or local government entities because the proposed changes apply only to business operating in the gas and oil industry.

F) Compliance costs for affected persons (How much will it cost an impacted entity to adhere to this rule or its changes?):

The compliance costs for affected persons is expected to be approximately $106,000 per well. This estimate comes from a regulatory analysis performed by EPA on the Ouray and Unita Reservation FIP for putting controls on similar tanks.

G) Comments by the department head on the fiscal impact this rule may have on businesses (Include the name and title of the department head):

After a thorough analysis and engagement with impacted parties, the Division of Air Quality has determined that the amendments to R307-506 will have fiscal impacts on businesses. The analysis shows that up to eight small businesses and 12 non-small businesses will be impacted by the proposed changes. However, the proposed amendments are appropriate and necessary to comply with the requirements of the Clean Air Act relating to reducing Ozone in the Uinta Basin.

Kimberly D. Shelley, Executive Director of the Utah Department of Environmental Quality

6. A) Regulatory Impact Summary Table (This table only includes fiscal impacts that could be measured. If there are inestimable fiscal impacts, they will not be included in this table. Inestimable impacts will be included in narratives above.)

<table>
<thead>
<tr>
<th>Regulatory Impact Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiscal Cost</td>
</tr>
<tr>
<td>FY2022</td>
</tr>
<tr>
<td>FY2023</td>
</tr>
<tr>
<td>FY2024</td>
</tr>
<tr>
<td>State Government</td>
</tr>
<tr>
<td>Local Governments</td>
</tr>
<tr>
<td>Small Businesses</td>
</tr>
<tr>
<td>Non-Small Businesses</td>
</tr>
<tr>
<td>Other Persons</td>
</tr>
<tr>
<td>Total Fiscal Cost</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fiscal Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY2022</td>
</tr>
<tr>
<td>FY2023</td>
</tr>
<tr>
<td>FY2024</td>
</tr>
<tr>
<td>State Government</td>
</tr>
<tr>
<td>Local Governments</td>
</tr>
<tr>
<td>Small Businesses</td>
</tr>
<tr>
<td>Non-Small Businesses</td>
</tr>
<tr>
<td>Other Persons</td>
</tr>
<tr>
<td>Total Fiscal Benefits</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Net Fiscal Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY2022</td>
</tr>
<tr>
<td>FY2023</td>
</tr>
<tr>
<td>FY2024</td>
</tr>
<tr>
<td>$0</td>
</tr>
</tbody>
</table>
B) Department head approval of regulatory impact analysis:
The Executive Director of the Department of Environmental Quality, Kim Shelley, has reviewed and approved this fiscal analysis.

Citation Information
7. Provide citations to the statutory authority for the rule. If there is also a federal requirement for the rule, provide a citation to that requirement:

<table>
<thead>
<tr>
<th>Statutory Authority</th>
<th>Federal Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>19-2-104</td>
<td></td>
</tr>
</tbody>
</table>

Incorporations by Reference Information
(If this rule incorporates more than two items by reference, please include additional tables.)
8. A) This rule adds, updates, or removes the following title of materials incorporated by references (a copy of materials incorporated by reference must be submitted to the Office of Administrative Rules; if none, leave blank):

<table>
<thead>
<tr>
<th>Official Title of Materials Incorporated (from title page)</th>
<th>Publisher</th>
<th>Date Issued</th>
<th>Issue, or version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B) This rule adds, updates, or removes the following title of materials incorporated by references (a copy of materials incorporated by reference must be submitted to the Office of Administrative Rules; if none, leave blank):

<table>
<thead>
<tr>
<th>Official Title of Materials Incorporated (from title page)</th>
<th>Publisher</th>
<th>Date Issued</th>
<th>Issue, or version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Public Notice Information
9. The public may submit written or oral comments to the agency identified in box 1. (The public may also request a hearing by submitting a written request to the agency. See Section 63G-3-302 and Rule R15-1 for more information.)

A) Comments will be accepted until (mm/dd/yyyy): 5/31/2022

B) A public hearing (optional) will be held:

On (mm/dd/yyyy): May 24, 2022
At (hh:mm AM/PM): 1:00PM
At (place): https://meet.google.com/ozt-syme-rum?hs=122&authuser=0

10. This rule change MAY become effective on (mm/dd/yyyy): 07/07/2022
NOTE: The date above is the date the agency anticipates making the rule or its changes effective. It is NOT the effective date. To make this rule effective, the agency must submit a Notice of Effective Date to the Office of Administrative Rules on or before the date designated in Box 10.

Agency Authorization Information
To the agency: Information requested on this form is required by Sections 63G-3-301, 302, 303, and 402. Incomplete forms will be returned to the agency for completion, possibly delaying publication in the Utah State Bulletin and delaying the first possible effective date.

Agency head or designee, and title: Bryce C. Bird, Director
Date (mm/dd/yyyy): 04/06/2022
R307-506. Oil and Gas Industry: Storage Vessel.

R307-506-1. Purpose.

Rule R307-506 establishes requirements to control emissions of volatile organic compounds (VOCs) from storage vessels associated with a well site.

"Centralized Tank Battery" means a separate tank battery surface site collecting crude oil, condensate, intermediate hydrocarbon liquids, or produced water from wells not located at the well site.

"Emergency Relief Storage Vessel" means a storage vessel receiving oil, condensate, or produced water as a result of emergency situations, process upsets, or other equipment malfunctions.

"Emergency Situations" means temporary, infrequent and unavoidable situation in which is uncontrollable or necessary to avoid risk of an immediate and substantial adverse impact on safety, public health, or the environment and is an unanticipated event or failure that is out of the operator's control and is not due to operator negligence.

"Modification to a well site" means:
1. a new well is drilled at an existing well site,
2. a well at an existing well site is hydraulically fractured, or
3. a well at an existing well site is hydraulically refractured.

"Storage Vessel" means storage vessel as defined in 40 CFR 60.5430a, Subpart OOOOa Standards of Performance for Crude Oil and Natural Gas Production, Transmission and Distribution, which is incorporated by reference in Rule R307-210.

"Uncontrolled emissions" means actual emissions or the potential to emit without consideration of controls.

1. Rule R307-506 applies to each storage vessel located at a well site as defined in 40 CFR 60.5430a, Subpart OOOOa, Standards of Performance for Crude Oil and Natural Gas Production, Transmission and Distribution.

2. Rule R307-506 [shall apply to] applies to each storage vessel located at centralized tank batteries.

3. R307-506 does not apply to storage vessels that are subject to an approval order issued under R307-401-8.

1. Thief hatches on storage vessels shall be kept closed and latched except during vessel unloading or other maintenance activities.

2. All storage vessels [located at a well site that are in operation as of January 1, 2018] subject to Rule R307-506 with a site-wide throughput of 8,000 barrels or greater of crude oil or 2,000 barrels or greater of condensate per year on a rolling 12-month basis shall comply with Subsection R307-506-4(2)(a) [unless the
exemption in R307-506-4(2)(b) applies.) Effective January 1, 2023, all storage vessels subject to Rule R307-506 with a site-wide throughput of 3,200 barrels or greater of crude oil or 2,000 barrels or greater of condensate per year on a rolling 12-month basis shall comply with Subsection R307-506-4(2)(a).

(a) VOC emissions from storage vessels in service shall either be routed to a process unit where the emissions are recycled, incorporated into a product and/or recovered, or be routed to a VOC control device that is in compliance with Rule R307-508.

(b) All storage vessels located at a well site shall be exempt from Subsection R307-506-4(2)(a) if combined VOC emissions from the storage vessels are demonstrated to be less than four tons per year of uncontrolled emissions on a rolling 12-month basis.

(i) VOC working and breathing losses, and flash emissions from storage vessels shall be calculated using direct site-specific sampling data and any software program or calculation methodology in use by industry that is based on AP-42 Chapter 7.

(3) Upon startup of operation of a well site or centralized tank battery [All storage vessels that begin operations on or after January 1, 2018, are required to control] VOC emissions from all storage vessels shall be controlled in accordance with Subsection R307-506-4(2)(a) [upon startup of operation] for a minimum of one year.

(4) An emergency relief storage vessel located at a well site shall be exempt from Subsection R307-506-4(2)(a), if it meets the following requirements:

(i) The emergency relief storage vessel shall not be used as an active storage vessel.

(ii) The owner or operator shall empty the emergency storage vessel no later than [15 days] 48 hours after receiving fluids.

(iii) The emergency relief storage vessel shall be equipped with a liquid level gauge or equivalent device.

(5) An owner or operator that is required to control emissions in accordance with Subsections R307-506-4(2) and R307-506-4(3) shall inspect at least once a month each closed vent system, including vessel openings, thief hatches, pressure relief devices and bypass devices, for defects that can result in air emissions according to 40 CFR 60.5416a(c).

(a) If defects are discovered, the defects shall be corrected or repaired within 15 days of identification.

(6) Modification to a well site shall require a re-evaluation of site-wide throughput and/or emissions in accordance with Subsection R307-506-4(2).

(7) After a minimum of one year of [operation,] startup of a well site or centralized tank battery, storage vessel controls may be removed if site-wide throughput is less than [8,000] 3,200 barrels of crude oil or 2,000 barrels of condensate on a rolling 12-month basis or uncontrolled actual emissions are demonstrated to be less than four tons per year.

R307-506-5. Recordkeeping and Reporting.

(1) Records of each closed vent system inspection, including
vessel openings, thief hatches, pressure relief devices and bypass
device shall be kept for three years.

(a) Records of each closed vent system inspection, including
vessel openings, thief hatches, pressure relief devices and bypass
device shall include the date of the inspection, the status of each
closed vent system, including vessel openings, thief hatches,
pressure relief devices and bypass device, and the date of corrective
action taken if required.

(2) Records of crude oil throughput shall be kept for three
years and shall be determined on a monthly basis using the production
data reported to the Utah Division of Oil, Gas, and Mining.

(3) Records of emission calculations, actual emissions, and
site-specific sampling data used to determine compliance with
Subsection R307-506-4(2)(b) shall be provided to the Utah Division of
Air Quality before removal of control equipment and kept for a period
of three years, post registration.

(4) Records of emergency relief storage vessel usage shall be
kept for a period of three years.

(a) Records of emergency relief storage vessel usage shall
include the date the vessel received fluids or was discovered to have
received fluids, the date the overflow tank was emptied, and the
volume of fluids emptied in barrels.

KEY: air pollution, oil, gas
Date of Last Change: 2022
Authorizing, and Implemented or Interpreted Law: 19-2-104(1)(a)
NOTICE OF CHANGE IN PROPOSED RULE

Title No. - Rule No. - Section No.
Utah Admin. Code Ref (R no.): R307-506 Filing ID: (Office Use Only)
Changed to Admin. Code Ref. (R no.): R

Agency Information

1. Department: Environmental Quality
Agency: Air Quality
Room no.:
Building: MASOB
Street address: 195 N. 1950 W.
City, state and zip: Salt Lake City, Utah 84116
Mailing address: P.O. Box 144820
City, state and zip: Salt Lake City, Utah 84114-4820
Contact person(s):
Name: Bo Wood
Phone: 385-499-3416
Email: rwood@utah.gov
Name: Sheila Vance
Phone: 801-518-3132
Email: svance@utah.gov

Please address questions regarding information on this notice to the agency.

General Information

2. Rule or section catchline:
R307-506. Oil and Gas Industry: Storage Vessel

3. Publication date of previous proposed rule or change in proposed rule:
05/01/2022

4. Reason for this change (Why is the agency submitting this filing?):
The agency is responding to comments received during the public comment period.

5. Summary of this change (What does this filing do?):
The changes extend the date for compliance from January 1, 2023 to December 1, 2023, clarify the date of compliance for sources with an Approval Order and clarify first-year VOC control requirements for well sites in operation prior to January 1, 2018. Changes to requirements for emptying emergency relief storage vessels and recordkeeping requirements are removed.

Fiscal Information

6. Aggregate anticipated cost or savings to:
A) State budget:
There may be a fiscal savings due to the removal of the reduced time for emptying emergency storage vessels and expanded reporting requirements, but the exact amount is inestimable since the original requirements were never effective.

B) Local government:
These changes are not expected to have any fiscal impact on local governments because this rule is not applicable to them.

C) Small businesses ("small business" means a business employing 1-49 persons):
There may be a fiscal savings due to the removal of the reduced time for emptying emergency storage vessels and expanded reporting requirements, but the exact amount is inestimable since the original requirements were never effective.

D) Non-small businesses ("non-small business" means a business employing 50 or more persons):
There may be a fiscal savings due to the removal of the reduced time for emptying emergency storage vessels and expanded reporting requirements, but the exact amount is inestimable since the original requirements were never effective.

E) Persons other than small businesses, non-small businesses, or state or local government entities (*person* means any individual, partnership, corporation, association, governmental entity, or public or private organization of any character other than an agency):

These changes are not expected to have any fiscal impact on persons other than small businesses, non-small businesses, state, or local government entities because the proposed changes apply only to business operating in the gas and oil industry.

F) Compliance costs for affected persons:
Compliance costs for affected persons may be reduced by extending deadlines and removing requirements that were proposed in the amendments.

G) Comments by the department head on the fiscal impact this rule may have on businesses (Include the name and title of the department head):
After a thorough review of comments received during the comment period, the Division of Air Quality has determined that these changes to the proposed amendments to Rule R307-506 are appropriate. The analysis shows that up to eight small businesses and 12 non-small businesses will be impacted by the amendments as originally proposed, but that these changes lessen that impact while still complying with the requirements of the Clean Air Act relating to reducing Ozone in the Uinta Basin.
Kimberly D. Shelley, Executive Director of the Utah Department of Environmental Quality

7. A) Regulatory Impact Summary Table (This table only includes fiscal impacts that could be measured. If there are inestimable fiscal impacts, they will not be included in this table. Inestimable impacts will be included in narratives above.)

<table>
<thead>
<tr>
<th>Regulatory Impact Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiscal Cost</td>
</tr>
<tr>
<td>State Government</td>
</tr>
<tr>
<td>Local Governments</td>
</tr>
<tr>
<td>Small Businesses</td>
</tr>
<tr>
<td>Non-Small Businesses</td>
</tr>
<tr>
<td>Other Persons</td>
</tr>
<tr>
<td>Total Fiscal Cost</td>
</tr>
<tr>
<td>Fiscal Benefits</td>
</tr>
<tr>
<td>State Government</td>
</tr>
<tr>
<td>Local Governments</td>
</tr>
<tr>
<td>Small Businesses</td>
</tr>
<tr>
<td>Non-Small Businesses</td>
</tr>
<tr>
<td>Other Persons</td>
</tr>
<tr>
<td>Total Fiscal Benefits</td>
</tr>
<tr>
<td>Net Fiscal Benefits</td>
</tr>
</tbody>
</table>

B) Department head approval of regulatory impact analysis:
The Executive Director of the Department of Environmental Quality, Kim Shelley, has reviewed and approved this fiscal analysis.

8. Provide citations to the statutory authority for the rule. If there is also a federal requirement for the rule, provide a citation to that requirement:
Section 19-2-104

9. A) This rule adds, updates, or removes the following title of materials incorporated by references (a copy of materials incorporated by reference must be submitted to the Office of Administrative Rules; if none, leave blank):

Incorporations by Reference Information
(If this rule incorporates more than two items by reference, please include additional tables)

| Official Title of Materials Incorporated | First Incorporation | }
B) This rule adds, updates, or removes the following title of materials incorporated by references (a copy of materials incorporated by reference must be submitted to the Office of Administrative Rules; if none, leave blank):

<table>
<thead>
<tr>
<th>Second Incorporation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Official Title of Materials Incorporated (from title page)</td>
</tr>
<tr>
<td>Publisher</td>
</tr>
<tr>
<td>Date Issued</td>
</tr>
<tr>
<td>Issue, or version</td>
</tr>
</tbody>
</table>

Public Notice Information

10. The public may submit written or oral comments to the agency identified in box 1. (The public may also request a hearing by submitting a written request to the agency. See Section 63G-3-302 and Rule R15-1 for more information.)

A) Comments will be accepted until (mm/dd/yyyy):

B) A public hearing (optional) will be held: no formal comment period

On (mm/dd/yyyy): At (hh:mm AM/PM): At (place):

11. This rule change MAY become effective on (mm/dd/yyyy): 08/31/2022

NOTE: The date above is the date the agency anticipates making the rule or its changes effective. It is NOT the effective date. To make this rule effective, the agency must submit a Notice of Effective Date to the Office of Administrative Rules on or before the date designated in Box 10.

Agency Authorization Information

To the agency: Information requested on this form is required by Section 63G-3-303. Incomplete forms will be returned to the agency for completion, possibly delaying publication in the *Utah State Bulletin* and delaying the first possible effective date.

<table>
<thead>
<tr>
<th>Agency head or designee, and title:</th>
<th>Bryce C. Bird, Director</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date (mm/dd/yyyy):</td>
<td>07/06/2022</td>
</tr>
</tbody>
</table>
Rule R307-506 establishes requirements to control emissions of volatile organic compounds (VOCs) from storage vessels associated with a well site.

R307-506-1. Purpose.

"Centralized Tank Battery" means a separate tank battery surface site collecting crude oil, condensate, intermediate hydrocarbon liquids, or produced water from wells not located at the well site.

"Emergency Relief Storage Vessel" means a storage vessel receiving oil, condensate, or produced water as a result of emergency situations, process upsets, or other equipment malfunctions.

"Emergency Situations" means temporary, infrequent and unavoidable situation in which is uncontrollable or necessary to avoid risk of an immediate and substantial adverse impact on safety, public health, or the environment and is an unanticipated event or failure that is out of the operator's control and is not due to operator negligence.

"Modification to a well site" means;

(1) a new well is drilled at an existing well site,

(2) a well at an existing well site is hydraulically fractured, or

(3) a well at an existing well site is hydraulically refractured.

"Storage Vessel" means storage vessel as defined in 40 CFR 60.5430a, Subpart OOOOa Standards of Performance for Crude Oil and Natural Gas Production, Transmission and Distribution, which is incorporated by reference in Rule R307-210.

"Uncontrolled emissions" means actual emissions or the potential to emit without consideration of controls.

(1) Rule R307-506 applies to each storage vessel located at a well site as defined in 40 CFR 60.5430a, Subpart OOOOa, Standards of Performance for Crude Oil and Natural Gas Production, Transmission and Distribution.

(2) Rule R307-506 applies to each storage vessel located at centralized tank batteries.

(3) Rule R307-506 shall apply to storage vessels subject to an Approval Order issued under Section R307-401-8 on December 1, 2023.

(1) Thief hatches on storage vessels shall be kept closed and latched except during vessel unloading or other maintenance activities.

(2) All storage vessels subject to Rule R307-506 with a site-wide throughput of 8,000 barrels or greater of crude oil or 2,000 barrels or greater of condensate per year on a rolling 12-month basis shall comply with Subsection R307-506-4(2)(a) Effective December [January 1, 2023], all storage vessels subject to Rule R307-506 with
a site-wide throughput of 3,200 barrels or greater of crude oil or
2,000 barrels or greater of condensate per year on a rolling 12-month
basis shall comply with Subsection R307-506-4(2)(a).

(a) VOC emissions from storage vessels in service shall either
be routed to a process unit where the emissions are recycled,
incorporated into a product and recovered, or be routed to a VOC
control device that is in compliance with Rule R307-508.

(b) All storage vessels located at a well site shall be exempt
from Subsection R307-506-4(2)(a) if combined VOC emissions from the
storage vessels are demonstrated to be less than four tons per year
of uncontrolled emissions on a rolling 12-month basis.

(i) VOC working and breathing losses, and flash emissions from
storage vessels shall be calculated using direct site-specific
sampling data or representative data approved by the Utah Division of
Air Quality and any software program or calculation methodology in
use by industry that is based on AP-42 Chapter 7.

(3) Upon startup of operation of a well site or centralized
tank battery after January 1, 2018 VOC emissions from all storage
vessels shall be controlled in accordance with Subsection R307-506-
4(2)(a) for a minimum of one year.

(4) An emergency relief storage vessel located at a well site
shall be exempt from Subsection R307-506-4(2)(a), if it meets the
following requirements:

(i) The emergency relief storage vessel shall not be used as an
active storage vessel.

(ii) The owner or operator shall empty the emergency relief
storage vessel no later than 15 days [48 hours] after receiving
fluids.

(iii) The emergency relief storage vessel shall be equipped
with a liquid level gauge or equivalent device.

(5) An owner or operator that is required to control emissions
in accordance with Subsections R307-506-4(2) and R307-506-4(3) shall
inspect at least once a month each closed vent system, including
vessel openings, thief hatches, pressure relief devices, and bypass
devices, for defects that can result in air emissions according to 40
CFR 60.5416a(c).

(a) If defects are discovered, the defects shall be corrected
or repaired within 15 days of identification.

(6) Modification to a well site shall require a re-evaluation
of site-wide throughput and emissions in accordance with Subsection
R307-506-4(2).

(7) After a minimum of one year from of startup of a well site
or centralized tank battery, storage vessel controls may be removed
if site-wide throughput is less than 3,200 barrels of crude oil or
2,000 barrels of condensate on a rolling 12-month basis or
uncontrolled actual emissions are demonstrated to be less than four
tons per year.

R307-506-5. Recordkeeping and Reporting.

(1) Records of each closed vent system inspection, including
vessel openings, thief hatches, pressure relief devices, and bypass
device shall be kept for three years.
(a) Records of each closed vent system inspection, including vessel openings, thief hatches, pressure relief devices, and bypass device shall include the date of the inspection, the status of each closed vent system, including vessel openings, thief hatches, pressure relief devices and bypass device, and the date of corrective action taken if required.

(2) Records of crude oil throughput shall be kept for three years and shall be determined on a monthly basis using the production data reported to the Utah Division of Oil, Gas, and Mining.

(3) Records of emission calculations, actual emissions, and site-specific sampling data used to determine compliance with Subsection R307-506-4(2)(b) shall be provided to the Utah Division of Air Quality before removal of control equipment and kept for a period of three years, post registration.

(4) Records of emergency relief storage vessel usage shall be kept for a period of three years.

(a) Records of emergency relief storage vessel usage shall include the date the vessel received fluids or was discovered to have received fluids, the date the overflow tank was emptied, and the volume of fluids emptied in barrels.

KEY: air pollution, oil, gas
Date of Last Change: 2022
Authorizing, and Implemented or Interpreted Law: 19-2-104(1)(a)
NOTICE OF PROPOSED RULE

TYPE OF RULE: New ___; Amendment _X__; Repeal ___; Repeal and Reenact ___

Title No. - Rule No. - Section No.
Utah Admin. Code Ref (R no.): R307-508 Filing ID (Office Use Only)
Changed to Admin. Code Ref. (R no.): R

Agency Information

1. Department: Department of Environmental Quality
 Agency: Division of Air Quality
 Room no.:
 Building: MASOB
 Street address: 195 North 1950 West
 City, state and zip: Salt Lake City, Utah 84116
 Mailing address: P.O. Box 144820
 City, state and zip: Salt Lake City, Utah 84114-4820
 Contact person(s):
 Name: Phone: Email:
 Bo Wood 385-499-3416 rwood@utah.gov
 Sheila Vance 801-518-3132 svance@utah.gov

 Please address questions regarding information on this notice to the agency.

General Information

2. Rule or section catchline:
 R307-508. Oil and Gas Industry: VOC Control Devices

3. Purpose of the new rule or reason for the change (Why is the agency submitting this filing?):
 These amendments are necessary to align current oil and gas rules with new data from studies and compliance inspections. These changes reflect more accurate emission calculations that indicate a previous underestimation of VOC emissions from tanks and other components. The proposed changes will ensure the protection of air quality standards and improve compliance with required emission controls.

4. Summary of the new rule or change (What does this filing do? If this is a repeal and reenact, explain the substantive differences between the repealed rule and the reenacted rule):
 This rule removes an applicability exemption previously granted to producing wells with an approval order issued under R307-401.

Fiscal Information

5. Provide an estimate and written explanation of the aggregate anticipated cost or savings to:
 A) State budget:
 The fiscal impact from these amendments on the state budget for FY22, FY23, and FY24 is estimated to be between a benefit of $9,400 and a cost of $21,620. There are 94 facilities that have an exemption through their approval order and it’s their choice to either keep the approval order or switch to permit-by-rule. Cancelling an existing approval order requires producers to enroll in the permit-by-rule system. The one-time fee to cancel an approval order ranges from $220 to $550. This could increase state revenue by between $20,680 and $51,700, but is offset by the elimination of the $150 approval order annual fee per facility - $14,400 total. The number of facilities that will choose to move to the permit-by-rule system is unknown, but the incentive structure makes switching cost effective in less than 4 years. The exact cost for each facility to switch is also unknown, but DAQ anticipates that the fiscal impact on the state budget will fall within the range outlined above.

 B) Local governments:
 This rule change is not expected to have any fiscal impact on local governments because it does not apply to them.

 C) Small businesses ("small business" means a business employing 1-49 persons):
 This rule change is not expected to have a fiscal impact on small businesses because it simply clarifies the characteristics of the VOC control devices already required by R307-506.

 D) Non-small businesses ("non-small business" means a business employing 50 or more persons):
This rule change is not expected to have a fiscal impact on non-small businesses because it simply clarifies the characteristics of the VOC control devices already required by R307-506.

E) Persons other than small businesses, non-small businesses, state, or local government entities ("person" means any individual, partnership, corporation, association, governmental entity, or public or private organization of any character other than an agency):

This rule change is not expected to have any fiscal impact on persons other than small businesses, non-small businesses, state, or local government entities because the rule only applies to businesses in the oil and gas industry.

F) Compliance costs for affected persons (How much will it cost an impacted entity to adhere to this rule or its changes?):

This rule change will not have a compliance cost for affected persons.

G) Comments by the department head on the fiscal impact this rule may have on businesses (Include the name and title of the department head):

After a thorough analysis and engagement with impacted parties, the Division of Air Quality has determined that the amendments to R307-508 will not result in a fiscal impact on businesses because the amendments are clarifying the characteristics of the VOC control devices that are already required by rule.

Kimberly D. Shelley, Executive Director of the Utah Department of Environmental Quality

6. A) Regulatory Impact Summary Table (This table only includes fiscal impacts that could be measured. If there are inestimable fiscal impacts, they will not be included in this table. Inestimable impacts will be included in narratives above.)

<table>
<thead>
<tr>
<th>Regulatory Impact Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiscal Cost</td>
</tr>
<tr>
<td>FY2022</td>
</tr>
<tr>
<td>FY2023</td>
</tr>
<tr>
<td>FY2024</td>
</tr>
<tr>
<td>State Government</td>
</tr>
<tr>
<td>$0</td>
</tr>
<tr>
<td>$0</td>
</tr>
<tr>
<td>$0</td>
</tr>
<tr>
<td>Local Governments</td>
</tr>
<tr>
<td>$0</td>
</tr>
<tr>
<td>$0</td>
</tr>
<tr>
<td>$0</td>
</tr>
<tr>
<td>Small Businesses</td>
</tr>
<tr>
<td>$0</td>
</tr>
<tr>
<td>$0</td>
</tr>
<tr>
<td>$0</td>
</tr>
<tr>
<td>Non-Small Businesses</td>
</tr>
<tr>
<td>$0</td>
</tr>
<tr>
<td>$0</td>
</tr>
<tr>
<td>$0</td>
</tr>
<tr>
<td>Other Persons</td>
</tr>
<tr>
<td>$0</td>
</tr>
<tr>
<td>$0</td>
</tr>
<tr>
<td>$0</td>
</tr>
<tr>
<td>Total Fiscal Cost</td>
</tr>
<tr>
<td>$0</td>
</tr>
<tr>
<td>$0</td>
</tr>
<tr>
<td>$0</td>
</tr>
<tr>
<td>Fiscal Benefits</td>
</tr>
<tr>
<td>State Government</td>
</tr>
<tr>
<td>$0</td>
</tr>
<tr>
<td>$0</td>
</tr>
<tr>
<td>$0</td>
</tr>
<tr>
<td>Local Governments</td>
</tr>
<tr>
<td>$0</td>
</tr>
<tr>
<td>$0</td>
</tr>
<tr>
<td>$0</td>
</tr>
<tr>
<td>Small Businesses</td>
</tr>
<tr>
<td>$0</td>
</tr>
<tr>
<td>$0</td>
</tr>
<tr>
<td>$0</td>
</tr>
<tr>
<td>Non-Small Businesses</td>
</tr>
<tr>
<td>$0</td>
</tr>
<tr>
<td>$0</td>
</tr>
<tr>
<td>$0</td>
</tr>
<tr>
<td>Other Persons</td>
</tr>
<tr>
<td>$0</td>
</tr>
<tr>
<td>$0</td>
</tr>
<tr>
<td>$0</td>
</tr>
<tr>
<td>Total Fiscal Benefits</td>
</tr>
<tr>
<td>$0</td>
</tr>
<tr>
<td>$0</td>
</tr>
<tr>
<td>$0</td>
</tr>
<tr>
<td>Net Fiscal Benefits</td>
</tr>
<tr>
<td>$0</td>
</tr>
<tr>
<td>$0</td>
</tr>
<tr>
<td>$0</td>
</tr>
</tbody>
</table>

B) Department head approval of regulatory impact analysis:

The Executive Director of the Department of Environmental Quality, Kim Shelley, has reviewed and approved this fiscal analysis.

Citation Information

7. Provide citations to the statutory authority for the rule. If there is also a federal requirement for the rule, provide a citation to that requirement:

19-2-104

Incorporations by Reference Information

(If this rule incorporates more than two items by reference, please include additional tables.)

8. A) This rule adds, updates, or removes the following title of materials incorporated by references (a copy of materials incorporated by reference must be submitted to the Office of Administrative Rules; if none, leave blank):

<table>
<thead>
<tr>
<th>Official Title of Materials Incorporated (from title page)</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Incorporation</td>
</tr>
<tr>
<td>Publisher</td>
</tr>
</tbody>
</table>
B) This rule adds, updates, or removes the following title of materials incorporated by references (a copy of materials incorporated by reference must be submitted to the Office of Administrative Rules; if none, leave blank):

<table>
<thead>
<tr>
<th>Second Incorporation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Official Title of Materials Incorporated (from title page)</td>
</tr>
<tr>
<td>Publisher</td>
</tr>
<tr>
<td>Date Issued</td>
</tr>
<tr>
<td>Issue, or version</td>
</tr>
</tbody>
</table>

Public Notice Information

9. The public may submit written or oral comments to the agency identified in box 1. (The public may also request a hearing by submitting a written request to the agency. See Section 63G-3-302 and Rule R15-1 for more information.)

A) Comments will be accepted until (mm/dd/yyyy): 5/31/2022

B) A public hearing (optional) will be held:

<table>
<thead>
<tr>
<th>On (mm/dd/yyyy):</th>
<th>At (hh:mm AM/PM):</th>
<th>At (place):</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 24, 2022</td>
<td>1:00PM</td>
<td>https://meet.google.com/ozt-syme-rum?hs=122&authuser=0</td>
</tr>
</tbody>
</table>

10. This rule change MAY become effective on (mm/dd/yyyy): 07/07/2022

NOTE: The date above is the date the agency anticipates making the rule or its changes effective. It is NOT the effective date. To make this rule effective, the agency must submit a Notice of Effective Date to the Office of Administrative Rules on or before the date designated in Box 10.

Agency Authorization Information

To the agency: Information requested on this form is required by Sections 63G-3-301, 302, 303, and 402. Incomplete forms will be returned to the agency for completion, possibly delaying publication in the *Utah State Bulletin* and delaying the first possible effective date.

<table>
<thead>
<tr>
<th>Agency head or designee, and title:</th>
<th>Date (mm/dd/yyyy):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bryce C. Bird, Director</td>
<td>04/06/2022</td>
</tr>
</tbody>
</table>
Rule R307-508 establishes requirements for VOC control devices associated with well sites used to control emissions of VOCs.

(1) Rule R307-508 applies to each VOC control device located at a well site as defined in 40 CFR 60.5430a Subpart OOOOa Standards of Performance for Crude Oil and Natural Gas Production, Transmission and Distribution.
(2) Rule R307-508 shall apply to centralized tank batteries, as defined in Rule R307-506-2.
(3) R307-508 does not apply to VOC control devices that are subject to an approval order issued under R307-401-8.

(1) A VOC control device required by Rule R307-506 or R307-507 must have a control efficiency of 95% or greater.
 (a) The VOC control device shall operate with no visible emissions.
 (b) The VOC control device must comply with Rule R307-503.
(2) A well site shall demonstrate compliance by meeting the performance test methods and procedures specified in 40 CFR 60.5413a.
(3) VOC control devices and all associated equipment shall be inspected monthly by audio, visual, or olfactory (AVO) means to ensure the integrity of the equipment is maintained and is operational. If equipment is not operational, corrective action shall be taken within 15 days of discovery.

(1) The owner or operator shall keep and maintain records of the VOC control device's control efficiency guaranteed by the manufacturer. These records shall be retained for the life of the control equipment on site.
(2) The owner or operator shall keep and maintain records of the manufacturer's written operating and maintenance instructions. These records shall be retained for the life of the control equipment.
(3) The owner or operator shall keep and maintain records of the VOC control device AVO inspections. These shall be retained for a minimum of three years. These records shall include:
 (a) the date of the inspection;
 (b) the status of the control device and associated equipment; and
 (c) date of corrective action taken, if applicable.

KEY: air pollution, oil, gas
Date of Last Change: 2022 [March 5, 2018]
Authorizing, and Implemented or Interpreted Law: 19-2-104(1)(a)
General Information

2. **Rule or section catchline:**
R307-508. Oil and Gas Industry: VOC Control Devices

3. **Publication date of previous proposed rule or change in proposed rule:**
05/01/2022

4. **Reason for this change** (Why is the agency submitting this filing?):
The agency is responding to comments received during the public comment period.

5. **Summary of this change** (What does this filing do?):
Compliance date clarification for sources that have an Approval Order.

Fiscal Information

6. **Aggregate anticipated cost or savings to:**

 A) **State budget:**
 These changes are not expected to have a fiscal impact on the state budget beyond those of the original amendments. They provide clarification, but do not add any additional burdens.

 B) **Local government:**
 These changes are not expected to have any fiscal impact on local governments because this rule is not applicable to them.

 C) **Small businesses** ("small business" means a business employing 1-49 persons):
 These changes are not expected to have a fiscal impact on small businesses beyond those of the original amendments. They provide clarification, but do not add any additional burdens.

 D) **Non-small businesses** ("non-small business" means a business employing 50 or more persons):
These changes are not expected to have a fiscal impact on non-small businesses beyond those of the original amendments. They provide clarification, but do not add any additional burdens.

E) Persons other than small businesses, non-small businesses, or state or local government entities ("person" means any individual, partnership, corporation, association, governmental entity, or public or private organization of any character other than an agency):

These changes are not expected to have any fiscal impact on persons other than small businesses, non-small businesses, state, or local government entities because the proposed changes apply only to business operating in the gas and oil industry.

F) Compliance costs for affected persons:

Compliance costs for affected persons will not be impacted by these changes.

G) Comments by the department head on the fiscal impact this rule may have on businesses (Include the name and title of the department head):

After a thorough review of comments received during the comment period, the Division of Air Quality has determined that these changes to the proposed amendments to R307-508 are appropriate. Kimberly D. Shelley, Executive Director of the Utah Department of Environmental Quality

7. A) Regulatory Impact Summary Table (This table only includes fiscal impacts that could be measured. If there are inestimable fiscal impacts, they will not be included in this table. Inestimable impacts will be included in narratives above.)

<table>
<thead>
<tr>
<th>Regulatory Impact Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiscal Cost FY2022 FY2023 FY2024</td>
</tr>
<tr>
<td>State Government $0 $0 $0</td>
</tr>
<tr>
<td>Local Governments $0 $0 $0</td>
</tr>
<tr>
<td>Small Businesses $0 $0 $0</td>
</tr>
<tr>
<td>Non-Small Businesses $0 $0 $0</td>
</tr>
<tr>
<td>Other Persons $0 $0 $0</td>
</tr>
<tr>
<td>Total Fiscal Cost $0 $0 $0</td>
</tr>
<tr>
<td>Fiscal Benefits</td>
</tr>
<tr>
<td>State Government $0 $0 $0</td>
</tr>
<tr>
<td>Local Governments $0 $0 $0</td>
</tr>
<tr>
<td>Small Businesses $0 $0 $0</td>
</tr>
<tr>
<td>Non-Small Businesses $0 $0 $0</td>
</tr>
<tr>
<td>Other Persons $0 $0 $0</td>
</tr>
<tr>
<td>Total Fiscal Benefits $0 $0 $0</td>
</tr>
<tr>
<td>Net Fiscal Benefits $0 $0 $0</td>
</tr>
</tbody>
</table>

B) Department head approval of regulatory impact analysis:

The Executive Director of the Department of Environmental Quality, Kim Shelley, has reviewed and approved this fiscal analysis.

Citation Information

8. Provide citations to the statutory authority for the rule. If there is also a federal requirement for the rule, provide a citation to that requirement:

Section 19-2-104

Incorporations by Reference Information

(If this rule incorporates more than two items by reference, please include additional tables)

9. A) This rule adds, updates, or removes the following title of materials incorporated by references (a copy of materials incorporated by reference must be submitted to the Office of Administrative Rules; if none, leave blank):

<table>
<thead>
<tr>
<th>Official Title of Materials Incorporated (from title page)</th>
<th>First Incorporation</th>
</tr>
</thead>
</table>

B) This rule adds, updates, or removes the following title of materials incorporated by references (a copy of materials incorporated by reference must be submitted to the Office of Administrative Rules; if none, leave blank):

<table>
<thead>
<tr>
<th>Second Incorporation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Official Title of Materials Incorporated (from title page)</td>
</tr>
<tr>
<td>Publisher</td>
</tr>
<tr>
<td>Date Issued</td>
</tr>
<tr>
<td>Issue, or version</td>
</tr>
</tbody>
</table>

Public Notice Information

10. The public may submit written or oral comments to the agency identified in box 1. (The public may also request a hearing by submitting a written request to the agency. See Section 63G-3-302 and Rule R15-1 for more information.)

A) Comments will be accepted until (mm/dd/yyyy):

B) A public hearing (optional) will be held: no formal comment period

<table>
<thead>
<tr>
<th>On (mm/dd/yyyy):</th>
<th>At (hh:mm AM/PM):</th>
<th>At (place):</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

11. This rule change MAY become effective on (mm/dd/yyyy): 08/31/2022

NOTE: The date above is the date the agency anticipates making the rule or its changes effective. It is NOT the effective date. To make this rule effective, the agency must submit a Notice of Effective Date to the Office of Administrative Rules on or before the date designated in Box 10.

Agency Authorization Information

To the agency: Information requested on this form is required by Section 63G-3-303. Incomplete forms will be returned to the agency for completion, possibly delaying publication in the *Utah State Bulletin* and delaying the first possible effective date.

<table>
<thead>
<tr>
<th>Agency head or designee, and title:</th>
<th>Date (mm/dd/yyyy):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bryce C. Bird, Director</td>
<td>07/06/2022</td>
</tr>
</tbody>
</table>
R307-508. Oil and Gas Industry: VOC Control Devices.

R307-508-1. Purpose.
Rule R307-508 establishes requirements for VOC control devices associated with well sites used to control emissions of VOCs.

(1) Rule R307-508 applies to each VOC control device located at a well site as defined in 40 CFR 60.5430a Subpart OOOOa Standards of Performance for Crude Oil and Natural Gas Production, Transmission and Distribution.
(2) Rule R307-508 shall apply to centralized tank batteries, as defined in Section [Rule] R307-506-2.
(3) Rule R307-508 shall apply to VOC control devices subject to an Approval Order issued under Section R307-401-8 on December 1, 2023.

(1) A VOC control device required by Rule R307-506 or R307-507 must have a control efficiency of 95% or greater.
 (a) The VOC control device shall operate with no visible emissions.
 (b) The VOC control device must comply with Rule R307-503.
(2) A well site shall demonstrate compliance by meeting the performance test methods and procedures specified in 40 CFR 60.5413a.
(3) VOC control devices and all associated equipment shall be inspected monthly by audio, visual, or olfactory (AVO) means to ensure the integrity of the equipment is maintained and is operational. If equipment is not operational, corrective action shall be taken within 15 days of discovery.

(1) The owner or operator shall keep and maintain records of the VOC control device's control efficiency guaranteed by the manufacturer. These records shall be retained for the life of the control equipment on site.
(2) The owner or operator shall keep and maintain records of the manufacturer's written operating and maintenance instructions. These records shall be retained for the life of the control equipment.
(3) The owner or operator shall keep and maintain records of the VOC control device AVO inspections. These shall be retained for a minimum of three years. These records shall include:
 (a) the date of the inspection;
 (b) the status of the control device and associated equipment; and
 (c) date of corrective action taken, if applicable.

KEY: air pollution, oil, gas
Date of Last Change: 2022
Authorizing, and Implemented or Interpreted Law: 19-2-104(1)(a)
NOTICE OF PROPOSED RULE

<table>
<thead>
<tr>
<th>TYPE OF RULE:</th>
<th>New ___; Amendment X; Repeal ; Repeal and Reenact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title No. - Rule No. - Section No.</td>
<td>R307-509</td>
</tr>
<tr>
<td>Changed to Admin. Code Ref. (R no.):</td>
<td>R</td>
</tr>
</tbody>
</table>

Agency Information

1. **Department:** Department of Environmental Quality
2. **Agency:** Division of Air Quality
3. **Room no.:**
4. **Building:** MASOB
5. **Street address:** 195 North 1950 West
6. **City, state and zip:** Salt Lake City, Utah 84116
7. **Mailing address:** P.O. Box 144820
8. **City, state and zip:** Salt Lake City, Utah 84114-4820
9. **Contact person(s):**
 - Bo Wood 385-499-3416 rwood@utah.gov
 - Sheila Vance 801-518-3132 svance@utah.gov

Please address questions regarding information on this notice to the agency.

General Information

2. **Rule or section catchline:** R307-509. Oil and Gas Industry: Leak Detection and Repair Requirements

3. **Purpose of the new rule or reason for the change** (Why is the agency submitting this filing?):
 These amendments are necessary to align current oil and gas rules with new data from studies and compliance inspections. These changes reflect more accurate emission calculations that indicate a previous underestimation of VOC emissions from tanks and other components. The proposed changes will ensure the protection of air quality standards and improve compliance with required emission controls.

4. **Summary of the new rule or change** (What does this filing do? If this is a repeal and reenact, explain the substantive differences between the repealed rule and the reenacted rule):
 The amended rule defines “shut-in or temporarily abandoned” wells, eliminates a previously granted exemption for those with an approval order issued under R307-401, modifies requirements for leak testing to require one test during the months of September, October, November, or December, that tests occur no more than seven months apart, and that testing occurs within seven days of a previously “shut-in” well becoming operational.

Fiscal Information

5. **Provide an estimate and written explanation of the aggregate anticipated cost or savings to:**

 A) State budget:
 The fiscal impact from these amendments on the state budget for FY22, FY23, and FY24 is estimated to be between a benefit of $9,400 and a cost of $21,620. There are 94 facilities that have an exemption through their approval order and it’s their choice to either keep the approval order or switch to permit-by-rule. Cancellation of approval order requires producers to enroll in the permit-by-rule system. The one-time fee to cancel an approval order ranges from $220 to $550. This could increase state revenue by between $20,680 and $51,700, but is offset by the elimination of the $150 approval order annual fee per facility - $14,400 total. The number of facilities that will choose to move to the permit-by-rule system is unknown, but the incentive structure makes switching cost effective in less than 4 years. The exact cost for each facility to switch is also unknown, but DAQ anticipates that the fiscal impact on the state budget will fall within the range outlined above.

 B) Local governments:
 This rule change is not expected to have any fiscal impact on local governments because it does not apply to them.

 C) Small businesses ("small business" means a business employing 1-49 persons):
 This rule change is not expected to have a fiscal impact on small businesses because it adjusts the timing of leak detection and repair requirements, but does not increase the frequency of required inspections.
D) **Non-small businesses** (*"non-small business"* means a business employing 50 or more persons):

This rule change is not expected to have a fiscal impact on non-small businesses because it adjusts the timing of leak detection and repair requirements, but does not increase the frequency of required inspections.

E) **Persons other than small businesses, non-small businesses, state, or local government entities** (*"person"* means any individual, partnership, corporation, association, governmental entity, or public or private organization of any character other than an *agency*):

This rule change is not expected to have any fiscal impact on persons other than small businesses, non-small businesses, state, or local government entities because it only applies to businesses in the oil and gas industry.

F) **Compliance costs for affected persons** (How much will it cost an impacted entity to adhere to this rule or its changes?):

This rule change will not have a compliance cost for affected persons.

G) **Comments by the department head on the fiscal impact this rule may have on businesses** (Include the name and title of the department head):

After a thorough analysis and engagement with impacted parties, the Division of Air Quality has determined that this proposed rule amendment will not result in a fiscal impact to businesses, because the amendments adjust the timing of leak detection and repair, but do not change the frequency of the required inspections.

Kimberly D. Shelley, Executive Director of the Utah Department of Environmental Quality

6. **A) Regulatory Impact Summary Table** (This table only includes fiscal impacts that could be measured. If there are inestimable fiscal impacts, they will not be included in this table. Inestimable impacts will be included in narratives above.)

<table>
<thead>
<tr>
<th>Regulatory Impact Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiscal Cost</td>
</tr>
<tr>
<td>FY2022</td>
</tr>
<tr>
<td>State Government</td>
</tr>
<tr>
<td>Local Governments</td>
</tr>
<tr>
<td>Small Businesses</td>
</tr>
<tr>
<td>Non-Small Businesses</td>
</tr>
<tr>
<td>Other Persons</td>
</tr>
<tr>
<td>Total Fiscal Cost</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fiscal Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY2022</td>
</tr>
<tr>
<td>State Government</td>
</tr>
<tr>
<td>Local Governments</td>
</tr>
<tr>
<td>Small Businesses</td>
</tr>
<tr>
<td>Non-Small Businesses</td>
</tr>
<tr>
<td>Other Persons</td>
</tr>
<tr>
<td>Total Fiscal Benefits</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Net Fiscal Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY2022</td>
</tr>
<tr>
<td>$0</td>
</tr>
</tbody>
</table>

B) **Department head approval of regulatory impact analysis:**

The Executive Director of the Department of Environmental Quality, Kim Shelley, has reviewed and approved this fiscal analysis.

Citation Information

7. Provide citations to the statutory authority for the rule. If there is also a federal requirement for the rule, provide a citation to that requirement:

19-2-104

Incorporations by Reference Information

(If this rule incorporates more than two items by reference, please include additional tables.)

8. **A) This rule adds, updates, or removes the following title of materials incorporated by references** (a copy of materials incorporated by reference must be submitted to the Office of Administrative Rules; if none, leave blank):

<table>
<thead>
<tr>
<th>First Incorporation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Official Title of Materials Incorporated (from title page)</td>
</tr>
</tbody>
</table>
B) This rule adds, updates, or removes the following title of materials incorporated by references (a copy of materials incorporated by reference must be submitted to the Office of Administrative Rules; if none, leave blank):

<table>
<thead>
<tr>
<th>Official Title of Materials Incorporated (from title page)</th>
<th>Publisher</th>
<th>Date Issued</th>
<th>Issue, or version</th>
</tr>
</thead>
</table>

Public Notice Information

9. The public may submit written or oral comments to the agency identified in box 1. (The public may also request a hearing by submitting a written request to the agency. See Section 63G-3-302 and Rule R15-1 for more information.)

A) Comments will be accepted until (mm/dd/yyyy): 5/31/2022

B) A public hearing (optional) will be held:

<table>
<thead>
<tr>
<th>On (mm/dd/yyyy):</th>
<th>At (hh:mm AM/PM):</th>
<th>At (place):</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 24, 2022</td>
<td>1:00PM</td>
<td>[link]</td>
</tr>
</tbody>
</table>

10. This rule change MAY become effective on (mm/dd/yyyy): 07/07/2022

NOTE: The date above is the date the agency anticipates making the rule or its changes effective. It is NOT the effective date. To make this rule effective, the agency must submit a Notice of Effective Date to the Office of Administrative Rules on or before the date designated in Box 10.

Agency Authorization Information

To the agency: Information requested on this form is required by Sections 63G-3-301, 302, 303, and 402. Incomplete forms will be returned to the agency for completion, possibly delaying publication in the Utah State Bulletin and delaying the first possible effective date.

<table>
<thead>
<tr>
<th>Agency head or designee, and title:</th>
<th>Date (mm/dd/yyyy):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bryce C. Bird, Director</td>
<td>04/06/2022</td>
</tr>
</tbody>
</table>
R307-509. Oil and Gas Industry: Leak Detection and Repair Requirements.

R307-509-1. Purpose.
Rule R307-509 establishes requirements for conducting leak detection and repairs at well sites to control emissions of volatile organic compounds.

"Difficult-to-Monitor" means difficult-to-monitor as defined 40 CFR 60.5397a, which is incorporated by reference in Rule R307-210.
"Fugitive emissions" are considered any visible emissions observed using optical gas imaging or a Method 21 instrument reading of 500 ppm or greater.
"Fugitive emissions component" means any component that has the potential to emit fugitive emissions of VOC, including [but not limited to] valves, connectors, pressure relief devices, open-ended lines, flanges, covers and closed vent systems, thief hatches or other openings, compressors, instruments, and meters.
"Shut-in or temporarily abandoned" means a well that is closed off such that it stops producing for longer than seven calendar days.
"Unsafe-to-Monitor" means unsafe-to-monitor as defined 40 CFR 60.5397a, which is incorporated by reference in Rule R307-210.

(1) Rule R307-509 applies to each fugitive emissions component at a well site as defined in 40 CFR 60.5430a, Subpart OOOOa, Standards of Performance for Crude Oil and Natural Gas Production, Transmission and Distribution and [is required to] shall control emissions in accordance with Rules R307-506 and R307-507.
 (a) A source meeting the requirements of 40 CFR 60.5397a is meeting the requirements of this rule.
 (b) Rule R307-509 does not apply to a fugitive emissions component at a well that is shut-in or temporarily abandoned.[Sources subject to R307-509, are subject until the well is shut in.
 (c) R307-509 does not apply to a fugitive emissions component that is subject to an approval order issued under R307-401-8.]

(1) Applicable sources shall comply with the following:
 (a) The owner or operator shall develop an emissions monitoring plan that shall be available upon request to review for each individual well site. At a minimum, the plan shall include:
 (i) monitoring frequency;
 (ii) monitoring technique and equipment;
 (iii) procedures and timeframes for identifying and repairing leaks;
 (iv) recordkeeping practices; and
 (v) calibration and maintenance procedures for monitoring equipment.
 (b) The plan shall address monitoring for difficult-to-monitor and unsafe-to-monitor components.
(c) The owner or operator shall conduct monitoring surveys on site to observe each fugitive emissions component for fugitive emissions.

(d) Monitoring surveys shall be conducted according to the following schedule:

(i) No later than 365 days after January 1, 2018, or no later than 60 days after startup of production, as defined in 40 CFR 60 Subpart OOOOa Standards of Performance for Crude Oil and Natural Gas Production, Transmission and Distribution[, whichever is later].

(ii) Semiannually after the initial monitoring survey. Consecutive semiannual monitoring surveys shall be conducted at least four months apart and no more than seven months apart. A fugitive emission component subject to Rule R307-509 in Duchesne and Uintah counties must perform one monitoring survey during the months of September, October, November or December.

(iii) Annually after the initial monitoring survey for "difficult-to-monitor" components.

(iv) As required by the owner or operator's monitoring plan for "unsafe-to-monitor" components.

(v) Within seven days of a well site becoming operational after being shut-in or temporarily abandoned.

(e) Monitoring surveys shall be conducted using one or both of the following to detect fugitive emissions:

(i) Optical gas imaging (OGI) equipment. OGI equipment shall be capable of imaging gases in the spectral range for the compound of highest concentration in the potential fugitive emissions source.

(ii) Monitoring equipment that meets U.S. EPA Method 21, 40 CFR Part 60, Appendix A.

(f) If fugitive emissions are detected at any time, the owner or operator shall repair the fugitive emissions component as soon as possible but no later than 15 calendar days after detection. If the repair or replacement is technically infeasible, would require a vent blowdown, a well shutdown or well shut-in, or would be unsafe to repair during operation of the unit, the repair or replacement shall be completed during the next well shutdown, well shut-in, after an unscheduled, planned or emergency vent blowdown or within 24 months, whichever is earlier.

(g) The owner or operator shall resurvey the repaired or replaced fugitive emission component no later than 30 calendar days after the fugitive emission component was repaired.

R307-509-5. Recordkeeping.

(1) The owner or operator shall maintain records of the emissions monitoring plan. These records shall be retained for the life of the well site.

(2) The owner or operator shall maintain records of the monitoring surveys, repairs, and resurveys. These records shall be retained for a minimum of three years.

KEY: air pollution, oil, gas
Date of Last Change: 2022 [March 5, 2018]
Authorizing, and Implemented or Interpreted Law: 19-2-104(1)(a)
NOTICE OF CHANGE IN PROPOSED RULE

Title No. - Rule No. - Section No.

Utah Admin. Code Ref (R no.): R307-509
Changed to Admin. Code Ref. (R no.): R

Agency Information

1. Department: Environmental Quality
Agency: Air Quality
Room no.:
Building: MASOB
Street address: 195 N. 1950 W.
City, state and zip: Salt Lake City, Utah 84116
Mailing address: P.O. Box 144820
City, state and zip: Salt Lake City, Utah 84114-4820

Contact person(s):
Name: Phone: Email:
Bo Wood 385-499-3416 rwood@utah.gov
Sheila Vance 801-518-3132 svance@utah.gov

Please address questions regarding information on this notice to the agency.

General Information

2. Rule or section catchline:
R307-509. Oil and Gas Industry: Leak Detection and Repair Requirements

3. Publication date of previous proposed rule or change in proposed rule:
05/01/2022

4. Reason for this change (Why is the agency submitting this filing?):
The agency is responding to comments received during the public comment period.

5. Summary of this change (What does this filing do?):
These changes remove the proposed requirement to perform LDAR inspections in specific months in Duchesne and Uintah counties and the requirement to perform a LDAR inspection after a temporary shut in of a well. They also clarify the applicability of this rule to facilities with an Approval Order.

Fiscal Information

6. Aggregate anticipated cost or savings to:
A) State budget:
There may be a fiscal savings due to the removal of the LDAR inspection requirements, but the exact amount is inestimable since the original requirements were never effective.

B) Local government:
These changes are not expected to have any fiscal impact on local governments because this rule is not applicable to them.

C) Small businesses ("small business" means a business employing 1-49 persons):
There may be a fiscal savings due to the removal of the LDAR inspection requirements, but the exact amount is inestimable since the original requirements were never effective.

D) Non-small businesses ("non-small business" means a business employing 50 or more persons):
There may be a fiscal savings due to the removal of the LDAR inspection requirements, but the exact amount is inestimable since the original requirements were never effective.

E) Persons other than small businesses, non-small businesses, or state or local government entities (*"person" means any individual, partnership, corporation, association, governmental entity, or public or private organization of any character other than an *agency*):

These changes are not expected to have any fiscal impact on persons other than small businesses, non-small businesses, state, or local government entities because the proposed changes apply only to business operating in the gas and oil industry.

F) Compliance costs for affected persons:

Compliance costs for affected persons may be reduced due to the removal of the LDAR inspection requirements, but the exact amount is inestimable since the original requirements were never effective.

G) Comments by the department head on the fiscal impact this rule may have on businesses (Include the name and title of the department head):

After a thorough review of comments received during the comment period, the Division of Air Quality has determined that these changes to the proposed amendments to Rule R307-509 are appropriate. Kimberly D. Shelley, Executive Director of the Utah Department of Environmental Quality

7. A) Regulatory Impact Summary Table (This table only includes fiscal impacts that could be measured. If there are inestimable fiscal impacts, they will not be included in this table. Inestimable impacts will be included in narratives above.)

<table>
<thead>
<tr>
<th>Regulatory Impact Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiscal Cost FY2022 FY2023 FY2024</td>
</tr>
<tr>
<td>State Government $0 $0 $0</td>
</tr>
<tr>
<td>Local Governments $0 $0 $0</td>
</tr>
<tr>
<td>Small Businesses $0 $0 $0</td>
</tr>
<tr>
<td>Non-Small Businesses $0 $0 $0</td>
</tr>
<tr>
<td>Other Persons $0 $0 $0</td>
</tr>
<tr>
<td>Total Fiscal Cost $0 $0 $0</td>
</tr>
<tr>
<td>Fiscal Benefits</td>
</tr>
<tr>
<td>State Government $0 $0 $0</td>
</tr>
<tr>
<td>Local Governments $0 $0 $0</td>
</tr>
<tr>
<td>Small Businesses $0 $0 $0</td>
</tr>
<tr>
<td>Non-Small Businesses $0 $0 $0</td>
</tr>
<tr>
<td>Other Persons $0 $0 $0</td>
</tr>
<tr>
<td>Total Fiscal Benefits $0 $0 $0</td>
</tr>
<tr>
<td>Net Fiscal Benefits $0 $0 $0</td>
</tr>
</tbody>
</table>

B) Department head approval of regulatory impact analysis:

The Executive Director of the Department of Environmental Quality, Kim Shelley, has reviewed and approved this fiscal analysis.

Citation Information

8. Provide citations to the statutory authority for the rule. If there is also a federal requirement for the rule, provide a citation to that requirement:

Section 19-2-104

Incorporations by Reference Information

(If this rule incorporates more than two items by reference, please include additional tables)

9. A) This rule adds, updates, or removes the following title of materials incorporated by references (a copy of materials incorporated by reference must be submitted to the Office of Administrative Rules; if none, leave blank):

<table>
<thead>
<tr>
<th>Official Title of Materials Incorporated (from title page)</th>
</tr>
</thead>
</table>
B) This rule adds, updates, or removes the following title of materials incorporated by references (a copy of materials incorporated by reference must be submitted to the Office of Administrative Rules; if none, leave blank):

<table>
<thead>
<tr>
<th>Official Title of Materials Incorporated (from title page)</th>
<th>Publisher</th>
<th>Date Issued</th>
<th>Issue, or version</th>
</tr>
</thead>
</table>

Public Notice Information

10. The public may submit written or oral comments to the agency identified in box 1. (The public may also request a hearing by submitting a written request to the agency. See Section 63G-3-302 and Rule R15-1 for more information.)

A) Comments will be accepted until (mm/dd/yyyy):

B) A public hearing (optional) will be held: no formal comment period

<table>
<thead>
<tr>
<th>On (mm/dd/yyyy):</th>
<th>At (hh:mm AM/PM):</th>
<th>At (place):</th>
</tr>
</thead>
</table>

11. This rule change MAY become effective on (mm/dd/yyyy): 08/31/2022

NOTE: The date above is the date the agency anticipates making the rule or its changes effective. It is NOT the effective date. To make this rule effective, the agency must submit a Notice of Effective Date to the Office of Administrative Rules on or before the date designated in Box 10.

Agency Authorization Information

To the agency: Information requested on this form is required by Section 63G-3-303. Incomplete forms will be returned to the agency for completion, possibly delaying publication in the Utah State Bulletin and delaying the first possible effective date.

<table>
<thead>
<tr>
<th>Agency head or designee, and title:</th>
<th>Date (mm/dd/yyyy):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bryce C. Bird, Director</td>
<td>07/06/2022</td>
</tr>
</tbody>
</table>

R307-509. Oil and Gas Industry: Leak Detection and Repair Requirements.

R307-509-1. Purpose.
Rule R307-509 establishes requirements for conducting leak detection and repairs at well sites to control emissions of volatile organic compounds.

"Difficult-to-Monitor" means difficult-to-monitor as defined 40 CFR 60.5397a, which is incorporated by reference in Rule R307-210.
"Fugitive emissions" are considered any visible emissions observed using optical gas imaging or a Method 21 instrument reading of 500 ppm or greater.
"Fugitive emissions component" means any component that has the potential to emit fugitive emissions of VOC, including valves, connectors, pressure relief devices, open-ended lines, flanges, covers and closed vent systems, thief hatches or other openings, compressors, instruments, and meters.
"Shut-in or temporarily abandoned" means a well that is closed off such that it stops producing for longer than seven calendar days.
"Unsafe-to-Monitor" means unsafe-to-monitor as defined 40 CFR 60.5397a, which is incorporated by reference in Rule R307-210.

(1) Rule R307-509 applies to each fugitive emissions component at a well site as defined in 40 CFR 60.5430a, Subpart OOOOa, Standards of Performance for Crude Oil and Natural Gas Production, Transmission and Distribution and shall control emissions in accordance with Rules R307-506 and R307-507.
 (a) A source meeting the requirements of 40 CFR 60.5397a is meeting the requirements of this rule.
 (2) Sources subject to Rule R307-509 are subject until the well is shut in. [Rule R307-509 does not apply to a fugitive emissions component at a well that is shut in or temporarily abandoned.]
 (3) Rule R307-509 shall apply to a fugitive emissions component that is subject to an Approval Order issued under Section R307-401-8 on December 1, 2023.

(1) Applicable sources shall comply with the following:
 (a) The owner or operator shall develop an emissions monitoring plan that shall be available upon request to review for each individual well site. At a minimum, the plan shall include:
 (i) monitoring frequency;
 (ii) monitoring technique and equipment;
 (iii) procedures and timeframes for identifying and repairing leaks;
 (iv) recordkeeping practices; and
 (v) calibration and maintenance procedures for monitoring equipment.
(b) The plan shall address monitoring for difficult-to-monitor and unsafe-to-monitor components.

(c) The owner or operator shall conduct monitoring surveys on site to observe each fugitive emissions component for fugitive emissions.

(d) Monitoring surveys shall be conducted according to the following schedule:

(i) No later than 60 days after startup of production, as defined in 40 CFR 60 Subpart OOOoa Standards of Performance for Crude Oil and Natural Gas Production, Transmission and Distribution.

(ii) Semiannually after the initial monitoring survey. Consecutive semiannual monitoring surveys shall be conducted at least four months apart and no more than seven months apart. [A fugitive emission component subject to Rule R307-509 in Duchesne and Uintah counties must perform one monitoring survey during the months of September, October, November or December.]

(iii) Annually after the initial monitoring survey for "difficult-to-monitor" components.

(iv) As required by the owner or operator's monitoring plan for "unsafe-to-monitor" components. [iv) Within seven days of a well site becoming operational after being shut-in or temporarily abandoned.]

(e) Monitoring surveys shall be conducted using one or both of the following to detect fugitive emissions:

(i) Optical gas imaging (OGI) equipment. OGI equipment shall be capable of imaging gases in the spectral range for the compound of highest concentration in the potential fugitive emissions source.

(ii) Monitoring equipment that meets U.S. EPA Method 21, 40 CFR Part 60, Appendix A.

(f) If fugitive emissions are detected at any time, the owner or operator shall repair the fugitive emissions component as soon as possible but no later than 15 calendar days after detection. If the repair or replacement is technically infeasible, would require a vent blowdown, a well shutdown or well shut-in, or would be unsafe to repair during operation of the unit, the repair or replacement shall be completed during the next well shutdown, well shut-in, after an unscheduled, planned, or emergency vent blowdown or within 24 months, whichever is earlier.

(g) The owner or operator shall resurvey the repaired or replaced fugitive emission component no later than 30 calendar days after the fugitive emission component was repaired.

R307-509-5. Recordkeeping.

(1) The owner or operator shall maintain records of the emissions monitoring plan. These records shall be retained for the life of the well site.

(2) The owner or operator shall maintain records of the monitoring surveys, repairs, and resurveys. These records shall be retained for a minimum of three years.

KEY: air pollution, oil, gas
Date of Last Change: 2022
Authorizing, and Implemented or Interpreted Law: 19-2-104(1)(a)
NOTICE OF PROPOSED RULE

| TYPE OF RULE: | New ___; Amendment _X_; Repeal ___; Repeal and Reenact ___ |
|--------------------------------|
| Title No. - Rule No. - Section No. |
| Utah Admin. Code Ref (R no.): R307-511 |
| Changed to Admin. Code Ref. (R no.): R |

Agency Information

1. **Department:** Department of Environmental Quality
2. **Agency:** Division of Air Quality
3. **Room no.:**
4. **Building:** MASOB
5. **Street address:** 195 North 1950 West
6. **City, state and zip:** Salt Lake City, Utah 84116
7. **Mailing address:** P.O. Box 144820
8. **City, state and zip:** Salt Lake City, Utah 84114-4820
9. **Contact person(s):**
 - **Name:** Bo Wood
 - **Phone:** 385-499-3416
 - **Email:** rwood@utah.gov
 - **Name:** Sheila Vance
 - **Phone:** 801-518-3132
 - **Email:** svance@utah.gov

Please address questions regarding information on this notice to the agency.

General Information

2. **Rule or section catchline:**
R307-511. Oil and Gas Industry: Associated Gas Flaring
3. **Purpose of the new rule or reason for the change**
 (Why is the agency submitting this filing?):
 These amendments are necessary to align current oil and gas rules with new data from studies and compliance inspections. These changes reflect more accurate emission calculations that indicate a previous underestimation of VOC emissions from tanks and other components. The proposed changes will ensure the protection of air quality standards and improve compliance with required emission controls.
4. **Summary of the new rule or change**
 (What does this filing do? If this is a repeal and reenact, explain the substantive differences between the repealed rule and the reenacted rule):
 This rule removes an applicability exemption previously granted to producing wells with an approval order issued under R307-401.

Fiscal Information

5. **Provide an estimate and written explanation of the aggregate anticipated cost or savings to:**
 A) State budget:
 The fiscal impact from these amendments on the state budget for FY22, FY23, and FY24 is estimated to be between a benefit of $9,400 and a cost of $21,620. There are 94 facilities that have an exemption through their approval order and it's their choice to either keep the approval order or switch to permit-by-rule. Cancelling an existing approval order requires producers to enroll in the permit-by-rule system. The one-time fee to cancel an approval order ranges from $220 to $550. This could increase state revenue by between $20,680 and $51,700, but is offset by the elimination of the $150 approval order annual fee per facility - $14,400 total. The number of facilities that will choose to move to the permit-by-rule system is unknown, but the incentive structure makes switching cost effective in less than 4 years. The exact cost for each facility to switch is also unknown, but DAQ anticipates that the fiscal impact on the state budget will fall within the range outlined above.
 B) Local governments:
 This rule change is not expected to have any fiscal impact on local governments because the rule does not apply to them.
 C) Small businesses
 ("small business" means a business employing 1-49 persons):
 This rule change is not expected to have a fiscal impact on small businesses because it clarifies the conditions and requirements for flaring gases captured as part of the emissions controls already required by R307-506.
 D) Non-small businesses
 ("non-small business" means a business employing 50 or more persons):
This rule change is not expected to have a fiscal impact on non-small businesses because it clarifies the conditions and requirements for flaring gases captured as part of the emissions controls already required by R307-506.

E) Persons other than small businesses, non-small businesses, state, or local government entities ("person" means any individual, partnership, corporation, association, governmental entity, or public or private organization of any character other than an agency):

This rule change is not expected to have any fiscal impact on persons other than small businesses, non-small businesses, state, or local government entities because it applies only to businesses in the oil and gas industry.

F) Compliance costs for affected persons (How much will it cost an impacted entity to adhere to this rule or its changes?):

This rule change will not have a compliance cost for affected persons.

G) Comments by the department head on the fiscal impact this rule may have on businesses (Include the name and title of the department head):

After a thorough analysis and engagement with impacted parties, the Division of Air Quality has determined that the proposed amendments to R307-511 will not result in a fiscal impact on businesses because the amendments clarify the conditions and the requirements for flaring gases captured as part of the emissions controls already required by rule.

Kimberly D. Shelley, Executive Director of the Utah Department of Environmental Quality

6. A) Regulatory Impact Summary Table (This table only includes fiscal impacts that could be measured. If there are inestimable fiscal impacts, they will not be included in this table. Inestimable impacts will be included in narratives above.)

<table>
<thead>
<tr>
<th>Regulatory Impact Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiscal Cost</td>
</tr>
<tr>
<td>FY2022</td>
</tr>
<tr>
<td>State Government</td>
</tr>
<tr>
<td>Local Governments</td>
</tr>
<tr>
<td>Small Businesses</td>
</tr>
<tr>
<td>Non-Small Businesses</td>
</tr>
<tr>
<td>Other Persons</td>
</tr>
<tr>
<td>Total Fiscal Cost</td>
</tr>
<tr>
<td>Fiscal Benefits</td>
</tr>
<tr>
<td>State Government</td>
</tr>
<tr>
<td>Local Governments</td>
</tr>
<tr>
<td>Small Businesses</td>
</tr>
<tr>
<td>Non-Small Businesses</td>
</tr>
<tr>
<td>Other Persons</td>
</tr>
<tr>
<td>Total Fiscal Benefits</td>
</tr>
<tr>
<td>Net Fiscal Benefits</td>
</tr>
</tbody>
</table>

B) Department head approval of regulatory impact analysis:

The Executive Director of the Department of Environmental Quality, Kim Shelley, has reviewed and approved this fiscal analysis.

Citation Information

7. Provide citations to the statutory authority for the rule. If there is also a federal requirement for the rule, provide a citation to that requirement:

19-2-104

Incorporations by Reference Information

(If this rule incorporates more than two items by reference, please include additional tables.)

8. A) This rule adds, updates, or removes the following title of materials incorporated by references (a copy of materials incorporated by reference must be submitted to the Office of Administrative Rules; if none, leave blank):

<table>
<thead>
<tr>
<th>First Incorporation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Official Title of Materials Incorporated (from title page)</td>
</tr>
<tr>
<td>Publisher</td>
</tr>
</tbody>
</table>
B) This rule adds, updates, or removes the following title of materials incorporated by references (a copy of materials incorporated by reference must be submitted to the Office of Administrative Rules; if none, leave blank):

<table>
<thead>
<tr>
<th>Second Incorporation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Official Title of Materials Incorporated (from title page)</td>
</tr>
<tr>
<td>Publisher</td>
</tr>
<tr>
<td>Date Issued</td>
</tr>
<tr>
<td>Issue, or version</td>
</tr>
</tbody>
</table>

Public Notice Information

9. The public may submit written or oral comments to the agency identified in box 1. (The public may also request a hearing by submitting a written request to the agency. See Section 63G-3-302 and Rule R15-1 for more information.)

A) Comments will be accepted until (mm/dd/yyyy):

B) A public hearing (optional) will be held:

<table>
<thead>
<tr>
<th>On (mm/dd/yyyy):</th>
<th>At (hh:mm AM/PM):</th>
<th>At (place):</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 24, 2022</td>
<td>1:00PM</td>
<td>https://meet.google.com/ozt-syme-rum?hs=122&authuser=0</td>
</tr>
</tbody>
</table>

10. This rule change MAY become effective on (mm/dd/yyyy): 07/07/2022

NOTE: The date above is the date the agency anticipates making the rule or its changes effective. It is NOT the effective date. To make this rule effective, the agency must submit a Notice of Effective Date to the Office of Administrative Rules on or before the date designated in Box 10.

Agency Authorization Information

<table>
<thead>
<tr>
<th>Agency head or designee, and title:</th>
<th>Date (mm/dd/yyyy):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bryce C. Bird, Director</td>
<td>04/06/2022</td>
</tr>
</tbody>
</table>

R307-511-1. Purpose.
Rule R307-511 establishes control requirements for the flaring of produced gas associated with well sites.

"Emergency release" means a temporary, infrequent and unavoidable situation in which the loss of gas is uncontrollable or necessary to avoid risk of an immediate and substantial adverse impact on safety, public health, or the environment. An "emergency" is limited to a short-term situation of 24 hours or less caused by an unanticipated event or failure that is out of the operator's control and is not due to operator negligence.

"Flaring" means use of a thermal oxidation system designed to combust hydrocarbons in the presence of flame.

"Associated Gas" means the natural gas that is produced from an oil well during production operations and is either sold, re-injected, used for production purposes, vented (rarely) or flared. Low pressure gas associated with the working, breathing, and flashing of oil is not considered associated gas under this definition and shall be controlled in accordance with Rules R307-506 and R307-507.

(1) Rule R307-511 applies to each producing well located at a well site as defined in 40 CFR 60.5430a Subpart OOO0a Standards of Performance for Crude Oil and Natural Gas Production, Transmission and Distribution.
(2) VOC control devices used for controlling associated gas are subject to Rule R307-508.
[(3) R307-511 does not apply to producing wells that are subject to an approval order issued under R307-401-8.]

(1) Associated gas from a completed well shall either be routed to a process unit for combustion, routed to a sales pipeline, or routed to an operating VOC control device except for emergency release situations as defined in Section R307-511-2.

R307-511-5. Recordkeeping.
(1) The owner or operator shall maintain records for emergency releases under Subsection R307-511-4(1)[(a)].
(a) The time and date of event, volume of emissions and any corrective action taken shall be recorded.
(b) These records shall be kept for a minimum of three years.

KEY: air quality, nonattainment, offset
Date of Last Change: 2022 [March 5, 2019]
Authorizing, and Implemented or Interpreted Law: 19-2-104; 19-2-108
UPA Letter regarding Oil & Gas Rulemaking on July 6 AQB Agenda

1 message

Jennette King <jking@utahpetroleum.org> Tue, Jul 5, 2022 at 4:23 PM
To: Randy Martin <randy.martin@usu.edu>, Cassady Kristensen <cassady.kristensen@riotinto.com>, "Michelle D. Bujdoso" <MDBujdoso@marathonpetroleum.com>, Kevin Cromar <kevin.cromar@nyu.edu>, Erin Menenhall <mayor@slcgov.com>, John Rasband <johnr@peterseninc.com>, Arnold Reitze <arnold.reitze@law.utah.edu>, Kimberly Shelley <kshelley@utah.gov>, Gregory Todd <gtodd@duchesne.uta.gov>
Cc: Bryce Bird <bbird@utah.gov>, Becky Close <bclose@utah.gov>, Sheila Vance <svance@utah.gov>, Bo Wood <rwood@utah.gov>, Melissa Yazhe <myazhe@utah.gov>

To Members of the Utah Air Quality Board,

Please see the attached letter below regarding proposed Oil and Gas Rulemakings on tomorrow's Air Quality Board agenda. We appreciate your efforts in reviewing the information and are available for any questions that you may have. Thank you.

Jennette King
Administrative Assistant
6905 S. 1300 E. #288
Cottonwood Heights, UT 84047
(801) 703-4444
jking@utahpetroleum.org

2 attachments

- image001.jpg 15K
- UABQ Letter re Missing RTC Items 07052022.pdf 138K
July 5, 2022

Members of the Utah Air Quality Board (by email):
- Randy Martin, Chair - randy.martin@usu.edu
- Cassady Kristensen, Vice-Chair - Cassady.Kristensen@riotinto.com
- Michelle Bujdoso - mdbujdoso@marathonpetroleum.com
- Kevin R. Cromar - kevin.cromar@nyu.edu
- Erin Mendenhall - mayor@slcgov.com
- John Rasband - johnr@peterseninc.com
- Arnold W. Reitze, Jr. - arnold.reitze@law.utah.edu
- Kimberly D. Shelley - kshelley@utah.gov
- Gregory Todd - gtodd@duchesne.utah.gov

Utah Division of Air Quality
P. O. Box 144820
Salt Lake City, Utah 84114-4820

Dear Board Members:

The Utah Petroleum Association (“UPA”) submitted comments on May 31 on the Proposed Oil and Gas Rulemakings; Amendments to R307-506 Storage Vessel, R307-508 VOC Control Devices, R307-509 Leak Detection and Repair Requirements, and R307-511 Associated Gas Flaring; Utah State Bulletin, Number 2022-09, pp. 81-92; May 01, 2022 (“proposed rulemaking” or “rulemaking”). In addition, XCL Resources (“XCL”) submitted additional comments on June 14.

The Air Quality Board (“AQB”) package for the final rule was released publicly on June 29. We read the package and the response to comments carefully. We appreciated the thoughtful response to comment for those comments that it addresses. However, we find that it does not address several of the comments as follows:

1. The rule needs to include a clear process for timely approval of samples and site-specific calculations. See XCL letter, paragraph at bottom of page 1 and continued onto page 2. While the response to comment discusses dedicating staff to reviewing samples, it does
not address the specific request for rule language identifying a clear process for timely approval. Companies cannot be expected to operate without regulatory certainty – there are no criteria or timeline for when samples would be approved or rejected and there is no process to ensure companies can maintain compliance should a sample be rejected.

2. The increased sampling that will be necessitated by the ultra-low threshold for controls and the time required to obtain necessary approvals of site-specific sample results and calculations will defeat the purpose of the Permit by Rule (PBR) by imposing substantial time and regulatory risk for operators to obtain approvals. See XCL letter, first full paragraph at the top of page 2. The Permit by Rule (PBR) was established to provide a simple mechanism for companies to comply with emission control requirements and reduce the processing burden on UDAQ. If UDAQ persists in lowering the threshold throughput for controls to such a low level, operators will be compelled to conduct significant sampling to show that many if not most of their sites with throughput between the existing and new thresholds do not exceed 4 tons per year of emissions and therefore do not require new controls.

3. The VOC Composition Study does not meet the rigor required for peer review. The Study should be repeated with peer review. See UPA letter starting in the partial paragraph at the bottom of page 6 and continuing through the second to the last paragraph on page 7. Considering that this study underpins the entire rulemaking, previous technical concerns raised at the April 7, 2021, board meeting and further articulated in the report by Ramboll that UPA submitted to UDAQ in 2021,¹ should be affirmatively justified or otherwise addressed before this study is used for regulatory purposes.

4. UPA has not responded to our comment and explained the higher emission factor of 2.5 pounds per barrel for waxy, viscous crude oil and associated higher estimated emissions compared to 1.6 pounds per barrel that EPA measured for lighter Texas oil. See last two paragraphs at the bottom of page A-1 including the numbered list and the completion of the numbered list at the top of page A-2 of Attachment 1 in the UPA letter. Without explaining these incongruent results, any conclusions obtained from the VOC Composition Study are called into question because we do not know the source of the incongruency including whether it may be attributed to errors in sampling, analysis, or processing of the analytical results. This is a difference of 60% in the wrong direction; the heavier Utah crude oil should have a lower emission factor compared to the Texas oil, not 60% higher.

5. The rule must include a provision for case-by-case extensions. See UPA letter paragraph at the top of page 10 and matching rule language also on page 10. There is no response to justify why a case-by-case extension is not included in the final rule. Coupled with the lack of a clear process for timely approval of samples and site-specific calculations this amplifies the regulatory risk for companies choosing to submit site specific samples should UDAQ deny their request.

6. The definition for a shut-in well of seven days has not been properly justified and is too short to be meaningful or practical. See UPA letter, third bullet on page 4 and item c. on pages 20 and 21. While some of our discussion speaks to the re-monitoring requirement

after shut-in and the response to comment addresses this portion of the comment, other aspects of our discussion speak to the unacceptably short duration of a shut-in in the definition. Furthermore, our recommended rule language on page 21 clearly deletes the definition of a shut-in. The definition was unexplainedly retained for the final rule for proposal. There is no justification in the response to comments as to why UDAQ would create a different definition of “shut-in” than that already set by the Division of Oil Gas and Mining.

7. The LDAR schedule change requiring that monitoring events be no more than 7 months apart needs a compliance date. We had recommended August 1, 2023. The final rule does not include a compliance date. The response to comment states that no compliance date was included for LDAR changes because the changes were removed; however, the maximum 7-month interval between monitoring events is a new requirement that was not removed. UDAQ needs to address this aspect of the LDAR compliance date comment, as it applies to the 7-month maximum interval. See UPA letter, item b. starting near the bottom of page 18 and through page 19.

Utah Code 63G-3-301(11)(b) requires that “The agency shall review and evaluate all public comments submitted in writing . . .” We realize that item numbers 1 and 2 above were submitted late and this provision of the Utah code does not apply. Nonetheless, we hope UDAQ will address them in the spirit of getting to a better rule. The legal requirement of the Utah Code still applies to the remaining items noted above.

We emphasize that we are not advocating against rules to reduce emissions from oil and gas operations in the Uinta Basin ozone nonattainment area. We are advocating for rules that have been developed in accordance with requirements of the Utah Code, that are based on sound science, and that address the major concerns expressed by the regulated community.

Sincerely,

Rikki Hrenko-Browning
President, Utah Petroleum Association

cc: Bryce Bird – bbird@utah.gov
Becky Close – bclose@utah.gov
Sheila Vance – svance@utah.gov
Bo Wood – rwood@utah.gov
Melissa Yazhe, myazhe@utah.gov
UPA Letter regarding Oil & Gas Rulemaking on July 6 AQB Agenda - WITH ATTACHMENTS

1 message

Jennette King <jking@utahpetroleum.org> Tue, Jul 5, 2022 at 5:09 PM
To: Randy Martin <randy.martin@usu.edu>, Cassady Kristensen <cassady.kristensen@riotinto.com>, "Michelle D. Bujdoso" <MDBujdoso@marathonpetroleum.com>, Kevin Cromar <kevin.cromar@nyu.edu>, Erin Menenhall <mayor@slcgov.com>, John Rasband <johnr@peterseninc.com>, Arnold Reitze <arnold.reitze@law.utah.edu>, Kimberly Shelley <kshelley@utah.gov>, Gregory Todd <gtodd@duchesne.utah.gov>
Cc: Bryce Bird <bbird@utah.gov>, Becky Close <bclose@utah.gov>, Sheila Vance <svance@utah.gov>, Bo Wood <rwood@utah.gov>, Melissa Yazhe <myazhe@utah.gov>

Our apologies for a second email, we are also including the two comment letters referred to in our letter to you (attached below).

To Members of the Utah Air Quality Board,

Please see the attached letter below regarding proposed Oil and Gas Rulemakings on tomorrows Air Quality Board agenda. We appreciate your efforts in reviewing the information and are available for any questions that you may have. Thank you.

Attachments:

Jennette King
Administrative Assistant
6905 S. 1300 E. #288
Cottonwood Heights, UT 84047
(801) 703-4444
jking@utahpetroleum.org

4 attachments

image001.jpg 15K
July 5, 2022

Members of the Utah Air Quality Board (by email):
 Randy Martin, Chair - randy.martin@usu.edu
 Cassady Kristensen, Vice-Chair - Cassady.Kristensen@riotinto.com
 Michelle Bujdoso - mdbujdoso@marathonpetroleum.com
 Kevin R. Cromar - kevin.cromar@nyu.edu
 Erin Mendenhall - mayor@slcgov.com
 John Rasband - johnr@peterseninc.com
 Arnold W. Reitze, Jr. - arnold.reitze@law.utah.edu
 Kimberly D. Shelley - kshelley@utah.gov
 Gregory Todd - gtodd@duchesne.utah.gov

Utah Division of Air Quality
P. O. Box 144820
Salt Lake City, Utah 84114-4820

Dear Board Members:

The Utah Petroleum Association (“UPA”) submitted comments on May 31 on the Proposed Oil and Gas Rulemakings; Amendments to R307-506 Storage Vessel, R307-508 VOC Control Devices, R307-509 Leak Detection and Repair Requirements, and R307-511 Associated Gas Flaring; Utah State Bulletin, Number 2022-09, pp. 81-92; May 01, 2022 (“proposed rulemaking” or “rulemaking”). In addition, XCL Resources (“XCL”) submitted additional comments on June 14.

The Air Quality Board (“AQB”) package for the final rule was released publicly on June 29. We read the package and the response to comments carefully. We appreciated the thoughtful response to comment for those comments that it addresses. However, we find that it does not address several of the comments as follows:

1. The rule needs to include a clear process for timely approval of samples and site-specific calculations. See XCL letter, paragraph at bottom of page 1 and continued onto page 2. While the response to comment discusses dedicating staff to reviewing samples, it does
not address the specific request for rule language identifying a clear process for timely approval. Companies cannot be expected to operate without regulatory certainty – there are no criteria or timeline for when samples would be approved or rejected and there is no process to ensure companies can maintain compliance should a sample be rejected.

2. The increased sampling that will be necessitated by the ultra-low threshold for controls and the time required to obtain necessary approvals of site-specific sample results and calculations will defeat the purpose of the Permit by Rule (PBR) by imposing substantial time and regulatory risk for operators to obtain approvals. See XCL letter, first full paragraph at the top of page 2. The Permit by Rule (PBR) was established to provide a simple mechanism for companies to comply with emission control requirements and reduce the processing burden on UDAQ. If UDAQ persists in lowering the threshold throughput for controls to such a low level, operators will be compelled to conduct significant sampling to show that many if not most of their sites with throughput between the existing and new thresholds do not exceed 4 tons per year of emissions and therefore do not require new controls.

3. The VOC Composition Study does not meet the rigor required for peer review. The Study should be repeated with peer review. See UPA letter starting in the partial paragraph at the bottom of page 6 and continuing through the second to the last paragraph on page 7. Considering that this study underpins the entire rulemaking, previous technical concerns raised at the April 7, 2021, board meeting and further articulated in the report by Ramboll that UPA submitted to UDAQ in 2021,1 should be affirmatively justified or otherwise addressed before this study is used for regulatory purposes.

4. UPA has not responded to our comment and explained the higher emission factor of 2.5 pounds per barrel for waxy, viscous crude oil and associated higher estimated emissions compared to 1.6 pounds per barrel that EPA measured for lighter Texas oil. See last two paragraphs at the bottom of page A-1 including the numbered list and the completion of the numbered list at the top of page A-2 of Attachment 1 in the UPA letter. Without explaining these incongruent results, any conclusions obtained from the VOC Composition Study are called into question because we do not know the source of the incongruency including whether it may be attributed to errors in sampling, analysis, or processing of the analytical results. This is a difference of 60% in the wrong direction; the heavier Utah crude oil should have a lower emission factor compared to the Texas oil, not 60% higher.

5. The rule must include a provision for case-by-case extensions. See UPA letter paragraph at the top of page 10 and matching rule language also on page 10. There is no response to justify why a case-by-case extension is not included in the final rule. Coupled with the lack of a clear process for timely approval of samples and site-specific calculations this amplifies the regulatory risk for companies choosing to submit site specific samples should UDAQ deny their request.

6. The definition for a shut-in well of seven days has not been properly justified and is too short to be meaningful or practical. See UPA letter, third bullet on page 4 and item c. on pages 20 and 21. While some of our discussion speaks to the re-monitoring requirement

after shut-in and the response to comment addresses this portion of the comment, other aspects of our discussion speak to the unacceptably short duration of a shut-in in the definition. Furthermore, our recommended rule language on page 21 clearly deletes the definition of a shut-in. The definition was unexplainedly retained for the final rule for proposal. There is no justification in the response to comments as to why UDAQ would create a different definition of “shut-in” than that already set by the Division of Oil Gas and Mining.

7. The LDAR schedule change requiring that monitoring events be no more than 7 months apart needs a compliance date. We had recommended August 1, 2023. The final rule does not include a compliance date. The response to comment states that no compliance date was included for LDAR changes because the changes were removed; however, the maximum 7-month interval between monitoring events is a new requirement that was not removed. UDAQ needs to address this aspect of the LDAR compliance date comment, as it applies to the 7-month maximum interval. See UPA letter, item b. starting near the bottom of page 18 and through page 19.

Utah Code 63G-3-301(11)(b) requires that “The agency shall review and evaluate all public comments submitted in writing . . .” We realize that item numbers 1 and 2 above were submitted late and this provision of the Utah code does not apply. Nonetheless, we hope UDAQ will address them in the spirit of getting to a better rule. The legal requirement of the Utah Code still applies to the remaining items noted above.

We emphasize that we are not advocating against rules to reduce emissions from oil and gas operations in the Uinta Basin ozone nonattainment area. We are advocating for rules that have been developed in accordance with requirements of the Utah Code, that are based on sound science, and that address the major concerns expressed by the regulated community.

Sincerely,

Rikki Hrenko-Browning
President, Utah Petroleum Association

cc: Bryce Bird – bbird@utah.gov
Becky Close – bclose@utah.gov
Sheila Vance – svance@utah.gov
Bo Wood – rwood@utah.gov
Melissa Yazhe, myazhe@utah.gov
May 31, 2022

Sheila Vance
Bo Wood
Utah Division of Air Quality
P.O. Box 144820
Salt Lake City, Utah 84114-4820

Delivered via email: svance@utah.gov and rwood@utah.gov

Dear Ms. Vance and Mr. Wood:

The Utah Petroleum Association (“UPA”) thanks you for the opportunity to provide these comments on Proposed Oil and Gas Rulemakings; Amendments to R307-506 Storage Vessel, R307-508 VOC Control Devices, R307-509 Leak Detection and Repair Requirements, and R307-511 Associated Gas Flaring; Utah State Bulletin, Number 2022-09, pp. 81-92; May 01, 2022 (“proposed rulemaking” or “rulemaking”).

UPA is a statewide oil and gas trade association established in 1958 representing companies involved in all aspects of Utah’s oil and gas industry. UPA members range from independent producers to midstream and service providers, to major oil and natural gas companies widely recognized as industry leaders responsible for driving technology advancement resulting in environmental and efficiency gains. UPA member companies operate oil and gas production and midstream facilities within the Uintah Basin ozone nonattainment area (“UB”) and will be affected by the rulemaking.

We sincerely appreciated having an opportunity to provide input to the Utah Division of Air Quality (“UDAQ”) on this important rulemaking earlier this year, prior to this formal proposal through the Air Quality Board (“AQB”). ¹ We know that UDAQ was not required to provide the opportunity to comment informally at that early stage. We believe that a better set of rules will result through this extra effort and dialogue. Thank you for considering our comments, making some changes

¹ See letter, Rikki-Hrenko Browning to Sheila Vance, “Comments from the Utah Petroleum Association on Advanced Notice of State of Utah Proposed Oil and Gas Rulemaking,” January 24, 2022 (“advance notice comments”).
to the proposed rulemaking, and providing feedback via a Response to Comment document ("RTC"). In this letter, we reiterate some of our prior comments with additional information in some cases and provide some new comments.

UPA understands the purpose of the rulemaking to be as follows:

1. To reduce emissions of volatile organic compounds ("VOC") to reduce ozone levels in the UB to maintain and further improve air quality
2. To align the rules with data obtained from the VOC Composition Study

As explained previously and reiterated in this letter, we have concerns with the VOC Composition Study ("Study") and UDAQ’s response to our concerns did not resolve many of them. We also have concerns with the more recent analysis of the Study data for this rulemaking, some of which we provided to the AQB before they approved the formal proposed rulemaking. These concerns lead to our disagreement with the proposed threshold to require controls on storage vessels of 3,200 bpy of oil; we contend the threshold should be no greater than 5,000 bpy.

We understand that UDAQ intends to move forward with the rulemaking regardless of whether the air quality in the UB attains the 2015 ozone National Ambient Air Quality Standard ("NAAQS" or "standard") and EPA ultimately reclassifies the UB to attainment. We also understand that UDAQ intends to incorporate these rules into the State Implementation Plan ("SIP") towards the required 15% reduction in VOC if air quality does not maintain attainment and EPA reclassifies the UB to Moderate nonattainment.

In general, UPA supports science-based rules that provide a level playing field and are cost-effective towards attaining and maintaining air quality. Considering the compressed time schedule to develop the potentially required SIP and for oil and gas operators to implement associated controls in the event the UB does not attain the standard, UPA generally supports UDAQ’s efforts to move forward at this time with rules that might ultimately be needed. However, we find that some of the proposed changes have not been adequately justified as required by the Utah Code and will not provide an appreciable reduction in emissions; therefore, these changes should not be included in the final rule set forth for AQB approval.

EPA has proposed to approve the first one-year extension to the attainment date for the UB. We understand that the UB meets all statutory criteria to be granted a second one-year extension, that UDAQ has applied for a second one-year extension, and that the Ute Indian Tribe supports this second extension, similar to their support of the first extension. If EPA approves the first and second extensions, the Marginal attainment date for the UB will move to August 3, 2023.

3 “Response to Uinta Basin Composition Study Review” prepared by Utah Division of Air Quality, March 2021.
4 Letter, Rikki Hrenko-Browning to Members of the Utah Air Quality Board, “Comments from the Utah Petroleum Association on Agenda Item 4 for April 6 Meeting of the Air Quality Board, Proposed Oil and Gas Rulemaking for Public Comment,” April 1, 2022.
5 “Determinations of Attainment by the Attainment Date, Extensions of the Attainment Date, and Reclassification of Areas Classified as Marginal for the 2015 Ozone National Ambient Air Quality Standards” proposed rule; Federal Register Volume 87, Number 71, p. 21842; April 13, 2022.
Moreover, we anticipate further improvements in air quality when EPA finalizes the Federal Implementation Plan that will require controls on VOC emissions for oil and gas sources located on Tribal lands within the UB ("FIP")\(^7\) and with the implementation of New Source Performance Standards ("NSPS") OOOOb and OOOOc rulemakings.\(^8\)

We have significant concerns about the compliance dates for the rulemaking as explained in our advance notice comments. We reiterate these concerns and provide additional detail here. It will be impossible to comply with a January 1, 2023, compliance date for storage vessel modifications and to comply with changed Leak Detection and Repair ("LDAR") requirements immediately or within mere weeks of final rule adoption. Considering the impossibility of compliance at these early dates, the UB path towards attainment, and high likelihood of EPA approval of the two one-year extensions to the attainment date, we see no reason why UDAQ should not provide reasonable compliance dates that operators can comply with. Alternatively, if UDAQ does not provide reasonable dates that operators can comply with, some operators may have no alternative but to shut in wells and empty storage vessels. This would be contrary to efforts at the highest level in Utah state government to increase the supply of oil and gas to hold consumer prices down.

While we appreciate UDAQ extending the year-end LDAR monitoring period to include September, we still find the number of constraints added to LDAR to be unnecessary in terms of resulting insignificant emission reductions and costly. We request that the year-end monitoring requirement be eliminated entirely in favor of a simple semiannual monitoring requirement.

We explain these and other comments in more detail below.

1. **Some aspects of the Oil & Gas rulemaking differ from Federal Clean Air Act requirements and have not been properly justified.**

Some of the specific proposals included in the rulemaking do not meet the requirements of Utah Code 19-2-106 addressing rulemaking authority and procedure. Among other requirements, this section of the Utah Code requires that the board “may make rules for the purpose of administering a program under the federal Clean Air Act different than the corresponding federal regulations which address the same circumstances if the board . . . finds that the different rule will provide reasonable added protections to public health or the environment of the state or a particular region of the state”. The code further requires that these findings shall be “in writing” and shall be “based on evidence, studies, or other information contained in the record that relates to the state of Utah and the type of source involved.”\(^9\)

\(^7\) See “Federal Implementation Plan for Managing Emissions From Oil and Natural Gas Sources on Indian Country Lands Within the Uintah and Ouray Indian Reservation in Utah” proposed rule; Federal Register, Volume 85, Number 13, p. 3492; January 21, 2020. EPA submitted the final rule to the White House Office of Management and Budget on February 9, 2022, and therefore EPA issuance of the final rule is imminent. Issuance of this rule will allow the associated emission reductions to begin moving forward soon.

\(^8\) “Standards of Performance for New, Reconstructed, and Modified Sources and Emissions Guidelines for Existing Sources: Oil and Natural Gas Sector Climate Review” proposed rule; Federal Register, Volume 86, Number 217; November 15, 2021; p. 63110.

\(^9\) Utah Code 19-2-106, Rulemaking authority and procedures, paragraphs (1)(a) and (2)(a) and (b).
Specifically, we find that the following proposed rule changes do not have adequate documentation in the record to substantiate these requirements that are different from Federal requirements:

- R307-506-4(4)(ii) reducing the time to empty an emergency relief storage vessel from 15 days to 48 hours: As discussed in more detail below, flash emissions will mainly occur as soon as material enters the tank and working/breathing emissions over the course of the following days will be small in comparison. We are not aware of data that would justify this significantly shortened duration as having a significant impact on air quality.

- R307-509-4(d)(ii) requiring that fugitive components subject to the rule in Duchesne and Uintah counties perform one LDAR monitoring survey during the months of September, October, November, or December: As discussed in more detail below, many of these components would be monitored during these months anyway and any small benefit from requiring monitoring during these four months in lieu of allowing it over a six-month period will be counteracted by not monitoring any components during the high ozone months.

- R307-509-2 definition of “Shut-in or temporarily abandoned” as a shut-in of longer than seven days and R307-509-4(d)(v) requiring that wells be monitored within seven days of a well site becoming operational after being shut-in or temporarily abandoned: UPA member company experience regarding well shut-ins does not justify this costly requirement on shut-ins of such short duration and we are not aware of other data to justify the 7-day definition.

UDAQ has not presented the required evidence, studies, or other information to justify these requirements. Furthermore, UPA does not believe that such information exists or can be properly developed for these items. Our comments below provide more detail. Accordingly, we request that these items not be included in the final rules.

2. Comments on R307-506 Storage Vessel

 a. The data do not support the proposed 3,200 barrel per year threshold for controls. The threshold should be no lower than 5,000 barrels per year and possibly greater.

 The existing rule set a threshold requiring air emission controls on storage vessels with 8,000 barrels per year (“bpy”) or greater of throughput and the proposal lowers it to 3,200 bpy. In both cases, UDAQ set the threshold to correspond to 4 tons per year (tpy) of VOC emissions, with the analysis for the proposal based on UDAQ evaluation of Study results. In the proposal, UDAQ sought to establish a “best fit” of Study data considering the correlation of throughput and emissions, like UDAQ’s original approach for the existing rule but with a more limited dataset. Both the existing and proposed rules allow operators to obtain site specific samples to set a site-specific control threshold that may be higher than the bpy threshold set in the rule.

 UPA supports the “best fit” concept. It provides the simplest means to determine what must be done to comply. With the opportunity to obtain site specific samples, if UDAQ set the threshold conservatively such that no uncontrolled storage vessel could have more than 4 tpy emissions, more operators would pursue site-specific sampling to opt out of controls for their specific individual storage vessels. This would be costly for operators and would substantially increase
UDAQ’s workload to evaluate the multiple site-specific sampling efforts, yet it would result in no overall emissions reduction or improvement in air quality due to the number of storage vessels that would opt out of controls based on site-specific sample results. For these reasons, UPA does not support setting the threshold conservatively in lieu of the best fit.

Although we support the best fit approach, we have unresolved concerns with the Study itself that carry through to the recent evaluation of Study data used to develop the 3,200 bpy threshold:

- Improper sampling location - Some samples were obtained from site glasses rather than proper sampling ports downstream of the separators. Sight glass samples do not ensure representativeness. UDAQ and EPA agreed that site glass sampling is not appropriate in their recent (February 2022) draft version of the sampling protocol that UPA and the agencies have been jointly developing, “To ensure homogeneity, samples should not be collected from the sight glass or similar device at the gas/liquid interface. Sight glass sampling can result in gas or water entrainment from the gas/liquid interface and disruption of equilibrium is quite likely to occur, resulting in a sample that is not representative of separator operation.”

- Inadequate sample representativeness criteria – For reasons stated previously, UPA does not agree with the agency-recommended tolerance of PBP/PSC of plus/minus 30% applied uniformly to any separator pressure.

- Lack of a model performance evaluation – The Study did not collect flash gas or stock tank API gravity data to allow a proper model performance evaluation and thus, the model results cannot be validated.

Notably, the improper sampling locations and the lack of data collection to allow conducting an appropriate model performance evaluation can only be corrected by repeating the Study itself. Relying upon this study for regulatory purposes, which was not designed to support rulemaking and has numerous areas for improvement that are very likely to significantly change the results, is wholly inappropriate.

UPA has additional concerns with the recent evaluation of Study data that established the proposed 3,200 bpy threshold as follows:

- Our review of UDAQ’s most recent model files suggests that atmospheric pressure in the model runs may have been set at 14.69 psia, the atmospheric pressure at sea level, instead of the 11.6 to 12.3 psia measured at the sampling location elevations.

- The binary interaction parameters (“BIPs”) in the model runs were not tuned to establish good model performance. Please refer to our explanation of BIPs in our recently transmitted document “UPA Review of Agency Feedback on Sampling Guidance” (copy attached here for reference). Without proper tuning, no model will give reliable results. Tuning an equation of state process simulation model for BIPs is analogous to adjusting inputs and calculation methods to get a good model performance evaluation for photochemical modeling, a critical step to obtain modeling results that can be relied upon to make regulatory decisions. Similarly, without proper tuning, the model results for the Study data should not be used to make regulatory decisions.
Moreover, as explained in the attachment, “Comment from the Utah Petroleum Association Regarding Emission Factor for Determining the Control Threshold for Storage Vessels,” the analysis performed to obtain the “best fit” had flaws:

- The analysis indicates impossible negative emissions because the intercept of the correlation of emissions based on throughput was not set at zero.
- A linear fit was used but the data above 10,000 bpy throughput are scattered, not well correlated, and do not fit well with a linear correlation of the data.
- Widely scattered data was retained as part of the analysis without regard to potential causes of the scatter including possible systematic causes from a single operator and without regard to its irrelevance to the overall objective of lowering the threshold for controls.

The R^2 value in UDAQ’s analysis is low at 0.51, yet by adjusting the best fit correlation equation of UDAQ’s Study data by setting the intercept to zero and including only the data points at lower throughputs, i.e., not including the widely scattered and uncorrelated data that is also irrelevant, the R^2 increases to the much better value of 0.84. These changes to the best fit correlation increase the throughput threshold corresponding to 4 tpy of emissions to 5,000 bpy.

As explained in the attachment, UDAQ’s analysis resulted in an emission factor of 2.5 pounds of VOC per barrel of throughput, a factor that is not congruent with the EPA emission factor of 1.6 pounds per barrel developed for a more volatile Texas crude oil. UPA’s analysis results in the more likely 1.6 pounds per barrel for the UB. An even lower factor than derived by UPA might be developed by considering non-linear correlations. UDAQ and UPA discussed correlations to establish a best fit for the data with AQB Chair Randy Martin where a non-linear correlation in fact seemed to provide the best fit. It should be noted that this non-linear correlation also resulted in a lower emissions factor.

A more appropriate analysis of the data would include these changes, consideration of other non-linear correlations, and consideration of the R^2 value and of the P value which is a measure of whether the correlation could be random.

We explain these concerns in greater detail in the attachment. In the face of a significantly better correlation, continuing to use UDAQ’s original correlation, emission factor, and throughput threshold for controls cannot be justified.

Thus, considering adjustments to improve the statistical analysis as measured by a better R^2 value, other considerations that might improve the P value, and potentially non-linear correlations that might provide a better fit to the data, UPA recommends that the throughput threshold for storage vessel controls be set no lower than 5,000 bpy and potentially greater than 5,000 pending a more thorough statistical analysis.

Moreover, our recommendation of a threshold no lower than 5,000 bpy does not consider the flaws in the Study itself or in the modeling performed with Study data; it only considers the statistical evaluation of the modeling results.

During the AQB discussion to approve this rule proposal, a discussion of whether the Study had been peer-reviewed took place. UDAQ staff indicated that the Study had been peer-reviewed by
agency staff at UDAQ and EPA. This review, however, does not meet the rigorous scientific demands for a properly peer-reviewed study for scientific publication. For example, EPA’s Quality Manual for Environmental Programs defines peer review as:

A documented critical review of work by qualified individuals (or organizations) who are independent of those who performed the work, but are collectively equivalent in technical expertise. A peer review is conducted to ensure that activities are technically adequate, competently performed, properly documented, and satisfy established technical and quality requirements. The peer review is an in-depth assessment of the assumptions, calculations, extrapolations, alternate interpretations, methodology, acceptance criteria, and conclusions pertaining to specific work and of the documentation that supports them. [emphasis added]

A review of the Study by the agencies would not qualify as peer review simply because agency staff are not independent of themselves. Given the flaws in the Study outlined above, UPA does not believe that the Study could pass the in-depth assessment of an independent peer review performed by independent experts knowledgeable of the Study methods and objectives.

Other Federal government agencies describe rigorous requirements for peer review. For example, the United States Geological Survey (“USGS”) requires peer review for virtually all science information products whether published or disseminated by the USGS or by an outside entity if the author has any affiliation with the USGS. They refer to the “Final Information Quality Bulletin for Peer Review” issued by the White House Office of Management and Budget which cautions against conflating peer review with public comment or other stakeholder processes and cautions that “the need for rigorous peer review is greater when the information contains precedent-setting methods or models, presents conclusions that are likely to change prevailing practices, or is likely to affect policy decisions that have a significant impact.”

The only way that a reliable result corresponding to 4 tpy emissions can be obtained would be through repeating the Study with a new study plan addressing the sampling and data flaws of the original Study and subsequent data evaluation. To ensure scientific integrity, the new study and results should be submitted for peer review and publication in an appropriate peer-reviewed scientific journal. **UPA recommends that UDAQ undertake a new study with rigorous scientific peer review and then review the control threshold for storage vessels upon completion.**

UPA supports the proposal retaining the existing threshold of 2,000 bpy for condensate tanks, considering the wide variability in Study results for condensate samples and the very few condensate samples that passed the sample acceptance test.

10 AQB meeting; April 6, 2022; audio recording available at https://www.utah.gov/pmn/files/832905.mp3.
b. The compliance date for storage vessels of January 1, 2023, will be impossible to meet and should be changed to January 1, 2024.

The proposed rulemaking establishes a compliance date of January 1, 2023, for the reduced throughput threshold for controls on storage vessels as follows:

\[
R307-506-4(2) (2) \text{ All storage vessels [located at a well site that are in operation as of January 1, 2018,] subject to Rule R307-506 with a site-wide throughput of 8,000 barrels or greater of crude oil or 2,000 barrels or greater of condensate per year on a rolling 12-month basis shall comply with Subsection R307-506-4(2)(a) [unless the exemption in R307-506-4(2)(b) applies.] Effective January 1, 2023, all storage vessels subject to Rule R307-506 with a site-wide throughput of 3,200 barrels or greater of crude oil or 2,000 barrels or greater of condensate per year on a rolling 12-month basis shall comply with Subsection R307-506-4(2)(a).}
\]

Furthermore, the proposed rulemaking includes no applicability date at all for removing the exemption to the rule for storage vessels subject to an approval order:

\[
R307-506-3 (3) \text{ R307-506 does not apply to storage vessels that are subject to an approval order issued under R307-401-8.}
\]

Companies cannot possibly install storage vessel controls and corresponding tank truck controls by January 1, 2023, considering the time required to design the modifications including individual site-specific details, order the equipment, receive delivery, install the equipment, and start it up. Furthermore, companies subject to approval orders also need time to comply and the instantaneous compliance date implied by simply striking the approval order exemption poses an impracticality with which no company can comply under any circumstances.

If the AQB finalizes the rulemaking at their July meeting per the current schedule, it will be published in the Utah State Bulletin on August 1, 2022. Companies will then inventory applicable storage vessels, design the modifications, and put the required equipment components on order. This process may require several months depending on the number of sites each company must evaluate and the number requiring new controls. Sites requiring new storage vessel controls will also require new truck loading controls.\(^{13}\)

Currently, vendors are quoting twelve to sixteen weeks for delivery of combustor equipment and at least sixteen weeks for controllers and transmitters. We expect that delivery times could grow substantially longer, to several months. One UPA member company reports experience this year in Colorado where equipment that was supposed to delivered in January is just now starting up after an April delivery, and other equipment ordered in January is now scheduled for May delivery. Another member company reports that they ordered back-pressure regulators in October and received them in April.

At least some parts are made in China or rely on raw materials from China. With major cities in China currently locked down as a COVID-19 control, the effect of this on supply chains is unknown. Even when China comes out of lockdown, major ports in the U.S. could get backed up again as they were a few months ago.

\(^{13}\) R307-504-3(2).
Furthermore, the war in Ukraine and uncertain future of the war or potential escalation to other countries could have ramifications for deliveries of equipment relying on supply chains throughout Europe.

Additionally, the RTC notes that the number of potentially affected facilities for this rulemaking is “relatively low” and that the time period to come into compliance seems reasonable. This reasoning ignores that the facilities subject to new controls under this rulemaking are not the only facilities competing for equipment deliveries in a nationwide equipment market and global supply chain. The New Mexico Environment Department (“NMED”) recently finalized a sweeping new set of rules requiring new controls and more uses of combustors throughout the San Juan Basin and the New Mexico portion of the Permian Basin. Furthermore, we anticipate EPA will finalize the FIP very soon, thus making facilities throughout the Tribal lands portion of the UB subject to similar controls. EPA estimated that 4,894 oil and natural gas sources will be subject to one or more requirements in the FIP,\(^\text{14}\) many of them requiring storage vessel controls. Companies will be competing to purchase the same equipment in these jurisdictions. Therefore, the reasoning that “the number of potentially affected facilities is low and therefore the time period is reasonable” does not hold.

Once companies receive delivery of the parts (which will be delayed due to supply chain challenges noted above), they will then need up to 6 months to install the equipment. Installation requires installing a vapor header, a flare or combustor, and a truck vapor control line. One UPA member company found in another state that one installation crew could install controls on two storage vessels or batteries per week. Another company estimates a week to install the modifications for one storage vessel or battery in the UB. For a company with twenty to forty units to install, installation will take ten to twenty weeks. Furthermore, the schedule must accommodate construction down time such as for inclement weather, sickness including COVID outbreaks in the installation crews, and other unanticipated obstacles. Companies will be competing for the same contract equipment installation resources, which could cause further delays of weeks or months.

Considering unforeseen circumstances such as the possibilities of changes to delivery timing, availability of ancillary equipment, availability of construction workers, occasional severe weather such as dust storms and snowstorms that preclude extensive outside work, and recurring COVID outbreaks, the schedule must allow for contingencies of at least several weeks or months.

During the April 2022 AQB meeting discussion to consider this proposed rulemaking, an AQB member asked if industry could “rush” the installation of the new controls.\(^\text{15}\) Considering all of the factors influencing the installation timing and the likelihood of various obstacles, it would be impossible to “rush” the installation enough to meet a January 1, 2023, compliance date.

Therefore, **companies need to be allowed until the wintertime ozone season of 2024**, i.e., January 1, 2024, to install controls on newly applicable storage vessels.

EPA’s proposed approval of the first one-year extension to attainment and the UB qualification for the second extension alleviate the time pressure regarding the attainment date and allow flexibility to accommodate installation timing needs.

\(^\text{14}\) Proposed FIP, page 3523.
Moreover, considering the number of significant scheduling uncertainties, companies have no way to know with certainty how long it will take them to meet the requirements. The rule must include a provision for case-by-case extensions to ensure practicality.

We recommend the following changes to the rule language:

R307-506-3 (3) Until January 1, 2024, R307-506 does not apply to storage vessels that are subject to an approval order issued under R307-401-8. After January 1, 2024, R307-506 applies to storage vessels that are subject to an approval order issued under R307-401-8.

R307-506-4(2) (2) All storage vessels [located at a well site that are in operation as of January 1, 2018,] subject to Rule R307-506 with a site-wide throughput of 8,000 barrels or greater of crude oil or 2,000 barrels or greater of condensate per year on a rolling 12-month basis shall comply with Subsection R307-506-4(2)(a) [unless the exemption in R307-506-4(2)(b) applies.] Effective January 1, 2024, all storage vessels subject to Rule R307-506 with a site-wide throughput of 3,200 barrels or greater of crude oil or 2,000 barrels or greater of condensate per year on a rolling 12-month basis shall comply with Subsection R307-506-4(2)(a). Owners or operators of storage vessels that cannot meet these requirements by January 1, 2024, may apply to the Utah Division of Air Quality for a case-by-case extension to the compliance date. The Utah Division of Air Quality shall approve those case-by-case extensions that present evidence of timely design, procurement, and contracting efforts by the owner or operator and evidence that forces outside of the control of the owner or operator prevented timely compliance.

c. The existing rule language should be modified to allow a site-specific threshold for controls to be set based on “representative” sampling as an alternative to “site-specific” sampling.

The existing rule language allows a site-specific threshold for controls based on site-specific samples. UDAQ did not propose any changes to this rule language and UPA supports maintaining this language. Additionally, UPA respectfully requests that UDAQ consider expanding this provision to include “representative” sampling as follows:

R307-506-4(2)(b) (b) All storage vessels located at a well site shall be exempt from Subsection R307-506-4(2)(a) if combined VOC emissions from the storage vessels are demonstrated to be less than four tons per year of uncontrolled emissions on a rolling 12-month basis.

(i) VOC working and breathing losses, and flash emissions from storage vessels shall be calculated using direct site-specific or representative sampling data and any software program or calculation methodology in use by industry that is based on AP-42 Chapter 7

Although few operators availed themselves of the site-specific sampling allowance previously, UPA member companies report they are far more likely to conduct site-specific sampling in the future in the face of a substantially lower threshold for storage vessel controls. Individual sampling can be costly, $4,000 to $5,000 per sample, almost 5% of the cost to install the controls. Moreover, the influx of sites relying on individual sampling will add substantial burden to the agency workload. Additionally, only a few laboratories can analyze these samples and therefore
laboratory capacity limits the number of samples that can be analyzed quickly; laboratories may need weeks or months to report sample results.

The agency workload and the added cost can be held at a more moderate level, however, if representative samples would be allowed in addition to site-specific samples. The draft sampling guidance that UDAQ, EPA, and UPA have been working on speaks to various factors to assess representativeness including separator temperature, separator pressure, geographic location, and reservoir formation. While the parties have not yet resolved on what specifically constitutes a representative sample, we anticipate eventually reaching agreement as we conduct more sampling in the UB, analyze and evaluate results, and continue discussions of sampling and analytical parameters. Including rule language now would facilitate the eventual ability to rely on representative samples. Furthermore, a sample from one of two wells in close proximity and in the same geologic formation with similar separator operating conditions could be deemed to be representative of both wells even now, without additional discussions.

Allowing representative samples to determine emissions at a site for the purpose of assessing applicability of air emission controls would be mutually beneficial, reducing agency workload and helping to control operating costs.

d. The requirement to empty emergency relief storage vessels should not be lowered to 48 hours but should be left unchanged from the current 15 days because the proposed change has not been properly justified nor can it be.

UDAQ proposed two changes regarding emergency relief storage vessels. UPA supports one of the changes, the addition of a definition for “emergency situations” which will add clarity to the rule. However, UPA does not agree with reducing the time to empty an emergency relief storage vessel and recommends retaining the original language with only the editorial and style changes incorporated:

R307-506-4(4):
(4) An emergency relief storage vessel located at a well site shall be exempt from Subsection R307-506-4(2)(a), if it meets the following requirements:
 (i) The emergency relief storage vessel shall not be used as an active storage [tank] vessel.
 (ii) The owner or operator shall empty the emergency storage relief vessel no later than [15 days] 15 days after receiving fluids.

UPA understands the concern about minimizing emissions from emergency relief storage vessels. Nonetheless, as explained below, only a minimal reduction in emissions will be realized and as explained in our advance notice comments, obtaining a truck and driver to remove materials from the vessel on such short notice for an entirely unplanned event will often not be possible. From the stakeholder meeting held in January, we understand that no strong basis exists for the choice of 48 hours to empty the emergency relief storage vessel other than that the current time limit of 15 days seems to be long.

UPA contends that the proposed 48 hours removal requirement will be difficult and often impossible to meet. The UB has a shortage of trucks and truck drivers so severe that at times, operators have had to shut in wells because they cannot move product fast enough. For example, one UPA member company reported that at one point during the past few months, the company had 25% of its production shut in due to trucking shortages, exemplifying the severity of the
shortage. This shortage makes it impossible to schedule a truck to empty the emergency relief storage vessel on such short notice to comply with the 48-hour time limit.

The driver shortage in the UB is part of a nationwide trend. In late 2021, the American Trucking Associations, Inc., reported that the driver shortage would hit a historic high of 80,000 drivers in 2021, and they predict the shortage to nearly double by the year 2030, to 160,000 drivers. They cite multiple factors for the driver shortage including high average age leading to high numbers of retirements, lack of women in the profession, inability of candidates to pass drug tests especially as more states legalize marijuana, the minimum driver age of 21 posing a challenge to recruiting, and other barriers, most of which will not be resolved quickly or may worsen with time.16

If a company must use an emergency relief storage vessel due to a bona fide emergency and cannot obtain a truck and driver to move the material out within 48 hours, what compliance options do they have? We do not see any valid alternatives to prevent noncompliance. If UDAQ retains the proposed 48-hour removal requirement in the final rule presented to the AQB for approval, we respectfully request that the agency include a discussion of answers to this question in the response to comments for the final rule. UPA cannot accept a rule that sets companies up for noncompliance.

Moreover, UPA contends that lowering the removal time from 15 days to 48 hours will do little to prevent air emissions. Most emissions will occur as flash emissions as soon as the material goes into the emergency relief storage vessel. The remainder of the emissions that will occur later will only be working and breathing emissions, a much lower amount. For example, in the spreadsheet of flash emissions for the Study samples used to determine the threshold for controls on storage vessels, flash gas emissions average 90% of the total emissions and working emissions average just 10%.

UDAQ has not provided proper justification under the Utah Code to lower the removal time. With the large portion of emissions from flash, which occurs soon after putting the material into the emergency relief storage vessel, we do not believe that lowering the removal time to 48 hours can be properly justified.

Considering the high likelihood of the impossibility of removing materials from the emergency relief storage vessel due to the unavailability of trucks and drivers on short notice for an unplanned event, the lack of compliance alternatives, the relatively low quantity of emissions prevented, and the lack of required justification, UPA cannot support lowering the time allowed for removal.

Furthermore, since emergency relief storage vessels are not used very often, we understand that those vessels with less than the threshold level of throughput, e.g., the 3,200 bpy proposed threshold or current 8,000 bpy threshold, would not require controls nor would they be subject to the timed removal requirement. If UDAQ disagrees with this interpretation, we ask that a discussion be included in the response to comment.

Finally, an editorial correction should be made to R307-506-4(4)(ii) where the word “relief” appears to be inserted into the wrong place. Instead of “emergency storage relief vessel” it should be revised as “emergency relief storage relief vessel” to conform to the corresponding definition.

e. **UPA requests an agency review and confirmation of storage vessel records supporting removal of controls for storage vessels with throughput less than the control threshold.**

In R307-506-4(2)(b), the existing rule exempts storage vessels with less than four tpy VOC emissions from the air emission controls of R307-506-4(2)(a) and the proposal requires that information used to make this determination be provided to UDAQ as follows:

R307-506-5(3) Records of emission calculations, actual emissions, and site-specific sampling data used to determine compliance with Subsection R307-506-4(2)(b) shall be provided to the Utah Division of Air Quality before removal of control equipment and kept for a period of three years, post registration.

UPA requests that UDAQ provide for their timely review and confirmation of the information submitted. Considering the amount of time that the agency and UPA member companies have invested in understanding emissions from storage vessels and the amount of dialogue between the parties, we have concerns that any operator removing air emission controls under the exemption will be subject to compliance questions and compliance risk afterward, perhaps even years later, such as if the agency rejects the samples long after the fact. The agency review of the information provided should occur prior to the control equipment removal, at the time the agency receives the information.

In the RTC, UDAQ expressed concerns about having limited resources. If the agency believes that resource limitations could stand in the way of being able to provide review of the information and concurrence with the plan to remove controls, then a provision to include agency review could state that the agency must reply within a specified period of time, or the information would be deemed to be approved. We recommend a limit of sixty days for the agency review. This would be analogous to the registration procedures for true minor sources in Indian country, in 40 CFR § 49.104(a)(2).17

Thus, we recommend the following addition to the proposed rule language:

The Utah Division of Air Quality shall review the information provided and will provide a determination of approval or denial to remove the air emissions control equipment specified in R307-506-4(2)(a). If the Utah Division of Air Quality does not provide a written response within 60 days of receipt of the information, then the equipment removal shall be deemed to be approved.

f. **The first-year requirements need to be clarified for existing storage vessels.**

The existing rule establishes a requirement for storage vessels to be controlled for their first year in operation, but the proposed rulemaking deletes the effective date:

17 See “Federal Implementation Plan for True Minor Sources in Indian Country in the Oil and Natural Gas Production and Natural Gas Processing Segments of the Oil and Natural Gas Sector; Amendments to the Federal Minor New Source Review Program in Indian Country To Address Requirements for True Minor Sources in the Oil and Natural Gas Sector” final rule; Federal Register, Volume 81, Number 107; June 3, 2016, p. 35959.
Upon startup of operation of a well site or centralized tank battery after January 1, 2018, [All storage vessels that begin operations on or after January 1, 2018, are required to control] VOC emissions from all storage vessels shall be controlled in accordance with Subsection R307-506-4(2)(a) [upon startup of operation] for a minimum of one year.

UPA does not understand the removal of the effective date from this paragraph. By removing the effective date of January 1, 2018, UDAQ makes this first year requirement retroactively required to storage vessels associated with well sites and centralized tank batteries that started up prior to January 1, 2018, an inappropriate change to the rule. We concur that the first-year requirement should apply based on the startup of the well site or centralized tank battery associated with multiple well sites; that portion of the proposed rule language makes sense. On the other hand, removing the applicability date has the effect of now requiring uncontrolled sites older than January 1, 2018, with less than the threshold throughput to install controls for one year. This is completely unnecessary and inappropriate.

Furthermore, in our advance notice comments, we expressed concern about whether storage vessels would be subject to a new first year control requirement, and UDAQ’s response relied on inclusion of the January 1, 2018, applicability date. Now, with removal of the date, our original concern about storage vessels being subject to a new first year remains.

Thus, we recommend the following change to the wording:

Upon startup of operation of a well site or centralized tank battery after January 1, 2018, [All storage vessels that begin operations on or after January 1, 2018, are required to control] VOC emissions from all storage vessels shall be controlled in accordance with Subsection R307-506-4(2)(a) [upon startup of operation] for a minimum of one year.

3. Comments on R307-508 VOC Control Devices

a. The removal of the exemption for VOC control devices subject to an approval order should have an applicability date of January 1, 2024.

The proposed rulemaking strikes out the exemption for VOC control devices that are subject to an approval order as follows:

R307-508-2 [(3) R307-508 does not apply to VOC control devices that are subject to an approval order issued under R307-401-8.]

Similar to striking the exemption for sites with an approval order in the Storage Vessel rule, companies subject to approval orders need time to comply with these requirements and the instantaneous compliance date implied by simply striking the approval order exemption poses an impracticality with which no company can comply under any circumstances. Considering that the VOC control device rule applies to the same equipment for which companies are experiencing long delivery times, namely combustors, and the same design and installation constraints, we recommend a compliance date of January 1, 2024, for this rule change. Thus, we recommend the following rule language:
R307-508-2 (3) Until January 1, 2024, R307-508 does not apply to VOC control devices that are subject to an approval order issued under R307-401-8. After January 1, 2024, R307-508 applies to VOC control devices that are subject to an approval order issued under R307-401-8.

4. Comments on R307-509 Leak Detection and Repair Requirements

 a. The proposed specified year-end monitoring period will result in significant cost to operators without an appreciable improvement in air quality, has not been properly justified, and should be removed from the rule entirely.

The proposed rule specifies that one of the semiannual monitoring surveys must be conducted at year end during September through December and requires that monitoring surveys be no more than seven months apart, both in addition to the existing requirement that monitoring surveys be at least four months apart, as follows:

R307-509-4(1)(d) (d) Monitoring surveys shall be conducted according to the following schedule:

(ii) Semiannually after the initial monitoring survey. Consecutive semiannual monitoring surveys shall be conducted at least four months apart and no more than seven months apart. A fugitive emission component subject to Rule R307-509 in Duchesne and Uintah counties must perform one monitoring survey during the months of September, October, November or December.

While we appreciate UDAQ’s effort to support our advance notice comments by adding September to the year-end monitoring period, increasing it from three months to four months, we still find this set of monitoring requirements to be overly constrained and costly. As shown in the Monitoring Schedule Illustration below, for example, monitoring performed in September must be repeated no later than the end of March to meet the maximum seven-month interval requirement and cannot be performed in February to prevent exceeding the maximum seven-month interval for the subsequent September monitoring. Thus, the two semiannual monitoring periods will need to be performed in September through December and March through June. This results in “dead months” with no monitoring in July, August, January, and February, and requires a 50% increase in the number of batteries that must be monitored during the eight monitoring months compared to the more uniform schedule that companies use now. This 50% increase will require a 50% increase in monitoring personnel and a 50% increase in monitoring equipment, at a 50% increase in cost. Many companies conduct their monitoring in-house and will need to increase monitoring staff by 50%, yet the agency cost analysis for this proposed rulemaking indicates no increase in cost at all:

- Item F in the Fiscal Information of the rule analysis provided in the Utah Bulletin: “This rule change will not have a compliance cost for affected persons.”
- Item G in the Fiscal Information of the rule analysis provided in the Utah Bulletin: “After a thorough analysis and engagement with impacted parties, the Division of Air Quality has determined that this proposed rule amendment will not result in a fiscal impact to businesses, because the amendments adjust the timing of leak detection and repair, but do not change the frequency of the required inspections.”
UPA does not agree with UDAQ’s fiscal analysis. As discussed above, monitoring would require increased monitoring staff and equipment. The additional staff will need training. Considering the requirements in the EPA proposed NSPS Appendix K “Determination of Volatile Organic Compound and Greenhouse Gas Leaks Using Optical Gas Imaging”, these training requirements could add a very substantial cost. An optical gas imaging camera suitable for LDAR monitoring costs approximately $120,000. Thus, an operator that must purchase just one new camera to accommodate the increase in monitoring during the monitoring months will incur substantial cost for the equipment alone, with added personnel and training costs. Furthermore, we do not know the effect on camera cost and delivery timing of new regulatory requirements in other jurisdictions such as the FIP for Tribal lands in the Basin and the extensive NMED rulemaking.

Even for companies that use contract monitoring staff, we expect the monitoring costs to rise by 50% because a 50% increase in monitoring personnel and monitoring equipment will be needed during monitoring months and the increased personnel will require the same training to be competent. Perhaps it will be even costlier for those companies using contractors because companies using contractors will be competing for the same resources.

The fiscal analysis must be updated for the final rulemaking to reflect the true costs of increasing monitoring by 50% during most months of the year while idling monitoring equipment and staff during the remaining months. It must reflect the staff costs, equipment costs, and training costs.

The required year-end monitoring period overlaps hunting season which runs from early September (archery) through November, further increasing the difficulty to staff up for the monthly monitoring increases during those high vacation months. Furthermore, the other monitoring period in the springtime will be impacted by the inability to do extensive outside work during the windy season in March through May, when winds are often too high for monitoring, since the optical gas imaging cameras do not function as well in higher winds.19

As of May 20, 2022, the U.S. Bureau of Labor Statistics reports that Utah has the lowest unemployment rate in the country, tied with Nebraska at 1.9%, seasonally adjusted.20 While Duchesne and Uintah Counties have unemployment rates of 3.3 and 3.9%,21 respectively, these rates are still at or below the national average rate. These low unemployment rates will make it difficult to hire the workers needed and may increase the cost of salary and benefits to hire and retain staff.

Moreover, we find the change to require the year-end monitoring period of September through December to have very small value if any at all towards decreasing emissions and therefore will be of marginal benefit at best to reducing ozone. An informal survey of UPA member companies shows leak rates (percent of leaking components compared to total number of components monitored) to range from less than 0.1% to 0.3%. While some operators may have higher leak rates, these numbers are small. Furthermore, approximately two-thirds of these components would be monitored during the year-end period of September to December anyway, without the rule change, considering the ratable schedule throughout the year that operators typically follow. Considering these factors, we see no evidence to indicate that the change to constrain the year-end monitoring period to September to December would make a noticeable difference in ozone concentrations in January through early March.

Furthermore, considering that the UB at times suffers high ozone days during the summer, the proposed schedule would forfeit the added benefit of the current schedule of monitoring some components during July and August, the typical months for UB summertime ozone as no monitoring would be conducted during those months. Similarly, and more importantly, considering wintertime ozone, it does not make sense to constrain the monitoring schedule as proposed such that no monitoring would occur during the typical months of wintertime high ozone, namely January and February.

In the RTC, UDAQ stated they thought the year-end monitoring period to be “important” but did not quantify the benefit and did not justify this added requirement different than and exceeding Federal requirements according to UDAQ’s obligation under the Utah Code. For the reasons

19 See, for example, EPA’s proposed NSPS Appendix K, which has several requirements built around wind speed including developing an operating envelope for the camera (paragraphs 8.2, 8.4.3, and 8.5.3), the site monitoring plan (paragraphs 9.2.1, 9.2.2, and 9.6.2), and operator maximum viewing distance for the day (paragraph 12.5.2). Operators report being unable to conduct monitoring at typical afternoon wind conditions in the spring.
discussed above, UPA finds that any perceived benefit would be very small if any benefit exists at all, and almost certainly counteracted by not monitoring during high ozone months of January, February, July, and August. For the reasons discussed, we do not believe that the required justification can be developed to support this change.

Finally, in the RTC, UDAQ justified the monitoring interval requirements of 4-month minimum and 7-month maximum to match OOOOa requirements. However, different companies have varying numbers of facilities covered under OOOOa and for some, the percentage covered is very low. These companies should not be subjected to the further compounding constraint of the added 7-month maximum. Again, UDAQ did not provide the required justification under the Utah Code for these facilities to be subjected to requirements different from their applicable Federal requirements.

In conclusion, UPA contends that requiring a year-end monitoring period of September through December is neither justified nor necessary, it comes at a very high price contrary to the fiscal analysis provided, and the proposal does not conform to UDAQ’s obligations under the Utah Code. Constraining the LDAR monitoring to September through December is not necessary. Directionally it might make sense, but any benefit may be counteracted by not monitoring at all during the highest ozone months and the small if any benefit does not justify the 50% increase in cost. Operator leak rates are small enough that allowing the year-end monitoring to occur over a six-month period instead of the 4-month period cannot possibly have an appreciable and measurable effect on ozone levels. Even with allowing the year-end semiannual monitoring period to occur over the full six months, two-thirds of the monitoring would still occur during the currently proposed 4-month year-end period, on average.

Thus, UPA recommends retaining the existing language of R307-509-4(1)(d)(ii) as follows:

\[R307-509-4(1)(d) \text{ Monitoring surveys shall be conducted according to the following schedule:} \]
\[(i) \ldots \]
\[(ii) \text{ Semiannually after the initial monitoring survey. Consecutive semiannual monitoring surveys shall be conducted at least four months apart and no more than seven months apart. A fugitive emission component subject to Rule R307-509 in Duchesne and Uintah counties must perform one monitoring survey during the months of September, October, November or December.} \]

b. The effective date for the proposed LDAR changes should be set at August 1, 2023.

The proposed rulemaking does not include an effective date for proposed changes to LDAR including changes to any of the specific requirements and striking the language for the exemption for sites with an approval order:

\[R307-509-3 [(c) R307-509 does not apply to a fugitive emissions component that is subject to an approval order issued under R307-401-8.] \]

Although the LDAR changes do not require the significant equipment modifications of installing controls on storage vessels, LDAR changes involve other steps that will require time to complete.
Hiring personnel to complete added LDAR monitoring will take time. For example, one UPA member company reports that in another state, they started their internal approval process to hire staff in March in order to hire someone by September. Other companies agree that a six-month interval to obtain approval to add a staff position and bring someone on board is within their typical range.

LDAR procedures must be modified, and contracts may require changing. All staff will need to be trained on changes to the requirements and corresponding changes to internal procedures. New staff brought on board to manage the increased or shifted workload will require extensive training including specialized training on effectively using the optical gas imaging camera, training that is not readily available at all times and in all places. Furthermore, if EPA adopts the proposed training requirements in Appendix K, the requirements to train a fully proficient LDAR monitoring technician will increase considerably.

Thus, we recommend that the changes to the LDAR rule become effective no more than one year from the date of publication of the final rule, anticipated to be August 1, 2022, suggesting an effective date of August 1, 2023. We recommend rule language changes as follows:

R307-509-3 (c) Until August 1, 2023, R307-509 does not apply to a fugitive emissions component that is subject to an approval order issued under R307-401-8. After August 1, 2023, R307-50o applies to fugitive emissions components that are subject to an approval order issued under R307-401-8.

If UDAQ makes no changes to its proposed LDAR scheduling requirements, the rule language should be modified as follows:

R307-509-4(1)(d) (d) Monitoring surveys shall be conducted according to the following schedule:

(i) . . .

(ii) Semiannually after the initial monitoring survey. Consecutive semiannual monitoring surveys shall be conducted at least four months apart and, effective August 1, 2023, no more than seven months apart. Effective August 1, 2023, a fugitive emission component subject to Rule R307-509 in Duchesne and Uintah counties must perform one monitoring survey during the months of September, October, November or December.

Finally, if UDAQ retains the post well shut-in monitoring requirement, the rule language should be modified as follows:

R307-509-4(d) Monitoring surveys shall be conducted according to the following schedule:

(i) . . .

(ii) . . .

(iii) . . .

(iv) . . .

(v) Effective August 1, 2023, within seven days of a well site becoming operational after being shut-in or temporarily abandoned.
c. The proposed LDAR recheck after a well has been shut-in for seven days has not been properly justified and should be deleted entirely.

The proposed rulemaking includes a requirement to conduct LDAR monitoring after a well has been shut in for as little as seven days, as follows:

\[R307-509-4(d) \text{ Monitoring surveys shall be conducted according to the following schedule:} \]
\[(vi) \ldots \]
\[(vii) \ldots \]
\[(viii) \ldots \]
\[(ix) \ldots \]
\[(x) \text{Within seven days of a well site becoming operational after being shut-in or temporarily abandoned.} \]

In our advance notice comments, UPA requested that the agency add a definition of “shut-in or temporarily abandoned” and we stated the following:

We think that a short shut-in of a few hours or even a few days should not fall under this requirement as it would be excessive and unjustified. The requirement would be more appropriate for a shut-in or temporary abandonment of several months or years duration. Thus, we recommend that the proposed rule include definitions for both “shut in” and “temporarily abandoned” to address the use of those terms in the rule and that “shut in” be defined to have a duration of at least six months.

In response to UPA’s request for a definition in the advance notice comments, UDAQ added the following proposed rule language:

\[R307-509-2 \text{Definitions} \]
\["\text{Shut-in or temporarily abandoned" means a well that is closed off such that it stops producing for longer than seven calendar days.} \]

UDAQ attempted to justify this when they wrote in the RTC that “[W]e feel that six months is too long. Even a short shut in can change the operating conditions of the well such that components are affected.”

What data does UDAQ have to back up this statement? We do not see any data or supporting justification. Once again, UDAQ has not met its obligation under the Utah Code to justify this proposed requirement.

UPA member companies find that the statement does not match their own operating experience. In the UB, separators do not float on well pressures but rather separator pressures are controlled by pressure regulators. Operators bring wells on slowly, not all at once. Therefore, changes in the well pressure during shut-in do not affect conditions of downstream operating equipment.

Furthermore, as noted above, operators may have as many as 25% of their wells shut in for logistical reasons at any one time. The added personnel required to conduct so much monitoring for wells temporarily shut in for as little as seven days will be overwhelming. Tracking such short shut-ins for environmental reasons poses a substantial logistical challenge. The added tracking and additional monitoring add to the cost of this proposed rule to which the agency estimated no increase in costs.
Other agencies that have recently adopted or are in the process of adopting stringent VOC control rules for oil & gas do not have this rule. EPA did not include it in the proposed NSPS OOOOb and OOOOc nor did they include it in the FIP. Colorado does not have this. And NMED did not include it in their recently adopted sweeping oil & gas emissions reduction rule. Nor could we identify a requirement like this by the San Joaquin Valley Air Pollution Control District rules. In fact, UDAQ did not even add a similar requirement to monitor just before the high pollution season to the State Implementation Plan for the Salt Lake City Serious PM$_{2.5}$ nonattainment area, where UDAQ performed a rigorous analysis of Best Available Control Technology of all sources in the nonattainment area.

Considering the lack of justification in the face of UDAQ’s obligation under the Utah Code to provide proper justification, evidence to the contrary of a need for this requirement, lack of precedent, and logistical challenges and cost that these changes would require, UPA recommends striking the post well shut-in LDAR monitoring requirement entirely as follows:

R307-509-2 Definitions

“Shut-in or temporarily abandoned” means a well that is closed off such that it stops producing for longer than seven calendar days.

R307-509-4(d) Monitoring surveys shall be conducted according to the following schedule:

(xi) . . .

(xii) . . .

(xiii) . . .

(xiv) . . .

(xv) Within seven days of a well site becoming operational after being shut-in or temporarily abandoned.

d. Proposed changes to the applicability are vague and need to be eliminated or explained.

In R307-509-3(1), the proposed rule changes the applicability statement as follows:

Rule R307-509 applies to each fugitive emissions component at a well site as defined in 40 CFR 60.5430a, Subpart OOOOa, Standards of Performance for Crude Oil and Natural Gas Production, Transmission and Distribution and [is required to] shall control emissions in accordance with Rules R307-506 and R307-507.

The change from “is required to” to “shall” changes the meaning of the statement. The existing language indicates that LDAR applies to those sites that both meet the definition in 40 CFR 60.5430a and control emissions under R307-506 and R307-507. The proposed wording appears to change the applicability such that LDAR applies to sites that only meet the definition, and then it appears to require that sites subject to LDAR must control under the two UDAQ rules.

UPA requests that UDAQ retain the existing language for this aspect of the applicability in R306-509-3(1). Alternatively, we request that UDAQ include an explanation in the response to comments of the agency’s intent with the language change.
5. Comments on R307-511 Associated Gas Flaring

UPA has no comments on the proposed changes to R30-511 for Associated Gas Flaring. We thank UDAQ for the explanations that it provided to our advance notice comments in the RTC.

6. Conclusion

In conclusion, UPA appreciates the thoughtfulness that UDAQ put into the proposed oil and gas rulemaking. With the likelihood of the two one-year extensions to the attainment date being approved, the time pressure to adopt these rules has lessened. We realize that the air quality could fall out of attainment and then the rules will be needed and for that reason, we support moving forward with the rulemaking. Nonetheless, we have significant technical disagreement with the proposed lowered threshold for controls on storage vessels and with other proposed storage vessel changes. We find the LDAR requirements to be overly constrained for little or no value but high added operating cost. We also look forward to UDAQ properly justifying some aspects of the proposal per Utah Code 19-2-106 or making changes to the proposed rule should justifications not be possible. Finally, adequate implementation time has not been provided for each of the substantive rule changes but must be provided to ensure the agency promulgates a rule that operators have the ability to comply with.

Sincerely,

Rikki Hrenko-Browning
President, Utah Petroleum Association

cc:
Bryce Bird – bbird@utah.gov
Becky Close – bclose@utah.gov

Attachments:
Attachment 1. Comment from the Utah Petroleum Association Regarding Emission Factor for Determining the Control Threshold for Storage Vessels
Attachment 2. UPA Review of Agency Feedback on Sampling Guidance
Attachment 1.

Comment from the Utah Petroleum Association Regarding Emission Factor for Determining the Control Threshold for Storage Vessels
Comment from the Utah Petroleum Association Regarding Emission Factor for Determining the Control Threshold for Storage Vessels

In 2018, the Environmental Protection Agency (EPA) designated the Uinta Basin (UB) as an ozone nonattainment area for the 2015 ozone National Ambient Air Quality Standard (NAAQS). Although ozone formation most commonly occurs in the summertime, the UB has rare wintertime ozone formation which occurs when wintertime atmospheric inversions trap nitrogen oxide (NOx) and volatile organic compound (VOC) emissions within the basin topography and, in the presence of snow cover, can have enough sunlight reflected off the snow for the emissions to react and form ozone. The oil and gas industry provides most of the NOx and VOC emissions within the UB and storage vessels for oil are a source of VOC emissions.

Under a current State of Utah rule adopted in 2018, R-307-506, storage vessels with 8,000 barrels per year (bpy) of throughput or more must have air emission controls to reduce the amount of VOC emissions from the storage vessel to the air. UDAQ determined the throughput threshold for controls by estimating the throughput that would equate to 4.0 tons per year (tpy) of VOC emissions, a level that UDAQ considers Best Available Control Technology (BACT) and cost-effective. Now, UDAQ has more data available, data that came from the recent “VOC Composition Study” and proposes to significantly reduce the threshold for controls in the rule from the current level of 8,000 bpy to a much lower value, 3,200 bpy, again estimated to correspond to 4.0 tons per year of VOC emissions but based on the more recent extensive dataset from the Study. UDAQ based their proposed lower threshold on their own recently created VOC emission factor of 2.5 pounds per barrel (lb/bbl) which they developed in a faulty manner as explained in this document.

EPA, on the other hand, established their own federal tank emission control rules, New Source Performance Standards OOOO and OOOOa, based on their finding that controlling tanks with 6.0 tpy of emissions would be cost-effective. EPA developed their rules based on a crude oil VOC emission factor of 1.6 lb/bbl \(^1\) established from a study that measured actual VOC emissions from crude oil storage tanks in Texas, \(^2\) where oil tends to have higher emissions and therefore higher emission factors than the waxy, viscous crude oil from the Uintah Basin. EPA’s control requirements equate to an effective control threshold of 7,500 bpy of crude oil throughput. \(^3\)

In other words, at least three aspects of UDAQ’s analysis are incongruent with EPA’s analysis, namely:

1. The lower emissions level for cost-effectiveness of 4.0 tpy compared to 6.0 tpy
2. The higher emission factor of 2.5 lb/bbl for waxy, viscous crude oil (and higher estimated emissions) compared to 1.6 lb/bbl measured for lighter Texas oil

\(^3\) (6 tons VOC/year x 2000 lbs/ton ÷ 1.6 lb VOC/bbl = 7,500 bpy.)
3. The very low threshold throughput level for air emission controls of 3,200 bpy compared to 7,500 bpy

UDAQ has not explained why they continue to use a cost-effectiveness level of 4.0 tpy compared to EPA’s 6.0 tpy.

Moreover, the proposed control threshold of 3,200 bpy would require many “stripper wells” to have controls installed. The Utah Code allows certain economic benefits to stripper wells, defined as wells producing 20 barrels or less of crude oil per day on average during any consecutive 12-month period, in other words, 7,300 bpy, because these wells would otherwise be marginally economic or uneconomic to operate. Imposing additional air emission controls on these wells reduces the economics of operating them.

UDAQ used a faulty analysis to arrive at 3,200 barrels per year (bpy) for the proposed throughput threshold to require controls on oil storage vessels. Typically, a poorly correlated dataset such as this one should not be used to produce a single emission factor. The low correlation of this dataset could be due to procedural sampling variations, legitimate difference to the reservoir or formation being extracted from, differences in equipment and facilities design, and operating condition differences. We have little information to inform why this dataset has such a poor correlation and therefore whether some or all the data should or should not be relied upon. However, we understand, accept, and appreciate UDAQ’s desire to use a single emission factor to determine a threshold for controls for simplicity in compliance determinations. Nonetheless, in addition to a lack of confidence in whether the sample data is representative, the methodology used to calculate the throughput threshold proposed is flawed. We recommend a threshold no greater than 5,000 bpy as explained below.

UDAQ plotted all the data that passed their acceptance criterion (accepted data) and applied a linear fit correlation equation to calculate the storage vessel threshold throughput level for controls, arriving at 3,200 bpy and an emission factor of 2.5 pounds per barrel. The statistical value R^2 (pronounced “R squared”) provides evidence of the degree of correlation of a dataset. Statistically, R^2 is a value between 0 and 1.0 and in general the closer that R^2 is to 1.0, the better correlated the data. For example, an R^2 of 0.6 shows that 60% of the data fit the correlation. For this set of data in the manner that UDAQ used it for the rulemaking, R^2 equals 0.51, indicating a relatively poor correlation between the points in the dataset, essentially a 51% likelihood that the data fit the linear relationship applied or alternatively a 49% likelihood that the data do not fit the applied linear relationship. The red highlighted row on Table 1 summarizes UDAQ’s correlation and results.

4 Utah Code Title 59, Chapter 5, Part 1, Section 102(2)(b)(ii)(A).
Most importantly, the data for storage vessels with high throughputs is flawed because it is widely scattered, as shown in Figure 1. The scatter in the data shows a systematic shift between the data less than and greater than 10,000 bpy but UDAQ has not identified the reasons for this shift to our knowledge. The reasons could be very important to understanding the potential relevance of the higher throughput data.

As illustrated in Figure 1, eleven of the fifteen scattered data points with throughputs greater than 10,000 bpy are notably from a single company, Company V, suggesting a systematic difference in some of the operations of this company (e.g., formation, reservoir, design, operation, or something else unexplained). In the absence of an adequate explanation, including these highly scattered data points in the analysis to define the threshold throughput for requiring controls is not appropriate and does not comply with statistical best practices.

We also examined the flash gas emission factor as a function of separator pressure. The flash gas emissions factor represents the emissions associated with dropping the pressure of the liquid from the upstream gas/liquid separator to local atmospheric pressure in the storage vessel. Higher separator pressures leave more lighter compounds in the liquid flowing to the storage vessel.
vessel, resulting in greater emissions from the storage vessel at atmospheric pressure. Figure 2 shows that the emission factor increases exponentially with separator pressures greater than 80 psia and samples from Company V comprise most samples in this range, five of seven. A close examination of the data shows that all seven samples with pressures greater than 80 psia including the five from Company V coincidentally have throughput greater than 10,000 bpy, as shown in Table 2. Thus, separator pressure may be one factor in the greater emissions from Company V and reinforces that these samples are outliers and should not be included in any generalized emission factor correlations for regulatory purposes, especially for storage vessels with lower throughputs.

Moreover, the highly scattered data at higher throughputs is irrelevant for this determination because storage vessels above 8,000 bpy already require controls and will remain controlled in any scenario. The allowed emissions from these storage vessels over 8,000 bpy are already limited in the associated Approval Order (AO) or by the Permit by Rule (PBR).

As shown in Table 1, using only the data for storage vessels less than 10,000 bpy throughput, the R^2 value increases to 0.61, indicating a better correlated set of data.

Additionally, we do not know if UDAQ considered other non-linear fits to the data. While the datapoints below 5,000 bpy appear to be linearly correlated, data from 5,000 to 10,000 appear to trend upwards from the lower throughput data. Correlation equations other than linear should
have been examined to find the best data fit, using the value of \(R^2 \) and the additional statistical factor “P”, which provides a measure of whether the data fit the correlation or if they are random.

Another error in UDAQ’s analysis is that UDAQ’s correlation equations show storage vessels with very low throughputs as having negative emissions, an impossibility. This occurs because UDAQ did not set the intercept of the correlation equations to zero. In other words, storage vessels with no throughput should have zero emissions and a zero intercept in these graphs. Instead of setting the intercept to zero, UDAQ’s correlation equations have negative intercepts, thus indicating negative emissions at low throughput, and a steeper slope to the line for the correlation equation, suggesting lower emissions at lower throughputs and higher emissions at higher throughputs. The “negative emissions” are most pronounced in UDAQ’s plot of storage vessels with less than 8,000 bpy throughput as shown in Figure 3. This phenomenon also occurs in the dataset used to set UDAQ’s proposed threshold of 3,200 bpy albeit to a lesser degree.

![Figure 3](attachment:image)

Alternatively, UPA recommends setting the intercept to zero for the correlation equations. Making this change improves the \(R^2 \) of the linear correlation equation for the full accepted dataset used in setting the proposed regulatory threshold (including the data above 10,000 bpy) from an \(R^2 \) of 0.51 to 0.71, as shown in Table 1 in the row just below the row highlighted red. Table 1 also shows that if the dataset instead focuses on only those tanks that are not controlled, those under 8,000 bpy, and the intercept correctly set at zero, the \(R^2 \) of a linear correlation of the data set improves even more to 0.77.

UPA recommends the following changes to the methodology of determining the correlation equation and setting the storage vessel throughput threshold for requiring controls:

1. Use only the accepted data points for storage vessels with less than 10,000 bpy throughput and do not use any of the data points above 10,000 bpy because they are widely scattered due to an unknown reason and irrelevant to the threshold determination as they are already controlled. Alternatively, use only the data points with less than 8,000 bpy of throughput to eliminate the widely scattered data points above 10,000 bpy as well as the data points at 8,000 bpy and above that are irrelevant to the analysis because storage vessels in this range already have controls installed.
2. Set the intercept at zero to prevent the impossible situation of having an equation that predicts negative emissions at low throughput levels.

3. Consider other non-linear correlations for the data and select the best fit based on both R^2 and P for the various alternative correlation equations.

We recommend using the data less than 10,000 bpy because it comprises the best correlated and un-scattered dataset. As shown below in Figure 4 and above in the green highlighted row of Table 1, this methodology and dataset results in the best R^2 value, 0.84, and a throughput threshold for controls of no less than 5,000 bpy, based on a linear correlation equation. Perhaps another non-linear equation could provide yet a better fit.

Table 1 summarizes the calculations with UDAQ’s results highlighted in red and our recommended results highlighted in green. The high R^2 and exclusion of irrelevant scattered high-throughput data justifies the use of the green highlighted result. The throughput threshold for required controls on storage vessels should be no less than 5,000 bpy.

Furthermore, we understand that the proposed rule allows site-specific sampling to set a site-specific throughput threshold for controls. However, we have been working with UDAQ and EPA to arrive at mutually acceptable sampling guidance since last July and have not yet arrived at an agreement. UDAQ recently indicated it may not accept samples previously obtained, even though the methodology used to obtain those samples has in fact been accepted in the past and is accepted in other states. Moreover, we have no guarantee UDAQ will accept future samples obtained through proven quality-controlled and quality-checked methods used widely throughout the oil industry as there is no agreement on the sampling guidance and previously accepted samples are now being rejected. Especially considering the very short time fuse for compliance with the proposed rule change, UPA finds little or no comfort in the site-specific sampling provision for existing storage vessels.

5 We included results for throughput less than or equal to 8,000 bpy for completeness since UDAQ’s analysis considered this cut point for data used in their evaluation.

6 UPA supports retaining the site-specific sampling provision in the rule because it will eventually be helpful for new sites in the future when we have mutually acceptable sampling guidance.
Attachment 2.

UPA Review of Agency Feedback on Sampling Guidance
UPA Review of Agency Feedback on Sampling Guidance

Comparison of Uinta Basin (UB) Fluids to Denver Julesburg (DJ) Fluids from the Noble Study

<table>
<thead>
<tr>
<th>UB</th>
<th>DJ and Noble Study¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>API Gravity of ~35 to ~45</td>
<td>API Gravity of 60</td>
</tr>
<tr>
<td>Waxy crude oil (yellow wax or black wax)</td>
<td>Retrograde condensate</td>
</tr>
<tr>
<td>C10+ often greater than 70 mole %²</td>
<td>C10+ typically 6 to 14%</td>
</tr>
<tr>
<td>Separators and tanks heated to 160 °F year-round</td>
<td>Although hotter in winter, stored below 100 °F year-round and if heated, only so in the winter</td>
</tr>
<tr>
<td>Separators and tanks fully insulated and pipes for liquids have insulation and heat tracing, protecting contents from effects of ambient conditions</td>
<td>Separators and tanks do not have insulation subjecting contents to changes due to ambient conditions</td>
</tr>
<tr>
<td>Separator pressure maintained at a constant value using a regulator, thus well cycles do not affect pressures and therefore do not affect emissions</td>
<td>Separators allowed to float on well back pressure, leading to pressure cycles with well cycles that ultimately affect emissions</td>
</tr>
<tr>
<td>Tank vapor space typically 30 °F lower than tank bottoms</td>
<td>Tank vapor space typically 10 °F lower than tank bottoms</td>
</tr>
</tbody>
</table>

Questions to Clarify Feedback

1. **Method “2103M”** - the M in the method number means that the lab modified the standard method. The modifications to the method need to be made clear. Without understanding these modifications, UPA cannot agree with the agencies that 2103M is the preferred method for speciating the lighter portion of samples from the Uinta Basin (UB). Among other things, we are unable to validate the applicability of the modifications to the unique UB waxy crude oil. Furthermore, requiring an unspecified modification restricts analysis to a single lab, which is a competitive issue to which UPA cannot agree.

2. **Indicators of Stable Operation** - UPA quantified the indicators that the process may not be stable or representative and the agencies changed the quantifications to “recent” thus rendering them ambiguous. UPA prefers to have more precise definitions that leave less room for interpretation and does not understand the agency change. For example, the UPA version included “Separator maintenance has occurred in the last 72 hours or five turnovers, whichever is shorter” and the agency version restated it to “recent separator maintenance has occurred” thus leaving the statement ambiguous, subject to interpretation and disagreements.

¹ Values obtained from the Noble Study, various locations within the study.
² VOC Composition Study, Appendix C.
Areas of Disagreement

1. **Use of Flash Liberation Analysis (FLA)** - Industry stands by FLA as one of the best approaches for conducting a model performance evaluation and for tuning an EOS model in the case of UB waxy crudes. Agencies state they will not allow the use of FLA, based on less accurate FLA results in the Noble Study. FLA is widely used by petroleum engineers to characterize reservoirs and is a valuable source of data to understand if the model is providing good estimates and to properly tune the model. Discounting FLA based on a single study of retrograde condensate at a single well runs counter to decades of petroleum industry experience and widely used practice. Despite the value of FLA for Uinta waxy crudes, FLA is not typically performed or recommended for gas condensate such as fluids from the DJ Basin, thus explaining the inaccurate results from using FLA on DJ samples in the Noble study. Retrograde condensates phase envelopes have different shapes than phase envelopes for UB waxy crude oil. When dropping the pressure isothermally, it is possible that a liquid sample first evolves gas and then, with further drops in pressure, returns back to liquid phase only.

Moreover, UPA contends the Noble Study did not properly specify the lab methodology for FLA and did not use labs sufficiently experienced in the methodology to obtain good results with a complex sample.

It is unclear whether the agency prohibition on using FLA results in requiring a single lab only for analyzing future separator samples, which if true would again raise a competitive concern that UPA cannot accept.

2. **Choice of EOS Model** - The agencies recommend using Promax as an appropriate model and include an appendix describing how to set up Promax. UPA can only agree with using Promax if Promax properly characterizes the fluid, reflecting physical properties measured in the laboratory. This can be accomplished by the user adjusting the binary interaction parameters (BIPs) to match the UB fluid. This comparison is an important step since the company that makes Promax, BRE, has not shared how they developed it. Since no UB crude oil BIPs are publicly available to our knowledge, UB specific BIPs would likely not have been used in Promax development. With the complexity of crude oil composition and the wide variability from source to source, generic BIPs will not produce accurate model results for UB samples especially considering its very large C10+ fraction. Instead, the model must be tuned to obtain an accurate representation. Other examples of tunable models include (but may not be limited to) PVT Sim, Symmetry, Hysys, and Multiflash.

The agencies also recommend VMG; UPA does not know whether VMG allows tuning the BIPs and therefore whether we can agree to recommending it when used with proper tuning. UPA does not agree to using VMG or any other model without proper tuning. Using any EOS model without proper tuning will yield inaccurate calculations.

3. **Differences in atmospheric pressure or sample temperature between the sample location and the laboratory** - UPA disagrees that these differences cause inaccurate

3 See for example Phase Behavior of Petroleum Reservoir Fluids, 2nd Edition, by Karen Schou Pederson, Peter L. Christensen, and Jawad Azeem Shaikh, Table 3.3, “Routine PVT Experiments Carried Out on Various Fluid Types”.

4 See for example Penn State College of Earth and Mineral Sciences, PNG 301 Introduction to Petroleum and Natural Gas Engineering, 2.11 Gas Condensate Reservoirs, located at https://www.e-education.psu.edu/png301/node/826 (accessed on February 23, 2022).
results. When used properly to tune the EOS at laboratory conditions before running the EOS at process conditions, these differences have no bearing on the accuracy of final results at process conditions.

4. **Basis for the Guidance** - Agencies based the guidance on results of the Noble Study which UPA contends is not applicable to UB waxy crude oil as shown in the table at the top of this document and on the results of the VOC Composition Study, results which industry does not agree with. From the UPA perspective, the guidance must be based on its decades of experience working with complex crude oil materials including the unique waxy crude oil of the UB and on standard petroleum engineering methodologies.

5. **Well Cycles** - The agencies emphasized a need to sample within 30 minutes of the end of a well cycle. However, the concepts of well cycles and associated pressure fluctuations and fluctuations in vapor pressure of the fluid flowing to the tankage do not apply in the UB where separators do not float on well pressure or on gas sales line pressure as they do in the DJ Basin. Instead, UB operators regulate separator pressures.

6. **Separator Heater Operation** - Agency feedback suggests that wintertime separator heater operation results in changes to separator pressure and hydrocarbon liquids composition and inadequate mixing of well cycle fluids with separator fluids. However, as noted above, the concept of well cycles does not apply in the UB. Moreover, UB separators and tanks are heated to 160 degrees F year-round, fully insulated, and have insulated and heat traced oil piping, thus avoiding the temperature fluctuations observed with equipment in the DJ Basin, typically heated only in wintertime or cold weather and typically without insulation or heat tracing. Thus, ambient conditions have little if any effect on composition of fluids in tanks in the UB.

7. **Characterization of the C10+ Fraction** - With UB crude oil having 70 mole % or more as C10+, the guidance must include information on the methods and importance of characterizing the C10+ fraction through laboratory measurements of specific gravities and molecular weights. We do not support nor understand the agency removal of the description of these analyses.

8. **Sample Acceptance Criteria** - UPA does not agree with the agency-recommended tolerance of P_{BP}/P_{SC} of plus/minus 30% applied uniformly to any separator pressure. As previously explained, “demonstrable exponential correlation existed between separator pressure and FGOR that yields much higher sensitivity of emissions and FGOR to sample pressure at high ranges.” Moreover, accepting a wide range of results prior to determining the best approach for the UB will result in inaccurate compliance calculations in some cases. Engineering judgment of the appropriate samples to retain should be the purview of the operator familiar with the site operation and the reservoir and not the purview of regulators with little site-specific and reservoir-specific technical familiarity.

The problem of seeming to need a wide range of acceptability may be related to prior samples being obtained without following the guidance and of using a constrained model without proper tuning. More recently, samples taken according to more prescriptive sampling guidance have less variation than prior samples exhibited. Furthermore, proper tuning of the EOS addresses much of the variation; for example, one UPA member company ran samples from the VOC composition study through a tunable model and was able to reduce the variation of bubble point pressures to less than 10% with tuning.
9. **Adjustments to the Procedure** - “Uinta Basin regulatory agencies reserve the right to require adjustments to this procedure.” UPA disagrees with this concept. UPA member companies have decades of experience and expertise with these materials, obtaining reliable measurements, and performing calculations including flash calculations and tuning models, and must be involved in determining the suitability of adjustments.

10. **Sample Representativeness Criteria** - UPA does not support the addition of “Be within a similar tank temperature operating range and average/maximum tank fill level” to the sample representativeness criteria. Tank operating conditions have no bearing on the composition, representativeness, or quality of separator liquid samples.

11. **Vasquez-Beggs (V-B) Equation** - UPA has not determined whether the V-B equation may be acceptable. However, in EPA 2018 proposed changes to AP-42, they described the V-B equation as not suitable for API gravity greater than 40 and not appropriate for estimating flashing losses for tanks storing condensate. Thus, although the V-B equation may not be suitable for use in the DJ Basin due to higher API gravity and the condensate nature of the material, it potentially may be suitable for the UB.

Areas of Agreement

1. **Equation of State** - The Peng Robinson EOS provides a suitable basis for flash calculations of liquid materials from the UB.

2. **Process Measurements** - Process temperature and pressure measurements should be obtained with calibrated instruments installed in-line with the sample valve. Instrumentation on the separator may not be sufficiently reliable or indicative of conditions at the sample point.

3. **Heating Sample Systems** - Sample containers must be heated during sample collection to avoid wax deposition.

4. **Sampling Location** - Sampling from the gauge glass will not produce a representative sample. A suitable sample port may need to be installed. Sample locations should be downstream of the separator discharge and upstream of the first inline device that could introduce any pressure drop (e.g., flow control valve, strainer, flow measurement device, or other equipment).

5. **Sample Tubing Diameter and Sampling Rate** - Tubing diameter of at least ¼-inch and sampling rate of 60 milliliters per minute maximum will help to ensure the material does not flash during sampling.

6. **Stock Tank Temperatures** - Record surface, bulk liquid, and other temperatures that may be available in the tank, and the corresponding height.

7. **Tank Data** - Collect tank dimensions, liquid surface temperature, height of liquid in the tank, sensor temperatures and corresponding heights, height of heating element, tank pressure, gravity of the oil in the tank, atmospheric pressure, and ambient temperature.

8. **Analyses of Samples** - Speciate through C9.

9. **Sample Parameters Checklist** - Ensure stable operation and collect data as per Appendix A, Sample Parameters Checklist.

10. **Sample Representativeness Criteria** - Unless and until demonstrated otherwise, samples deemed to be representative of other locations must be obtained from the same geologic reservoir formation, geographic location, separator operating range, and separator temperature operating range.

11. **Other Methods to Determine Tank Emissions** - UPA agrees with excluding E&P Tanks and TANKS 4.09D for UB tank emissions calculations.

12. **Preference for Site Specific Samples** - Acceptable as stated, as a preference and not a requirement. In some situations, e.g., with a properly tuned model and within the sample representativeness criteria, a new sample would not be necessary.

13. **Sample Submission Checklist** - Submit each of the following - with the caveat flagged in red italics
 a. Presample checklist and sample parameters per Appendix A
 b. Pressurized liquids laboratory report
 c. Sales gas/raw gas laboratory report if available
 d. Stock tank oil laboratory report if available
 e. Operating parameters/locations of other sites to be represented by sample - *note this may not be known at the time of submitting the sample information*
 f. EOS PSM stream diagram and copy of flash/AP-42 calculation inputs
 g. EOS PSM phase diagram and bubble point pressure analysis (include P_{BP}/P_{SC} results
 h. EOS PSM flash gas composition and flow rate
 i. EOS PSM standing/breathing gas composition and flow rate
June 14, 2022

Sheila Vance
Bo Wood
Utah Division of Air Quality
P.O. Box 144820
Salt Lake City, Utah 84114-4820

DELIVERED VIA EMAIL: svance@utah.gov and rwood@utah.gov

Dear Ms. Vance and Mr. Wood:

XCL Resources, LLC, on behalf of XCL AssetCo, LLC (collectively, “XCL”) understands the importance of reducing emissions in the Uinta Basin ozone nonattainment area (UB) and in general supports rules that are cost-effective towards bringing the area into attainment and maintaining attainment. XCL appreciates the leadership role of the Utah Division of Air Quality (UDAQ) to establish rules that meet these goals. XCL realizes that the comment period for the subject rulemaking has closed but some key comment issues not addressed in industry trade association comments arose just after the close of the comment period. Due to the importance of these comments, XCL is compelled to provide additional comment to address these issues. XCL respectfully requests that you consider these comments even though submitted after the May 31 formal close of the public comment period.

XCL entered Utah in 2019 for the express purpose of responsibly growing production volumes and expanding market reach for Uinta’s waxy crude. XCL is one of the top four producers of oil from the Uinta Basin and is rapidly growing production during 2022 and beyond. As such, XCL will be affected by the proposed rulemaking.

The proposed rule R307-506 addressing storage vessels would lower the threshold for controls from 8,000 barrels per year (bpy) of storage vessel throughput to 3,200 bpy. The proposal retains the existing provision to allow companies to do site-specific sampling and set a site-specific throughput level for controls in lieu of the proposed 3,200 bpy threshold. XCL appreciates retaining the site-specific sampling provision and supports the comment from the Utah Petroleum Association (UPA) requesting that representative sampling be allowed as an alternative to site specific sampling.

XCL envisions obtaining site specific samples (or representative samples, if allowed) to assess whether some storage vessels will need additional controls. When XCL’s anticipated sampling data is coupled with other operators also taking a significant number of samples, XCL fears that UDAQ workload to provide approvals will increase significantly and may result in a regulatory bottleneck.

The agencies and industry have not yet agreed on the sampling guidance including analytical techniques and process simulation modeling methodology and will likely need several more months to reach that agreement. It is imperative that the final rule (1) define a clear process for timely approval of site-specific or representative samples and associated site-specific emissions calculations, and (2) provide adequate time for sampling and, if necessary after sampling, installation of emission controls. The final rule must provide clear expectations on timing for UDAQ response to submittals of sampling results.
and calculations. XCL needs assurances that it can proceed without our compliance calculations being questioned and subjected to enforcement at a later date. Investors who provide capital to privately held companies regularly check in to evaluate company compliance. Capital resources could be at risk if the company does not have a clear compliance path, such as if additional implementation time is needed. This could result in capital investment leaving the basin in favor of other operators elsewhere thus potentially reducing crude supply at a time when gas prices are extremely high, thereby imposing a significant financial burden on many Utahns.

The Permit by Rule (PBR) was established to provide a simple mechanism for companies to comply with emission control requirements and reduce the processing burden on UDAQ. If UDAQ persists in lowering the threshold throughput for controls to such a low level, XCL will be compelled to conduct significant sampling to show that many if not most of our sites with throughput between the existing and new thresholds do not exceed 4 tons per year of emissions and therefore do not require new controls. This process of sampling and obtaining approvals will defeat the purpose of the PBR by imposing substantial time and regulatory risk for operators to obtain approvals, and significant new workload for UDAQ to review and respond to such requests.

As noted in the UPA comments and XCL’s comment letter dated May 31, 2022, XCL does not agree with the VOC Composition Study (Study), the process simulation modeling used on the Study samples, or the subsequent calculations, as each step had errors including sampling at sight glasses, incorrect process model simulation inputs, failing to tune the model to demonstrate a good model performance evaluation, and inappropriate statistical analyses. The best solution to this problem now is to set the control threshold at no less than 5,000 bpy, which can be technically justified and will help to preserve the integrity of the PBR.

In anticipation of EPA releasing its final rule for controls of VOC emissions for oil and gas sources located on Tribal lands within the UB (FIP), UPA and XCL recently re-reviewed the proposal and noticed that EPA has provided a far more reasonable timeline for installing controls, providing 18 months with the possibility of case-by-case extensions. EPA proposed this in January 2020, before the industry realized the severe impact of COVID-19 on supply chains and labor shortages that will require even more time to install controls. Compared to the FIP, XCL finds the timeline in the UDAQ rule to be arbitrary and unreasonable. UDAQ must provide adequate time for facilities to come into compliance.

Thank you for considering these comments submitted after the close of the formal comments period.

Sincerely,

Lauren Brown
Vice President, Environmental and Regulatory
XCL Resources, LLC

Cc:
Becky Close – bclose@utah.gov
Bryce Bird – bbird@utah.gov

1 See “Federal Implementation Plan for Managing Emissions From Oil and Natural Gas Sources on Indian Country Lands Within the Uintah and Ouray Indian Reservation in Utah” proposed rule; Federal Register, Volume 85, Number 13, p. 3492, January 21, 2020. See rule language for 40 CFR §41.4169(c) at 3527.
ITEM 6
MEMORANDUM

TO: Air Quality Board

THROUGH: Bryce C. Bird, Executive Secretary

FROM: Chelsea Cancino, Environmental Scientist

DATE: June 28, 2022

On April 6, 2022 the Board proposed for public comment the Regional Haze State Implementation Plan (SIP) for the second planning period and associated administrative rules. The Regional Haze Rule (RHR) requires Utah to address regional haze in each mandatory Class I Area (CIA) located in Utah and in each mandatory CIA located outside of Utah that may be affected by pollutants emitted from sources within Utah. Utah is required to submit a SIP revision to the EPA addressing the specific elements required by the rule.

Public Comment Period

The public comment period was held from May 1 to May 31, 2022. During the comment period, written comments were received from numerous stakeholder groups including: a consortium of six environmental advocacy groups, PacifiCorp, Deseret Power, Utah Associated Municipal Power Systems, Intermountain Power Service Corporation, the Environmental Protection Agency, the Utah Petroleum Association, Grand County Commission, Moab City, the National Park Service, and numerous individuals. Email comments were received from 655 citizens that were largely duplicates through a form letter. A public hearing was held on May 26, 2022, and ten verbal comments were received from citizens and organizations at the hearing. A summary of comments and DAQ responses can be found in Attachment A to this memo.
SIP Amendments

Comments were extensive, and helpful for SIP improvement and clarification. No major changes were made, including source inclusion, long-term strategies, and reasonable progress determinations. A summary of SIP changes resulting from the board meeting and the public comment period are as follows:

1. Updated inventory graphs in Section 3.A.4 upon request from the Air Quality Board.
2. Section 6.A.10 was updated with a table detailing emission reduction quantification for the long-term strategy. Strategies were not changed; the table was added for clarification.
3. A new table in Section 7.A.2 to show existing controls in Utah’s SIP for screened sources that have resulted from other SIP revisions, including PM$_{2.5}$.
4. Part of section 7.A.3 was struck out and rewritten for clarity and improved justification for emission limits at Hunter and Huntington power plants.
5. An environmental justice analysis and writeup was added to section 7.A.5.
6. Additions to appendices to include additional information that sources have submitted.
7. Multiple minor additions or deletions due to oversights, or for clarifications.
8. Part H changes include:
 a. emission limits for screened-in sources’ existing limits that were not already in Part H,
 b. annual stack testing at US Magnesium,
 c. SO$_2$ limit exemptions were removed for startup, shutdown, and malfunction for Huntington, and
 d. minor adjustments to Hunter and Huntington limits based on the improved justification.

UDAQ has met all requirements of the Clean Air Act, and RHR with this second implementation period Regional Haze SIP. UDAQ has identified and implemented controls and limits that meet reasonable progress goals and long-term strategies to protect visibility in CIAs.

Recommendation: Staff recommends that the Board adopt the Utah SIP, Section XX.A: Regional Haze Second Implementation Period; Utah SIP, Emission Limits and Operating Practices: Section IX, Part H.21 and Part H.23; R307-110-17, Section IX, Control Measures for Area and Point Sources, Part H, Emission Limits; and R307-110-28, Regional Haze, as proposed.
Attachment A
Responses to Public Comments

Reasonable Progress Determinations:

Commenters: EPA, The Conservation Organizations

Comment Summary 1: Utah’s choice of control measures during this planning period do not equate to actual reductions in emissions. UDAQ should reconsider its reasonable progress determinations.

UDAQ Response: UDAQ followed the RHR and guidance to identify and select sources that potentially impact in-state and out-of-state CIAs, considered feasible control options, and required four-factor analyses for these sources. UDAQ considered whether existing control measures for these facilities are needed for reasonable progress and included all necessary measures in the SIP. Please refer to Section 6.A.10 for a summary of the measures – both state and federal and existing and new – that are necessary for reasonable progress and included in the Long Term Strategy. This section shows that all measures relied upon to make reasonable progress are either federal measures or are state measures that are included in the existing Utah SIP or the round 2 SIP revisions. It also includes tables that quantify emissions reductions from existing and new measures and that compare these reductions to past (RepBase2) and projected (2028OTBa2) emissions.

Commenters: EPA

Comment Summary 2: UDAQ should clarify whether any existing measure that it is relying on to make reasonable progress is in its SIP. This includes sources that are above Utah’s designated source-selection threshold of Q/d >6 but for which the state does not conduct a four-factor analysis on the basis of existing effective controls. UDAQ must adopt emissions limits based on existing controls if they are deemed necessary for reasonable progress (to the extent they do not already exist in the SIP). Measures that are necessary to make reasonable progress must be in the SIP, new measures are always necessary to make reasonable progress, and existing measures are necessary to make reasonable progress unless the state has affirmatively demonstrated that they are not necessary. If UDAQ can demonstrate that a source will continue to implement its existing measures and will not increase its emission rate, it may be reasonable for the state to conclude that the existing controls are not necessary.

UDAQ Response: As the guidance makes clear, Q/d thresholds are a useful tool to help identify sources for a reasonable progress determination. UDAQ applied additional screens as supported by guidance including WEP analysis, consideration of existing controls, and the technical feasibility of additional controls. Two facilities of the originally screened-in 10 have either closed or will soon close. For the source that has already closed, the KUC Power Plant, the approval order has been revised and the Title V permit was rescinded. Furthermore, PM$_{2.5}$ BACT emissions limits for this source are already included in IX.H.23 of the SIP, including SCR-level NO$_x$ limits for Unit 4. For the source that will soon close, IGS, UDAQ has included an enforceable closure date in IX.H.23 of the SIP. One of the sources, the KUC Mine and Concentrator, is dominated by emissions from non-road sources that are outside the regulatory authority of UDAQ. When those sources are removed, the Q/d for this source falls below 6 to 3.9. Additionally, this source already underwent a PM$_{2.5}$ BACT analysis, and any required controls and in-use limits are included in IX.H.23 of the SIP. The final screened-out source, the Paradox Lisbon Gas Plant, had anomalous SO$_2$ emissions levels in the original 2014 NEI-based q/d analysis. A review of recent actuals for the facility reveals 2018-2021 SO$_2$ emissions that are between 0.01 and 0.13% of 2014 values. UDAQ is working with new owners of this source to identify options for potential reductions in emission limits and, if appropriate, will update their
permit accordingly. UDAQ has also clarified which existing measures it is relying on for reasonable progress and has added the existing measures for the sources Ash Grove, Graymont, Sunnyside, and US Magnesium to IX.H.23.

Commenters: EPA, IPSC
Comment Summary 3: We recommend UDAQ clearly state its determination for each source and explain whether it is including either existing or new emission limits for each source in the long-term strategy and SIP (or whether emission limits already exist in the SIP).
UDAQ Response: UDAQ acknowledges this comment and includes all necessary controls in the SIP. UDAQ has added a table summarizing the recent controls with emission limits that are already in Utah's SIP Section IX.H. UDAQ has clarified which existing measures it is relying on for reasonable progress which new measures have been identified in section 8.D and added to SIP Sections XX.A and IX.H.23.

Commenters: EPA
Comment Summary 4: EPA believes that rejection of NOx controls on the basis (in whole or in part) of ammonia slip, requires technical documentation that would be evaluated by EPA for its reasonableness in light of previous regional haze actions.
UDAQ Response: Although Sunnyside did submit general statements on both ammonia slip and the storage and transport of ammonia for use in SNCR and SCR systems, UDAQ did not take these statements into consideration when evaluating the technical and economic feasibility of NOx controls at the Sunnyside facility. Although there are some minor environmental and related costs associated with use of ammonia in NOx controls such as SCR and SNCR, these controls are well-established. In this case, the economic infeasibility of SCR or SNCR was the deciding factor.

Commenters: Eliza Cowie, O2 Utah
Comment Summary 5: We urge the DAQ and the AQB to act on the will of Utahns and step up to proactively set pollution reduction standards that will hold polluters accountable and make an outsized impact on the health of our economy and our residents.
UDAQ Response: The proposed SIP revision is consistent with current requirements of the regional haze program under the Clean Air Act. UDAQ notes that regional haze is a visibility program and UDAQ addresses health standards in other programs under the Clean Air Act.

Commenters: The Conservation Organizations
Comment Summary 6: UDAQ improperly concludes that no new reductions in pollution are warranted for most of Utah’s sources. The Conservation Organizations request UDAQ reconsider their RPDs.
UDAQ Response: UDAQ acknowledges and disagrees with this comment. Please refer to the response to comment summary 1.

Commenters: The Conservation Organizations
Comment Summary 7: UDAQ should evaluate non-power plants including manufacturing plants in its RPDs
UDAQ Response: UDAQ acknowledges and appreciates this comment. All four-factor analyses, supplements, and additional information documents submitted by sources are included in appendix C and D.2. Please refer to section 8.D to view UDAQ's reasonable progress determinations as well as their justification, which UDAQ stands by.
Commenters: The Conservation Organizations

Comment Summary 8: As drafted, Utah’s reasonable progress goals are based on modeling results that do not reflect the outcome of requirements in adequate Four-Factor Analyses and therefore do not meet the Regional Haze Rule requirement that the RPGs are to be based on enforceable SIP measures. UDAQ must first conduct the Four-Factor Analyses, determine measures for reducing visibility impairing emissions based on the Act’s Four-Factor Analysis and then use the results to develop proposed revisions to the RPGs.

UDAQ Response: UDAQ has followed EPA guidance in the development of this SIP and required a four-factor analysis from all sources identified through UDAQ's Q/d analysis and additional screening. In the proposed SIP, UDAQ did rely upon uncertainty regarding the future utilization of the Hunter and Huntington power plants to make a determination that additional NOx controls are not cost-effective. The agency then proposed a mass-based limit based upon the WRAP OTB2028a2 NOx emissions projections for the two plants in an effort to keep the plants from backsliding on emissions progress. In the final SIP, UDAQ instead establishes annual mass-based limits for both plants that ensure that these facilities cannot operate at levels at which SNCR and SCR would be cost-effective as determined by a revised cost-effectiveness evaluation of physical controls that utilizes the new limits as the 2028 emissions baseline. The final RPGs are in fact enforceable SIP measures as the new limits are listed in IX.H.23.

Commenters: The Conservation Organizations

Comment Summary 9: The Utah Proposed SIP fails to meet the intent, purpose, and direction of the Clean Air Act.

UDAQ Response: UDAQ notes that this is a general comment made in the conclusion and summarizes the previous specific comments made by the Clean Air Advocates. The agency has responded to each of the Clean Air Advocates' specific comments in this response to comments document. These responses explain how the SIP satisfies the requirements of the Clean Air Act.

Commenters: Jim Ireland, Superintendent Bryce Canyon National Park

Comment Summary 10: NPS has an affirmative legal responsibility to protect clean air and national parks. Statutory responsibility requires them to protect all units from the harmful effects of air pollution. NPS technical team has identified and recommended significant opportunities to improve the draft and make more rapid progress.

UDAQ Response: UDAQ appreciates this comment as well as the valuable input and consultation efforts of the National Parks Service.

Commenters: Jeff Bradybaugh, superintendent of Zion National Park

Comment Summary 11: NPS continues to recommend requiring cost effective measures to reduce haze forming pollutants identified through the four-factor analysis. NPS encourages Utah to take timely opportunities to reduce emissions from Hunter and Huntington. NPS recommends SO2 scrubber upgrades and SCR controls for both. NPS estimates scrubber upgrades could reduce SO2 emissions by 3,300 tons per year at $400-$900 per ton. SCR could reduce NOx emissions by 12,300 tons per year for $6,000 per ton or less. Utah SIP falls short of securing the most significant emission reductions available. Co-benefits of controls would also include addressing ozone and fine PM in nonattainment areas and nitrogen deposition affecting sensitive Park ecosystems.

UDAQ Response: UDAQ appreciates this comment as well as the valuable input and consultation efforts of the National Parks Service. These comments were included in NPS's public comment period submission, all of which are addressed individually within this document.
Long Term Strategy:

Commenters: EPA
Comment Summary 12: The list of LTS factors in section 6.A does not include "must include the emission reduction measures that are necessary to make reasonable progress as determined through consideration and application of the four statutory factors.
UDAQ Response: This requirement has been added to section 6.A.

Commenters: IPSC, PacifiCorp
Comment Summary 13: UDAQ should emphasize its discretion and flexibility in RH planning under the RHR and CAA's by emphasizing that EPA's 2021 Guidance was released late in the planning process after completion of much of WRAP's modeling. Divergence from EPA's 2021 Guidance should not be the sole basis EPA makes its SIP review.
UDAQ Response: UDAQ acknowledges this comment and agrees with its discretion to develop SIPs under the applicable laws and regulations.

Commenters: IPSC
Comment Summary 14: UDAQ appropriately developed its LTS and RPGs. IPSC encourages UDAQ to include a summary of how it developed its LTS and RPGs consistent with the regulations and guidance.
UDAQ Response: UDAQ acknowledges this comment and has included a summary of how it developed its long term strategy and reasonable progress goals consistent with the regional haze rule and the guidance in section 6.A.10.

URP Glidepath:

Commenters: EPA
Comment Summary 15: The URP glidepath is not a safe harbor and a CIA's position underneath the glidepath does not justify a decision not to require controls.
UDAQ Response: UDAQ acknowledges this comment and notes that we state in the proposed SIP that a CIA's position below the glidepath is not "safe harbor" from emissions controls. Instead, we base our control determinations on the four-factor analyses for the selected sources and -- where appropriate based upon balancing the four-factors -- select controls for inclusion in the SIP. We address this issue on a source-specific basis elsewhere in our response to comments.

Commenters: PacifiCorp and IPSC
Comment Summary 16: UDAQ should use the available adjustments to the URP glidepaths of UT's CIAs because non-anthropogenic sources are a large part of their visibility impairment. The Utah SIP fails to fully explain the extent to which non-U.S. anthropogenic emissions (i.e. international anthropogenic emissions) currently impacts light pollution in Class I areas, and how much these emissions will impact visibility in the future. SO2 emissions from international sources in Zion National Park will contribute 3 to 4 times greater light pollution than U.S. sources in 2028, the percentages are not provided nor are the graphs adequately explained.
UDAQ Response: UDAQ appreciates and acknowledges this comment, but maintains its decision that making international and prescribed fire adjustments is unnecessary for the second planning period. The proposed SIP takes a conservative approach to demonstrating reasonable progress, while affirming Utah's prerogative to make such adjustments in future planning periods consistent with the regional haze rule (both current and future).
Cost Threshold:

Commenters: The Conservation Organizations, National Parks Conservation Association, NPS

Comment Summary 17: UDAQ should establish a cost-effectiveness threshold for reasonable progress that is in line with other state thresholds so UDAQ's RPDs are not arbitrary.

UDAQ Response: EPA guidance states the following about the use of thresholds: "A state may find it useful to develop thresholds for single metrics to organize and guide its decision-making. As the Ninth Circuit explained in NPCA v. EPA, 788 F.3d at 1142, the Regional Haze Rule does not prevent states from implementing “bright line” rules, such as thresholds, when considering costs and visibility benefits. However, the state must explain the basis for any thresholds or other rules1. If a state applies a threshold for any particular metric to remove control measures from further consideration before all other relevant factors are considered, it should explain why its selected threshold is appropriate for that purpose, i.e., why its application is consistent with the requirement to make reasonable progress." Regarding cost per ton thresholds, the 2019 guidance goes on to state: "If a state applies a threshold for cost/ton to evaluate control measures, we recommend that the SIP explain why the selected threshold is appropriate for that purpose and consistent with the requirement to make reasonable progress. As explained below, a cost/ton metric and comparisons to the cost/ton values for measures that have been previously implemented may or may not be useful in determining the reasonableness of compliance costs." UDAQ maintains that a "bright line" threshold is unnecessary and that the use of one detracts from consideration of the remaining three reasonable progress factors and the agency's discretion in balancing all four factors in making its determination. That said, in instances where UDAQ found a control not to be cost-effective, the cost/ton estimates for rejected controls were in line with cost-effectiveness thresholds and/or ranges used in other states.

Commenters: PacifiCorp, IPSC, UMA, UPA

Comment Summary 18: Defining a cost-effectiveness threshold is neither appropriate nor necessary for assessing reasonable progress given past EPA and UDAQ decisions. Controls determinations must depend on the four-factor analysis.

UDAQ Response: UDAQ appreciates and concurs with this comment.

Mass-Based vs. Rate-Based Limits:

Commenters: NPS and The Conservation Organizations

Comment Summary 19: Rate-based limits achieved through emissions controls are more appropriate than rate-based limits in that they are more protective and require actual emissions reductions.

UDAQ Response: UDAQ acknowledges this comment. UDAQ utilizes both mass- and rate-based limits in the final SIP, both of which are consistent with the regional haze rule and guidance. For Hunter and Huntington power plants, UDAQ conducted a four-factor analysis which found additional physical NOx controls (and their associated rate-based limits) not to be cost-effective at the plant utilization and emissions levels that result from a 2028 mass-based limit. However, UDAQ does retain the rate-based limits for existing NOx and SO2 controls at these plants in the final SIP.

1 See 40 CFR 51.308(f)(2)
Commenters: The Conservation Organizations
Comment Summary 20: UDAQ must impose a rate-based NOx limit in terms of lb/MMBtu because EPA states that, when a state “has determined that a technology-based measure is necessary to make reasonable progress,” emission limits should be expressed in a rate-based format (such as pounds of pollutant per throughput).
UDAQ Response: UDAQ acknowledges and disagrees with this comment. For Hunter and Huntington power plants specifically, UDAQ did not determine that additional NOx controls are necessary to make reasonable progress. In general, page 44 of the 2019 EPA Guidance states that "...a mass-based emission limit may be reasonable because it could relieve the source of the requirement to install the control if it manages its operating level strategically". The 2019 EPA Guidance does not state that emissions limits must be expressed in a rate-based format.

Commenters: The Conservation Organizations
Comment Summary 21: If mass-based emissions limits are used, the regulatory language should also specify recordkeeping on the amount of fuel used per month and make clear that compliance with the 12-month rolling total emission limit shall be calculated based on the fuel use or heat input over that time period.
UDAQ Response: UDAQ disagrees with this comment. Heat input is not a necessary component of measuring or determining compliance with a mass-based emission limit.

Commenters: PacifiCorp
Comment Summary 22: Massed-based emissions limits provide PacifiCorp flexibility, can be implemented quicker than controls, reduce CO2 emissions as well, and work well for the remaining useful lives of the Utah Units.
UDAQ Response: UDAQ acknowledges and concurs with this comment.

Commenters: UPA/UMA
Comment Summary 23: UPA and UMA do not support requiring limits to be either mass-based limits or rate-based limits; UDAQ should have the flexibility to determine the type of limit most appropriate for any individual source.
UDAQ Response: UDAQ acknowledges and concurs with this comment.

Oil and Gas Area Sources:

Commenters: EPA, NPS, The Conservation Organizations, National Parks Conservation Association
Comment Summary 24: UDAQ should evaluate upstream oil and gas NOx measures under the state's jurisdiction or provide a technical basis, such as a derived Q/d value, as part of its justification.
UDAQ Response: UDAQ acknowledges that oil and gas extraction in the Uinta Basin produces emissions that may affect visibility in CIAs. The oil and gas wells are spread over a very large area making a traditional Q/d analysis impossible, and the airshed is regulated by both the State (on state land) and EPA (on tribal land). As discussed in the SIP, approximately 80% of oil and gas source emissions are under EPA regulatory jurisdiction. The Uinta Basin is currently a marginal ozone nonattainment area, and UDAQ has been working diligently since 2015 to reduce oil and gas emissions, including promulgation of 11 rules, and subsequent rule amendments to improve these rules. EPA has yet to publish the final Federal Implementation Plan that will catch up with Utah oil and gas regulations. There have been a number of studies in the basin over the last several years that have led to a much better understanding of the oil and gas emissions, and
the inventory has significantly improved as a result. For example, a recent pump jack engine stack test study showed 52% less NOx (and much higher VOCs) than was previously in the inventory. UDAQ does not consider the WRAP inventories to be adequate for any type of Q/d emissions analysis. UDAQ will continue to address oil and gas emissions in the Uinta Basin through the health-based standards, in cooperation with EPA. Because of the large number of stakeholders involved, overlapping jurisdictions, and uneven existing regulatory requirements among jurisdictions, developing new reasonable progress controls beyond those already under development for ozone is unrealistic during the SIP development timeframe.

Non-RH Pollution Controls:

Commenters: EPA
Comment Summary 25: Utah must not rely solely on the non-regional haze air pollution control programs to automatically reject potentially cost-effective and otherwise reasonable controls during this second planning period.
UDAQ Response: UDAQ does not rely solely upon non-regional haze air pollution control programs to automatically reject potentially cost-effective and otherwise reasonable controls in the SIP. Instead, the agency considered control options at each screened-in source on a case-by-case basis, and -- where additional controls are rejected -- UDAQ provides the basis for said rejection. Please refer to Section 6.A.10 for a summary of the measures – both state and federal and existing and new – that are necessary for reasonable progress and included in the Long Term Strategy. This section shows that all measures relied upon to make reasonable progress are either federal measures or are state measures that are included in the existing Utah SIP or the round 2 SIP revisions. It also includes tables that quantify emissions reductions from existing and new measures and that compare these reductions to past (RepBase2) and projected (2028OTBa2) emissions.

Commenters: The Conservation Organizations
Comment Summary 26: UDAQ’s anticipated additional emissions reductions from “Ongoing Pollution Control Programs” are neither justified nor secured by enforceable SIP measures. UDAQ identifies multiple federal and state control programs aimed at reducing emissions across various sectors. UDAQ fails to provide the details and quantify emission reductions from these ongoing programs, and lacking this required information, UDAQ cannot take credit for “other programs” that are unsupported and not quantified.
UDAQ Response: Considering emissions reductions due to ongoing air pollution control programs is part of the Long-Term Strategy requirements under Subsections 51.308(d)(3) and (f)(2) of the Regional Haze program requirements. Section 6.A.5 was written to satisfy these requirements and only includes efforts done by UDAQ. UDAQ did not use these emissions reductions when making the reasonable progress determinations for the second implementation period of Utah's regional haze program. Please refer to Section 6.A.10 for a more thorough summary of the measures – both state and federal and existing and new – that are necessary for reasonable progress and included in UDAQ’s LTS. This section shows that all measures relied upon to make reasonable progress are either federal measures or are state measures that are included in the existing Utah SIP or the round 2 SIP revisions. It also includes tables that quantify emissions reductions from existing and new measures and that compare these reductions to past (RepBase2) and projected (2028OTBa2) emissions.
Source Selection:

Commenters: EPA

Comment Summary 27: If emissions data prior to the 2017 NEI was used, we request that UDAQ analyze and present updated 2017 emissions information to show that there are no additional sources that should have been selected and analyzed for controls, or for changes to its selected sources. UDAQ should also indicate whether any additional sources would be screened-in through Q/d by using 2017 or later NEI data.

UDAQ Response: UDAQ re-calculated the Q/d thresholds of its major sources using 2017 NEI data to ensure that additional sources did not exceed a Q/d of 6 and found that no additional sources would be screened-in using the newer data. This information can be found in section 7.A.1.

Commenters: IPSC

Comment Summary 28: Utah’s Approach to Source Selection is Reasonable and Consistent with EPA Regulations and Guidance. Utah selected sources for further review of controls based on application of a Q/d threshold > 6, despite WRAP’s recommendation to use a threshold of 10 and applies a “secondary screening process,” to further assess the reasonableness of controls

UDAQ Response: UDAQ appreciates and concurs with this comment.

Q/d Analysis:

Commenters: The Conservation Organizations

Comment Summary 29: UDAQ originally identified 10 sources for consideration in the emission control analyses, but only six sources were required to conduct a full review of emissions reducing measures in its implementation plan.

UDAQ Response: This statement is correct. As documented in the SIP, 10 sources were originally screened-in for further controls consideration using a Q/d threshold of 6 or greater, which is more stringent than WRAP’s suggested threshold of 10. UDAQ then conducted a secondary screen, taking into account recent control determinations for other programs, plant closures (past or future), and other considerations. Four out of the original 10 sources were screened-out as a result of this secondary screening: 1. KUC Mine and Concentrator (recent BACT and vast majority of emissions from non-road sources); 2. KUC Power Plant (facility closure and rescinding of Title V permit, limits already in IX.H.23); 3. Lisbon Gas Plant (anomalous SO\(_2\) emissions during 2014 screen year, subsequent plant idling/ownership changes, and dramatically lower SO\(_2\) emissions from 2017-2021, resulting in Q/d values <6); and 4. Intermountain Generation Station (planned closure of coal-fired units in 2025, establishment of enforceable closure date in the SIP). A Q/d analysis, while helpful, does not take into consideration trajectory or air chemistry, nor past or future changes in operation. EPA states that the Q/d metric is a "simple surrogate metric"\(^2\) that is "a less reliable indicator of actual visibility impact" and "therefore, it is recommended that use of this technique be limited to source selection for the purpose of developing a list of sources for which a state may conduct a four-factor analysis."\(^3\) As such, it is -- at best -- a first step in the process of source selection, and states may take into account other factors in determining which sources should be required to complete further analyses.

\(^2\) See 2019 EPA Guidance at 10

\(^3\) See 2019 EPA Guidance at 13
Commenters: The Conservation Organizations
Comment Summary 30: UDAQ should have conducted a four-factor analysis for the Holcim Devil's Slide facility. UDAQ shouldn't have excluded this facility based on their voluntary proposal to install SNCR. UDAQ should enforce SNCR installation in the SIP, set a NOx limit according to the proposed SNCR control and evaluate the cost-effectiveness of installing catalytic ceramic filters as well as ammonia injection in the existing baghouse.
UDAQ Response: UDAQ disagrees with this comment, UDAQ did not exclude the Holcim Devil's Slide facility on any basis other than its maximum Q/d value of 5.19 for Canyonlands National Park which is below UDAQ's threshold of 6.

Four-Factor Analyses:

Commenters: The Conservation Organizations
Comment Summary 31: UDAQ failed to provide the “Four-Factor Analysis Summary” on page 140 of the Proposed SIP and instead only included a statement that said “[a]dd 4-factor analysis summary matrix to show that each have been addressed for all sources[].” To comply with public notice and comment requirements, UDAQ must provide the public with a complete Proposed SIP. UDAQ should reissue a revised and completed draft for public comment.
UDAQ Response: UDAQ considered adding a section 7.D with a four-factor analysis summary and made the final decision not to. Section 7.D was erroneously left in the draft and has now been removed. This proposed section would not have included any new information not already included in the draft SIP. The draft SIP proposed to the Air Quality Board passed for public comment, the purpose of which was to inform the public and gather comments such as this one was fulfilled.

Commenters: NPS, The Conservation Organizations
Comment Summary 32: UDAQ should correct all cost-effectiveness analyses in accordance with EPA recommended methods as current analyses generally inflate the cost of control.
UDAQ Response: UDAQ has made revisions and included supplements for multiple sources’ four-factor analysis. Please review all of UDAQ's responses to public comments to review these updates to the SIP. UDAQ has reviewed all source's four-factor analysis submittals alongside their supplemental information and found the resulting information accurate and sufficient for determining measures necessary for reasonable progress in this implementation period.

Commenters: PacifiCorp
Comment Summary 33: Utah’s cost analysis methods are consistent with the regional haze program’s goals and guidance.
UDAQ Response: UDAQ appreciates this comment.

Commenters: The Conservation Organizations
Comment Summary 34: UDAQ's four-factor analyses are legally deficient. The state has a duty to conduct a “robust” analysis of potential reasonable progress controls, and must “document the technical basis, including modeling, monitoring, cost, engineering, and emissions information, on which the State is relying to determine the emission reduction measures that are necessary to make reasonable progress in each mandatory Class I Federal area it affects.” If a source prepares a flawed, incomplete, or undocumented Four-Factor Analysis, the state must either require the source to make the necessary corrections or make the corrections itself and ensure that the Four-Factor Analyses is accurately and completely documented before the start of the public notice and comment period.
UDAQ Response: UDAQ notes that this comment does not identify any specific problems, so the agency will respond to each of the Clean Air Advocate's specific comments regarding the four-factor analyses within this SIP revision.

Ash Grove:

Commenters: The Conservation Organizations, National Parks Conservation Association
Comment Summary 35: UDAQ should require actual, measurable emissions reductions from the Leamington Cement Plant
UDAQ Response: UDAQ acknowledges this comment. A review of the Leamington Cement Plant's actual and allowable emissions concluded that the current NOx limits reflect a reasonable level of safety margin relative to actual emissions rates. As a result, UDAQ has determined that no additional controls were economically feasible.

Commenters: The Conservation Organizations, NPS
Comment Summary 36: Ash Grove's four-factor analysis should be updated with further evaluation of the cost/ton and NOx removal efficiency of an SNCR control, information on the type of fuel used and tons of clinker in 2019, as well as the installation of ceramic catalytic filtration bags in the existing baghouse.
UDAQ Response: UDAQ is satisfied with the Leamington Plant’s SNCR system's ability to operate in the 2.5-2.6 lb. NOx/ton clinker range and agrees with Ash Grove that neither additional solution nor the addition of catalytic ceramic filtration bags will significantly increase control efficiency.

Commenters: The Conservation Organizations
Comment Summary 37: UDAQ must reconsider imposing control measures on SO2 emissions from the cement kiln to ensure that emissions do not increase from the current baseline emissions of 8.0 tons per year to the allowable potential to emit 192.5 tons per year.
UDAQ Response: UDAQ disagrees with this comment, believes the Leamington Cement Plant is well controlled, and stands by its determination not to require new control measures for this facility in this implementation period. UDAQ has included the Leamington Cement Plant's existing emissions limits as part of the controls necessary to make reasonable progress which can be found in section 8.D and IX.H.23 in appendix A.

Graymont:

Commenters: The Conservation Organizations, National Parks Conservation Association
Comment Summary 38: UDAQ should identify and review all of the emissions units at the Graymont Western Cricket Mountain Plant and the units' actual and allowable emissions through an emissions inventory and require NOx and SO2 emissions reductions.
UDAQ Response: UDAQ acknowledges this comment. A review of Graymont's actual and allowable emissions was conducted as part of reviewing the four-factor analysis submission for the company. As a result of that analysis, UDAQ determined that no additional controls were economically feasible. UDAQ has included the Cricket Mountain Plant's existing emissions limits as part of the controls necessary to make reasonable progress which can be found in section 8.D and IX.H.23 in appendix A.
Commenters: The Conservation Organizations, NPS

Comment Summary 39: UDAQ should require Graymont Western to install SNCR and the use of catalytic ceramic filtration bags in the existing baghouse.

UDAQ Response: UDAQ agrees with Graymont's amendments to their four-factor analysis stating that the LNA SNCR technology is proprietary and not unconditionally commercially available for their use. Based on Graymont's four-factor analysis, UDAQ believes the Cricket Mountain Plant is well controlled and the addition of catalytic ceramic filtration bags would not significantly reduce their NOx emissions.

Sunnyside:

Commenters: EPA, The Conservation Organizations

Comment Summary 40: Provide documentation from the source as to the infeasibility of SO2 emissions controls based on water rights

UDAQ Response: Sunnyside provided further details on the infeasibility of expanding emission controls based on water usage. Indeed, Sunnyside’s statement about the lack of water availability is representative of over a decade of data and studies for the availability of water for use onsite for existing power plant operations. On average the plant has been utilizing 668 gallons per minute (gpm) for cooling tower makeup whereas the plant was designed for an average of 680 gpm through the year. Sunnyside is only able to sustain plant operations with this water usage through efficient water use, timing maintenance shutdowns, and equipment’s operation/shutdown. Sunnyside has provided documentation on the limits of available water, which can be found in appendix D.2I.

Commenters: EPA, NPS, The Conservation Organizations

Comment Summary 41: Sunnyside’s four-factor analysis indicates that SO2 and NOx controls are not cost effective or feasible. Use NPS' information and data on DSI feasibility to update the remaining useful life assumptions and 7% interest rate in Sunnyside's four-factor analysis and consider DSI as a cost effective control

UDAQ Response: UDAQ notes that Sunnyside revised their four-factor analysis with supplemental information on May 27, 2022. In the revised submission, the company performed a second cost analysis using a 30-year remaining useful life. The 7% interest rate was also further justified with site specific details and supporting documentation. UDAQ has accepted this revised submission and agrees with the company's conclusions. The inclusion of dry sorbent injection is not warranted at this facility.

Commenters: The Conservation Organizations, National Parks Conservation Association

Comment Summary 42: UDAQ must require actual, measurable emissions reductions from Sunnyside

UDAQ Response: UDAQ stands by its reasonable progress determination that additional control measures from Sunnyside are neither technically feasible nor cost effective. Additionally, UDAQ has included Sunnyside’s existing emission limits as measures necessary for reasonable progress which have been added to IX.H.23 and section 8.D.

Commenters: The Conservation Organizations

Comment Summary 43: Sunnyside's four-factor analysis should not include property taxes and insurance

UDAQ Response: UDAQ notes that Sunnyside revised their four-factor analysis with supplemental information on May 27, 2022. In the revised submittal, the company included
additional information pertaining to the inclusion of taxes and insurance - which are in-line with
the Control Cost Manual. UDAQ has accepted this supplemental information. No changes are
necessary in the revised four-factor analysis.

Commenters: The Conservation Organizations
Comment Summary 44: Sunnyside's four-factor analysis doesn't have proper justification for
dismissing DSI on the basis of space
UDAQ Response: UDAQ notes that Sunnyside revised their four-factor analysis with
supplemental information on May 27, 2022 (located in appendix D.2.I). In the revised
submission, the company further justified the technical and economic cost considerations for
elimination of DSI at the facility. Both physical space and air flow mechanics are among the
technical difficulties shown by the company in this revised submission. UDAQ agrees with the
issues raised by the company and agrees with the conclusion that DSI is not economically
feasible for this facility.

Commenters: The Conservation Organizations
Comment Summary 45: Sunnyside's four-factor analysis improperly used a 1.3 retrofit cost
factor
UDAQ Response: UDAQ notes that Sunnyside revised their four-factor analysis with
supplemental information on May 27, 2022. In the revised submission, the company further
justified the use of a retrofit factor of 1.3. Specifically, site access and infrastructure,
incorporation of existing structural elements, and engineering redesigns, are all valid
justifications for an elevated retrofit factor. UDAQ has accepted the retrofit factor used by the
company in this revised analysis.

Commenters: The Conservation Organizations
Comment Summary 46: Sunnyside's four-factor analysis does not properly justify the need to
replace its baghouse. If the baghouse needs replacement, it should not be included in the cost-
effectiveness calculations of SO2 controls.
UDAQ Response: Commenter misstates the extent and intent of Sunnyside's claim. The
company does not state that the baghouse has reached the end of its useful life and would need to
be replaced regardless of whether regional haze controls are imposed. Rather, the company stated
that "A dry scrubbing control system will require additional particulate loading in the flue gas,
thereby increasing the volume to be handled which will put a burden on the existing baghouse
system and result a [sic] larger baghouse control system to capture PM emissions exiting from the
stack." This was further clarified in the company's revised four-factor analysis from May 27,
2022 which included: "Even if re-engineering of the duct work allowed the existing baghouse to
be used, it is likely that the flow patterns produced by the CDS/CFBS would disrupt the flow
through the plenum of the baghouse thereby redirecting air flow and eliminating the distribution
of air evenly across the compartments." The company has merely stated that the existing
baghouse system is most likely insufficient for the additional particulate loading generated by
further SO2 controls. UDAQ is in agreement with this conclusion.

Commenters: The Conservation Organizations
Comment Summary 47: Sunnyside's four-factor analysis improperly double counts installation
costs by using a projected equipment cost of $66,600,000 for a CDS scrubber.
UDAQ Response: In Sunnyside’s Response to National Park Service questions on Sunnyside
cogeneration Associates Four Factor Analysis – Dry Sorbent Injection Considerations, it was
acknowledged that the exact total installed equipment cost for a CDS is highly variable and
cannot be confirmed without site specific quotes and engineering. As a result, Sunnyside
provided three alternative economic analyses in a subsequent response to UDAQ’s questions on the original four-factor analysis submittal, which varied the total installed equipment costs: average, minimum, and maximum. The minimum cost analysis presented by Sunnyside addresses the Clean Air Advocates comments as it includes only EPA established installation costs and appropriate retrofit factors. UDAQ has reviewed the supplemental information provided by Sunnyside and accepted this additional information.

Commenters: The Conservation Organizations

Comment Summary 48: Sunnyside's four-factor analysis assumed 74% SO\textsubscript{2} removal efficiency with a CDS when it can achieve up to 98% removal

UDAQ Response: Sunnyside supplemented their original four-factor analysis with additional information on May 27, 2022. In the revised submission, the 74% SO\textsubscript{2} removal efficiency was further explained by comparing the expected emission rate after controls, using similarly controlled facilities as a baseline, with current emission levels. The 74% therefore represents an additional removal efficiency, and not the removal efficiency from an uncontrolled state.

Commenters: The Conservation Organizations

Comment Summary 49: Sunnyside's four-factor analysis improperly assumed too high of an annual coal throughput of 883,413,174 lbs/coal/yr

UDAQ Response: The coal throughput utilized in the SCR and SNCR cost analysis presented by Sunnyside represented a maximum annual throughput between 2015 and 2019. This reflects actual coal properties rather than high heating value. If the theoretical maximum coal throughput were utilized, which is representative of the maximum heat input capacity, 8,760 hours of operation per year, and high heating value, a total of 867,081,448 pounds of coal could be used in a calendar year. The use of this coal throughput increases the cost per ton removed by $130 per ton for SNCR and $231 per ton for SCR for a total cost removed of $9,398 and $13,676 per ton of NO\textsubscript{x}, respectively. UDAQ has reviewed and agrees with these revised calculations.

Commenters: NPS

Comment Summary 50: Request for public review opportunity of Sunnyside's supplemental documents and four-factor analysis updates

UDAQ Response: UDAQ sent Sunnyside's supplemental documents to NPS on 4/21/22, 6/7/22, and 6/26/2022 for their review. These documents can also be found in appendix D.2.

Commenters: NPS

Comment Summary 51: NPS agrees with Sunnyside's 7% interest rate

UDAQ Response: UDAQ acknowledges this comment.

Commenters: Sunnyside

Comment Summary 52: After a complete review of possible DSI control technologies, the only add-on DSI configuration considered potentially technically feasible is the CDS/CFBS configuration. As a result, this technology was the only technology further evaluated. Based on Sunnyside's calculations, Sunnyside anticipates that the installation of a CDS/CFBS system could achieve a theoretical maximum of 74% further reduction of SO\textsubscript{2}, or further removal of 319 ton/year compared to these similar sources. Sunnyside anticipates a cost per ton of SO\textsubscript{2} removed between $27,889/ton removed and $118,553/ton removed for this control.

UDAQ Response: UDAQ appreciates and concurs with this comment.
Commenters: Sunnyside
Comment Summary 53: The existing baghouse is essential to the design and effectiveness of a CDS/CFBS unit. As demonstrated by photos provided by Sunnyside, there is insufficient space to install a CDS/CFBS between the boiler and existing baghouse
UDAQ Response: UDAQ appreciates and concurs with this comment.

Commenters: Sunnyside
Comment Summary 54: Sunnyside's Title V permit already enforces SO2 limits through a CEMS
UDAQ Response: UDAQ appreciates and concurs with this comment.

PacifiCorp:

Commenters: EPA
Comment Summary 55: UDAQ cites uncertain future utilization at Hunter and Huntington to justify not requiring SCR but does not adequately justify why it is unreasonable to reduce emissions based on the sources' current operation.
UDAQ Response: UDAQ indeed cites uncertainty about the future utilization of Hunter and Huntington, but also includes strong evidence that utilization of these facilities is likely to decrease in the future, potentially eroding the cost-effectiveness of additional physical emission control installation. In the final SIP, UDAQ further augments the evidence that future utilization of Hunter and Huntington is likely to decline. In addition, UDAQ establishes enforceable plantwide annual mass-based NOx emissions limits in an effort to reduce uncertainty regarding future utilization. The agency provides a revised cost-effectiveness analysis of SNCR and SCR at the utilization/emission levels imposed by these mass-based limits and finds that the installation of physical controls is not cost-effective at or below those utilization/emission levels.

Commenters: EPA, The Conservation Organizations, City of Moab, Grand County Commission, Dr. Paula Decker, National Parks Conservation Association (NPCA), Alex Veilleux (HEAL Utah), 657 individuals
Comment Summary 56: UDAQ should consider revising its reasonable progress determinations for Hunter and Huntington to require controls which will ensure real emissions reductions rather than capping allowable annual emissions above recent actuals for NOx and SO2.
UDAQ Response: Under the regional haze rule, the reasonableness of any incremental pollution reduction from the Hunter and Huntington power plants is determined using a four-factor analysis. In the proposed SIP, UDAQ evaluated potential controls based upon the PacifiCorp's four-factor submittal and determined that additional physical controls (e.g., SCR, SNCR) are not cost-effective under likely future plant utilization. In the final SIP, UDAQ establishes enforceable plantwide annual mass-based NOx emissions limits in an effort to reduce uncertainty regarding future utilization. The agency provides a revised cost-effectiveness analysis of SNCR and SCR at the utilization/emission levels imposed by these mass-based limits and finds that the installation of physical controls is not cost-effective at or below those utilization/emission levels.

Commenters: EPA
Comment Summary 57: PacifiCorp's four-factor analysis should provide additional support for PacifiCorp's SO2 scrubber efficiency.
UDAQ Response: UDAQ solicited additional information from PacifiCorp regarding SO2 scrubbing efficiency. As they note in their comments, the scrubbing efficiencies they included in their four-factor analysis were an artifact of their RPEL calculation methodology and are not
representative of levels that can be achieved without significant additional capital expenditures. PacifiCorp provided additional clarification on this topic in a letter found in appendix C.3.D. UDAQ evaluated SO2 emission rates from all units at both plants and found them to vary between approximately 0.06 and 0.10 lb/MMBtu over the four-factor analysis period, which is in line with the scrubber system design specifications and supplier guarantees. Additional detailed information would be required to further assess the potential for incremental efficiency improvements using the existing controls. However, the 2019 Guidance suggests that such an evaluation is not necessary and is unlikely to be cost-effective. EPA believes it may be reasonable for a state not to select a source for further analysis under certain scenarios, including:

For the purpose of SO2 control measures, an EGU that has add-on flue gas desulfurization (FGD) and that meets the applicable alternative SO2 emission limit of the 2012 Mercury Air Toxics Standards (MATS) rule47 for power plants. The two limits in the rule (0.2 lb/MMBtu for coal-fired EGUs or 0.3 lb/MMBtu for EGUs fired with oil-derived solid fuel) are low enough that it is unlikely that an analysis of control measures for a source already equipped with a scrubber and meeting one of these limits would conclude that even more stringent control of SO2 is necessary to make reasonable progress.

UDAQ has included the existing SO2 rate-based limits for Hunter and Huntington in IX.H.23 to ensure that these plants continue implementing their SO2 scrubbing measures and that their emission rates will not increase in the context of the round 2 regional haze SIP.

Commenters: EPA, NPS, The Conservation Organizations

Comment Summary 58: Scrubber systems are expected to achieve a control effectiveness of 95% or higher, there may be opportunities to further increase PacifiCorp's control efficiency.

UDAQ Response: UDAQ disagrees that all scrubber systems are expected to achieve a control effectiveness of 95% or higher. An analysis of Hunter and Huntington’s SO rates reveals that the existing systems are operating within their design specifications and supplier guarantees. UDAQ agrees with PacifiCorp's comments that the Utah units’ SO2 scrubbers all have control efficiencies that surpass 90%, but cannot achieve lower SO2 emission rates. To achieve dramatically improved SO2 rates, costly new capital expenditure would be required.

Commenters: EPA, NPS

Comment Summary 59: PacifiCorp's proposal for RPEL's indicates that SO2 emissions could be reduced to 0.032 lb/MMBtu at a cost of $301,000. UDAQ should consider these reductions in PacifiCorp's four-factor analysis

UDAQ Response: As noted in PacifiCorp's comments, the scrubbing efficiencies they included in their four-factor analysis were an artifact of their RPEL calculation methodology and are not representative of levels that can be achieved without significant additional capital expenditures. PacifiCorp provided additional clarification on this topic in a letter found in appendix C.3.D.

Commenters: EPA, The Conservation Organizations

Comment Summary 60: UDAQ should either adopt a utilization limit corresponding to the assumption of future use or perform a four-factor analysis using recent historical utilization. This analysis is speculative and the state should support its control determination based on an assumption of projected 2028 NOX emissions (an actual average of 2015-2019 historical emissions). Less utilization is only relevant if joined by a requirement to limit capacity to the rates assessed.
UDAQ Response: UDAQ appreciates this feedback. In the final SIP, UDAQ has included a cost-effectiveness evaluation of SCR and SNCR based upon enforceable mass-based NOx emission limits for Hunter and Huntington. This analysis shows that physical controls are not cost-effective at the enforceable NOx emission limit levels for 2028.

Commenters: Deseret Power

Comment Summary 61: Deseret supports PacifiCorp's comments regarding the proposed RH SIP and opposes additional controls for Hunter 2. Deseret specifically believes that mandating the addition of Selective Catalytic Reduction (“SCR”) controls at Hunter II is unwarranted and could pose unacceptable financial risks to Deseret. The SCR for Hunter II will cost approximately $165 million according to EPA’s estimate4. Of that amount, Desert would be responsible for contributing approximately $41 million. Deseret cannot borrow or pay that amount from existing cash resources – it would require the consent of the creditor under the debt forbearance to borrow Deseret’s share. Under the forbearance arrangement, Deseret must provide annual revised forward projections to its creditors of anticipated cash flows (or deficits) through 2026. Should the revised cash flow projection indicate a projected deficit in available cash flows to meet minimum scheduled debt payments for the coming year, immediate restrictions on Deseret’s use of available cash flow are triggered.

UDAQ Response: UDAQ acknowledges this comment. UDAQ was unaware of this situation and has taken this information into consideration in its final controls determination.

Commenters: The Conservation Organizations

Comment Summary 62: PacifiCorp used an improper interest rate of 7.303% without justification.

UDAQ Response: PacifiCorp provided UDAQ with the latest interest rate order approved by the Utah Public Service Commission (PSC), which includes substantial documentation in support of a rate of 7.34%5. UDAQ contacted EPA to determine whether the Utah PSC order provided reasonable justification of this source-specific rate received feedback that "... there is sufficient justification for the rate of 7.34% established by the UT PSC order."6 PacifiCorp ultimately revised this rate downward to 7.303% to account for a weighted average of rates approved by all six service territory states using the methodology found in appendix A of their August 31, 2021, four-factor response7. UDAQ is satisfied with the approach and since the revised rate is lower than that approved by the Utah PSC, UDAQ is confident that the 7.303% rate is appropriate.

Commenters: The Conservation Organizations

Comment Summary 63: UDAQ should verify that PacifiCorp's calculations for capital costs don't account for income tax costs.

UDAQ Response: UDAQ has verified that PacifiCorp's calculations for capital costs do not include income taxes. Please refer to their original four-factor analysis submittal in appendix C.3.A on page 13.

4 Table 5, Response to Comments, EPA-R08-OAR-2015-0463-0208 at p. 205
5 PacifiCorp’s interest rate order can be found at: https://pscdocs.utah.gov/electric/20docs/2003504/3168662003504ro12-30-2020.pdf
6 See appendix D.2.H for documentation of EPA correspondence on interest rates.
7 PacifiCorp’s four-factor response can be found at: https://documents.deq.utah.gov/air-quality/planning/air-quality-policy/regional-haze/DAQ-2021-011726.pdf
Commenters: The Conservation Organizations

Comment Summary 64: PacifiCorp's four-factor analysis incorrectly assumes an annual average NOx rate of 0.05 lb/MMBtu.
UDAQ Response: UDAQ's analysis of control equipment followed EPA's recommendations for equipment life as laid out in EPA's updated control cost spreadsheets for each equipment type. For example, SCR systems are analyzed with an expected lifespan of 30 years, while SNCR systems are reviewed using a 20-year lifespan. UDAQ believes that an average NOx rate of 0.05 lb/MMBtu is appropriate for typical SCR controls.

Commenters: The Conservation Organizations

Comment Summary 65: PacifiCorp's four-factor analysis improperly includes air preheater modifications in its SNCR costs.
UDAQ Response: PacifiCorp updated the information relative to SNCR and installation of a new air preheater would not be required. Upgrades to the system may be required due to increased ammonia slip, thus accounting for the cost shown in the original four-factor analysis estimate.

Commenters: The Conservation Organizations

Comment Summary 66: PacifiCorp's four-factor analysis improperly assumes a 20-yr SNCR life rather than a 30-yr life.
UDAQ Response: UDAQ's analysis of control equipment followed EPA's recommendations for equipment life as laid out in EPA's updated control cost spreadsheets for each equipment type. For example, SCR systems are analyzed with an expected lifespan of 30 years, while SNCR systems are reviewed using a 20-year lifespan.

Commenters: The Conservation Organizations

Comment Summary 67: UDAQ should not have evaluated capacity factors on a plantwide basis when cost-effectiveness is determined on a unit-specific basis.
UDAQ Response: UDAQ provided plantwide capacity factors in the proposed SIP to illustrate that utilization has trended downward over time. This metric is sufficient for this general purpose. Later, in its cost-effectiveness sensitivity analysis, UDAQ shows how the cost-effectiveness of individual units changes as utilization changes.

Commenters: PacifiCorp

Comment Summary 68: Hunter and Huntington are very important to the local economies. SCR installation may result in a shutdown of the unit which was not EPA's intent through the RHR and could result in a 20-25% employee reduction.
UDAQ Response: UDAQ acknowledges and appreciates this comment.

Commenters: PacifiCorp

Comment Summary 69: The first planning period SIP for NOx lowered NOx emissions limits, resulted in the installation of physical NOx controls, and formalized the closure of the Carbon plant (thereby eliminating all of its emissions). PacifiCorp began these installations of the NOx combustion controls in 2006 and completed them in 2014, as required by the 2008 SIP. EPA noted that “combustion control upgrades at the Hunter and Huntington facilities have been achieving significant NOx reductions since the time of their installation between 2006 and 2014.”
UDAQ Response: UDAQ acknowledges and appreciates this comment.
Commenters: PacifiCorp

Comment Summary 70: PacifiCorp requests UDAQ consider the additional costs of inflation, fuel availability, and supply-chain issues concerning control cost-effectiveness. EPA RH BART guidelines allow decision makers to consider a source's ability to afford technology if the installation of controls could affect continued plant operations. A cost-effectiveness assessment doesn't represent all of the considerations to determine whether SCR and additional SO₂ scrubbing are reasonable controls for the Utah Units.

UDAQ Response: UDAQ acknowledges this comment and has included a discussion of affordability considerations in the final SIP.

Commenters: PacifiCorp

Comment Summary 71: PacifiCorp is a PSC-regulated entity that must determine the least-cost, least risk option for its consumers. PacifiCorp has found that the Utah units would be viable least-cost and low risk assets through the end of their projected operating lives on the assumption that SCR installation is not required.

UDAQ Response: UDAQ acknowledges this comment and gave consideration to these concerns in developing the final SIP.

Commenters: PacifiCorp

Comment Summary 72: PacifiCorp plans to add nearly 11,000 MW of new renewable resources over the next 20 years and the 2021 IRP includes the retirement of 14/22 coal units by 2030.

UDAQ Response: UDAQ acknowledges and concurs with this comment.

Commenters: PacifiCorp

Comment Summary 73: Coal divestment in the surrounding western states makes any SCR requirement likely to be unaffordable.

UDAQ Response: UDAQ acknowledges this comment and gave consideration to these concerns in developing the final SIP.

Commenters: PacifiCorp

Comment Summary 74: UDAQ should consider the visibility impacts of controls when determining measures necessary for reasonable progress including a dollar per deciview approach. Utah’s RH SIP 2 should include a discussion of whether certain controls or additional requirements will further the visibility goals of the underlying statutes. The State of Utah has the duty to consider “visibility improvement” as part of its reasonable progress determinations and should do so here. In Montana, where EPA issued the FIP directly, it found a 0.18 deciview improvement to be a “low visibility improvement” that “did not justify proposing additional controls” for SO₂ on the source. While PacifiCorp acknowledges that the “visibility improvement” at an individual site does not need to reach the level of human perception, it is also not reasonable to require exorbitant expenditures that result in no real modeled, discernible improvement in visibility. UDAQ has not provided analysis that additional SO₂ limits will improve visibility in CIAs.

UDAQ Response: EPA’s 2021 Clarifications Memo states that a state should not use visibility to summarily dismiss cost-effective potential controls.⁸

⁸ See EPA’s Clarifications Regarding Regional Haze State Implementation Plans for the Second Implementation Period at 13
Commenters: PacifiCorp

Comment Summary 75: The State developed a sensitivity analysis to demonstrate the impact of plant utilization on cost-effectiveness at PacifiCorp’s Utah Units. The analysis indicates that lower plant utilization leads to an increase in cost effectiveness. The electricity generation industry is experiencing significant change, which increases uncertainty regarding medium to long-term operations of Hunter and Huntington. As such, the State correctly determined the costs for controls were not prudent, and instead implemented NOX mass-based emission limits that conform to the Western Regional Modeling and Analysis (“WRAP”) projected 2028 NOX “on the books” estimates. The State's use of WRAP's on-the-books estimates to set emissions limits in its utilization sensitivity analysis is consistent with past EPA practice.

UDAQ Response: UDAQ acknowledges this comment and has established plantwide annual mass-based NOX limits for Hunter and Huntington to constrain NOX emissions to levels at which the installation of additional physical controls is found not to be cost-effective in the final SIP. These limits, however, are no longer based directly upon the WRAP 2028OTBa2 emissions projections.

Commenters: PacifiCorp

Comment Summary 76: The Utah Units are necessary to support grid stability, transmission services, and low-cost energy. The Utah Units are load-following and provide energy at times when renewable energy sources are scarce. Early retirement of these units could restrict the level of renewables that can be accommodated until replacements can be constructed or purchased.

UDAQ Response: UDAQ acknowledges this comment and gave consideration to these concerns in developing the final SIP.

Commenters: PacifiCorp

Comment Summary 77: PacifiCorp supports Utah’s determination of an SO2 limit of 0.12 lb/MMBtu 42 30-day rolling average for the Utah Units. This permit limit for the plants is the appropriate limit because the SO2 controls at the plants: (1) are efficient and effective (over 90% control efficiencies on all Utah Units); (2) cannot be upgraded to become more efficient in a cost-efficient manner; and (3) align with EPA guidance recognizing that a State may forego further analysis of SO2 controls at a plant with modern, efficient controls. All of PacifiCorp’s Utah coal plants have FGD installed, and each unit has a permitted limit of 0.12 lb/MMBtu for SO2 emissions, which is significantly lower than the 0.2 lb/MMBtu SO2 limit addressed in the 2019 Guidance. Therefore, under the applicable EPA guidance, no further SO2 controls are needed for the Utah Units.

UDAQ Response: UDAQ concurs with these comments, but is revising the proposed limits to remove startup, shutdown, and malfunction provisions in response to EPA comments.

Commenters: PacifiCorp

Comment Summary 78: The NOX and SO2 rates discussed in the 2020 RP Analysis are artificial rates which resulted from the RPEL calculation methodology. The existing Utah Units’ scrubbers cannot control lower SO2 emission rates. To achieve a 0.03 lb/MMBtu SO2 rate, new scrubbers would have to be constructed at an estimated capital cost of $180 million for each unit.

UDAQ Response: UDAQ appreciates this clarification regarding the calculation of RPELs and reiterates that we are not pursuing the RPELs proposed by the company. UDAQ notes that PacifiCorp provided additional clarification on this topic in a letter that can be found in appendix C.3.D.
Commenters: PacifiCorp
Comment Summary 79: EPA's proposed 2022 CSAPR overlaps with the RH Second Implementation Period on controlled pollutants and controlled sources. UDAQ should account for the 2022 CSAPR, if finalized, when making reasonable progress determinations.
UDAQ Response: UDAQ is aware of the 2022 CSAPR proposal and believes that the mass-based limits in the proposed SIP provide meaningful NOx reductions at a lower cost while providing more compliance flexibility.

Commenters: PacifiCorp
Comment Summary 80: PacifiCorp suggests UDAQ include the additional information provided in PacifiCorp's comments in the RH SIP 2
UDAQ Response: UDAQ appreciates these comments and will utilize them, where applicable, in conjunction with other public comments received to improve the final SIP.

Commenters: UAMPS
Comment Summary 81: UAMPS supports the comments submitted by PacifiCorp and opposes any regulatory requirement to install SCR on Hunter Unit 2
UDAQ Response: UDAQ acknowledges UAMPS' support of PacifiCorp's comments and opposition to a requirement to install SCR on Hunter Unit 2.

Commenters: NPS
Comment Summary 82: NPS estimates that the scrubber upgrades proposed by PacifiCorp could reduce SO2 emissions by over 3,300 tons/yr at $400-900/ton SO2 removed based on the proposed SO2 emissions rates applied to the average heat inputs for 2017-2019 and adapted from PacifiCorp's 4/21/2020 submittal. NPS recommends that UDAQ require these upgrades.
UDAQ Response: UDAQ notes that these calculations are based upon information supporting PacifiCorp's RPEL proposal which UDAQ did not agree with and rejected. UDAQ agrees with PacifiCorp's comments that the Utah Units' SO2 scrubbers all have control efficiencies surpassing 90% and cannot cost-effectively achieve lower SO2 emissions rates. PacifiCorp provided additional clarification on this topic in a letter found in appendix C.3.D.

Commenters: EPA, NPS, The Conservation Organizations
Comment Summary 83: We agree with UDAQ that PacifiCorp’s RPELs for Huntington and Hunter power plants should not be adopted.
UDAQ Response: UDAQ appreciates this comment.

U.S. Magnesium:

Commenters: EPA, The Conservation Organizations, National Parks Conservation Association
Comment Summary 84: UDAQ should implement NOx and SO2 limits for the Riley Boiler
UDAQ Response: UDAQ acknowledges this comment. Modifying the Operating Permits of the RH sources is outside the scope of this SIP. Section IX.H.23 imposes specifically those limitations found to be both technically feasible and cost effective for each RH source.

Commenters: EPA
Comment Summary 85: Include additional justification that the solar pond engines are well controlled.
UDAQ Response: On May 11, 2022, UDAQ received supplemental information from USM regarding the technical and economic feasibility of electrification of the pump engines. UDAQ
has reviewed this supplemental information and concurs with the company's analysis. Conversion of the pumps to electric power is not warranted at this facility.

Commenters: EPA
Comment Summary 86: Consider engine replacement or electrification at the Riley Boiler
UDAQ Response: See UDAQ’s response to the above comment.

Commenters: EPA, NPS, The Conservation Organizations
Comment Summary 87: Update USM's four-factor analysis with SCR feasibility in the downstream configuration as a control option
UDAQ Response: On May 11, 2022, UDAQ received supplemental information from USM regarding the technical and economic feasibility of SCR installation on the spray dryer turbines. This supplemental information clarified the technical difficulties relating to stack gas temperature, acid gas entrainment, particulate fouling, and physical limitations of the exhaust stack configuration. In addition, expansion of the cost analysis for application of SCR was also provided using acceptable values for interest rate and expected end-of-life. UDAQ has reviewed this supplemental information and concurs with the company's analysis. The installation of SCR is not warranted on the spray dryer turbines at this facility.

Commenters: The Conservation Organizations
Comment Summary 88: USM's four-factor analysis did not consider engine size, tier rating, and operating hours into account.
UDAQ Response: On May 11, 2022, UDAQ received supplemental information from USM regarding the technical and economic feasibility of electrification of the pump engines. UDAQ has reviewed this supplemental information and concurs with the company's analysis. Conversion of the pumps to electric power is not warranted at this facility.

Commenters: NPS
Comment Summary 89: Request for public review opportunity of USM's supplemental documents and four-factor analysis updates.
UDAQ Response: UDAQ provided NPS with USM's information order letters on 4/22/22 and 5/17/22. USM's responses can be found in appendix D.2.

Commenters: The Conservation Organizations
Comment Summary 90: USM's four-factor analysis did not include boiler-specific data when considering low-NOx burners.
UDAQ Response: On April 26, 2022, UDAQ received supplemental information regarding the Riley Boiler (letter originally dated March 12, 2021). Although labeled as "low-NOX" at the time of installation (1972), the burner assembly currently qualifies as a standard burner under modern standards. A review of the original engineering specifications and schematics included with the April 26 submittal demonstrates the technical infeasibility of installing current low-NOX or ultra-low-NOX burners at the Riley Boiler.

Commenters: The Conservation Organizations
Comment Summary 91: A 22.6 ton per rolling 12-month enforceable emissions limit should be implemented with the installation of FGR. If UDAQ continues to only impose a mass-based emission limit, the regulatory language must also specify recordkeeping on the amount of fuel used per month at the Riley boiler so that 12-month heat input can be calculated. The proposed regulatory language should also make clear that compliance with the 12-month rolling total
emission limit shall be calculated based on the fuel use or heat input over that time period and based on the NOX emission rates from the most recent stack test.

UDAQ Response: UDAQ agrees that the proposed regulatory language should be revised and appropriate language will be added to IX.H.23 of the SIP. However, UDAQ disagrees with the comment that recordkeeping on the amount of fuel is needed, heat input is not a necessary component of measuring or determining compliance with a mass-based emission limit.

Commenters: The Conservation Organizations

Comment Summary 92: UDAQ must include enforceable regulatory language requiring testing at least once a year

UDAQ Response: UDAQ agrees with this comment. An annual stack test is appropriate and has been added to SIP Sections XX.A and IX.H.23.

Commenters: NPS

Comment Summary 93: USM's four-factor analysis does not include the estimated level of control including the assumed NOX reduction or revised cost per ton of NOX removed estimate to conclude SCR is not cost effective.

UDAQ Response: UDAQ notes that the emissions controlled by the SCR system would remain unchanged from USM's original submission - only the annualized cost evaluation was redone. Thus, total annualized cost of $261,411 divided by tons removed of 38 (from page 24 of USM's original submission), yields a final cost effectiveness value of 6,879.24 $/ton. USM's final analysis does not rely on reduced capacity - the company was merely making an observation that operations at less than maximum capacity would lower tons removed without lowering annualized costs, thus lowering cost effectiveness. A fact which UDAQ acknowledges.

Commenters: NPS

Comment Summary 94: Request to verify USM's annual emissions assumptions.

UDAQ Response: On May 11, 2022, UDAQ received supplemental information regarding the pump engines. Specifically, USM investigated the costs for replacement of the pump engines with tier 4 equivalents, and converting the pumps to electrically driven models. In both cases, the conclusion reached was that replacement was not economically viable. UDAQ has reviewed the approach and analysis undertaken by USM and agrees with the company's conclusion. See also UDAQ's responses to USM's comments on this topic.

Commenters: USM

Comment Summary 95: The most feasible place for SCR installation is after the preheater/concentrator tanks and the estimated cost-effectiveness is $12,316/ton NOX removed.

UDAQ Response: UDAQ has reviewed USM's revised four-factor analysis and concurs with the conclusion reached by the company. Technical and cost feasibility issues have eliminated the use of SCR as a viable control option at this facility.

Commenters: USM

Comment Summary 96: The cost effectiveness of replacing the 30 existing diesel engines with tier 4 diesel engines will emit 71.65 tons of NOX annually and reduce existing emissions by 88% (63.15 tons/year) is $55,906/ton NOX removed.

UDAQ Response: Although UDAQ disagrees that each engine at the USM facility is exactly identical in terms of emission profile and total hours of use, the general conclusion reached by the company is still valid. Regardless of any variations in use or exact NOX emission rate, the economic viability of engine replacement is not warranted at this facility.
Commenters: USM
Comment Summary 97: The cost effectiveness of converting to Pump P-0 electric pumps is $32,478/ton removed.
UDAQ Response: UDAQ agrees with the approach and analysis undertaken by USM in evaluating the cost effectiveness of electrical conversion. Based upon the conclusion reached under this approach, it is not cost effective to convert these pumps to electric power.

Intermountain Generation Station:

Commenters: The Conservation Organizations
Comment Summary 98: The enforceable shut down date for IGS should be December 31, 2025
UDAQ Response: UDAQ acknowledges these comments. Based upon comments received from IPSC noting its contractual power provision requirements and potential for project delays in an economy facing serious supply chain constraints as well as information gleaned from UDAQ's ongoing deliberations in the development of the IGS natural gas conversion project permit (e.g., the project is already six months behind schedule). IPSC has also stated that they must have flexibility in order to ensure the new natural gas-fired units are fully commissioned prior to decommissioning the coal units to ensure IPSC fulfills their responsibility to supply energy. As such, UDAQ feels it is appropriate to retain the closure date of December 31, 2027 as outlined in section 8.D as well as the enforceable measures in IX.H.23.

Commenters: The Conservation Organizations, Cory McNulty
Comment Summary 99: UDAQ should conduct a four-factor analysis for IGS including the proposed two new combined combustion cycle combustion turbines.
UDAQ Response: UDAQ acknowledges this comment. The agency disagrees that a four-factor analysis needs to be completed for IGS when the closure of coal units 1 and 2 have been secured by this SIP revision. EPA guidance explains that source shutdowns could be considered as the most stringent measure for future reduction necessary to make reasonable progress and may be relied upon to either forgo a four-factor analysis or shorten the remaining useful life of a source. That said, NPS reviewed the potential for additional SO2 reductions at IGS and concluded that, "The addition of DSI would not reduce emissions significantly, Therefore, we have no further comments on improving the efficiency of the existing scrubbers at IGS."

Commenters: The Conservation Organizations
Comment Summary 100: Any proposed retirements or operation changes included in Utah's LTS must be federally enforceable with compliance deadlines for retirement by the end of the second planning period.
UDAQ Response: UDAQ has included the retirement of IGS's coal units 1 and 2 in SIP subsection IX.H.23. These retirements will become federally enforceable upon EPA approval of the round 2 SIP revision.

Commenters: NPS
Comment Summary 101: The largest air quality benefit of requiring an earlier closure date is assurance of fewer emissions sooner.
UDAQ Response: UDAQ acknowledges this comment.
Commenters: NPS
Comment Summary 102: NPS reviewed the potential for additional SO₂ emission reductions at IGS. SO₂ emissions at IGS are 0.06 lb/MMBtu. The addition of DSI would not reduce emissions significantly. Therefore, we have no further comments on improving the efficiency of the existing scrubbers at IGS.
UDAQ Response: UDAQ acknowledges and concurs with this comment.

Commenters: IPSC
Comment Summary 103: IPSC plans on transitioning to natural gas and hydrogen by 2025. However, IPA cannot commit to a permanent closure of the coal units prior to December 31, 2027 because IPA needs to ensure the gas units are fully commissioned prior to closing the coal units.
UDAQ Response: UDAQ acknowledges and concurs with this comment.

Commenters: IPSC
Comment Summary 104: IPA plans to replace the coal-fired units with a combined-cycle natural gas plant before December 31, 2027, which will include state-of-the-art emissions controls, such as SCR.
UDAQ Response: UDAQ acknowledges and concurs with this comment.

Commenters: IPSC
Comment Summary 105: IPSC Concurs with Utah’s Determination that IPSC is Effectively Controlled and Further Controls are Not Reasonable Prior to Transition to Natural Gas and Hydrogen. The only remaining efficiency improvements to the existing control equipment for both NOₓ and SO₂ would require capital improvements—and there is simply not enough time for engineering, procurement, and construction of these upgrades before the coal units are shuttered.
UDAQ Response: UDAQ acknowledges and concurs with this comment.

Commenters: IPSC
Comment Summary 106: UDAQ has incorporated an enforceable deadline for shutdown during the second Regional Haze planning period and therefore has met its statutory and regulatory obligations.
UDAQ Response: UDAQ acknowledges and concurs with this comment.

Commenters: IPSC
Comment Summary 107: UDAQ has clearly demonstrated reasonable progress is being made, and imposing an arbitrary deadline prior to December 31, 2027 could have devastating consequences for IPP as it transitions to natural gas and hydrogen.
UDAQ Response: UDAQ acknowledges and concurs with this comment.

Paradox Lisbon:

Commenters: The Conservation Organizations, National Parks Conservation Association
Comment Summary 108: UDAQ should conduct a four-factor analysis for the Paradox Lisbon Plant if it does not revise the permit limits for this facility of 111 tons SO₂/year including appropriate testing, recordkeeping, and reporting language.
UDAQ Response: Based on updated 2018 and 2021 inventory data (the plant was not in operation in 2017 or 2019), the Q/d analysis for the Paradox Lisbon Plant has been updated and
found to be below UDAQ's Q/d threshold of 6. The updated information can be found in section 7.A.2.

Commenters: NPS
Comment Summary 109: Requests to review Paradox's additional information prior to the submission of this SIP.
UDAQ Response: UDAQ has included Table 28 in section 7.A.2 which includes data from the emissions inventory for the Lisbon Plant from 2017-2021 and their resulting Q/d values for both Canyonlands and Arches National Park, all of which are below UDAQ's threshold of 6.

Commenters: EPA
Comment Summary 110: EPA recommends UDAQ provide additional information on the excluded Paradox Lisbon Plant source including recent actual SO2 information supporting the statement that their recent emissions are more in line with their 2009 data showing 111 tons SO2/yr or conduct a four-factor analysis for them.
UDAQ Response: UDAQ reviewed emissions data from 2018 through 2021 and identified that the Lisbon plant did not meet or exceed a Q/d of 6 in any of those years. In particular, combined Q/d values ranged between 4.4 and 5.8, and SO2 emissions between 2018 and 2021 ranged from 0.1 to 0.6 tons per year.

Kennecott:

Commenters: The Conservation Organizations, National Parks Conservation Association
Comment Summary 111: UDAQ should conduct a four-factor analysis on all units of the Kennecott Copper facility and the Kennecott Mine and Copperton Concentrator including providing a breakdown of emissions from emission units UDAQ can regulate versus those it cannot regulate.
UDAQ Response: UDAQ disagrees that it should conduct a four-factor analysis on the Kennecott Mine and Copperton Concentrator. UDAQ has included a breakdown of emissions UDAQ cannot regulate and their resulting Q/d values in SIP Section 7.A.2, which clearly demonstrates that this source was appropriately screened-out. Furthermore, as identified by EPA\(^9\), the anticipated NOx+NMHC emissions reduction from replacing a Tier 1 haul truck with a Tier 4 truck is 65.9\%, and the NOx+NMHC emissions reduction from replacing a Tier 2 haul truck with a Tier 4 truck is 42.3\%. This gives UDAQ a degree of comfort that emissions from this source will continue to improve over time as older vehicles are replaced. Additionally, this source recently underwent a thorough BACT analysis as part of the Salt Lake Serious Nonattainment Area PM 2.5 SIP. As a result, there are no additional controls that can be applied at this time beyond those already included in the SIP. UDAQ has added a table to Section 7.A.2 which outlines all of the existing enforceable controls in Utah's SIP for all applicable sources identified in the round 2 SIP revision.

Commenters: The Conservation Organizations
Comment Summary 112: UDAQ should impose a requirement in the Proposed SIP stating that Units 1-4 of Kennecott Utah Copper LLC Power Plant shall remain permanently closed.
UDAQ Response: UDAQ acknowledges and disagrees with this comment. Not only is the decommissioning of Kennecott's coal-fired boilers reflected in the Approval Order which was

\(^9\) EPA’s Nonroad Compression-Ignition Engines: Exhaust Emission Standards can be found at: https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P100OA05.pdf
updated on February 4, 2020, and in a letter rescinding the Title V permit on February 12, 2020, but the BACT requirements imposed through Utah's PM2.5 SIP include fuel-switching to natural gas and an SCR-level NOx emissions limits rate of 0.04 lb/MMBtu for Unit 4, which are included in IX.H.23 of the SIP. As such, UDAQ believes it is unnecessary to include the permanent closure of these units in this SIP revision. Please see comment 113 for additional information.

Commenters: EPA
Comment Summary 113: For the Kennecott Power Plant Lab Tailing Impoundment, EPA recommends Utah provide further explanation on the meaning of “decommissioned” as it relates to Unit 4. The February 4, 2020, Approval Order indicates that Units 1-3 are prohibited to operate, yet Unit 4 is listed as voluntarily decommissioned without details on its ability to restart or prohibition on its operation.
UDAQ Response: The February 2020 AO removed any ability for Kennecott to operate coal-fired boilers as all the coal-fired boilers were removed from the approved equipment list. The AO summarizes the updates in the project description. Units 1-3 were prohibited to operate under the recently approved PM2.5 SIP, and a specific SIP condition set their closure date. Thus, due to that applicable condition, Units 1 – 3 were removed from the permit. Kennecott proposed the removal of Unit 4 from the permit because they planned to decommission the unit. The AO project summarizes that Kennecott made that decision voluntarily, and -- based on that decision -- Unit 4 was removed from the permit. The AO only lists remaining ancillary equipment. It does not list Units 1-3 or Unit 4 as equipment for the facility and -- for this reason -- Kennecott does not have approval to operate any coal-fired boilers. Based on this equipment change, UDAQ also rescinded the Title V permit for the facility on February 12, 2020.10

Chevron and Tesoro:
Commenters: EPA
Comment Summary 114: EPA recommends UDAQ further explain not analyzing the Chevron and Tesoro facilities. Recent BACT determination alone is not sufficient justification to exclude these sources from additional emission reductions for reasonable progress.
UDAQ Response: UDAQ's original Q/d screening using 2014 NEI data yielded values below 6 for the Chevron and Tesoro facilities. At EPA’s request, UDAQ re-calculated the Q/d thresholds of its major sources using 2017 NEI data to ensure that additional sources did not exceed a Q/d of 6 and confirmed that no additional sources would be screened-in using the newer data. Specifically, neither the Chevron or Tesoro refineries had a revised Q/d of 6 or greater. Here it should be noted that UDAQ chose a more stringent Q/d threshold of 6 rather than the Q/d value of 10 recommended by WRAP. This screen-out alone should be sufficient to exempt these sources the need for further analysis.

UDAQ is unclear as to why EPA is singling out these sources for additional scrutiny, but presumably it is because both sources had Top 10 (i.e., high ranking) weighted emissions potential values for sulfate or nitrate and various in-state and out-of-state CIAs. Specifically, Chevron ranked 9th for nitrate at BRCA1 with a % of total point WEP of 1.4%. Chevron had no high-ranking sulfate impacts. Tesoro ranked 10th at BRCA1 for nitrate at BRCA1 (0.9%) and had the following rankings and % values for sulfate:

10 See appendix G which includes document DAQO-RP0105720009-20 confirming that the Title V operating permit number 3500346002 has been rescinded
BRCA1: Rank 8 (2.6%)
CAPI1: Rank 8 (1.6%)
BRID1: Rank 8 (3.9%)
YELL2: Rank 8 (3.4%)
CRMO1: Rank 6 (2.7%)
SAWT1: Rank 8 (2.7%)

Though top 10 ranked, these WEP values represented a relatively small portion of total point WEP at each CIA, as indicated above.

The 2019 Guidance states that it "may be reasonable for a state not to select an effectively controlled source" (pg 22) and that "the statutory considerations for selection of BACT and LAER are also similar to, if not more stringent than, the four statutory factors for reasonable progress"11. Both Chevron and Tesoro underwent a thorough BACT analysis for the Serious Area PM2.5 Salt Lake Nonattainment Area SIP that resulted in additional controls and limits being added to SIP Section IX.H. Specifically, Tesoro installed a wet gas scrubber unit to control SO2 emissions and is now subject to a source-wide annual SO2 limit of 300 tons per year. For comparison, WRAP’s WEP analyses used a 2028OTBa2 projection of 708.3 tons. Tesoro’s actual SO2 emissions for 2019-2021 since the installation of new controls ranged between 22 and 23 tons per year. As a result, the sulfate WEP values for this source – which were already a tiny fraction of total point source sulfate WEP for each potentially impacted CIA – are not representative of either the enforceable limits or the recent actuals for this facility. Please refer to section 7.A.2 to review the existing controls resulting from the recent PM2.5 and PM10 SIP revisions for Chevron and Tesoro which include both source-wide and equipment-specific limits for NOx, SO2, PM10, and PM2.5. Please refer to section 6.A.10 to review the projected emissions reductions resulting from Tesoro's existing controls.

Permit Revisions/Emissions Limit Tightening:

Commenters: EPA

Comment Summary 115: EPA recommend UDAQ evaluate whether a source can or is achieving lower emissions rates using existing measures than assumed in their permit and consider revising their permit to reflect these lower emissions for reasonable progress

UDAQ Response: UDAQ has evaluated each source's emissions in sections 7.C.1 through 7.C.5 and has clarified which new and existing emissions reductions have been deemed necessary for reasonable progress. Where applicable, UDAQ evaluated whether a source can achieve or is achieving lower emissions rates to determine if permit revisions are appropriate (e.g., SO2 controls and Hunter and Huntington). These determinations are detailed in sections 6.A.10 and 8.D of this SIP revision and enforceable through IX.H.23.

Commenters: EPA

Comment Summary 116: UDAQ should consider whether equipment upgrades, optimization, or retrofit for source’s existing controls are reasonable. EPA recommends UDAQ conduct four-factor analysis including such options or explain why it is reasonable not to do so. These protective measures have positive impacts on air quality outside the context of RH.

UDAQ Response: UDAQ acknowledges this comment and is aware of co benefits of regional haze controls for general air quality under and for purposes of attaining or maintaining the

11 See 2019 EPA Guidance at 23
NAAQS. UDAQ addresses equipment upgrades, optimization, or retrofits where appropriate in its source-specific comment responses elsewhere in this document.

IX.H.23:

Commenters: EPA

Comment Summary 117: Explain and provide technical documentation for the basis of the proposed successive NO\textsubscript{x} ton per year limits for Hunter and Huntington. How do these successive emission limits for future years align with the determination that it is not currently reasonable to require additional emission reductions from Hunter and Huntington?

UDAQ Response: In the proposed SIP, three successive NO\textsubscript{x} ton per year limits were developed to provide a reasonable compliance glidepath for Hunter and Huntington. For Hunter, the starting limit of 10,514 tons per year was based upon the 5-year high NO\textsubscript{x} actual emissions between 2016 and 2020 (with 2020 being the most recently available data year when the limits were developed) and was designed to take effect upon Utah Air Quality Board approval of the SIP, which is why no applicability date was given. The 2028 limit, as EPA notes, was based upon WRAP 2028OTBa2 projected emissions of 10,001 tons. The 10,257 ton per year interim limit was simply the average (i.e. midpoint) between the initial and final limits, thus creating a three-level compliance glidepath. The same methodology was used to set three successive limits for Huntington. This approach was selected to provide flexibility for PacifiCorp to adjust utilization levels at its facilities to comply with the limits.

In the final SIP, UDAQ did not use the WRAP 2028OTBa2 projections to set the 2028 mass-based NO\textsubscript{x} limits. Instead, UDAQ establishes 2028 plantwide NO\textsubscript{x} limits that ensure that the plants operate at or below emissions levels at which the installation of additional physical controls is not cost-effective. Specifically, UDAQ is establishing a 2028 plantwide NO\textsubscript{x} limit of 9,843 tons per year for Hunter and a 2028 plantwide NO\textsubscript{x} limit of 6,240 tons per year for Huntington. In addition, UDAQ is establishing an initial plantwide NO\textsubscript{x} limit for Hunter of 11,041 tons per year and an initial plantwide NO\textsubscript{x} limit for Huntington of 6,604 tons per year, both effective upon SIP approval. These initial levels are based on each plant’s highest emission value over the past five years (2017-2021). Finally, UDAQ is establishing an interim 2025 plantwide limit of 10,441 tons per year for Hunter and an interim 2025 plantwide limit of 6,422 tons per year for Huntington, to create a compliance glidepath to aid in the transition from recent actual utilization levels to the final 2028 limits. The interim limits for each plant were calculated as the average of (i.e., the midpoint between) the initial and 2028 plantwide limits for each plant. Such glidepaths are commonly used by states and EPA to provide compliance flexibility (e.g., plantwide applicability limits; Tier 3 fuel averaging, banking, and trading; the Tier 3 vehicle fleet averaging glidepath from 2017-2025; cap and trade programs, etc.).

Commenters: EPA

Comment Summary 118: No short-term limits have been chosen for the Hunter and Huntington power plants to make reasonable progress although short-term emissions limits are commonly imposed as power plants control measures. Such limits may reduce the likelihood of excess emissions impacting Class I areas during periods of high electricity demand days (peak load days). Please explain and document the rationale for not incorporating short-term limits into the IX.H.23 permit revisions.

UDAQ Response: PacifiCorp's annual load curve has two peaks, one in the summer during high air conditioning usage and the other in the winter, when heating and lighting demand increases.
Nitrate impacts at Utah's CIAs, on the other hand, peaks in the wintertime when conditions are ideal for the secondary formation of particulates. Because PacifiCorp needs to maintain headroom for summertime peaking under UDAQ's mass-based NOx limits, they are unlikely to utilize all of their NOx budget during the winter nitrate peak. This data is shown in figures within section 7.C.3. For this reason, UDAQ concludes that short-term limits are unnecessary and may limit flexibility to provide support for PacifiCorp's energy transition to intermittent non-emitting resources like renewables.

Commenters: EPA
Comment Summary 119: EPA recommends the startup, shutdown, maintenance/planned outage, or malfunction exemptions be removed from the SO2 emissions limits for Hunter and Huntington
UDAQ Response: UDAQ concurs with EPA's comment and has amended SIP Sections XX.A and IX.H.23 to remove these exemptions.

Utah Sources identified by downwind states that are reasonably anticipated to impact CIAs:

Commenters: EPA
Comment Summary 120: We recommend that the state reassess the information presented for sulfate and nitrate impacts individually, by summing the total impairment from Utah emissions sources (i.e., the total Utah share of summed nitrate and sulfate visibility impairment, in addition to the separate matrices for nitrate and sulfate).
UDAQ Response: UDAQ does not concur with the recommendation to sum nitrate and sulfate impairment estimates at in-state and out-of-state CIAs, since the potential control options for each pollutant are evaluated separately in our reasonable progress determination. Furthermore, UDAQ did not use the impact assessment matrices to eliminate any Q/d >= 6 sources from further evaluation.

Interstate Consultation/Emissions:

Commenters: The Conservation Organizations
Comment Summary 121: UDAQ failed to meet its state-to-state consultation obligations, and its Proposed SIP lacks the information, documentation, and necessary enforceable measures. Instead of proper consultation with other states, Utah took an “agree to ask for nothing” approach to consultation. UDAQ must go back and properly consult with other states and thoroughly document that consultation for public review.
UDAQ Response: Utah met extensively with its surrounding states regarding each other's regional haze efforts, modeling results, facilities which may affect each other's CIAs, and reasonable progress determinations. The documents provided in appendix B serve to prove these consultation efforts occurred but do not represent the full extent of western interstate consultation. In addition to Utah's multiple state-state meetings, Utah is part of the Western Regional Air Partnership and the Western States Air Resources Council. The regional haze coordinators of all the states downwind of Utah are also part of these organizations, who take part in monthly meetings where we jointly collaborate on our regional haze planning efforts and progress. According to the July 2021 Clarification Memo, "A state receiving a request to select a particular source(s) should either perform a four-factor analysis on the source(s) or provide a well-reasoned explanation as to why it is choosing not to do so." Utah received no such requests from other states. Furthermore, in our consultation with neighboring states, when UDAQ inquired about out-of-state sources that might have potential visibility impacts at Utah CIAs (e.g., as identified by...
high WEP values or photochemical source apportionment results), those states either confirmed that those sources were undergoing four-factor analyses or provided "well-reasoned explanation(s)" as to why they thought four-factor analyses weren't necessary. UDAQ conducted further consultation and SIP review for New Mexico, Colorado, California, Nevada, and Arizona and included additional information on out-of-state regional haze proposals concerning the out-of-state sources identified in UDAQ's WEP analysis in Table 31 within section 7.A.3. UDAQ notes that the PNM - San Juan Generating Station has announced a plant closure in 2022, the Four Corners Power Plant has announced plant closure in 2031, and the North Valmy Generating Station has a federally enforceable closure date of December 21, 2028.

Commenters: IPSC
Comment Summary 122: IPSC recommends Utah explain why additional controls at out of state sources are not required for the state to make reasonable progress—taking into account its discussions during interstate consultations, including the existing and future controls anticipated at out of state sources and the results of the four-factor analyses conducted at these sources. UDAQ's SIP conclusions could be strengthened with additional explanation of how these sources were addressed during interstate consultation and why additional controls are not required to make reasonable progress.
UDAQ Response: UDAQ conducted further consultation and SIP review of the second implementation period status of non-Utah sources identified in UDAQ's WEP analysis and included this information in section 9.B.

National Park Service Comments:
Commenters: The Conservation Organizations
Comment Summary 123: UDAQ should revise its SIP to adequately respond to NPS comments
UDAQ Response: UDAQ has consulted with the NPS throughout our iterative regional haze SIP process. As UDAQ stated in their responses to the NPS, additional information from sources have been provided to NPS as UDAQ has received and reviewed it.

Tribe Consultation:
Commenters: The Conservation Organizations
Comment Summary 124: UDAQ failed to provide more information regarding outreach efforts with the Tribes of Utah. EO/2014/005: Executive Agency Consultation with Federally-Recognized Indian Tribes that requires each state agency develop a formal tribal consultation policy to ensure Tribes have input when the state contemplates actions that have implications on Tribes. UDAQ should meaningfully consult with Tribes prior to finalizing the State's SIP.
UDAQ Response: UDAQ shared its draft Regional Haze SIP with the Tribes of Utah on 12/9/21 and requested their input. Utah did not receive any response or feedback. Documentation of this outreach is included in appendix E.

Public Notice:
Commenters: NPS
Comment Summary 125: FLM conclusions and recommendations presented during consultation were not included in the UDAQ notice for this public comment period.
UDAQ Response: UDAQ disagrees with this comment. The public notice published on UDAQ’s web page from April 25th to June 2nd, 2022 included the statement "Prior to action by the Air
Quality Board, the National Parks Service (NPS) and US Forest Service (USFS) reviewed the documents and provided comments. Their comments are summarized with DAQ responses in section 9.C.1 of the SIP (Section XX.A) and their full reviews are included in an appendix file. Proof of this statement in the public notice can be found in appendix F.

Environmental Justice:

Commenters: EPA, The Conservation Organizations
Comment Summary 126: UDAQ should thoroughly assess environmental justice and equity impacts on any potentially affected communities inside or outside the state under title VI of the Civil Rights Act.
UDAQ Response: UDAQ appreciates this comment and has completed an analysis of the environmental justice impacts surrounding the 10 original sources identified in UDAQ's WEP analysis and included this information in section 7.A.5 Environmental Justice Considerations.

General Issues:

Commenters: IPSC
Comment Summary 127: IPSC notes a few technical errors in the Utah SIP and encourages the UDAQ to review these sections and make changes prior to final submission to the EPA. On Page 65 – “Table 19: Utah PM$_{2.5}$ Emission Inventory – RepBase 2 (2014-2018) AND 2028otbA2” PM$_{2.5}$ should be PM$_{10}$.
UDAQ Response: UDAQ appreciates IPSC's identification of this issue and has corrected the title of this table.

Commenters: EPA, NPS
Comment Summary 128: PacifiCorp's letter to UDAQ in the appendix justifying that additional SO$_2$ controls are unnecessary is difficult to read as it is presented in the appendix.
UDAQ Response: UDAQ has fixed this issue, see appendix D.2.C.
Utah State Implementation Plan

Regional Haze Second Implementation Period

Section XX.A

[Date]
List of tables ... 6
List of figures ... 8
List of acronyms ... 11
EXECUTIVE SUMMARY .. 13

Chapter 1: Background and Overview of the Federal Regional Haze Rule ... 16

1.A Regional Haze Planning Periods and Due Dates ... 16
1.B Class I Areas in Utah .. 17
 1.B.1 Arches National Park .. 18
 1.B.2 Bryce Canyon National Park .. 19
 1.B.3 Canyonlands National Park .. 20
 1.B.4 Capitol Reef National Park .. 20
 1.B.5 Zion National Park .. 21
1.C Haze Characteristics and Effects ... 21
1.D Monitoring Strategy .. 22
 1.D.1 Participation in the IMPROVE Network ... 24
1.E History of Regional Haze in Utah .. 25
 1.E.1 Grand Canyon Visibility Transport Commission .. 26
 1.E.2 Western Regional Air Partnership ... 28
 1.E.3 2003 Regional Haze SIP .. 29
 1.E.4 2008 Regional Haze SIP Revision ... 29
 1.E.5 2011 Regional Haze SIP Revision ... 30
 1.E.6 2015 Regional Haze SIP Revision ... 30
 1.E.7 2019 Regional Haze SIP Revision ... 31
1.F General Planning Provisions ... 32
 1.F.1 Regional Haze Program Requirements ... 32
 1.F.2 SIP Submission and Planning Commitments ... 32
 1.F.3 Utah Statutory Authority ... 33

Chapter 2: Utah Regional Haze SIP Development Process .. 34

2.A WRAP Engagement ... 34
 2.A.1 Technical Information and Data: WRAP TSS2.0 .. 35
2.B Consultation with Federal Land Managers ... 35
2.C Collaboration with Tribes .. 36
2.D Consultation with Other States .. 36
2.E Public and Stakeholder Consultation .. 37

Chapter 3: Progress to Date ... 38

3.A Embedded Progress Report Requirements ... 38
 3.A.1 Implementation status of all measures in first planning period .. 38
3.A.2 Summary of emission reductions achieved by control measure implementation ... 39
3.A.3 Assessment of visibility conditions ... 39
3.A.4 Analysis of any changes in emissions from all sources and activities within the state 40
3.A.5 Assessment of any changes in emissions from within or outside the state ... 47

Chapter 4: Utah Visibility Analysis .. 52

4.A Baseline, Current Conditions and Natural Visibility Conditions ... 55
4.A.1 Baseline (2000-2004) visibility for the most impaired and clearest days ... 56
4.A.2 Natural visibility for the most impaired and clearest days .. 56
4.A.3 Current (2014-2018) visibility for the most impaired and clearest days ... 57
4.A.4 Progress to date: most impaired and clearest days ... 58
4.A.5 Differences between current and natural for the most impaired and clearest days 58

4.B Uniform Rate of Progress ... 59

4.C Adjustments to URP: International impacts and/or prescribed fire .. 59

Chapter 5: Utah Sources of Visibility Impairment .. 64

5.A Natural Sources of Impairment ... 64

5.B Anthropogenic Sources of Impairment ... 64

5.C Overview of Emission Inventory System - TSS ... 65

5.D Wildland Prescribed Fires .. 66

5.E Utah Emissions ... 67

Chapter 6: Long-Term Strategy for Second Planning Period ... 75

6.A LTS Requirements .. 75
6.A.1 States reasonably anticipated to contribute to visibility impairment in the Utah CIAs 76
6.A.2 Utah sources identified by downwind states that are reasonably anticipated to impact CIAs 80
6.A.3 Technical Basis of Reasonable Progress Goals .. 84
6.A.4 Identify Anthropogenic Sources ... 84
6.A.5 Emissions Reductions Due to Ongoing Pollution Control Programs ... 84
6.A.6 Measures to Mitigate the Impacts of Construction Activities ... 89
6.A.7 Basic smoke management practices ... 90
6.A.8 Emissions Limitations and Schedules for Compliance to Achieve the RPG .. 91
6.A.9 Source retirement and replacement schedules ... 91
6.A.10 Anticipated net effect on visibility from projected changes in emissions during this planning period 92
6.A.11 Enforceability of Emissions Limitations ... 99

Chapter 7: Emission Control Analysis .. 100

7.A Source Screening .. 100
7.A.1 Q/d Analysis .. 102
7.A.2 Secondary Screening of Sources ... 105
7.A.3 Weighted Emissions Potential Analysis of Sources in Utah and Neighboring States 111
7.A.4 Other Sources ... 123
7.A.5 Environmental Justice Considerations ... 125

7.B Four-Factor Analyses for Utah Sources ... 129
 7.B.1 Control Equipment Descriptions.. 130
 7.B.2 Existing Controls on Active EGUs ... 133
 7.C Source Consultation ... 135

7.C.1 Ash Grove Cement Company- Leamington Cement Plant Four-Factor Analysis
 Summary and Evaluation ... 135
 Ash Grove’s Four-Factor Analysis Conclusion ... 136
 UDAQ Four-Factor Analysis Evaluation .. 136
 Ash Grove’s Evaluation Response .. 136
 UDAQ Response Conclusion ... 137

7.C.2 Graymont Western US Incorporated- Cricket Mountain Plant Four-Factor Analysis
 Summary and Evaluation ... 137
 Graymont Four-Factor Analysis Conclusion ... 138
 UDAQ Four-Factor Analysis Evaluation .. 138
 Graymont’s Evaluation Response .. 140
 UDAQ Response Conclusion ... 141

7.C.3 PacifiCorp’s Hunter and Huntington Power Plants Four-Factor Analysis
 Summary and Evaluation ... 141
 PacifiCorp Four Factor Analysis Conclusion .. 142
 UDAQ Four-Factor Analysis Evaluation .. 143
 Huntington Power Plant ... 143
 PacifiCorp Four Factor Analysis Conclusion .. 144
 UDAQ’s Four Factor Analysis Conclusion ... 145
 PacifiCorp’s Four-Factor Analysis Evaluation Response for Hunter and Huntington 145
 UDAQ Response Conclusion ... 167

7.C.4 Sunnyside Cogeneration Associates- Sunnyside Cogeneration Facility Four-Factor
 Analysis Summary and Evaluation ... 174
 Sunnyside Four Factor Analysis Conclusion ... 175
 UDAQ Evaluation Summary and Conclusion .. 175
 Sunnyside’s Evaluation Response .. 177
 UDAQ Response Conclusion ... 178

7.C.5 US Magnesium LLC- Rowley Plant ... 178
 US Magnesium Four-Factor Analysis Conclusion .. 179
 UDAQ Evaluation ... 180
 US Magnesium’s Evaluation Response ... 180
 UDAQ Response Conclusion ... 181

7.D UDAQ Four-Factor Analysis Summary ... 181

Chapter 8: Determination of Reasonable Progress Goals 182

8.A Reasonable Progress Requirements ... 182

8.B Regional Modeling of the LTS to set RPGs .. 182
8.C URP Glidepath Checks ... 183
8.C.1 Bryce Canyon National Park .. 184
8.C.2 Canyonlands and Arches National Park ... 185
8.C.3 Capitol Reef National Park .. 186
8.C.4 Zion National Park .. 187
8.C.5 Summary of URP Glidepaths .. 188

8.D Reasonable Progress Determinations ... 188
8.D.1 Reasonable Progress Determination for Ash Grove Cement Company – Leamington Cement Plant 188
8.D.2 Reasonable Progress Determination for Graymont Western US Incorporated – Cricket Mountain Plant .. 189
8.D.3 Reasonable Progress Determination for PacifiCorp: Hunter and Huntington Power Plants 189
8.D.4 Reasonable Progress Determination for Sunnyside Cogeneration Associated – Sunnyside Cogeneration Facility ... 189
8.D.5 Reasonable Progress Determination for US Magnesium LLC – Rowley Plant 189
8.D.6 Intermountain Power Service Corporation – Intermountain Generation Station 190

Chapter 9: Consultation, Public Review, Commitment to further Planning 191

9.A Federal requirements ... 191
9.B Interstate Consultation ... 191

9.C Documentation of Federal Land Manager consultation and commitment to continuing consultation ... 196
9.C.1 FLM SIP Review .. 197
9.C.2 NPS Feedback Summary and UDAQ Responses .. 197
9.C.3 USFS Feedback Summary and UDAQ Responses ... 203

9.D Coordination with Indian tribes .. 204

9.E Stakeholder Outreach and Communication ... 205

9.F Public Comment Period ... 207

9.G Comment Conclusions ... 207

9.H Commitment to Further Planning .. 208
9.H.1 Process for conducting future emissions inventories and future monitoring strategy 208
9.H.2 Commitment to provide other elements necessary to report on visibility, including reporting, recordkeeping, and other measures .. 209
9.H.3 Commitment to submit January 31, 2025 progress report .. 209
List of tables

Table 1: 30-day Rolling Average Emission Limits for the Retrofitted Hunter and Huntington Units ...39
Table 2: Western Coal Unit Retirement and Control Summary ...48
Table 3: Changes in Emissions from 1996-2018 for 9 GCVTC States ...51
Table 4: Representative IMPROVE Monitoring Sites ...56
Table 5: IMPROVE site information for CIAs ...56
Table 6: Baseline Visibility for the 20% Most Impaired Days and 20% Clearest Days ...56
Table 7: Natural Visibility values for Utah CIAs ...57
Table 8: Current Visibility (2014-2018) conditions in Utah CIAs ...57
Table 9: Progress to date for the most impaired and clearest days ...58
Table 10: Current visibility compared to natural visibility ...58
Table 11: Uniform Rates of Progress ...59
Table 12: Calculation of 2028 Uniform Rate of Progress Level ...59
Table 13: Data sources for WRAP emissions sectors ...64
Table 14: Status of Utah EGU Retirements in RepBase2 and 2028OTBa2 Inventories ...67
Table 15: Utah SO₂ Emission Inventory – RepBase2 (2014-2018) and 2028OTBa2 ...69
Table 16: Utah NOₓ Emission Inventory – RepBase2 (2014-2018) and 2028OTBa2 ...69
Table 17: Utah VOC Emission Inventory – RepBase2 (2014-2018) and 2028OTBa2 ...70
Table 18: Utah PM₂.₅ Emission Inventory – RepBase2 (2014-2018) and 2028OTBa2 ...71
Table 19: Utah PM₂.₅ PM₁₀ Emission Inventory – RepBase2 (2014-2018) and 2028OTBa2 ...72
Table 20: Utah NH₃ Emission Inventory – RepBase2 (2014-2018) and 2028OTBa2 ...73
Table 21: Utah Share of U.S. Anthropogenic Nitrate Impacts on Neighboring State CIAs ...80
Table 22: Utah Share of U.S. Anthropogenic Sulfate Impacts on Neighboring State CIAs ...81
Table 23: Utah Share of Total Nitrate Impacts on Neighboring State CIAs ...82
Table 24: Utah Share of Total Sulfate Impacts on Neighboring State CIAs ...83
Table 25: Status of Utah EGU Retirements in RepBase2 and 2028OTBa2 Inventories ...92
Table 26: Net Changes in Emissions from New and Existing Measures Relative to 2028OTBa2 ...94
Table 27: Statewide Anthropogenic Scenario Totals and LTS Emission Reductions (tpy) ...95
Table 28: Comparison of baseline, 2028 URP, 2028 EPA w/o fire projection for worst and clearest days ...95
Table 29: Sources initially selected to perform a Four-Factor analysis ...103
Table 30: 2017 NEI Q/d Screen ...104
Table 31: Paradox Lisbon Plant Q/d Analysis for nearest CIAs ...106
Table 32: 2017 Kennecott Utah Copper LLC – Mine & Concentrator Emissions and Revised Q/d ...107
Table 33: Existing Controls in Utah’s SIP for Screened Sources ...108
Table 34: Nitrate Point Source WEP Rank for Utah CIAs ...113
Table 35: Sulfate Point Source WEP Rank for Utah CIAs ...117
Table 36: Nitrate Utah Point Source WEP Rank for Non-Utah CIAs ...121
Table 37: Sulfate Utah Point Source WEP Rank for Non-Utah CIAs ... 121
Table 38: Ash Grove Leamington Cement Plant EJScreen Findings .. 126
Table 39: Graymont Western Cricket Mountain Plant EJScreen Findings 126
Table 40: PacifiCorp Hunter Power Plant EJScreen Findings .. 126
Table 41: PacifiCorp Huntington Power Plant EJScreen Findings .. 126
Table 42: Sunnyside Cogeneration Power Plant EJScreen Findings .. 127
Table 43: US Magnesium Rowley Plant EJScreen Findings .. 127
Table 44: Intermountain Generation Station EJScreen Findings .. 127
Table 45: Kennebec Power Plant EJScreen Findings ... 128
Table 46: Kennebec Mine and Copperton Concentrator EJScreen Findings 128
Table 47: Paradox Lisbon Plant EJScreen Findings .. 129
Table 48: Existing controls on active coal units in Utah .. 133
Table 49: Existing controls on active gas units in Utah .. 134
Table 50: Ash Grove Leamington Cement Plant Current Potential to Emit 136
Table 51: Current Potential to Emit - Graymont ... 138
Table 52: Estimated Direct Annual Costs (doubled) Graymont ... 139
Table 53: Hunter Current Potential to Emit ... 142
Table 54: Current Potential to Emit: Huntington ... 144
Table 55: PacifiCorp Updated Hunter SNCR Cost Effectiveness ... 146
Table 56: PacifiCorp Updated Huntington SNCR Cost Effectiveness 147
Table 57: Cost-effectiveness of SNCR and SCR and Hunter and Huntington Power Plants ... 150
Table 58: 2028 Mass-based NOx Limit - SNCR Cost-effectiveness 159
Table 59: 2028 Mass-based NOx Limit – SCR Cost-effectiveness .. 159
Table 60: Hunter Actuals and Limits .. 161
Table 61: Huntington Actual and Limits ... 161
Table 62: Sunnyside: Current Potential to Emit (Tons/Year) .. 175
Table 63: Current Potential to Emit ... 179
Table 64: US Magnesium’s Reevaluation of Riley Boiler Controls .. 181
Table 65: Comparison of baseline, 2028 URP, 2028 EPA w/o fire projection for worst and clearest days .. 188
Table 66: Summary of Interstate Meetings with UDAQ ... 192
Table 67: Second Implementation Period Status of Non-Utah Sources Identified in NO3 WEP Analysis .. 194
Table 68: Second Implementation Period Status of Non-Utah Sources Identified in SO4 WEP Analysis ... 194
Table 69: Summary of FLM Meetings with UDAQ ... 196
Table 70: Summary of Stakeholder Meetings with UDAQ .. 205
List of figures

Figure 1: Regional Haze Timeline option for GCVTC areas ... 16
Figure 2: Map of Utah CIAs ... 17
Figure 3: Map of Utah Class I Area Land Ownership .. 18
Figure 4: Arches National Park .. 18
Figure 5: Bryce Canyon National Park .. 19
Figure 6: Canyonlands National Park ... 20
Figure 7: Capitol Reef National Park .. 20
Figure 8: Zion National Park .. 21
Figure 9: Monitoring station for Capitol Reef National Park ... 22
Figure 10: Monitoring station for Bryce Canyon National Park ... 23
Figure 11: Monitoring station for Canyonlands and Arches National Park .. 23
Figure 12: Monitoring station layout ... 24
Figure 13: IMPROVE monitoring sites ... 24
Figure 14: United States map of mandatory CIAs .. 26
Figure 15: Regional haze glidepath for Bryce Canyon National Park tracking progress towards natural conditions in 2064 ... 27
Figure 16: Statewide NOx Emissions Trends by Sector .. 43
Figure 17: Statewide VOC Emissions Trends by Sector ... 44
Figure 18: Statewide SO2 Emissions Trends by Sector .. 44
Figure 19: Statewide PM10 Emissions Trends by Sector .. 45
Figure 20: Statewide PM2.5 Emissions Trends by Sector .. 45
Figure 21: Utah Particulate Matter Trends ... 46
Figure 22: Utah Gaseous Trends .. 46
Figure 23: SO2 and NOx Emissions Trends for Western Power Plants ... 47
Figure 24: Remaining and Retiring EGU Emissions Apportionment ... 51
Figure 25: Light extinction for Utah Class I Areas: natural and anthropogenic sources 53
Figure 26: URP Glidepath for Clearest Days, Bryce Canyon NP ... 54
Figure 27: URP Glidepath for most impaired days, Bryce Canyon NP ... 55
Figure 28: Projected Source Contributions to Light Extinction in Bryce Canyon NP 60
Figure 29: Projected Source Contributions to Light Extinction in Canyonlands and Arches NP 61
Figure 30: Projected Source Contributions to Light Extinction in Capitol Reef NP 61
Figure 31: Projected Source Contributions to Light Extinction in Zion NP ... 62
Figure 32: Example URP Glidepath for Bryce Canyon National Park Showing Adjustment Options .. 62
Figure 33: WRAP States Ammonium Nitrate Source Apportionment for Most Impaired Days at Bryce Canyon National Park .. 76
Figure 34: WRAP States Ammonium Sulfate Source Apportionment for Most Impaired Days at Bryce Canyon National Park .. 76
Figure 35: WRAP States Ammonium Sulfate Source Apportionment for Most Impaired Days at Canyonlands and Arches National Park .. 77
Figure 65: Projected 2028 RPG Bryce Canyon National Park ...184
Figure 66: Projected 2028 RPG Canyonlands and Arches National Parks185
Figure 67: Projected 2028 RPG Capitol Reef National Park ..186
Figure 68: Projected 2028 RPG Zion National Park ...187
Figure 69: USFS Fire Glidepath Adjustment for Bryce Canyon ...204
List of acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BACT</td>
<td>Best Available Control Technology</td>
</tr>
<tr>
<td>CIA</td>
<td>Class 1 Area</td>
</tr>
<tr>
<td>CAA</td>
<td>Clean Air Act</td>
</tr>
<tr>
<td>CAMx</td>
<td>Comprehensive Air Quality Model with Extensions</td>
</tr>
<tr>
<td>CCR</td>
<td>Consumer Confidence Report</td>
</tr>
<tr>
<td>CF</td>
<td>Code of Federal Regulations</td>
</tr>
<tr>
<td>CIRA</td>
<td>Cooperative Institute for Research in the Atmosphere</td>
</tr>
<tr>
<td>CO</td>
<td>Carbon Monoxide</td>
</tr>
<tr>
<td>CSU</td>
<td>Colorado State University</td>
</tr>
<tr>
<td>DAQ</td>
<td>Division of Air Quality</td>
</tr>
<tr>
<td>DEQ</td>
<td>Department of Environmental Quality</td>
</tr>
<tr>
<td>EPA</td>
<td>Environmental Protection Agency</td>
</tr>
<tr>
<td>FLM</td>
<td>Federal Land Manager</td>
</tr>
<tr>
<td>FWS</td>
<td>US Fish and Wildlife Service</td>
</tr>
<tr>
<td>GCVTC</td>
<td>Grand Canyon Visibility Transportation Commission</td>
</tr>
<tr>
<td>IMPROVE</td>
<td>Interagency Monitoring of Protected Visibility Elements</td>
</tr>
<tr>
<td>LTS</td>
<td>Long Term Strategy</td>
</tr>
<tr>
<td>NAAQS</td>
<td>National Ambient Air Quality Standards</td>
</tr>
<tr>
<td>NOI</td>
<td>Notice of Intent</td>
</tr>
<tr>
<td>NO2</td>
<td>Nitrogen Dioxide</td>
</tr>
<tr>
<td>NOx</td>
<td>Nitrogen Oxides</td>
</tr>
<tr>
<td>NPS</td>
<td>National Parks Service</td>
</tr>
<tr>
<td>O3</td>
<td>Ozone</td>
</tr>
<tr>
<td>PAL</td>
<td>Plantwide Applicability Limit</td>
</tr>
<tr>
<td>PB</td>
<td>Lead</td>
</tr>
<tr>
<td>PM</td>
<td>Particulate Matter</td>
</tr>
<tr>
<td>PM10</td>
<td>Particulate Matter Smaller Than 10 Microns in Diameter</td>
</tr>
<tr>
<td>PM2.5</td>
<td>Particulate Matter Smaller Than 2.5 Microns in Diameter</td>
</tr>
<tr>
<td>RH</td>
<td>Regional Haze</td>
</tr>
<tr>
<td>RHR</td>
<td>Regional Haze Rule</td>
</tr>
<tr>
<td>RHPWG</td>
<td>Regional Haze Planning Work Group (WRAP)</td>
</tr>
<tr>
<td>RPEL</td>
<td>Reasonable Progress Emissions Limit</td>
</tr>
<tr>
<td>RPG</td>
<td>Reasonable Progress Goals</td>
</tr>
<tr>
<td>SCR</td>
<td>Selective Catalytic Reduction</td>
</tr>
<tr>
<td>SIP</td>
<td>State Implementation Plan</td>
</tr>
<tr>
<td>SNCR</td>
<td>Selective Non-Catalytic Reduction</td>
</tr>
<tr>
<td>SO2</td>
<td>Sulfur Dioxide</td>
</tr>
<tr>
<td>SOx</td>
<td>Sulfur Oxides</td>
</tr>
<tr>
<td>TSS</td>
<td>Technical Support System</td>
</tr>
<tr>
<td>UDOGM</td>
<td>Utah Division of Oil, Gas, and Mining</td>
</tr>
<tr>
<td>URP</td>
<td>Uniform Rate of Progress</td>
</tr>
<tr>
<td>UAC</td>
<td>Utah Administrative Code</td>
</tr>
<tr>
<td>USFS</td>
<td>US Forest Service</td>
</tr>
<tr>
<td>VOCs</td>
<td>Volatile Organic Compounds</td>
</tr>
<tr>
<td>WESTAR</td>
<td>Western States Air Resources</td>
</tr>
<tr>
<td>WRAP</td>
<td>Western Regional Air Partnership</td>
</tr>
</tbody>
</table>
This document comprises the State of Utah’s State Implementation Plan (SIP) submittal to the U.S. Environmental Protection Agency (EPA) under the Regional Haze Rule.\(^1\) The purpose of this SIP revision is to comply with the requirements of the Regional Haze Rule (RHR).\(^2\) Specifically, this SIP addresses requirements for periodic comprehensive revisions of implementation plans for regional haze.\(^3\) The RHR requires Utah to address regional haze in each mandatory Class I Area (CIA) located within Utah and in each mandatory CIA located outside Utah that may be affected by primary pollutants emitted from sources within Utah. Utah is required to submit a SIP addressing the specific elements required by the rule.

The objectives of the RHR are to improve existing visibility in 156 national parks, wilderness areas, and monuments (termed Mandatory Class I Areas or CIAs), prevent future impairment of visibility by manmade sources, and meet the national goal of natural visibility conditions in all mandatory CIAs by 2064. Utah’s CIAs consist of: Arches National Park, Bryce Canyon National Park, Canyonlands National Park, Capitol Reef National Park, and Zion National Park.\(^4\)

The RHR establishes several planning periods extending from 2005 to 2064. The State of Utah is required to develop a Regional Haze (RH) SIP for each period. The first implementation period spanned from 2008 to 2018. This SIP revision consists of the second implementation period spanning from 2018 to 2028. This SIP was originally due for submittal to the EPA on July 31st, 2018. However, the deadline was extended to July 31st, 2021. In this revision, UDAQ demonstrates the visibility progress to date\(^5\) in each of Utah’s CIAs and analyzes Utah’s emissions trends and sources of visibility impairment\(^6\). Utah is required to set reasonable progress goals which 1) must provide for an improvement in visibility for the most impaired days over the period of the implementation plan and 2) ensure no degradation in visibility for the least impaired days over the same period.\(^7\) For this purpose, Utah has outlined its Long-Term Strategy (LTS) in this document\(^8\) as well as determination of reasonable progress goals (RPGs) for CIAs in Utah.

The RH SIP must also address mandatory CIAs outside of the state that are reasonably anticipated to be affected by emissions from Utah as well as out-of-state sources impacting Utah CIAs. For this requirement, UDAQ analyzed Western Regional Air Partnership (WRAP) photochemical modeling and found that Utah does not significantly impact visibility at out-of-state CIAs.

\(^1\) 40 CFR 51.308(f) and (g)

\(^2\) 40 CFR 51

\(^3\) 40 CFR 51.308(f)

\(^4\) See chapter 1 for more information on the RHR and Utah’s regional haze history

\(^5\) See chapter 3 to view Utah’s visibility and emissions reduction progress to date

\(^6\) See chapter 5 for to review Utah’s sources of visibility impairment

\(^7\) See chapter 8 for more information on Utah’s reasonable progress goals

\(^8\) See chapter 6 for Utah’s Long-Term Strategy
state CIAs. Utah has also determined that Utah’s CIAs are not significantly impacted by out-of-state sources. Upon consultation with Utah’s surrounding states, Utah will not require any actions from other states for impacts on Utah’s CIAs and Utah has received no requests for actions regarding Utah sources’ impacts on out-of-state CIAs.

Throughout this second implementation period, UDAQ has participated in the WRAP, which has conducted modeling and technical analysis for the purposes of supporting state RH planning. UDAQ has also consulted with Federal Land Managers (FLMs), Tribes, Utah’s surrounding states, as well as environmental advocates, industry stakeholders, and the public.

This SIP revision also examines the need to implement additional emission reduction measures on sources which are reasonably anticipated to contribute to visibility impairment determines what control measures are necessary for reasonable progress in the second implementation period. The examination required to determine actions new control measures for this period is known as a four-factor analysis and consists of four criteria: 1) cost of compliance, 2) time necessary for compliance, 3) energy and non-air quality environmental impacts, and 4) remaining useful life. In order to determine which sources must submit a four-factor analysis to the State, UDAQ performed a Q/d (emissions/distance) analysis to determine which of Utah’s sources have the highest potential visibility impact on Utah’s CIAs. These facilities include the Ash Grove Cement Company Leamington Cement Plant, the Graymont Western US Inc. Cricket Mountain Plant, the PacifiCorp Hunter and Huntington Plants, the Sunnyside Cogeneration Associated Sunnyside Cogeneration Facility, and the US Magnesium LLC Rowley Plant. UDAQ requested each facility to submit a four-factor analysis for the purpose of this second implementation period. UDAQ has received each facility’s four-factor analysis, provided each with an evaluation of their analysis, and received evaluation responses from each, and subsequent information submittals. After consideration of the information provided, as well as the modeling results provided by the WRAP, UDAQ has made the following reasonable progress determinations for each facility Utah’s second implementation period of regional haze planning.

UDAQ identified several existing measures necessary for reasonable progress, including federal on-road and non-road vehicle and equipment standards, BACM measures and BACT controls included in the recently completed Serious Area PM2.5 SIP for the Salt Lake Nonattainment Area, as well as the following first implementation period regional haze controls:

- Existing NOx control rate-based limits and Hunter power plant

9 See chapter 3 sections 6.A.1 and 6.A.2 for Utah’s impacts on out of state CIAs and other state’s impacts on Utah’s CIAs
10 See Appendix B for interstate consultation agreement documentation
11 See chapter 9 for details on Utah’s consultation efforts
12 See chapter 7 for Utah’s source selection and the four-factor analyses, evaluations, responses, and conclusions for each source
13 See Appendix D.2 to view additional information submittals by sources
14 See chapter 9 section 8.D and IX.H in appendix A to view for Utah’s reasonable progress determinations and their enforceable language
• Existing NOx control rate-based limits and Huntington power plant
• Existing SO2 limits for Hunter power plant (Section 309 control added to SIP in round 2)
• Existing SO2 limits for Huntington power plant (Section 309 control added to SIP in round 2)
• Closure of the Carbon power plant

UDAQ also identified and included the following existing control measures to ensure ongoing enforceability in the second implementation period:

• Ash Grove
• Graymont
• Sunnyside
• US Magnesium
• Intermountain Generation Station

Finally, UDAQ identified and included the following new control measures as necessary for reasonable progress:

• A plantwide enforceable mass-based NOx limit on Hunter power plant
• A plantwide enforceable mass-based NOx limit on Huntington power plant
• Installation of FGR on the US Magnesium Rowley Plant Riley Boiler
• An enforceable closure date for Units 1 and 2 of the Intermountain Generation Station

The actions deemed necessary for reasonable progress to be made in Utah’s CIAs for the purposes of this implementation period consist of establishing a firm closure date for units 1 and 2 of the Intermountain Generation Station, setting mass-based emissions limits for PacifiCorp’s Hunter and Huntington Power Plants, and requiring the installation of a Flue Gas Recirculation (FGR) unit on the Riley Boiler at US Magnesium’s Rowley Plant. The emissions limits proposed for PacifiCorp ensure their emissions do not exceed their modeled or recent actual emissions levels for the purposes of maintaining Utah’s 2028 “on-the-books” projections as modeled by WRAP in order to ensure reasonable visibility progress at Utah’s CIAs by the end of this implementation period.
Chapter 1: Background and Overview of the Federal Regional Haze Rule

1.A Regional Haze Planning Periods and Due Dates

Utah took part in early regional haze planning through participation in the Grand Canyon Visibility Transport Commission (GCVTC), which originally consisted of nine states and 211 tribal lands. In 1996, the GCVTC submitted a report containing recommendations for improving western vistas. In 2000, Utah established Sulfur Dioxide (SO₂) milestones with an Annex to the original GCVTC report through the Western Regional Air Partnership. Based on the recommendations of the GCVTC and the Annex, in 2003 Utah’s Air Quality Board adopted section XX of the State Implementation Plan (SIP) to address regional haze and the many source categories and pollutants contributing to the regional haze in Utah. The first state plans were due in 2007 and the last date for states to submit initial regional haze control plans for all Mandatory Federal CIAs was in 2008. Utah submitted its evaluation of the Best Available Retrofit Technology (BART) in 2015 along with a revision in 2019. Progress reports are due every five years and full plan revisions are required every 10 years. The first revision was originally due in 2018, but in 2017 EPA extended the deadline to July 31, 2021 with the latest revision of the Regional Haze Rule (RHR). As part of the RH SIP process, Utah must work towards the overarching goal of achieving natural visibility in its CIAs by 2064. This timeline is summarized in the figure below.

![Figure 1: Regional Haze Timeline option for GCVTC areas](https://www.phoenixvis.net/PDF/GCVTCFinal.pdf)

15 The original 1996 report of The Grand Canyon Visibility Transport Commission can be found at https://www.phoenixvis.net/PDF/GCVTCFinal.pdf

17 Section XX of Utah’s Regional Haze SIP can be found at https://documents.deq.utah.gov/air-quality/planning/air-quality-policy/regional-haze/DAQ-2020-008934.pdf

18 Utah’s 2015 RH SIP can be found at https://documents.deq.utah.gov/legacy/laws-and-rules/air-quality/sip/docs/2015/07Jul/SecXXRegHaze201Final.pdf

20 40 C.F.R. § 51.308(f). For the purposes of this SIP submittal, the RHR acronym refers to the most current 2017 Regional Haze Rule revisions.
1.B Class I Areas in Utah

In the 1977 Clean Air Act, Congress established requirements for the prevention of significant deterioration of air quality in areas within the United States and for the review of pollution controls on new sources. Coupled with this, Congress established a visibility protection program for those larger national parks and wilderness areas designated as mandatory Federal CIAs. This program establishes a national goal of “the prevention of any future, and remedying of any existing, impairment of visibility in mandatory CIAs which impairment results from manmade air pollution”\(^{21}\) and requires states to develop long-term strategies to assure reasonable progress toward this national goal. 40 CFR 81.400 Scope: Subpart D, §§ 81.401 through 81.437, lists Mandatory Federal CIAs, where the Administrator, in consultation with the Secretary of the Interior, has determined visibility to be an important value.

As shown in Figure 2, there are five Mandatory Federal CIAs in Utah, all of which are National Parks: Arches National Park, Bryce National Park, Canyonlands National Park, Capitol Reef National Park and Zion National Park. The following sections include data from the National Parks Service (NPS) Stats website.\(^{22}\)

\(^{22}\) Statistics for all the National Parks discussed in this section come from the NPS Stats website at: https://irma.nps.gov/STATS/
1.B.1 Arches National Park

Arches National Park was originally designated as a National Monument in 1929 and became a national park in 1978. Congress established the park “to protect extraordinary examples of geologic features including arches, natural bridges, windows, spires, balanced rocks, as well as other features of geologic, historic, and scientific interest, and to provide opportunities to experience these resources and
their associated values in their majestic natural settings."23 Located in southwest Utah, Arches National Park is home to over 2,000 cataloged, naturally formed, sandstone arches. These 76,679 acres of red sandstone are surrounded by thousands of acres of additional natural lands, administered mainly by the Bureau of Land Management and Utah’s School and Institutional Trust Lands Administration (See Figure 3). Over 1.6 million people visited Arches in 2019.24 Over the past 10 years, park visitation has increased, on average, five% each year.25 The largest population center near Arches National Park is Moab. This town of over 5,300 residents26 is about five miles south of the Park. It is the major hub for recreation in Arches, Canyonlands National Park, and the surrounding areas.

1.B.2 Bryce Canyon National Park

Bryce Canyon was originally established as a National Monument in June 1923. One year later it was designated a national park. According to its foundation document, the purpose of the park was to “protect and conserve resources integral to a landscape of unusual scenic beauty exemplified by highly colored and fantastically eroded geological features, including rock fins and spires, for the benefit and enjoyment of the people.”27 Bryce Canyon contains the highest concentration of irregular rock columns (Hoodoos) on Earth. Located in southern Utah near the city of Bryce, the national park sits along the edge of a high plateau on top of the Grand Staircase. At 35,835 acres, Bryce Canyon is Utah’s smallest National Park. However, nearly 2.6 million people visited Bryce Canyon in 2019.28

25 See id.
26 United States Census Bureau, website: https://www.census.gov/quickfacts/moabcityutah (data for July 1, 2019).
1.B.3 Canyonlands National Park

Canyonlands National Park was originally established on September 12, 1964 with the help of Bates Wilson, the superintendent of Arches National Park. Located near Moab, Utah with 337,598 acres of land and water, Canyonlands is Utah's largest national park. The Green and Colorado rivers split this section of the Colorado Plateau into three main districts: "Island in the Sky," "The Needles," and "The Maze." Since 2007, over 400,000 people visit Canyonlands each year with a record of 776,218 in 2016 alone. Canyonlands features deep canyons, mesas, pinnacles, cliffs, and spires and contains one of the most photographed landforms in the west—the Mesa Arch.

1.B.4 Capitol Reef National Park

Capitol Reef National Park was originally designated a national monument in August 1937 but then turned into a national park in 1971. Spanning 241,904 acres, Capitol Reef is made of a geologic monocline almost 100 miles long. This monocline is called the Waterpocket Fold and is considered a geologic warp in the

29 Data source: Stats Report Viewer (nps.gov).
Earth’s crust spanning from Thousand Lake Mountain to Lake Powell. The tall, seemingly impassible ridges made by the Waterpocket Fold were called “reefs” by early settlers. The white Navajo sandstone dome formations appear like those placed on capitol buildings, giving the park its name. Capitol Reef had 1,226,519 visitors in 201930 and offers many hiking and backpacking opportunities, including 71 campsites.

1.B.5 Zion National Park

Established on July 31, 1909, Zion National Park was the first national park in Utah. It is also the fourth most visited National Park in the United States with 4.48 million visitors in 2019.31 The park’s 147,243 acres contain the Zion Canyon which is 15 miles long and 2,640 feet tall.32 The purpose of Zion National Park is to “preserve the dramatic geology including Zion Canyon and a labyrinth of deep and brilliantly colored Navajo sandstone canyons formed by extraordinary processes of erosion at the margin of the Colorado Plateau.”33 Located in southwestern Utah near St. George, Zion is home to famous hikes including Angel’s Landing, The narrows, Observation Point, and the Emerald Pools.

1.C Haze Characteristics and Effects

Unimpaired visibility is important to fully enjoy the experience of visiting Utah’s national parks and wilderness areas. Visibility is defined as the greatest distance at which an observer can see a black object viewed against the horizon sky. Visibility is impaired by light scattering and absorption caused by PM and gases in the atmosphere that occur from both natural and anthropogenic activities. This diminished clarity is called haze. Haze obscures the color, texture, and form of objects that can be seen at a distance.

Visibility can be impaired by natural sources such as rain, wildland fires, volcanic activity, sea mists, and wind-blown dust from undisturbed desert areas. Visibility also can be impaired by anthropogenic sources of air pollution such as industrial processes, (utilities, smelters,34...
refineries, etc.), mobile sources (cars, trucks, trains, etc.), and area sources (residential wood burning, prescribed burning on wild and agricultural lands, wind-blown dust from disturbed soils, etc.). These sources emit pollutants that, in higher concentrations, can also affect public health.

Regional haze is the cumulative impact of emissions from varied sources, often located over a broad geographic area. The haze-causing particles can be transported great distances in the air, sometimes hundreds or thousands of miles. Therefore, one single source of emissions may not have a visible impact on haze, but emissions from many sources in a region can add up and cause haziness.

There are different metrics to measure impact on visibility. Visual range is the most intuitive and is defined as the distance at which a given standard object can be seen with the unaided eye. It is measured in miles or kilometers. A deciview is a unit of visibility proportional to the logarithm of the atmospheric light extinction. This unit will be used in many figures and tables within this report. Deciviews measure visibility derived from light extinction so that incremental changes in the haze index correspond to uniform incremental changes in visual perception ranging from pristine to highly impaired conditions.

1.D Monitoring Strategy

Interagency Monitoring of Protected Visual Environments (IMPROVE) was designated as the visibility monitoring network representative of the 156 visibility-protected federal CIAs. IMPROVE was developed in 1985 to establish current visibility conditions, track changes in visibility, and help determine the causes and sources of visibility impairment in CIAs. The network is comprised of 110 monitoring sites across the nation, four of which are in Utah. IMPROVE monitoring sites in Utah’s CIAs include those at Canyonlands National Park (monitoring site for both Arches and Canyonlands national parks), Capitol Reef National Park, Bryce Canyon National Park, and Zion National Park. Figure 10 through Figure 12 show three of Utah’s monitoring stations.

34 40 CFR 51.308(f)(6) (IMPROVE PROGRAM)
35 Shown in Figure 13
The IMPROVE monitoring sites contain equipment programmed to automatically collect samples of haze-forming particles from the air continually. Local operators at each field site—in many cases a park ranger, firefighter, or rancher—inspect the samples and exchange filters weekly, shipping all exposed filters back to the Air Quality Research Center (AQRC) at the University of California (UC) Davis every three weeks. Each month, the program’s 110 field sites generate about 7,000 filters, which are processed in AQRC’s laboratories by staff members and UC Davis students working part-time.\(^\text{36}\) The analyses conducted at the AQRC test samples for various pollutants and trace metals and estimate the light scattering effect of each species. This estimation results in a light extinction value. For purposes of the RHR, light extinction is estimated for sulfate, nitrate, organic mass by carbon (OMC), light absorbing carbon (LAC), fine soil (FS), sea salt, and coarse material (CM)—all components of particulate emissions. Figure 12 shows the four separate modules used for sampling the different species.

\(^\text{36}\) For more information see: https://aqrc.ucdavis.edu/improve
1.D.1 Participation in the IMPROVE Network

In 1985, the IMPROVE program was established to coordinate the monitoring of air quality in national parks and wilderness areas and to ensure sound and consistent scientific methods were being used. The IMPROVE Steering Committee established monitoring protocols for visibility measurement, PM measurement, and scientific photography of the CIAs. IMPROVE monitoring is designed to establish reference information on visibility conditions and trends to aid in the development of visibility protection programs. Monitoring from the IMPROVE network, shown in Figure 13, demonstrated that visibility in all the CIAs is impaired to some degree by regional haze.

![Monitoring station layout](image)

Figure 12: Monitoring station layout

![IMPROVE monitoring sites](image)

Figure 13: IMPROVE monitoring sites
1.E History of Regional Haze in Utah

Utah has been at the forefront of haze improvement and prevention since 1991 when the GCVTC was formed. The GCVTC recognized haze as a regional issue prior to the creation of the RHR in 1999 and was the first multi-state collaborative effort to address visual air quality issues. In recognition of the GCVTC, Section 309 of the RHR provided an early regional haze planning opportunity for states within the Colorado Plateau region. Utah is one of the five states to submit a complete Section 309 regional haze plan in 2003.

In amendments to the Clean Air Act (CAA) in 1977, Congress added Section 169A setting the national visibility goal of restoring pristine conditions in national parks and wilderness areas: “Congress hereby declares as a national goal the prevention of any future, and the remedying of any existing, impairment of visibility in mandatory CIAs which impairment results from man-made air pollution.”37

When the CAA was amended in 1990, Congress added Section 169B,38 authorizing further research and regular assessments of the progress to improve visibility in the mandatory CIAs.39

37 42 U.S.C.A. § 7491.
38 See id. § 7492.
39 Figure 14: Map of 156 Mandatory Federal CIAs shows the location of the CIAs of concern and the Federal Land Managers (FLMs) responsible for each area around the nation.
The RHR specifies that these CIAs should attain “natural conditions” by 2064 and that states should make progress in controlling air pollution to meet this goal. The timeline is broken into 10-year planning periods, and in each period, states must show reductions in emissions of haze-causing pollutants along a linear path, or glidepath, toward the 2064 end goal.

To meet the RHR planning requirements, states conduct analyses of visibility in each Class I area, identify the available reasonable measures to reduce haze, and implement those measures. The implemented measures establish the required Reasonable Progress Goals (RPG) for each Class I area. The RPGs are the visibility improvement benchmarks on the glidepath toward the long-term goal of natural visibility conditions by 2064. The analysis, measures, and RPGs are the basis of the long-term strategy for the states, and this strategy must be included in the states’ SIPs. States are also required to assess progress halfway through the 10-year implementation period - a process that is intended to keep the states on target to meet the 10-year goals established for each Class I area.

1.E.1 Grand Canyon Visibility Transport Commission

The GCVTC was established by EPA in November of 1991, consisting of seven western governors (or their designees), five tribes, and five ex-officio members representing federal land management agencies and EPA. When establishing the GCVTC, EPA designated a transport region including seven western states: California, Oregon, Nevada, Idaho, Utah, Arizona, Arizona.

40 See Figure 15 for an RPG glidepath example of Bryce Canyon National Park, provided by the Western Regional Air Partnership (WRAP) Technical Support System.
Although Congress required a commission to be established for Grand Canyon National Park, the member states agreed to expand the scope of the GCVTC to address all 16 of the CIAs on the Colorado Plateau. The GCVTC elected to use a stakeholder-driven process to accomplish its objectives. Ultimately, the organization included 200+ political, policy and technical stakeholders who staffers a variety of committees and subcommittees to perform policy analysis and technical studies, and to participate in the public debate. The GCVTC was funded by EPA grants and contributions from stakeholders, including substantial in-kind labor. During its four-and-one-half year development, the GCVTC was expanded to include the State of Wyoming and tribal leaders as members. The GCVTC appointed a Public Advisory Committee (PAC) representing broad stakeholder interests to provide input and feedback to the GCVTC. Many Utahns were members of the PAC, with two serving on the PAC Steering Committee, and one serving on the Executive Committee as Vice-Chair of the PAC. The 80+ member Public Advisory Committee developed a consensus report of recommendations for the GCVTC that was ultimately adopted by the GCVTC and submitted to EPA in June 1996.41

Recommendations of the GCVTC included the following:

- Policies based on energy conservation, increased energy efficiency, and promotion of the use of renewable resources for energy production;
- Careful tracking of emissions growth that may affect air quality in clean air corridors;

• Regional targets for SO\(_2\) emissions with a backstop program, probably including a regional cap and possibly a market-based trading program;
• Cooperatively developed strategies, expanded data collection and improved modeling for reducing or preventing visibility impairment in areas within and adjacent to CIAs, pending further studies of sources adjacent to CIAs;
• Emissions cap for mobile sources at the lowest level (expected to occur in 2005) and establishment of a regional emissions budget, as well as the implementation of national strategies aimed at reducing tailpipe emissions;
• Further study to resolve issues regarding the modeled contribution to visibility impairment of dust from paved and unpaved roads;
• Continued bi-national cooperation to resolve data gaps and jurisdictional issues around emissions from Mexico;
• Programs to minimize emissions and visibility impacts and to educate the public about impacts from prescribed fire and wildfire, because emissions are projected to increase significantly through 2040; and
• Creation of an entity like the GCVTC to promote, support, and oversee the implementation of many of the recommendations in this report.

EPA initially proposed regional haze regulations in 1997.\(^{42}\) The proposed regulations described a generic program to apply nationally and did not include provisions to address the recommendations of the GCVTC. The Western Governors’ Association (WGA) engaged key stakeholders to develop a recommendation on how to transform the GCVTC recommendations into the regional haze regulations. WGA approved the stakeholders’ recommendation and transmitted it to EPA in June 1998.\(^{43}\) Based on this and other public input, EPA issued the final Regional Haze Rule in July 1999 with a national program (Section 308) that could apply to any state or tribe and an optional program (Section 309) relying on the work of the GCVTC that is available to the states and tribes in the nine-state GCVTC transport region.\(^{44}\)

1.E.2 Western Regional Air Partnership

The GCVTC recognized the need for a long-term organization to address the policy and technical studies needed to address regional haze. The Western Regional Air Partnership (WRAP) was formed in September 1997 to fulfill this need. The WRAP’s charter allows it to address any air quality issue of interest to WRAP members, though most current work is focused on developing the policy and technical work products needed by states and tribes in writing their regional haze SIPs and tribal implementation plans (TIPs). The WRAP has been co-chaired by the governor of Utah and the governor of the Acoma Pueblo. The WRAP Board is currently composed of representatives from 13 states, 13 tribes, the U.S. Department of Agriculture, the U.S. Department of the Interior, and the EPA. The WRAP operates on a consensus basis and receives financial support from EPA. The WRAP established stakeholder-

\(^{43}\) Leavitt, M. O., Governor of Utah, Letter to EPA Administrator Browner on behalf of the Western Governors’ Association, June 29, 1998.
\(^{44}\) Regional Haze Regulations, 64 Fed. Reg. 35714 (July 1, 1999), codified at 40 C.F.R. pt. 51.
based technical and policy oversight committees to assist in managing the development process of regional haze work products. Stakeholder-based working groups and forums were established to focus on the policy and technical work products the states and tribes need to develop their implementation plans.

The WRAP developed and submitted an Annex to the GCVTC recommendations to define a voluntary program of SO$_2$ emission reduction milestones coupled with a backstop market-trading program to assure emission reductions. EPA proposed changes to the Regional Haze Rule to incorporate the GCVTC Annex, and the final revised rule was published on June 5, 2003. The WRAP has completed a suite of products to support states and tribes developing GCVTC-based regional haze implementation plans.

1.E.3 2003 Regional Haze SIP

On June 5, 2003, EPA approved the Annex and incorporated the stationary source provisions into the RHR. In December 2003 the Utah Air Quality Board adopted Section XX of the SIP to address regional haze. This plan was based on the GCVTC recommendations and the Annex and contained a broad-based strategy to address the many source categories and pollutants that contributed to regional haze in Utah, including clean air corridors, fire, mobile sources, paved and unpaved road dust, pollution prevention and renewable energy programs, and stationary sources.

EPA’s approval of the Annex was challenged in court, and on February 18, 2005, the DC Circuit Court of Appeals vacated EPA’s 2003 rules. The Court determined that EPA had required a BART demonstration in the Annex that was based on a methodology that had been vacated by the Court in 2002 in American Corn Growers Association v. E.P.A., 291 F.3d 1 (D.C. Cir. 2002), decision. On October 13, 2006, EPA revised the RHR to establish the methodology for states to develop an alternative to BART that was consistent with the DC Circuit’s 2005 decision.

1.E.4 2008 Regional Haze SIP Revision

While most of the 2003 SIP remained unchanged, in 2008 the Utah Air Quality Board adopted revisions to the stationary source provisions of the SIP to meet the requirements of the revised RHR and to reflect changes in the number of states participating in the program. In addition to these changes, the rule required an update to the SIP in 2008 to address the BART requirement for NO$_x$ and PM as well as an analysis of the impact of sources in Utah on CIAs outside of the Colorado Plateau.

46 Additional information about the WRAP can be found on the WRAP website at https://www.wrapair2.org/.

1.E.5 2011 Regional Haze SIP Revision

The SO₂ milestones were updated in 2011 to reflect a reduced number of states participating in the program (Arizona elected to pursue a SIP under Section 308 of the RHR). In addition, the growth estimates for coal-fired utilities and the estimates for emission reductions due to BART were revised.

1.E.6 2015 Regional Haze SIP Revision

On June 4, 2015, Utah resubmitted its SIP for PM BART and submitted an alternative to BART for NOₓ for PacifiCorp’s Electrical Generating Units (EGUs). On January 14, 2016, EPA issued a proposed rule containing a proposal to approve the PM BART and a co-proposal to either approve or disapprove the BART Alternative for NOₓ and to impose a Federal Implementation Plan (FIP) requiring BART for NOₓ in the event of the disapproval. On July 5, 2016, EPA issued the final rule disapproving the BART alternative for NOₓ and approving the BART for the PM portion of the June 4, 2015 SIP. To replace the disapproved BART alternative, EPA promulgated a FIP, requiring installation of Selective Catalytic Reduction (SCR) controls on the subject EGUs by August of 2021.

Utah filed a lawsuit against EPA challenging the July 5, 2016 disapproval of BART Alternative for NOₓ in the Tenth Circuit on September 1, 2016. The parties engaged in settlement discussions to resolve the case administratively. As a result of the settlement negotiations, Utah conducted an additional technical analysis using the state-of-the-science model and methodologies to perform air quality model simulations. Utah used the photochemical grid model Comprehensive Air Quality Model with Extensions (CAMx) to estimate and compare the potential visibility impacts at selected CIAs for different emissions scenarios considered for PacifiCorp’s EGUs. The CAMx was used because it accounts for complex processes such as the chemistry, transport, and deposition of pollutants responsible for regional haze.

Utah came to the same conclusion employing the CAMx modeling: that its NOₓ BART Alternative would provide greater reasonable progress toward natural visibility conditions than BART. Utah revised the disapproved SIP to include this additional technical analysis and, after
public notice and comment, submitted the revised NOx BART Alternative to EPA on July 3, 2019. Utah submitted a supplement to the July 2019 submission on December 3, 2019 on the issue unrelated to the initial disapproval—the requirement to report all deviations from compliance with the applicable requirements under BART and BART Alternative, including emission limits for PacifiCorp’s EGUs. On January 22, 2020, EPA published a proposed rule to approve the July 2019 SIP submittal with December 2019 supplement.\(^{55}\)

After EPA’s public notice and comment, on November 27, 2020, EPA issued a final rule approving Utah’s July 2019 SIP submittal and December 2019 supplement.\(^ {56}\) This concluded and resolved the litigation that Utah initiated on September 1, 2016. The Tenth Circuit dismissed the case and issued a mandate on January 11, 2021.\(^ {57}\) EPA’s November 27, 2020 final rule is currently challenged in the Tenth Circuit by the conservation organizations (HEAL Utah, National Parks Conservation Association, Sierra Club, and Utah Physicians for a Healthy Environment).\(^ {58}\) The lawsuit was filed on January 19, 2021.\(^ {59}\)

1.E.7 2019 Regional Haze SIP Revision

In the 2019 SIP revision, Utah used dispersion modeling and the two-prong test prescribed by the RHR\(^ {60}\) to demonstrate that the proposed alternative to BART does show greater progress than the most stringent NOx controls (installation of SCR). The two prongs that Utah had to satisfy are (1) that visibility does not decline in any Class I area; and (2) that there is an overall improvement in visibility determined by comparing the average differences between BART and the BART Alternative over all affected CIAs.

The two-prong test was an objective pass-fail test which Utah’s BART Alternative met. EPA proposed approval of this latest SIP on January 22, 2020.\(^ {61}\) EPA issued final approval of the 2019 SIP revision on November 27, 2020 with effective date of December 28, 2020.\(^ {62}\) In the final rule EPA concluded “that Utah’s NOx BART Alternative achieves greater reasonable progress under 40 CFR 51.308(e)(2) and (3).”\(^ {63}\) With the final approval, EPA also found that “Utah’s SIP fully satisfies the requirements of section 309 of the Regional Haze Rule and

\(^{57}\) See Order, Utah v. E.P.A. et al., No. 16-9541 (10th Cir. Jan. 11, 2021).

\(^{58}\) See HEAL Utah et al. v. E.P.A. et al., No. 21-9509 (10th Cir. Jan 19, 2021).

\(^{59}\) See Petition for Review, HEAL Utah et al., No. 21-9509 (10th Cir. Jan. 19, 2021).

\(^{60}\) 40 CFR 51.308(e)(3)

\(^{63}\) Id., 85 Fed. Reg. at 75861.
therefore the State has fully complied with the requirements for reasonable progress, including BART, for the first implementation period.

1.F General Planning Provisions

1.F.1 Regional Haze Program Requirements

The program requirements of the RHR are identified in Subsection 51.308(f) which lists the requirements for haze SIP updates, including a reference to the requirements in Subsection 51.308(d). In addition to re-evaluating all elements required in subsection (d), the states must also do the following:

- Assess current visibility conditions for the most impaired and least impaired days.
- Address actual progress made towards natural conditions during the previous implementation period.
- Determine the effectiveness of the long-term strategy for achieving reasonable progress goals over the prior implementation period.
- Affirm or revise reasonable progress goals according to procedures in paragraph (d).

As noted above, the section addressing the requirements for the SIP revisions references the requirements of subsection (d). The subsection (d) requirements are as follows: requirements:

- Establishing reasonable progress goals for the implementation period, including the four-factor analysis.
- Determining current visibility conditions and comparing to natural conditions.
- Developing long-term strategies to reduce emissions that contribute to visibility impairment.
- Submitting a monitoring strategy.

40 CFR 51.308(f)(5) requires states to address the requirements of Subsections 51.308(g)(1)-(5) in the 2021 plan revision. According to the requirements of 40 CFR 51.308(g), states shall submit periodic reports that describe progress toward the natural visibility goals. Therefore, this RH SIP submittal also serves as a progress report addressing the period since Utah’s September 18, 2017 progress report. The RHR requires that subsequent progress reports are due by January 31, 2025, July 31, 2033, and every 10 years thereafter.

1.F.2 SIP Submission and Planning Commitments

This SIP revision meets the requirements of the EPA’s RHR and the CAA. Elements of this SIP address the core elements required by 40 CFR Section 51.308(f)(3)—the establishment of RPGs and measures that Utah will take to meet the RPGs. This SIP revision also addresses 40 CFR 51.308(f)(2) (long-term strategy for regional haze) and 40 CFR 51.308(i)(2) (state...
coordination with the FLMs) and commits to develop future plan revisions and adequacy determinations as necessary.

The State of Utah commits to participate in a regional planning process, as a member state through the Western States Air Resource Council (WESTAR) and as a partner in WRAP. WESTAR is a partnership of 15 western states formed to promote the exchange of information, serve as a forum to discuss western regional air quality issues, and share resources for the common benefit of the member states. WRAP is a voluntary partnership of state, tribes, FLMs, local air agencies, and the EPA whose purpose is to understand current and evolving regional air quality issues in the West. The regional planning process describes the process, goals, objectives, management and decision-making structure, and deadlines for completing significant technical analyses of the regional group. To assist in making sound planning decisions, Utah has assisted the regional planning organization to complete regional analyses that include certain methods, inputs, and resources. Utah commits to continue regional participation through future SIPs.

Pursuant to the Tribal Authority Rule, any Tribe whose lands are within the boundaries of the State of Utah have the option to develop a regional haze Tribal Implementation Plan (TIP) for their lands to assure reasonable progress in the twelve CIAs in Utah. As such, no provisions of this Implementation Plan shall be construed as being applicable to tribal lands.

1.F.3 Utah Statutory Authority

The Utah Air Conservation Act gives the Utah Air Quality Board authority to make rules pertaining to air quality activities.

An administrative rule serves two purposes:

• A properly enacted administrative rule has the binding effect of law. Therefore, a rule affects the regulated entities and citizens as much as a statute passed by the Legislature.
• An administrative rule informs citizens of actions a state government agency will take or how a state agency will conduct its business.

This SIP is a compilation of analyses under Utah’s statutory authority that satisfies the requirements of Sections 110 and 169 of the CAA.

68 See id. § 19-2-104.
Chapter 2: Utah Regional Haze SIP Development Process

This SIP addresses regulatory requirements of the second planning period by screening facilities with the most impact on Utah’s CIAs, conducting and evaluating the four-factor analysis, and making controls determinations based on this analysis. The current visibility conditions in relation to our Uniform Rate of Progress (URP) goals were also analyzed with the modeled data analysis tools provided by the WRAP Technical Support System (TSS).

Utah’s SIP development process included consultation with industry stakeholders, environmental advocate stakeholders, regional states, WESTAR, WRAP, FLMs from the National Parks Service and the US Forest Service, and EPA’s Region 8 office. Utah also consulted members of other state agencies including the Department of Energy Development and Office of Public Utilities. This chapter outlines Utah’s consultation and communications with these entities. For additional details regarding individual consultation, see Chapter 9 Consultation, Public Review, Commitment to further Planning.

After initial consultation, Utah submitted the second planning period RH SIP to the FLMs, EPA, and Tribes of Utah on December, 8, 2021 for their mandatory 60-day comment period. After the comment period, the SIP was submitted to Utah Air Quality Board for the April 6th, 2022 Utah Air Quality Board meeting. The Board then proposed the SIP for public comment on May 1st, 2022 for the required 30 days. Utah then submitted the final SIP to the EPA on X, X, 2022.

2.A WRAP Engagement

During this second planning period, the WRAP Regional Haze Planning Work Group (RHPWG)70 has helped create a framework for regional haze planning for all 15 participating states as well as the City of Albuquerque within the WESTAR and WRAP region. This initiative included regular meetings to discuss regional haze planning, encourage coordination among states, and offer training opportunities. WRAP has also been responsible for the WRAP TSS which is an online portal to the technical and analytical results created from technology development from Colorado State University (CSU) and the Cooperative Institute for Research in the Atmosphere (CIRA). TSS is the source of the key summary analytical results and methods for the required technical elements of the RHR contained within this SIP including:

- Inventories: current and future (growth projections methodologies by source categories)
- Development of a transparent and complete monitoring data metric for planning and model projection purposes
- Database management (including the TSS database)

69 For purposes of this document, the Four-Factor Analysis is defined as the analysis required by 40 C.F.R. § 51.308(d)(1)(i)(A).
70 More information on the Regional Haze Planning Work Group can be found at https://www.wrapair2.org/RHPWG.aspx
• Four-Factor Analysis for control measures
• Regional photochemical modeling
• Assessment of “unknowns” and uncertain categories (natural conditions, international emissions, fire, and dust emission, etc.)
• Development of RH SIP package content and progress report template
• Development of control strategies menu for major western state sources

For additional information on the origins of WRAP, see Section 1.E.2.

2.A.1 Technical Information and Data: WRAP TSS 2.0

The WRAP TSS 2.0 is the data warehouse and online portal used by air quality planners to evaluate the technical data and analytical results to support regional haze implementation plans. The TSS 2.0 is a “system of systems” that integrates capabilities from many systems, including systems focused on: monitoring data analysis efforts, emissions data management systems, fire emissions tracking systems, photochemical aerosol regional modeling analyses, and visualization and summary data analyses.71 These diverse data sets can be analyzed through the TSS and the resultant outputs can be downloaded for use in SIP reports. This SIP submittal relies on the data stored in and retrieved from the TSS 2.0 system.

2.B Consultation with Federal Land Managers

The federal land management agencies with jurisdiction over mandatory CIAs in the West include the National Park Service (NPS), U.S. Forest Service (U.S. Department of Agriculture) (USFS), and the Fish and Wildlife Service (FWS). FLMs have a critical role in protecting air quality in national parks, wilderness, and other federally protected areas. They have an affirmative responsibility to protect air quality related values, including visibility, in all CIAs.72 Utah primarily meets with the NPS and USFS for RH planning.

States must provide the FLMs with an opportunity for an early in-person consultation about the state’s long-term strategy to reduce emissions.73 This consultation should happen early enough in the process so that the information and recommendations provided by the FLMs can meaningfully inform the State’s decisions.74 The opportunity for consultation is sufficient if the consultation happened at least 120 days prior to any public hearing or other public comment opportunity on SIP or SIP revision.75 The opportunity for consultation must also be provided no less than 60 days prior to said public hearing or public comment opportunity.76

71 https://views.cira.colostate.edu/tssv2/About/Default.aspx
72 See 40 C.F.R. § 51.166(p)(2).
73 See 40 C.F.R. § 51.308(i)(2).
74 See id.
75 See id.
76 See id.
This consultation must include the opportunity for the affected FLMs to discuss their:

- Assessment of impairment of visibility in any mandatory CIA; and
- Recommendations on the development of the reasonable progress goal and on the development and implementation of strategies to address visibility impairment.\(^{77}\)

FLM of any mandatory Class I area can submit any recommendations on the implementation of this subpart (40 C.F.R. Part 51, Subpart P: Protection of Visibility) including, but not limited to:

i. Identification of impairment of visibility in any mandatory CIA(s); and
ii. Identification of elements for inclusion in the visibility monitoring strategy required by § 51.305.\(^{78}\)

Utah has engaged with the FLMs and shared the RH SIP with them on December 8, 2021. See Chapter 9 Consultation, Public Review, Commitment to Further Planning for full documentation of Utah’s consultation with the FLMs during this implementation period.

Numerous opportunities were provided through the WRAP for states and FLMs to participate fully in the development of technical documents included in this SIP. This included the ability to review and comment on these analyses, reports, and policies. A summary of the WRAP-sponsored meetings and conference calls is provided on the WRAP website\(^{79}\).

2.C Collaboration with Tribes

Tribal governments are responsible for coordinating with federal and state governments to protect air quality on their sovereign lands and to ensure emission sources on tribal lands meet federal requirements. The federally recognized tribes in Utah include the Paiute Indian Tribe, the Skull Valley Band of Goshute Indiana, and the Ute Indian Tribe of the Uintah and Ouray Reservation. The sources located on tribal lands are considered federal jurisdiction. For example, The Bonanza power plant, located on “Indian Country” in the Uinta Basin, has a Q/d value large enough to require a Four-Factor Analysis, but is not under the jurisdiction of the Utah Department of Environmental Quality. In order to further the environmental justice initiative in Utah, UDAQ shared its RH SIP draft with the tribes of Utah at the same time it was shared with the FLMs and EPA for a 60-day review on December 8, 2021.

2.D Consultation with Other States

States are required to share information with other states that have CIAs that are reasonably anticipated to be impacted by each other’s emissions. States are also required to evaluate, though not necessarily implement, control measures requested by other states and document actions taken to resolve disagreements. The TSS 2.0 analyses tools, including emissions tools and source apportionment modeling results, aid states to determine if an in-state source could be impacting an out-of-state Class I area. Utah consulted with neighboring states, both through

\(^{77}\) See id., § 51.308(i)(2)(i) and (ii).
\(^{78}\) See id., § 51.308(i)(1)(i) and (ii).
\(^{79}\) More information on WRAP-sponsored meetings and conference calls is available at https://www.wrapair2.org/RHPWG.aspx.
webinars and calls organized through the WRAP, and via state-to-state communication, to address the requirements of the RHR for coordinated emissions control strategies between states. Specifically, 40 CFR § 51.308(f)(2)(ii) requires that Utah consult with other states that have emissions that are reasonably anticipated to contribute to visibility impairment in Utah CIAs to develop coordinated emission management strategies containing the emission reductions necessary to make reasonable progress.

WRAP conducted technical analyses to evaluate interstate emissions impacts. These analyses include source apportionment modeling and area of influence/weighted emissions potential (AOI/WEP) analyses. Source apportionment modeling is used to identify states and sectors that are contributing haze. AOI/WEP analyses can identify what significant emission sources are upwind from a Class I area. Utah discussed the results of these analyses with surrounding states. Due to all of Utah’s CIAs visibility being at or below their projected glidepath goals towards natural conditions in 2064, UDAQ will not ask for any additional controls from other states that may impact Utah’s visibility in CIAs. Refer to sections 6.A.1 and 6.A.2 for a detailed analysis on out of state impacts on Utah’s CIA’s and Utah’s impacts on out of state CIAs.

Utah has met with Colorado, New Mexico, Arizona, and Wyoming directly as well as attended Region 8, WRAP, WESTAR, and Four Corners States meetings as part of the second planning period SIP development. For additional details regarding individual consultation, see Chapter 9 as well as Appendix B or Utah’s interstate consultation agreements with surrounding states.

2.E Public and Stakeholder Consultation

Many different agencies and interests come together to develop a RH SIP. Prior to formal public review and EPA action, states should communicate regularly with industry and the public. Utah communicated regularly with the regulated industry, including the sources that may be impacted by the Four-Factor Analysis, environmental advocates, as well as members of the public. Utah holds six meetings each for the industry stakeholders and environmental advocates. For additional details regarding stakeholder consultation, see Chapter 9.
Chapter 3: Progress to Date

3.A Embedded Progress Report Requirements

Section 51.308(f)(5) of the RHR requires a state to address the requirements of subsections 51.308 (g)(1) through (5) in the plan revision. By fulfilling this requirement, the plan revision due in 2021 will also serve as a progress report for the period since submission of the progress report for the first implementation period. The progress report for the first implementation period included visibility levels, emissions, and implementation status up to a date prior to submittal.\(^8^0\)

This chapter is meant to inform the public and EPA about implementation activities since the last regional haze SIP submission.

3.A.1 Implementation status of all measures in first planning period\(^8^1\)

The RHR\(^8^2\) requires certain major stationary sources to evaluate, install, operate and maintain BART technology or an approved BART alternative for NO\(_x\) and PM emissions. The State of Utah chose to evaluate BART for PM under the case-by-case provisions of 40 CFR 51.308(e)(1) and BART for NO\(_x\) through alternative measures\(^8^3\). BART for SO\(_2\) is addressed through an alternative program\(^8^4\) that is described in Part E of the 2019 Regional Haze SIP.

40 CFR 51.308(e)(1)(ii) requires states to determine which BART-eligible sources are also “subject to BART.” BART-eligible sources are subject to BART if they emit any air pollutant that may reasonably be anticipated to cause or contribute to any impairment of visibility in any mandatory CIA.

Four BART-eligible electric generating units were identified in the State of Utah: PacifiCorp’s Hunter Units 1 and 2 and Huntington Units 1 and 2. The units are located at fossil fuel-fired steam electric plants of more than 250 million Btu per hour heat input, one of the 26 specific BART source categories. The units had potential emissions greater than 250 tons per year of visibility impairing pollutants. The units had commenced construction within the BART time frame of August 7, 1962 to August 7, 1977. PacifiCorp Hunter Units 1 and 2 and Huntington Units 1 and 2 replaced first generation low-NO\(_x\) burners with Alstom TSF 2000TM low-NO\(_x\) firing system and installation of two elevations of separated overfire air with an emission limit of 0.26 lb./MMBtu on a 30-day rolling average.

In addition, PacifiCorp Hunter Unit 3 (not subject-to-BART) replaced first generation low-NO\(_x\) burners with improved low-NO\(_x\) burners with overfire air with an emission limit of 0.34 lb./MMBtu

\(^8^1\) (40 CFR 51.308(g)(1))
\(^8^2\) 40 CFR 51.308(e) and 40 CFR 51.309(d)(4)(vii)
\(^8^3\) 40 CFR 51.308(e)(2) and (3)
\(^8^4\) 40 CFR 51.309
on a 30-day rolling average and PacifiCorp Carbon Units 1 and 2 (not subject-to-BART) were permanently retired by August 15, 2015.

Table 1: 30-day Rolling Average Emission Limits for the Retrofitted Hunter and Huntington Units

<table>
<thead>
<tr>
<th>Units</th>
<th>Utah Permitted Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SO₂ (lb./MMBtu)</td>
</tr>
<tr>
<td>Hunter 1</td>
<td>0.12</td>
</tr>
<tr>
<td>Hunter 2</td>
<td>0.12</td>
</tr>
<tr>
<td>Hunter 3</td>
<td></td>
</tr>
<tr>
<td>Huntington 1</td>
<td>0.12</td>
</tr>
<tr>
<td>Huntington 2</td>
<td>0.12</td>
</tr>
</tbody>
</table>

3.A.2 Summary of emission reductions achieved by control measure implementation

The enforceable retirement of Carbon Units 1 and 2 resulted in SO₂ reductions of 3,388 tons/year from Unit 1 and 4,617 tons per year from Unit 2, resulting in a total of 8,005 tons per year. Utah’s emissions reductions are further detailed in Chapter 5.

3.A.3 Assessment of visibility conditions

Please refer to Chapter 4 for information regarding Utah’s visibility analyses.

85 (40 CFR 51.308(g)(2)(5))
86 (40 CFR 51.308(g)(3))
3.A.4 Analysis of any changes in emissions from all sources and activities within the state87, 88

The following figures89 show Utah’s statewide total emissions trends by sector from 1999 to 2017. This data comes from Utah’s statewide emissions inventories. In 2011, there are certain spikes in emissions for area source emissions due to inventory method changes and an increase in the amount of Source Classification Codes (SCCs) defining area sources. UDAQ notes that inventory methodologies have changed over time and the emissions inventories based on WRAP modeling data in section 5.E may be more useful for comparing historical and recent emissions to future projections for the purposes of satisfying the requirements of 40 CFR 51.308(g)(4).

Figure 16: Utah PM Emissions Trends

87 (40 CFR 51.308(g)(4))

88 These graphs use WRAP modeling data from scenarios 2014v2, RepBase2, and 2028Ota2. For area source calculations, the WRAP categories Oil and Gas – Non-Point, Residential Wood Combustion, Fugitive Dust, Agriculture, Remaining Non-Point, Agricultural Fire, and Wildland Prescribed Fire were added. For Non-Road Mobile sources, the categories Non-Road Mobile and Rail were added.

89 See Figure 16 to Figure 22 below
Figure 17: Utah Gaseous (NOx, SO2, and VOC) Emissions (w/o biogenics)

Figure 18: NOx Emissions by Sector

Figure 19: SO2 Emissions by Sector
Figure 20: VOC Emissions by Sector

Figure 21: PM$_{10}$ Emissions by Sector
Figure 22: PM2.5 Emissions by Sector

Figure 16: Statewide NOx Emissions Trends by Sector
Figure 17: Statewide VOC Emissions Trends by Sector

<table>
<thead>
<tr>
<th>Year</th>
<th>Area Source</th>
<th>Area Source - Oil & Gas</th>
<th>Non-Road Mobile</th>
<th>On-Road Mobile</th>
<th>Point Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>50,152</td>
<td>111,880</td>
<td>27,584</td>
<td>53,582</td>
<td>6,555</td>
</tr>
<tr>
<td>2005</td>
<td>56,416</td>
<td>70,217</td>
<td>22,479</td>
<td>36,278</td>
<td>6,963</td>
</tr>
<tr>
<td>2008</td>
<td>59,587</td>
<td>24,677</td>
<td>24,677</td>
<td>31,673</td>
<td>8,872</td>
</tr>
<tr>
<td>2011</td>
<td>184,099</td>
<td>22,629</td>
<td>22,629</td>
<td>25,282</td>
<td>5,707</td>
</tr>
<tr>
<td>2014</td>
<td>31,574</td>
<td>20,066</td>
<td>20,066</td>
<td>20,487</td>
<td>5,899</td>
</tr>
<tr>
<td>2017</td>
<td>33,935</td>
<td>10,671</td>
<td>10,671</td>
<td>19,619</td>
<td>6,104</td>
</tr>
</tbody>
</table>

Figure 18: Statewide SO2 Emissions Trends by Sector

<table>
<thead>
<tr>
<th>Year</th>
<th>Area Source</th>
<th>Area Source - Oil & Gas</th>
<th>Non-Road Mobile</th>
<th>On-Road Mobile</th>
<th>Point Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>3,416</td>
<td>1,536</td>
<td>1,536</td>
<td>2,458</td>
<td>41,704</td>
</tr>
<tr>
<td>2005</td>
<td>1,660</td>
<td>1,627</td>
<td>1,627</td>
<td>1,667</td>
<td>43,019</td>
</tr>
<tr>
<td>2008</td>
<td>1,284</td>
<td>1,132</td>
<td>1,132</td>
<td>247</td>
<td>28,621</td>
</tr>
<tr>
<td>2011</td>
<td>2,156</td>
<td>759</td>
<td>759</td>
<td>333</td>
<td>25,170</td>
</tr>
<tr>
<td>2014</td>
<td>89</td>
<td>214</td>
<td>214</td>
<td>295</td>
<td>25,600</td>
</tr>
<tr>
<td>2017</td>
<td>117</td>
<td>220</td>
<td>220</td>
<td>327</td>
<td>11,786</td>
</tr>
</tbody>
</table>
Figure 19: Statewide PM10 Emissions Trends by Sector

Figure 20: Statewide PM$^{2.5}$ Emissions Trends by Sector
Figure 21: Utah Particulate Matter Trends

Figure 22: Utah Gaseous Trends
3.A.5 Assessment of any changes in emissions from within or outside the state.\(^{90}\)

The Center for the New Energy Economy (CNEE) at Colorado State University conducted an analysis of current and future emissions of NO\(_x\) and SO\(_2\) from fossil-fueled EGUs in 13-Western states\(^1\) for WESTAR and WRAP.\(^{91}\) WRAP state air quality staff and representatives of Western electric utilities actively participated in the project and helped develop the study parameters, including information needed for Western regional air quality analyses and planning under the federal Clean Air Act.

SO\(_2\) and NO\(_x\) emissions from the Western power sector have decreased dramatically over the last 20 years. As shown in Figure 23, 2018 EGU emissions of SO\(_2\) were 84% below 1998 levels and NO\(_x\) emissions were 71% below 1998.

\[\text{Table 2} \]

The table below shows that 29 of the 84 coal units operating in the West in 2018 have plans (not all federally enforceable) to retire by 2028. Emissions from these units were omitted from the 2028 projections produced by the CNEE, though some states opted to include emissions for some of the listed EGUs in the final WRAP 2028OTBa2 projections due to uncertainties about firm closures (e.g., North Valmy, San Juan Generating Station, etc.).

\(^{90}\) (40 CFR 51.308(g)(5))

\(^{91}\) The Analysis of EGU Emissions for Regional Haze Planning by the CNEE can be found at http://www.wrapair2.org/%5C/pdf/Final%20EGU%20Emissions%20Analysis%20Report.pdf
Table 2: Western Coal Unit Retirement and Control Summary

<table>
<thead>
<tr>
<th>State</th>
<th>Facility Name</th>
<th>Unit ID</th>
<th>Operating Year</th>
<th>Retirement Year</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLANNED RETIREMENTS - NO POST-COMBUSTION CONTROL FOR NOₓ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AZ</td>
<td>Cholla</td>
<td>1</td>
<td>1962</td>
<td>2025</td>
<td>APS IRP</td>
</tr>
<tr>
<td>AZ</td>
<td>Cholla</td>
<td>3</td>
<td>1980</td>
<td>2025</td>
<td>APS IRP</td>
</tr>
<tr>
<td>AZ</td>
<td>Cholla</td>
<td>4</td>
<td>1981</td>
<td>2025</td>
<td>PAC IRP</td>
</tr>
<tr>
<td>AZ</td>
<td>Navajo Generating Station</td>
<td>1</td>
<td>1974</td>
<td>2019</td>
<td>SRP IRP</td>
</tr>
<tr>
<td>AZ</td>
<td>Navajo Generating Station</td>
<td>2</td>
<td>1975</td>
<td>2019</td>
<td>SRP IRP</td>
</tr>
<tr>
<td>AZ</td>
<td>Navajo Generating Station</td>
<td>3</td>
<td>1976</td>
<td>2019</td>
<td>SRP IRP</td>
</tr>
<tr>
<td>CO</td>
<td>Comanche (470)</td>
<td>1</td>
<td>1973</td>
<td>2022</td>
<td>Xcel Colorado Energy Plan</td>
</tr>
<tr>
<td>CO</td>
<td>Comanche (470)</td>
<td>2</td>
<td>1975</td>
<td>2025</td>
<td>Xcel Colorado Energy Plan</td>
</tr>
<tr>
<td>CO</td>
<td>Craig</td>
<td>C1</td>
<td>1980</td>
<td>2025</td>
<td>Legal/Regulatory</td>
</tr>
<tr>
<td>CO</td>
<td>Nucla</td>
<td>1</td>
<td>1991</td>
<td>2022</td>
<td>Legal/Regulatory</td>
</tr>
<tr>
<td>CO</td>
<td>Valmont</td>
<td>5</td>
<td>1964</td>
<td>2017</td>
<td>Retired</td>
</tr>
<tr>
<td>MT</td>
<td>Colstrip</td>
<td>1</td>
<td>1975</td>
<td>2022</td>
<td>Legal/Regulatory</td>
</tr>
<tr>
<td>MT</td>
<td>Colstrip</td>
<td>2</td>
<td>1976</td>
<td>2022</td>
<td>Legal/Regulatory</td>
</tr>
<tr>
<td>NM</td>
<td>San Juan</td>
<td>1</td>
<td>1976</td>
<td>2022</td>
<td>PNM IRP (SNCR)</td>
</tr>
<tr>
<td>NM</td>
<td>San Juan</td>
<td>2</td>
<td>1973</td>
<td>2017</td>
<td>Retired</td>
</tr>
<tr>
<td>NM</td>
<td>San Juan</td>
<td>3</td>
<td>1979</td>
<td>2017</td>
<td>Retired</td>
</tr>
<tr>
<td>NM</td>
<td>San Juan</td>
<td>4</td>
<td>1982</td>
<td>2022</td>
<td>PNM IRP</td>
</tr>
<tr>
<td>NV</td>
<td>North Valmy</td>
<td>1</td>
<td>1981</td>
<td>2025</td>
<td>NV IRP (2019 per ID Power?)</td>
</tr>
<tr>
<td>NV</td>
<td>North Valmy</td>
<td>2</td>
<td>1985</td>
<td>2025</td>
<td>NV IRP</td>
</tr>
<tr>
<td>NV</td>
<td>Reid Gardner</td>
<td>4</td>
<td>1983</td>
<td>2017</td>
<td>Retired</td>
</tr>
<tr>
<td>OR</td>
<td>Boardman</td>
<td>1SG</td>
<td>1980</td>
<td>2021</td>
<td>Legal/Regulatory</td>
</tr>
<tr>
<td>UT</td>
<td>Intermountain</td>
<td>1SGA</td>
<td>1986</td>
<td>2025</td>
<td>Planned (new gas?)</td>
</tr>
<tr>
<td>UT</td>
<td>Intermountain</td>
<td>2SGA</td>
<td>1987</td>
<td>2025</td>
<td>Planned (new gas?)</td>
</tr>
<tr>
<td>WA</td>
<td>Centralia</td>
<td>BW21</td>
<td>1972</td>
<td>2021</td>
<td>Legal/Regulatory (12/31/2020)</td>
</tr>
<tr>
<td>WA</td>
<td>Centralia</td>
<td>BW22</td>
<td>1973</td>
<td>2026</td>
<td>Legal/Regulatory (12/31/2025)</td>
</tr>
<tr>
<td>WY</td>
<td>Naughton</td>
<td>3</td>
<td>1971</td>
<td>2018</td>
<td>PAC IRP - gas in 2019?</td>
</tr>
<tr>
<td>MT</td>
<td>Hardin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POTENTIAL RETIREMENTS - NO POST-COMBUSTION CONTROL FOR NOₓ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AZ</td>
<td>Coronado Generating Station</td>
<td>U1B</td>
<td>1979</td>
<td></td>
<td>Retire or install SCR in 2025</td>
</tr>
<tr>
<td>UT</td>
<td>Bonanza</td>
<td>1-Jan</td>
<td>1986</td>
<td>2030</td>
<td>Coal consumption cap</td>
</tr>
<tr>
<td>WY</td>
<td>Dave Johnston</td>
<td>BW41</td>
<td>1959</td>
<td>2027</td>
<td>PAC IRP</td>
</tr>
<tr>
<td>WY</td>
<td>Dave Johnston</td>
<td>BW42</td>
<td>1961</td>
<td>2027</td>
<td>PAC IRP</td>
</tr>
<tr>
<td>WY</td>
<td>Dave Johnston</td>
<td>BW43</td>
<td>1964</td>
<td>2027</td>
<td>PAC IRP</td>
</tr>
<tr>
<td>State</td>
<td>Facility Name</td>
<td>Unit ID</td>
<td>Operating Year</td>
<td>Retirement Year</td>
<td>Notes</td>
</tr>
<tr>
<td>-------</td>
<td>------------------------------</td>
<td>---------</td>
<td>----------------</td>
<td>-----------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>WY</td>
<td>Dave Johnston</td>
<td>BW44</td>
<td>1972</td>
<td>2027</td>
<td>PAC IRP</td>
</tr>
<tr>
<td>WY</td>
<td>Jim Bridger</td>
<td>BW71</td>
<td>1974</td>
<td>2028</td>
<td>PAC IRP (SCR req'd 2022)</td>
</tr>
<tr>
<td>WY</td>
<td>Naughton</td>
<td>1</td>
<td>1963</td>
<td>2029</td>
<td>PAC IRP</td>
</tr>
<tr>
<td>WY</td>
<td>Naughton</td>
<td>2</td>
<td>1968</td>
<td>2029</td>
<td>PAC IRP</td>
</tr>
</tbody>
</table>

POST 2028 RETIREMENT DATE - SCR INSTALLED

<table>
<thead>
<tr>
<th>State</th>
<th>Facility Name</th>
<th>Unit ID</th>
<th>Operating Year</th>
<th>Retirement Year</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>AZ</td>
<td>Coronado Generating Station</td>
<td>U2B</td>
<td>1980</td>
<td></td>
<td>SCR 2014</td>
</tr>
<tr>
<td>AZ</td>
<td>Springerville Generating Station</td>
<td>4</td>
<td>2009</td>
<td></td>
<td>SCR</td>
</tr>
<tr>
<td>AZ</td>
<td>Springerville Generating Station</td>
<td>TS3</td>
<td>2006</td>
<td></td>
<td>SCR</td>
</tr>
<tr>
<td>CO</td>
<td>Comanche (470)</td>
<td>3</td>
<td>2010</td>
<td></td>
<td>SCR</td>
</tr>
<tr>
<td>CO</td>
<td>Craig</td>
<td>C2</td>
<td>1979</td>
<td></td>
<td>SCR 2017</td>
</tr>
<tr>
<td>CO</td>
<td>Hayden</td>
<td>H1</td>
<td>1965</td>
<td>2030</td>
<td>Xcel IRP - SCR in 2015</td>
</tr>
<tr>
<td>CO</td>
<td>Hayden</td>
<td>H2</td>
<td>1976</td>
<td>2036</td>
<td>Xcel IRP - SCR 2016</td>
</tr>
<tr>
<td>CO</td>
<td>Pawnee</td>
<td>1</td>
<td>1981</td>
<td>2034</td>
<td>Xcel IRP - SCR 2014</td>
</tr>
<tr>
<td>NM</td>
<td>Four Corners Steam Elec Station</td>
<td>4</td>
<td>1969</td>
<td></td>
<td>2031 per TEP&PNM - SCR 2017</td>
</tr>
<tr>
<td>NM</td>
<td>Four Corners Steam Elec Station</td>
<td>5</td>
<td>1970</td>
<td></td>
<td>2031 per TEP&PNM - SCR 2017</td>
</tr>
<tr>
<td>NV</td>
<td>TS Power Plant</td>
<td>1</td>
<td>2008</td>
<td></td>
<td>SCR</td>
</tr>
<tr>
<td>WY</td>
<td>Dry Fork Station</td>
<td>1</td>
<td>2011</td>
<td></td>
<td>SCR</td>
</tr>
<tr>
<td>WY</td>
<td>Jim Bridger</td>
<td>BW73</td>
<td>1976</td>
<td>2037</td>
<td>PAC IRP - SCR 2015</td>
</tr>
<tr>
<td>WY</td>
<td>Jim Bridger</td>
<td>BW74</td>
<td>1979</td>
<td>2037</td>
<td>PAC IRP - SCR 2016</td>
</tr>
<tr>
<td>WY</td>
<td>Laramie River</td>
<td>1</td>
<td>1981</td>
<td></td>
<td>SCR 2019</td>
</tr>
<tr>
<td>WY</td>
<td>Wygen I</td>
<td>1</td>
<td>2003</td>
<td></td>
<td>SCR</td>
</tr>
<tr>
<td>WY</td>
<td>Wygen II</td>
<td>1</td>
<td>2008</td>
<td></td>
<td>SCR</td>
</tr>
<tr>
<td>WY</td>
<td>Wygen III</td>
<td>1</td>
<td>2010</td>
<td></td>
<td>SCR</td>
</tr>
<tr>
<td>AZ</td>
<td>Apache Station</td>
<td>3</td>
<td>1979</td>
<td></td>
<td>SNCR 2017</td>
</tr>
<tr>
<td>CO</td>
<td>Craig</td>
<td>C3</td>
<td>1984</td>
<td></td>
<td>SNCR 2017</td>
</tr>
<tr>
<td>WY</td>
<td>Laramie River</td>
<td>2</td>
<td>1981</td>
<td></td>
<td>SNCR 2018</td>
</tr>
<tr>
<td>WY</td>
<td>Laramie River</td>
<td>3</td>
<td>1982</td>
<td></td>
<td>SNCR 2018</td>
</tr>
</tbody>
</table>

POST 2028 RETIREMENT DATE - NO POST COMBUSTION CONTROLS FOR NOx

<table>
<thead>
<tr>
<th>State</th>
<th>Facility Name</th>
<th>Unit ID</th>
<th>Operating Year</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>AZ</td>
<td>Springerville Generating Station</td>
<td>1</td>
<td>1985</td>
<td></td>
</tr>
<tr>
<td>AZ</td>
<td>Springerville Generating Station</td>
<td>2</td>
<td>1990</td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>Martin Drake</td>
<td>6</td>
<td>1968</td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>Martin Drake</td>
<td>7</td>
<td>1974</td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>Rawhide Energy Station</td>
<td>101</td>
<td>1984</td>
<td></td>
</tr>
</tbody>
</table>
Emissions from coal units that will retire by 2028 comprised 27% of the SO₂ and 34% of the NOₓ emitted in 2018 by all EGUs (coal and gas) in the 13-state Western region.92 Figure 24 below shows the portion of EGU emissions represented by remaining fossil units and retiring coal units. Table 3 The table below contains data compiled by WESTAR-WRAP showing the changes in emissions from 1996-2018 and percent change throughout the GCVTC states.

<table>
<thead>
<tr>
<th>State</th>
<th>Facility Name</th>
<th>Unit ID</th>
<th>Operating Year</th>
<th>Retirement Year</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>Ray D Nixon</td>
<td>1</td>
<td>1980</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MT</td>
<td>Colstrip</td>
<td>3</td>
<td>1984</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MT</td>
<td>Colstrip</td>
<td>4</td>
<td>1986</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MT</td>
<td>Lewis & Clark</td>
<td>B1</td>
<td>1958</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NM</td>
<td>Escalante</td>
<td>1</td>
<td>1984</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UT</td>
<td>Hunter</td>
<td>1</td>
<td>1978</td>
<td>2042</td>
<td>PAC IRP - Haze Lawsuit</td>
</tr>
<tr>
<td>UT</td>
<td>Hunter</td>
<td>2</td>
<td>1980</td>
<td>2042</td>
<td>PAC IRP - Haze Lawsuit</td>
</tr>
<tr>
<td>UT</td>
<td>Hunter</td>
<td>3</td>
<td>1983</td>
<td>2042</td>
<td>PAC IRP</td>
</tr>
<tr>
<td>UT</td>
<td>Huntington</td>
<td>1</td>
<td>1977</td>
<td>2036</td>
<td>PAC IRP - Haze Lawsuit</td>
</tr>
<tr>
<td>UT</td>
<td>Huntington</td>
<td>2</td>
<td>1974</td>
<td>2036</td>
<td>PAC IRP - Haze Lawsuit</td>
</tr>
<tr>
<td>WY</td>
<td>Jim Bridger</td>
<td>BW72</td>
<td>1975</td>
<td>2032</td>
<td>PAC IRP (SCR Req’d 2021)</td>
</tr>
<tr>
<td>WY</td>
<td>Neil Simpson II</td>
<td>1</td>
<td>1995</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WY</td>
<td>Wyodak</td>
<td>BW91</td>
<td>1978</td>
<td>2039</td>
<td>PAC IRP - Haze Lawsuit</td>
</tr>
</tbody>
</table>

Table 3: Changes in Emissions from 1996 - 2018 for 9 GCVTC States

<table>
<thead>
<tr>
<th>Year</th>
<th>VOC</th>
<th>NOx</th>
<th>SO₂</th>
<th>PM$_{2.5}$*</th>
<th>CM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996</td>
<td>3325</td>
<td>3952</td>
<td>1063</td>
<td>1197</td>
<td>1171</td>
</tr>
<tr>
<td>2002</td>
<td>2449</td>
<td>2241</td>
<td>675</td>
<td>832</td>
<td>1886</td>
</tr>
<tr>
<td>2018</td>
<td>2760</td>
<td>1683</td>
<td>503</td>
<td>832</td>
<td>2104</td>
</tr>
<tr>
<td>% Change</td>
<td>-17</td>
<td>-57</td>
<td>-53</td>
<td>-30</td>
<td>80</td>
</tr>
</tbody>
</table>
Chapter 4: Utah Visibility Analysis

The rule adopted in 1999 defined “visibility impairment” as “any humanly perceptible change” (i.e., difference) “in visibility (light extinction, visual range, contract, or coloration) from that which would have existed under natural conditions.” The 1999 rule directed states to track visibility impairment on the 20% “most impaired days” and 20% “least impaired days” in order to determine progress towards natural visibility conditions. This iteration of the rule did not define “most impaired days” or “least impaired days” or clearly indicate whether they were the days with the highest and lowest values for both natural and anthropogenic impairment or for anthropogenic impairment only. However, the preamble to the 1999 final rule stated that the least and most impaired days were to be selected as the monitored days with the lowest and highest actual deciview levels, respectively, which encompass both natural and anthropogenic contributions to reduced visibility. In 2003, the EPA issued a guidance detailing the steps for selecting and calculating light extinction on the “worst” and “best” visibility days, which also indicated that it is preferable for states to determine the least and most impaired days based on monitoring data rather than determining and selecting the days with the highest and lowest anthropogenic impacts. For the assessment purposes in the first planning period, the GCVTC considered the average of the days representing the 20% best visibility conditions to be the least impaired days.

The “worst” visibility days for some CIAs are impacted by natural emissions (e.g., wildfires and dust storms). These natural contributions to haze vary in magnitude and duration. WRAP used regional photochemical grid models to project visibility improvement between the 2002 baseline and the 2018 future year and to set RPGs for the RHR state implementation plans. Despite western states projecting large emission reductions from EGUs, mobile sources and smoke management programs, the results of the 2018 visibility RPGs indicated many western CIAs were projected to achieve less progress than the glidepath.

As a result, EPA modified the way in which certain days during each year are to be selected for purposes of tracking progress towards natural visibility conditions in order to focus attention on days when anthropogenic emissions impair visibility and away from days when wildfires and natural dust storms are the greatest contributors to visibility impairment. These changes will

93 40 CFR 51.308(F)(1)
94 “64 Fed. Reg. 35714, 35764.”
95 “40 CFR 51.308(d)(2)(i)-(iv).”
97 The EPA Guidance for Tracking Progress Under the Regional Haze Rule can be found at https://www.epa.gov/visibility/guidance-tracking-progress-under-regional-haze-rule
provide the public and public officials with more meaningful information on how emission reduction contribute to a decline in anthropogenic visibility impairment by reasonably reducing the distorting effects of wildfires and natural dust storms on estimates of reasonable progress.

The EPA method defined a threshold for the episodic portion of natural haze for the carbonaceous species (organic mass carbon (OMC), elemental carbon (EC)) and crustal material (fine soil plus coarse mass), components that are indicators of wildfires and dust storms, respectively.99 EPA recommended nominal thresholds for each episodic species’ combinations as the minimums of the yearly 95th%ile for the 15-year period from 2000 to 2014. The daily fraction of species extinction values greater than the 95th%ile threshold are assigned to the natural episodic bin. Smaller, routine natural contributions from biogenic or geogenic emissions are assumed to be a constant fraction of the measured IMPROVE species concentrations on each day, with the fraction calculated as the ratio of a previously estimated annual average natural concentration100 (Natural Conditions II, NC-II) divided by the non-episodic annual average IMPROVE concentrations measured for each species. The metric calculates the natural routine portion, such that its annual average (excluding episodic events) is equal to the site and species-specific NC-II concentrations.

Daily anthropogenic impairment is calculated as:

\[\Delta dv_{\text{anthropogenic visibility impairment}} = dv_{\text{total}} - dv_{\text{natural}} \]

Daily anthropogenic impairment values are ranked from high to low impairment in order to select the 20% most impaired days (MIDs) each year. States must now determine the baseline (2000-2004) visibility condition for the 20% most anthropogenically impaired days. This approach differs from the previous round in which the 20% most impaired days were selected from days with the highest total impairment, not separating anthropogenic versus natural impairment. Once the most impaired days are selected, states must calculate the rate of visibility improvement over time that is required to reach natural conditions by 2064 for the 20% most impaired days. Using the metric described above for separating natural (episodic and routine)

99 Figure 25 shows how haze is separated into natural and anthropogenic causes
and anthropogenic, natural conditions are calculated as the average of the daily natural contributions on the 20% most impaired days, in the period 2000-2014. The figures below display the clearest and most impaired days calculated as described in EPA guidance. The line drawn from the baseline to the endpoint is termed the glidepath, or the “uniform rate of progress (URP),” and is calculated for each Class I area, and is used as a tracking metric for the path to natural conditions. The URP is calculated with the following formula:

\[
URP = \frac{[(2000–2004 \text{ visibility})20\% \text{ most impaired}-(\text{natural visibility})20\% \text{ most impaired}]}{60}
\]

The most impaired days are the 20% of days with the highest anthropogenic fraction of total haze. Tracking visibility progress on those days with highest impairment is intended to limit the influence of episodic wildfires and dust storms on the visibility trends.

![Figure 26: URP Glidepath for Clearest Days, Bryce Canyon NP](image)

No changes were made from the previous implementation period in how the 20% clearest days are calculated. The 20% clearest days are calculated from the days with the lowest total impairment. As stated previously, the RHR requires states to demonstrate that there is no degradation in the 20% clearest days from the baseline period.\(^{101}\)

\(^{101}\) “64 Fed. Reg. 35714, 35764.”
4.A Baseline, Current Conditions and Natural Visibility Conditions

Section 51.308(f)(1) of the RHR requires Utah to calculate the baseline, current, and natural visibility conditions as well as to determine the visibility progress to date and the uniform rate of progress (URP) for each of its five CIAs. According to the RHR, baseline period visibility conditions, current visibility conditions, natural conditions, and the URP should be expressed in deciviews and calculated based on total light extinction. The baseline visibility conditions are based on available monitoring data of the most impaired and clearest days during the period of 2000 to 2004. Current visibility conditions are to be calculated based upon the most recent five years of data by calculating the average of the annual deciview index values for the most impaired days and clearest days in this period, and averaging these respective annual values. Natural visibility conditions are to be calculated by estimating the average deciview index on most impaired and clearest days under natural conditions. Calculations were made in accordance with 40 CFR 51.308(d)(2) and EPA’s Technical Guidance on Tracking Visibility Progress for the Second Implementation Period of the Regional Haze Program.

103 Table 4 and Table 5 describe the IMPROVE site information for Utah’s CIAs
Table 4: Representative IMPROVE Monitoring Sites

<table>
<thead>
<tr>
<th>Class I Area Name</th>
<th>Representative IMPROVE Site</th>
<th>Site ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arches National Park</td>
<td>Canyonlands NP</td>
<td>CANY1</td>
</tr>
<tr>
<td>Bryce Canyon National Park</td>
<td>Bryce Canyon NP</td>
<td>BRCA1</td>
</tr>
<tr>
<td>Canyonlands National Park</td>
<td>Canyonlands NP</td>
<td>CANY1</td>
</tr>
<tr>
<td>Capitol Reef National Park</td>
<td>Capitol Reef NP</td>
<td>CAPI1</td>
</tr>
<tr>
<td>Zion National Park</td>
<td>Zion NP</td>
<td>ZICA1</td>
</tr>
</tbody>
</table>

Table 5: IMPROVE site information for CIAs

<table>
<thead>
<tr>
<th>Site ID</th>
<th>Class I Area Name(s)</th>
<th>Latitude</th>
<th>Longitude</th>
<th>State</th>
<th>AQS Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRCA1</td>
<td>Bryce Canyon National Park</td>
<td>37.6184</td>
<td>-112.1736</td>
<td>UT</td>
<td>49-017-0101</td>
</tr>
<tr>
<td>CANY1</td>
<td>Arches National Park, Canyonlands National Park</td>
<td>38.4587</td>
<td>-109.821</td>
<td>UT</td>
<td>49-037-0101</td>
</tr>
<tr>
<td>CAPI1</td>
<td>Capitol Reef National Park</td>
<td>38.3022</td>
<td>-111.2926</td>
<td>UT</td>
<td>49-055-9000</td>
</tr>
<tr>
<td>ZICA1</td>
<td>Zion National Park</td>
<td>37.1983</td>
<td>-113.1507</td>
<td>UT</td>
<td>49-053-0130</td>
</tr>
</tbody>
</table>

4.A.1 Baseline (2000-2004) visibility for the most impaired and clearest days¹⁰⁴

Baseline visibility conditions are based on the available IMPROVE monitoring data of the 20% most impaired and clearest days during the period of 2000 to 2004. Table 6 shows the baseline visibility calculated for clearest days and most impaired days for each of Utah’s CIAs.

Table 6: Baseline Visibility for the 20% Most Impaired Days and 20% Clearest Days

<table>
<thead>
<tr>
<th>Site ID</th>
<th>Class I Area Name(s)</th>
<th>Clearest Days (dv)</th>
<th>Most Impaired Days (dv)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRCA1</td>
<td>Bryce Canyon National Park</td>
<td>2.77</td>
<td>8.42</td>
</tr>
<tr>
<td>CANY1</td>
<td>Arches National Park, Canyonlands National Park</td>
<td>3.75</td>
<td>8.79</td>
</tr>
<tr>
<td>CAPI1</td>
<td>Capitol Reef National Park</td>
<td>4.10</td>
<td>8.78</td>
</tr>
<tr>
<td>ZICA1</td>
<td>Zion National Park</td>
<td>4.48</td>
<td>10.40</td>
</tr>
</tbody>
</table>

4.A.2 Natural visibility for the most impaired and clearest days¹⁰⁵

Natural visibility conditions are to be calculated by estimating the average deciview index on most impaired and clearest days under natural conditions. Table 7 summarizes the natural visibility values calculated for the clearest and most impaired days in each of Utah’s CIAs.

¹⁰⁴ (40 CFR 51.308(f)(1)(i))

¹⁰⁵ (40 CFR 51.308(f)(1)(ii))
Table 7: Natural Visibility values for Utah CIAs

<table>
<thead>
<tr>
<th>Site ID</th>
<th>Class I Area Name(s)</th>
<th>Clearest Days (dv)</th>
<th>Most Impaired Days (dv)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRCA1</td>
<td>Bryce Canyon National Park</td>
<td>0.57</td>
<td>4.08</td>
</tr>
<tr>
<td>CANY1</td>
<td>Arches National Park, Canyonlands National Park</td>
<td>1.05</td>
<td>4.13</td>
</tr>
<tr>
<td>CAPI1</td>
<td>Capitol Reef National Park</td>
<td>1.28</td>
<td>4.00</td>
</tr>
<tr>
<td>ZICA1</td>
<td>Zion National Park</td>
<td>1.83</td>
<td>5.26</td>
</tr>
</tbody>
</table>

4.A.3 Current (2014-2018) visibility for the most impaired and clearest days\(^{106}\)

Current visibility conditions are to be calculated based upon the most recent five years of data by calculating the average of the annual deciview index values for the most impaired days and clearest days in this period, and averaging these respective annual values. Table 8 below shows the current visibility values calculated for the clearest and most impaired days in each of Utah’s CIAs.

Table 8: Current Visibility (2014-2018) conditions in Utah CIAs

<table>
<thead>
<tr>
<th>Site ID</th>
<th>Class I Area Name(s)</th>
<th>Clearest Days (dv)</th>
<th>Most Impaired Days (dv)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRCA1</td>
<td>Bryce Canyon National Park</td>
<td>1.46</td>
<td>6.60</td>
</tr>
<tr>
<td>CANY1</td>
<td>Arches National Park, Canyonlands National Park</td>
<td>2.20</td>
<td>6.76</td>
</tr>
<tr>
<td>CAPI1</td>
<td>Capitol Reef National Park</td>
<td>2.38</td>
<td>7.18</td>
</tr>
<tr>
<td>ZICA1</td>
<td>Zion National Park</td>
<td>3.86</td>
<td>8.75</td>
</tr>
</tbody>
</table>

\(^{106}\) (40 CFR 51.308(f)(1)(iii))
4.A.4 Progress to date: most impaired and clearest days107

Actual progress towards the natural visibility conditions goal has been calculated in relation to the baseline period for each of Utah’s CIAs. This is exhibited by the difference between the average visibility condition during the 5-year baseline, previous implementation period, and each subsequent 5-year period up to and including the current period. Table 9 The following table displays the progress in Utah’s CIAs comparing the baseline values for clearest and most impaired days with the first implementation period and 2014-2018 values.

Table 9: Progress to date for the most impaired and clearest days

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20% Clearest</td>
<td>20% Most Impaired</td>
<td>20% Clearest</td>
</tr>
<tr>
<td>BRCA1</td>
<td>2.77</td>
<td>8.42</td>
<td>1.82</td>
</tr>
<tr>
<td>CANY1</td>
<td>3.75</td>
<td>8.79</td>
<td>2.93</td>
</tr>
<tr>
<td>CAPI1</td>
<td>4.10</td>
<td>8.78</td>
<td>2.53</td>
</tr>
<tr>
<td>ZICA1</td>
<td>4.48</td>
<td>10.40</td>
<td>4.22</td>
</tr>
</tbody>
</table>

4.A.5 Differences between current and natural for the most impaired and clearest days108

Table 10 The following table compares the difference between the current deciview values for each CIA to the estimated natural visibility for the 20% most impaired days and clearest days.

Table 10: Current visibility compared to natural visibility

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20% Clearest</td>
<td>20% Most Impaired</td>
<td>20% Clearest</td>
</tr>
<tr>
<td>BRCA1</td>
<td>1.46</td>
<td>6.60</td>
<td>0.57</td>
</tr>
<tr>
<td>CANY1</td>
<td>2.20</td>
<td>6.76</td>
<td>1.05</td>
</tr>
<tr>
<td>CAPI1</td>
<td>2.38</td>
<td>7.18</td>
<td>1.28</td>
</tr>
<tr>
<td>ZICA1</td>
<td>3.86</td>
<td>8.75</td>
<td>1.83</td>
</tr>
</tbody>
</table>

107 (40 CFR 51.308(f)(1)(iv))
108 (40 CFR 51.308(f)(1)(v))
4.B Uniform Rate of Progress109

Utah analyzed and determined the uniform rate of progress (URP) over time for each of its five CIAs, starting at the baseline period of 2000-2004, that would be needed to attain the natural visibility condition on the 20% most anthropogenically impaired days by the year 2064. Table 11 shows the URP for each IMPROVE site.

Table 11: Uniform Rates of Progress

<table>
<thead>
<tr>
<th>CIA IMPROVE Site</th>
<th>Baseline Conditions (Most Impaired Days) (dv)</th>
<th>2064 Natural Conditions (Most Impaired Days) (dv)</th>
<th>Years to Reach Natural Conditions</th>
<th>Uniform Rate of Progress (URP) (dv/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRCA1</td>
<td>8.42</td>
<td>4.08</td>
<td>60</td>
<td>-0.072</td>
</tr>
<tr>
<td>CANY1</td>
<td>8.79</td>
<td>4.13</td>
<td>60</td>
<td>-0.078</td>
</tr>
<tr>
<td>CAPI1</td>
<td>8.78</td>
<td>4.00</td>
<td>60</td>
<td>-0.080</td>
</tr>
<tr>
<td>ZICA1</td>
<td>10.40</td>
<td>5.26</td>
<td>60</td>
<td>-0.086</td>
</tr>
</tbody>
</table>

Utah then used the URP to establish the level of visibility change needed from baseline conditions by 2028 as shown in Table 12. The 2028 URP level is used for comparison to WRAP photochemical modeling projections for 2028 shown in sections 6.A.10 and 8.C.

Table 12: Calculation of 2028 Uniform Rate of Progress Level

<table>
<thead>
<tr>
<th>CIA IMPROVE Site</th>
<th>Baseline Conditions (Most Impaired Days) (dv)</th>
<th>Visibility Change by 2028 (URP*24 years) (dv)</th>
<th>2028 URP Level (dv)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRCA1</td>
<td>8.42</td>
<td>-1.74</td>
<td>6.68</td>
</tr>
<tr>
<td>CANY1</td>
<td>8.79</td>
<td>-1.87</td>
<td>6.92</td>
</tr>
<tr>
<td>CAPI1</td>
<td>8.78</td>
<td>-1.91</td>
<td>6.87</td>
</tr>
<tr>
<td>ZICA1</td>
<td>10.40</td>
<td>-2.06</td>
<td>8.35</td>
</tr>
</tbody>
</table>

4.C Adjustments to URP: International impacts and/or prescribed fire110

EPA added a provision in the 2019 guidance that allows EPA to approve adjustments to the URP to reflect the impacts of international and wildland prescribed fire sources of visibility impairment if an adjustment has been developed through scientifically valid data and methods. These adjustments would be developed and applied separately, although they would both be accomplished by adding an estimate of the impact of the relevant source type or types to the value of the natural visibility condition for the 20% most anthropogenically impaired days, for the purposes of calculating the URP.111 The wildland prescribed fires that are eligible under the

109 (40 CFR 51.308(f)(1)(vi))

110 (40 CFR 51.308(f)(1)(vi)(B)(1) and (2))

111 The 2019 EPA Guidance can be found at: https://www.epa.gov/sites/default/files/2019-08/documents/8-20-2019_-_regional_haze_guidance_final_guidance.pdf
RHR to be included in this adjustment are those conducted with the objective to establish, restore, and/or maintain sustainable and resilient wildland ecosystems, to reduce the risk of catastrophic wildfires, and/or to preserve endangered or threatened species during which appropriate basic smoke management practices were applied.112

Consistent with the methods evaluated in the EPA Technical Support Document113, WRAP calculated the international and wildland prescribed fire glidepath adjustments for Utah using 2028OTBa2 source apportionment modeling results normalized to the IMPROVE monitoring data and added to EPA estimated natural conditions.114

Modeling done by both EPA and WRAP shows that Utah is significantly impacted by international and wildland prescribed fire emissions (as shown by Figures 28-31). Further detail on emission source apportionment can be found in Chapter 5: Utah Sources of Visibility Impairment.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{Figure28.png}
\caption{Projected Source Contributions to Light Extinction in Bryce Canyon NP}
\end{figure}

112 “64 Fed. Reg. 35714, 35764.”

114 WRAP Technical Support System for Regional Haze Planning: Modeling Methods, Results, and References https://views.cira.colostate.edu/tssv2/Docs/WRAP_TSS_modeling_reference_final_20210930.pdf
Figure 29: Projected Source Contributions to Light Extinction in Canyonlands and Arches NP

Figure 30: Projected Source Contributions to Light Extinction in Capitol Reef NP
Figure 31: Projected Source Contributions to Light Extinction in Zion NP

Figure 32 shows an example of Bryce Canyon’s URP glidepath with the international and wildland prescribed fire adjustments. It should be noted that the prescribed fire adjustments for Utah’s CIAs are small relative to those in other states. The international source adjustments, on the other hand, can be sizable. While the international and wildland prescribed fire adjustments are available for Utah’s CIA glidepaths, UDAQ is choosing to remain conservative for the purposes of this implementation period by not using them. However, this choice does not preclude the use of glidepath adjustments in future planning periods, since international and
wildland prescribed fire emissions do impact Utah CIAs and are largely beyond the control of individual states and since prescribed fires are seen to be an increasingly important tool for land managers in the future.
Chapter 5: Utah Sources of Visibility Impairment

5.A Natural Sources of Impairment

Natural impairment sources include any non-anthropogenically caused visibility-reducing emissions and are often seasonally attributed to natural events such as rain, sea mists, windblown dust, wildfire, volcanic activity, and biogenic emissions. Natural sources of impairment are often caused by seasonal conditions and lead to high concentrations of visibility-impairing emissions that are short-term. Natural contributions to impairment are categorized into the “episodic” and “routine” types. Episodic contributions, such as large wildfires or dust storms, occur infrequently and vary yearly in number and size. Routine contributions include biogenic sources, sea salt, and incorporate the site-specific value for Rayleigh scattering, a term which refers to the scattering of light off of particles in the air. These contributions occur often and are more consistent on a yearly basis.

5.B Anthropogenic Sources of Impairment

Anthropogenic impairment sources include any visibility-decreasing emissions directly related to human-caused activities. These activities include industrial processes (utilities, smelters, refineries, etc.), mobile sources (cars, trucks, trains, etc.) and area sources (residential wood burning, prescribed burning on wild and agricultural lands, wind-blown dust from disturbed soils, etc.). Anthropogenic sources of emissions include those originating within Utah as well as neighboring states, Mexico, Canada, and maritime shipping emissions from across the Pacific Ocean. While Utah can consult with regional states about their anthropogenic emission contributions to impairment in Utah’s CIAs, those international contributions cannot be controlled at the state level. Table 13 The following table details the data sources used by WRAP for determining anthropogenic source emissions contributions.

Table 13: Data sources for WRAP emissions sectors

<table>
<thead>
<tr>
<th>Source Sector</th>
<th>2014v2</th>
<th>RepBase2</th>
<th>2028OTBa2</th>
</tr>
</thead>
<tbody>
<tr>
<td>California All Sectors 12WUS2</td>
<td>CARB-2014v2</td>
<td>CARB-2014v2</td>
<td>CARB-2028</td>
</tr>
<tr>
<td>WRAP Fossil EGU w/ CEM</td>
<td>WRAP-2014v2</td>
<td>WRAP-RB-EGU</td>
<td>WRAP-2028-EGU</td>
</tr>
<tr>
<td>WRAP Fossil EGU w/o CEM</td>
<td>EPA-2014v2</td>
<td>WRAP-RB-EGU</td>
<td>WRAP-2028-EGU</td>
</tr>
<tr>
<td>WRAP Non-Fossil EGU</td>
<td>EPA-2014v2</td>
<td>EPA-2016v1</td>
<td>EPA-2028v1</td>
</tr>
<tr>
<td>Non-WRAP EGU</td>
<td>EPA-2014v2</td>
<td>EPA-2016v1</td>
<td>EPA-2028v1</td>
</tr>
<tr>
<td>O&G WRAP O&G States</td>
<td>WRAP-2014v2</td>
<td>WRAP-RB-O&G</td>
<td>WRAP-2028-O&G</td>
</tr>
<tr>
<td>O&G WRAP Other States</td>
<td>EPA-2014v2</td>
<td>EPA-2016v1</td>
<td>EPA-2016v1</td>
</tr>
<tr>
<td>O&G non-WRAP States</td>
<td>EPA-2014v2</td>
<td>EPA-2016v1</td>
<td>EPA-2016v1</td>
</tr>
<tr>
<td>WRAP Non-EGU Point</td>
<td>WRAP-2014v2</td>
<td>WRAP-2014v2</td>
<td>WRAP-2014v2</td>
</tr>
<tr>
<td>Non-WRAP non-EGU Point</td>
<td>EPA-2014v2</td>
<td>EPA-2016v1</td>
<td>EPA-2016v1</td>
</tr>
<tr>
<td>On-Road Mobile 12WUS2</td>
<td>WRAP-2014v2</td>
<td>WRAP-2014v2</td>
<td>WRAP-2028-Mobile</td>
</tr>
<tr>
<td>On-Road Mobile 36US</td>
<td>EPA-2014v2</td>
<td>EPA-2016v1</td>
<td>EPA-2028v1</td>
</tr>
<tr>
<td>Non-Road 12WUS2</td>
<td>EPA-2014v2</td>
<td>EPA-2016v1</td>
<td>WRAP-2028-Mobile</td>
</tr>
<tr>
<td>Non-Road non-WRAP 36US</td>
<td>EPA-2014v2</td>
<td>EPA-2016v1</td>
<td>EPA-2028v1</td>
</tr>
</tbody>
</table>

115 This table’s data sources table comes from the 2021 WRAP Technical Support System Emissions and Modeling Report and References document.
5. C Overview of Emission Inventory System - TSS

The WRAP 2014v2 inventory was based on the National Emissions Inventory (NEI) and updates provided by states through their Emissions and Modeling Protocol subcommittee. Specific data sources for each emissions sector are detailed below:

The CAMx Particle Source Apportionment tool (PSAT) is a photochemical model that tracks gaseous and particle air emissions from sources through atmospheric dispersion, photochemical reactions, and transport to receptors where IMPROVE monitors are located. These PSAT runs include aerosol concentrations of:

- AmmNO$_3$
- AmmSO$_4$
- Primary Organic Mass from Carbon (OMC)
- Primary Elemental Carbon (EC)
- Primary Fine Soil
- Primary Coarse Mass
- Sea salt
- Secondary Organic Aerosols
 - Anthropogenic (SOAA)
 - Biogenic (SOAB)

These particles are direct products of primary gaseous and particle emissions and secondary aerosol formation. Secondary organic aerosols (SOA) tracers are not used in these PSAT runs, rather SOAs at the receptor are assigned to anthropogenic (SOAA) or biogenic (SOAB) contributions based on the chemical signatures (e.g., isoprene is assigned as biogenic in origin; benzene is assigned as anthropogenic in origin).
WRAP modeled values for six source categories and 15 component source groups:

- U.S. Anthropogenic (USAnthro)
 - U.S. anthropogenic (AntUS)
 - U.S. agricultural fire (AgfireUS)
 - Secondary Organic Aerosol-Anthropogenic (SOAA)
 - Commercial Marine Vessels (CMVUS)
 - U.S. anthropogenic contributions from outside the CAMx 36-km domain boundary as defined by the GEOS-Chem global model. (BC-US)
- U.S. Wildfire (WFUS)
- U.S. Wildland Prescribed fire (RxUS)
- Canadian and Mexican fires (OthFr)
- Natural
 - Natural (Nat)
 - Secondary Organic Aerosol -Biogenic (SOAB)
 - Natural contributions from outside the CAMx 36-km domain boundary as defined by the GEOS-Chem global model. (BC-Nat)
- International Anthropogenic (IntlAnthro)
 - International Anthropogenic contributions from outside the CAMx 36-km domain boundary as defined by the GEOS-Chem global model. (BC-Int)
 - Canadian Anthropogenic (AntCAN)
 - Mexican Anthropogenic (AntMEX)
 - Commercial Marine vessels – International (beyond 200km from U.S. coast) (CMV_nonUS)

Summaries of Utah's emissions data are located in Table 15 to Table 20 Chapter 3 as well as tables 13-20 of this chapter.

5.D Wildland Prescribed Fires

Most forest ecosystems in the West have a general pattern in which fires naturally occur, otherwise called a fire regime. These regimes serve the purpose of helping a forest get rid of excess wood fuel and cause opportunities for regrowth and regeneration. Many forest ecosystems in the West depend on fire to create their optimal conditions. As human populations increase in the West, the Wildland-Urban Interface (WUI) has led to fire suppression which impedes natural fire regimes for the safety of residential areas. This causes an increase in fuel (burnable wood) in the forests of Utah that increases their chances of unintentionally catching fire. Further contributing to the dangers of uncontrolled fire is the increase in climate change every year. To better control the location and degree at which forest fires occur, fire can be prescribed for an area under certain weather conditions and with the appropriate permits. Utilizing prescribed fires and returning fire to an ecosystem in a controlled manner helps restore its health and reduce potentially catastrophic wildfires. Healthy ecosystems with restored natural fire regimes are more resistant to severe fire, disease, and insect infestations. The United

116 Information on the TSS source apportionment data is located at http://views.cira.colostate.edu/tssv2/Reports2/Modeling/Src-App-DB-Avg-Bext-By-Source.aspx
States Forest Service (USFS) and other land management agencies in Utah closely monitor local precipitation, wind, fuel, moisture, and other elements to determine the best conditions to carry out prescribed burning.

The State of Utah and the USFS have developed mutual commitments to advance the strategy of “Shared Stewardship” in Utah. In August 2018, the Forest Service released a document outlining a new strategy for land management called “Toward Shared Stewardship Across Landscapes: An Outcome-Based Investment Strategy.” This strategy responds to the growing challenges faced by land managers including catastrophic wildfires. Of particular concern are longer fire seasons and the increasing size and severity of wildfires, along with the expanding risk to communities, water sources, wildlife habitat, air quality, and the safety of firefighters. Through Shared Stewardship, the State and Forest Service can work together and set landscape-scale priorities, implement projects at the appropriate scale, co-manage risks, share resources, and learn from each other while building long-term capacity to live with wildfire. Due to these initiatives, more frequent wildfires in the West, and thus increasing importance of prescribed fires, Utah does not consider reducing prescribed fires as a reasonable method to reduce visibility impairment.

5. E Utah Emissions

Federal visibility regulations require a statewide emissions inventory of pollutants anticipated to contribute to visibility impairment in Utah’s CIAs. WRAP inventoried pollutants in Utah including SO₂, NOₓ, VOCs, PM₂.₅, PM₁₀, and NH₃. The WRAP 2014v2 inventory was based on the 2014v2 National Emissions Inventory (NEI) as well as updates provided by western states (including Utah). RepBase2, the representative baseline emissions scenario, updated the 2014v2 inventory originally used to account for changes and variations in emissions from 2014 to 2018. This version also accounted for duplicate records found and revised some EGU, non-EGU point, oil, and gas emissions. The 2028 On the Books Inventory (2028OTBa2) projection follows the methods presented by the EPA in their 2019 Technical Support Document. WRAP states updated projections for all anthropogenic source sectors. Oil and gas area emissions were also updated by Ramboll, Inc. and the WRAP Oil and Gas Workgroup and separated into Tribal and non-Tribal mineral ownership. Table 14 contains data compiled by WRAP with information on the status of EGU retirements in Utah that were used in the RepBase2 and 2028OTBa2 inventories.

Table 14: Status of Utah EGU Retirements in RepBase2 and 2028OTBa2 Inventories

<table>
<thead>
<tr>
<th>Facility Name</th>
<th>Unit ID</th>
<th>In-Service Year</th>
<th>Retirement Year</th>
<th>Notes</th>
<th>Operator</th>
<th>Unit Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intermountain</td>
<td>1SGA</td>
<td>1986</td>
<td>2025</td>
<td>Announced retirement</td>
<td>Intermountain Power Service Corporation</td>
<td>Dry bottom wall-fired boiler</td>
</tr>
</tbody>
</table>

117 40 C.F.R. § 51.308(d)(4)(v).
118 UDAQ notes that these projections include emission not under state jurisdiction (i.e. Tribal)
<table>
<thead>
<tr>
<th>Facility Name</th>
<th>Unit ID</th>
<th>In-Service Year</th>
<th>Retirement Year</th>
<th>Notes</th>
<th>Operator</th>
<th>Unit Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intermountain</td>
<td>2SGA</td>
<td>1987</td>
<td>2025</td>
<td>Announced retirement</td>
<td>Intermountain Power Service Corporation</td>
<td>Dry bottom wall-fired boiler</td>
</tr>
<tr>
<td>Bonanza</td>
<td>1-Jan</td>
<td>1986</td>
<td>2030</td>
<td>Coal consumption cap</td>
<td>Deseret Generation & Transmission</td>
<td>Dry bottom wall-fired boiler</td>
</tr>
<tr>
<td>Hunter</td>
<td>1</td>
<td>1978</td>
<td>2042</td>
<td>PAC IRP, Round 1 RH FIP in Litigation</td>
<td>PacifiCorp Energy Generation</td>
<td>Tangentially-fired</td>
</tr>
<tr>
<td>Hunter</td>
<td>2</td>
<td>1980</td>
<td>2042</td>
<td>PAC IRP, Round 1 RH FIP in Litigation</td>
<td>PacifiCorp Energy Generation</td>
<td>Tangentially-fired</td>
</tr>
<tr>
<td>Hunter</td>
<td>3</td>
<td>1983</td>
<td>2042</td>
<td>PAC IRP</td>
<td>PacifiCorp Energy Generation</td>
<td>Dry bottom wall-fired boiler</td>
</tr>
<tr>
<td>Huntington</td>
<td>1</td>
<td>1977</td>
<td>2036</td>
<td>PAC IRP, Round 1 RH FIP in Litigation</td>
<td>PacifiCorp Energy Generation</td>
<td>Tangentially-fired</td>
</tr>
<tr>
<td>Huntington</td>
<td>2</td>
<td>1974</td>
<td>2036</td>
<td>PAC IRP, Round 1 RH FIP in Litigation</td>
<td>PacifiCorp Energy Generation</td>
<td>Tangentially-fired</td>
</tr>
</tbody>
</table>

The resulting inventories were then used by WRAP to model future visibility in Utah's CIAs.119

State and federal law require Utah to conduct a statewide emissions inventory program every three years. This inventory accounts for point, area, and mobile sources and accounts for the following criteria pollutants:

- Ammonia (NH₃)
- Carbon Monoxide (CO)
- Lead and Lead Compounds
- Nitrogen Oxides (NO)
- Particulate Matter (PM₁₀ and PM₂.₅)
- Sulfur Oxides (SO₂)
- Volatile Organic Compounds (VOCs)

The following tables contain Utah’s projected emissions inventories by species resulting from the RepBase2 and 2018OTBa2 modeling projections.

119 The complete methodology used to develop the WRAP emissions inventory can be found in “WRAP Technical Support System for Regional Haze Planning: Emissions and Modeling Methods, Results, and References” released on August 19, 2021.
Table 15: Utah SO\textsubscript{2} Emission Inventory – RepBase2 (2014-2018) and 2028OTBa2

<table>
<thead>
<tr>
<th>Type</th>
<th>Source Category</th>
<th>2014v2 Actual</th>
<th>Representative Baseline 2</th>
<th>2028 OTB a2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthropogenic</td>
<td>Electric Generating Units (EGU)</td>
<td>24,011</td>
<td>11,357</td>
<td>9,866</td>
</tr>
<tr>
<td>Anthropogenic</td>
<td>Oil and Gas – Point</td>
<td>664</td>
<td>545</td>
<td>570</td>
</tr>
<tr>
<td>Anthropogenic</td>
<td>Industrial and Non-EGU Point</td>
<td>2,400</td>
<td>2,402</td>
<td>2,402</td>
</tr>
<tr>
<td>Anthropogenic</td>
<td>Oil and Gas – Non-point</td>
<td>41</td>
<td>41</td>
<td>31</td>
</tr>
<tr>
<td>Anthropogenic</td>
<td>Residential Wood Combustion</td>
<td>24</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>Anthropogenic</td>
<td>Fugitive dust</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anthropogenic</td>
<td>Agriculture</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anthropogenic</td>
<td>Remaining Non-point</td>
<td>61</td>
<td>61</td>
<td>61</td>
</tr>
<tr>
<td>Anthropogenic</td>
<td>On-Road Mobile</td>
<td>275</td>
<td>275</td>
<td>185</td>
</tr>
<tr>
<td>Anthropogenic</td>
<td>Non-road Mobile</td>
<td>25</td>
<td>16</td>
<td>13</td>
</tr>
<tr>
<td>Anthropogenic</td>
<td>Rail</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Anthropogenic</td>
<td>Commercial Marine</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anthropogenic</td>
<td>Agricultural Fire</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Anthropogenic</td>
<td>Wildland Prescribed Fire</td>
<td>320</td>
<td>524</td>
<td>524</td>
</tr>
<tr>
<td>Total Anthropogenic</td>
<td></td>
<td>27,829</td>
<td>15,253</td>
<td>13,684</td>
</tr>
<tr>
<td>Natural</td>
<td>Wildfire</td>
<td>375</td>
<td>1,295</td>
<td>1,295</td>
</tr>
<tr>
<td>Natural</td>
<td>Biogenic</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total Natural</td>
<td></td>
<td>375</td>
<td>1,295</td>
<td>1,295</td>
</tr>
<tr>
<td>Grand Total</td>
<td></td>
<td>28,204</td>
<td>16,548</td>
<td>14,979</td>
</tr>
</tbody>
</table>

The largest source of SO\textsubscript{2} emissions is fossil fuel combustion (mainly coal) at power plants and other industrial facilities. In Utah, the largest source of SO\textsubscript{2} emissions are EGUs. Smaller sources include metal extraction, mobile vehicles, and wood burning. Wildfires are the second largest source of SO\textsubscript{2} emissions in both the RepBase and 2028 scenarios. SO\textsubscript{2} emissions that lead to high concentrations of SO\textsubscript{2} in the air generally also lead to the formation of other sulfur oxides (SO\textsubscript{x}). SO\textsubscript{x} can react with other compounds in the atmosphere to form small particles. These particles contribute to PM pollution. Ammonium sulfate particles can have a great impact on visibility due to their greater light scattering effects. According to the 2028 OTBa2 modeling, SO\textsubscript{2} emissions are projected to decline to 14,979 tons per year in 2028.

Table 16: Utah NO\textsubscript{x} Emission Inventory – RepBase2 (2014-2018) and 2028OTBa2
Utah – Statewide NOx Emissions (TPY)

<table>
<thead>
<tr>
<th>Category</th>
<th>2014v2 Actual</th>
<th>Baseline 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthropogenic Electric Generating Units (EGU)</td>
<td>54,497</td>
<td>31,882</td>
</tr>
<tr>
<td>Anthropogenic Oil and Gas – Point</td>
<td>14,636</td>
<td>14,589</td>
</tr>
<tr>
<td>Anthropogenic Industrial and Non-EGU Point</td>
<td>13,086</td>
<td>13,107</td>
</tr>
<tr>
<td>Anthropogenic Oil and Gas – Non-point</td>
<td>1,811</td>
<td>1,806</td>
</tr>
<tr>
<td>Anthropogenic Residential Wood Combustion</td>
<td>189</td>
<td>189</td>
</tr>
<tr>
<td>Anthropogenic Fugitive dust</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anthropogenic Agriculture</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anthropogenic Remaining Non-point</td>
<td>4,846</td>
<td>4,846</td>
</tr>
<tr>
<td>Anthropogenic On-Road Mobile</td>
<td>74,643</td>
<td>74,643</td>
</tr>
<tr>
<td>Anthropogenic Non-road Mobile</td>
<td>9,669</td>
<td>7,029</td>
</tr>
<tr>
<td>Anthropogenic Rail</td>
<td>5,646</td>
<td>5,646</td>
</tr>
<tr>
<td>Anthropogenic Commercial Marine</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Anthropogenic Agricultural Fire</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>Anthropogenic Wildland Prescribed Fire</td>
<td>596</td>
<td>572</td>
</tr>
<tr>
<td>Total Anthropogenic</td>
<td>179,639</td>
<td>154,328</td>
</tr>
<tr>
<td>Natural Wildfire</td>
<td>704</td>
<td>2,063</td>
</tr>
<tr>
<td>Natural Biogenic</td>
<td>12,602</td>
<td>12,602</td>
</tr>
<tr>
<td>Total Natural</td>
<td>13,306</td>
<td>14,665</td>
</tr>
<tr>
<td>Grand Total</td>
<td>192,945</td>
<td>168,993</td>
</tr>
</tbody>
</table>

NOx is a group of highly reactive gases formed in high-temperature combustion processes. This group includes NO2, nitrous acid, and nitric acid. NO2 emissions are primarily caused by fuel combustion from cars, trucks, buses, power plants, and off-road equipment. These substances are toxic by themselves and can react to form ozone or PM10 in the form of nitrates. Large nitrate particles have a greater light-scattering effect than large sulfate particles or dust particles. Most NOx emissions in Utah are from EGUs. NOx emissions are projected to decline to 102,258 tons per year, according to the 2028 OTB a2 2028OTBa2 modeling.

Table 17: Utah VOC Emission Inventory – RebBase2 (2014-2018) and 2028OTBa2

<table>
<thead>
<tr>
<th>Type</th>
<th>Source Category</th>
<th>2014v2 Actual</th>
<th>Representative Baseline 2</th>
<th>2028 OTB a2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthropogenic</td>
<td>Electric Generating Units (EGU)</td>
<td>391</td>
<td>285</td>
<td>276</td>
</tr>
<tr>
<td>Anthropogenic</td>
<td>Oil and Gas - Point</td>
<td>111,225</td>
<td>110,906</td>
<td>71,207</td>
</tr>
<tr>
<td>Anthropogenic</td>
<td>Industrial and Non-EGU Point</td>
<td>3,146</td>
<td>3,152</td>
<td>3,152</td>
</tr>
<tr>
<td>Anthropogenic</td>
<td>Oil and Gas - Non-point</td>
<td>37,069</td>
<td>35,252</td>
<td>21,513</td>
</tr>
<tr>
<td>Anthropogenic</td>
<td>Residential Wood Combustion</td>
<td>1,589</td>
<td>1,589</td>
<td>1,589</td>
</tr>
<tr>
<td>Anthropogenic</td>
<td>Fugitive dust</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anthropogenic</td>
<td>Agriculture</td>
<td>2,120</td>
<td>2,120</td>
<td>2,120</td>
</tr>
</tbody>
</table>
VOCs are volatile organic compounds that have high vapor pressure at room temperature. Many VOCs are human-made compounds that are used and produced in the manufacturing of paints, pharmaceuticals, and refrigerants. Companies in Utah must report all reactive VOC emissions (including fugitive emissions). Different VOCs have differing levels of reactivity that convert them to ozone. Therefore, changes in their emissions have limited effects on local or regional ozone pollution. VOCs also play a role in the formation of secondary particulates that can impact regional haze. The largest source of VOC emissions in Utah is oil and gas point sources. VOC emissions are expected to decline to 943,654 tons per year according to the 2028 OTB a2 projections.

Table 18: Utah PM$_{2.5}$ Emission Inventory – RepBase2 (2014-2018) and 2028OTBa2
PM$_{2.5}$ particulates are fine, inhalable particles or droplets with a diameter of 2.5 microns or smaller. Within two years after the EPA revises NAAQS for criteria pollutants, it must designate areas according to their attainment status. These designations are based on the most recent three years of monitoring data, state recommendations, and other technical information. If an area is not meeting the standard, Utah must write a PM$_{2.5}$ SIP that includes necessary control measures to ensure future attainment. The sector with the largest contribution of PM$_{2.5}$ emissions in Utah is fugitive dust. PM$_{2.5}$ emissions are expected to decline somewhat according to the 2028 OTB a2 2028OTBa2 modeling.

Table 19: Utah PM$_{2.5}$ PM$_{10}$ Emission Inventory – RepBase2 (2014-2018) and 2028OTBa2

<table>
<thead>
<tr>
<th>Type</th>
<th>Source Category</th>
<th>2014v2 Actual</th>
<th>Representative Baseline 2</th>
<th>2028 OTB a2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthropogenic</td>
<td>Electric Generating Units (EGU)</td>
<td>3,671</td>
<td>2,534</td>
<td>1,607</td>
</tr>
<tr>
<td>Anthropogenic</td>
<td>Oil and Gas - Point</td>
<td>632</td>
<td>621</td>
<td>476</td>
</tr>
<tr>
<td>Anthropogenic</td>
<td>Industrial and Non-EGU Point</td>
<td>5,385</td>
<td>5,387</td>
<td>5,387</td>
</tr>
<tr>
<td>Anthropogenic</td>
<td>Oil and Gas - Non-point</td>
<td>81</td>
<td>81</td>
<td>61</td>
</tr>
<tr>
<td>Anthropogenic</td>
<td>Residential Wood Combustion</td>
<td>1,410</td>
<td>1,410</td>
<td>1,410</td>
</tr>
<tr>
<td>Anthropogenic</td>
<td>Fugitive dust</td>
<td>95,505</td>
<td>95,505</td>
<td>95,505</td>
</tr>
<tr>
<td>Anthropogenic</td>
<td>Agriculture</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anthropogenic</td>
<td>Remaining Non-point</td>
<td>1,317</td>
<td>1,317</td>
<td>1,317</td>
</tr>
<tr>
<td>Anthropogenic</td>
<td>On-Road Mobile</td>
<td>4,547</td>
<td>4,547</td>
<td>3,550</td>
</tr>
<tr>
<td>Anthropogenic</td>
<td>Non-road Mobile</td>
<td>1,165</td>
<td>745</td>
<td>477</td>
</tr>
<tr>
<td>Anthropogenic</td>
<td>Rail</td>
<td>179</td>
<td>179</td>
<td>111</td>
</tr>
<tr>
<td>Anthropogenic</td>
<td>Commercial Marine</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anthropogenic</td>
<td>Agricultural Fire</td>
<td>119</td>
<td>119</td>
<td>119</td>
</tr>
<tr>
<td>Anthropogenic</td>
<td>Wildland Prescribed Fire</td>
<td>4,224</td>
<td>8,097</td>
<td>8,097</td>
</tr>
<tr>
<td>Total Anthropogenic</td>
<td></td>
<td>118,235</td>
<td>120,542</td>
<td>118,117</td>
</tr>
<tr>
<td>Natural</td>
<td>Wildfire</td>
<td>4,910</td>
<td>20,318</td>
<td>20,318</td>
</tr>
<tr>
<td>Natural</td>
<td>Biogenic</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total Natural</td>
<td></td>
<td>4,910</td>
<td>20,318</td>
<td>20,318</td>
</tr>
<tr>
<td>Grand Total</td>
<td></td>
<td>123,145</td>
<td>140,860</td>
<td>138,435</td>
</tr>
</tbody>
</table>
PM$_{10}$ is inhalable particulate matter that is 10 microns or smaller in diameter. Sources of PM$_{10}$ include:

- Vehicles
- Wood-burning
- Wildfires or open burns
- Industry
- Dust from construction sites, landfills, gravels pits, agriculture, and open lands

The NAAQS for PM specifies the maximum amount of PM present in outdoor air. PM concentration is measured in micrograms per cubic meter, or µg/m3. For PM$_{10}$, most high values tend to occur during wintertime inversions. In the summertime, high wind events can also lead to unusually high PM$_{10}$ values. According to the 2028 OTB projections, PM$_{10}$ emissions are expected to decrease to 138,435 tons per year in 2028. This is lower than the representative baseline from 2014 to 2017, but higher than the recalculated 2014 emissions.

Table 20: Utah NH$_3$ Emission Inventory – RepBase2 (2014-2018) and 2028OTBa2

<table>
<thead>
<tr>
<th>Type</th>
<th>Source Category</th>
<th>2014v2 Actual</th>
<th>Representative Baseline 2</th>
<th>2028 OTB a2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthropogenic</td>
<td>Electric Generating Units (EGU)</td>
<td>273</td>
<td>262</td>
<td>261</td>
</tr>
<tr>
<td>Anthropogenic</td>
<td>Oil and Gas - Point</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anthropogenic</td>
<td>Industrial and Non-EGU Point</td>
<td>400</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>Anthropogenic</td>
<td>Oil and Gas - Non-point</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anthropogenic</td>
<td>Residential Wood Combustion</td>
<td>63</td>
<td>63</td>
<td>63</td>
</tr>
<tr>
<td>Anthropogenic</td>
<td>Fugitive dust</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anthropogenic</td>
<td>Agriculture</td>
<td>12,982</td>
<td>12,982</td>
<td>12,982</td>
</tr>
<tr>
<td>Anthropogenic</td>
<td>Remaining Non-point</td>
<td>5,012</td>
<td>5,012</td>
<td>5,012</td>
</tr>
<tr>
<td>Anthropogenic</td>
<td>On-Road Mobile</td>
<td>1,025</td>
<td>1,025</td>
<td>1,039</td>
</tr>
<tr>
<td>Anthropogenic</td>
<td>Non-road Mobile</td>
<td>17</td>
<td>14</td>
<td>17</td>
</tr>
<tr>
<td>Anthropogenic</td>
<td>Rail</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Anthropogenic</td>
<td>Commercial Marine</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anthropogenic</td>
<td>Agricultural Fire</td>
<td>70</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>Anthropogenic</td>
<td>Wildland Prescribed Fire</td>
<td>678</td>
<td>1,164</td>
<td>1,164</td>
</tr>
<tr>
<td>Anthropogenic</td>
<td>Total Anthropogenic</td>
<td>20,523</td>
<td>20,995</td>
<td>21,011</td>
</tr>
<tr>
<td>Natural</td>
<td>Wildfire</td>
<td>787</td>
<td>2,702</td>
<td>2,702</td>
</tr>
<tr>
<td>Natural</td>
<td>Biogenic</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total Natural</td>
<td></td>
<td>787</td>
<td>2,702</td>
<td>2,702</td>
</tr>
<tr>
<td>Grand Total</td>
<td></td>
<td>21,310</td>
<td>23,697</td>
<td>23,713</td>
</tr>
</tbody>
</table>

NH$_3$ plays a role in light extinction since it is involved in the formation of ammonium nitrate and ammonium sulfate. The various industries that emit NH$_3$ include:
• Fertilizer manufacturing
• Fossil fuel combustion
• Livestock management
• Refrigeration methods

Currently, there is limited federal regulation of NH₃ emissions, although the CAA provides federal authority to regulate this pollutant. NH₃ emissions levels are consistent in each of the three WRAP projections for 2014, 2014-2017, and 2028.
Chapter 6: Long-Term Strategy for Second Planning Period

6.A LTS Requirements

The Long-Term Strategy requirements under Subsections 51.308(d)(3) and (f)(2) include the following:

- Submit an initial LTS and 5-year progress review per 40 CFR 51.308(g) that addresses regional haze visibility impairment.
- Consult with other states to develop coordinated emission management strategies for CIAs outside Utah where Utah emissions cause or contribute to visibility impairment, or for CIAs in Utah where emissions from other states cause or contribute to visibility impairment.
- Enforceable emissions limitations, compliance schedules, and other measures necessary to achieve the reasonable progress goals established by Utah for its CIAs.
- Document the technical basis on which the state is relying to determine its apportionment of emission reduction obligations necessary for achieving reasonable progress in each CIA it affects.
- Identify all anthropogenic sources of visibility impairing emissions (major and minor stationary sources, mobile sources, and area sources).
- Consider the following factors when developing the LTS:
 - Emission reductions due to ongoing air pollution control programs, including measures to address Reasonably Attributable Visibility Impairment (RAVI);
 - Measures to mitigate the impacts of construction activities;
 - Emission limitations and schedules for compliance to achieve the reasonable progress goal;
 - Source retirement and replacement schedules;
 - Smoke management techniques for agricultural and forestry management purposes including plans as currently exist within the state for this purpose;
 - Enforceability of emission limitations and control measures; and
 - The anticipated net effect on visibility due to projected changes in point, area, and mobile source emissions over the period addressed by the long-term strategy.

Sections 6.A.1 through 6.A.8 detail how Utah addressed the above LTS factors.

120 40 CFR 51.308(f)(2)
121 40 CFR 51.308(d)(3) and (f)(2)
6.A.1 States reasonably anticipated to contribute to visibility impairment in the Utah CIAs122

Bryce Canyon National Park

In Bryce Canyon National Park, California contributes the highest portion of U.S. anthropogenic ammonium nitrate-caused light extinction on most impaired days at 35%, followed by Utah at 23%. California also contributes the highest amount of U.S. anthropogenic ammonium sulfate light extinction in Bryce Canyon at 19% followed by non-WRAP states at 14%, Utah at 14%, Arizona at 12%, Wyoming at 12%, and New Mexico at 11%.

122 40 CFR 51.308 (f)(2)(ii)
Canyonlands and Arches National Park

In Canyonlands and Arches National Park, Utah contributes the largest portion of U.S. ammonium nitrate light extinction (60%) followed by Colorado (14%). Utah also contributes the most U.S. ammonium sulfate light extinction (40%) on the park’s most impaired days followed by New Mexico (13%) and non-WRAP US states (12%).

![Figure 35: WRAP States Ammonium Sulfate Source Apportionment for Most Impaired Days at Canyonlands and Arches National Park](image)

![Figure 36: WRAP States Ammonium Nitrate Source Apportionment for Most Impaired Days at Canyonlands and Arches National Park](image)
Capitol Reef National Park
Utah contributes the highest portion of U.S. anthropogenic ammonium nitrate light extinction on Capitol Reef’s most impaired days at 35%. California contributes the second-highest amount at 21%. Utah also contributes the highest portion of U.S. anthropogenic ammonium sulfate light extinction at 20%, closely followed by non-WRAP states (15%), California (13%), and Wyoming (13%).

Figure 37: WRAP States Ammonium Sulfate Source Apportionment for Most Impaired Days at Capitol Reef National Park

Figure 38: WRAP States Ammonium Nitrate Source Apportionment for Most Impaired Days at Capitol Reef National Park
Zion National Park

For Zion National Park’s most impaired days, California contributes the highest portion of U.S. anthropogenic ammonium nitrate light extinction (49%) with mobile emissions comprising the majority of their impact (27%). California also contributes to the majority of U.S. anthropogenic ammonium sulfate light extinction (37%), most of which are from non-EGU sources (23%).

Figure 39: WRAP States Ammonium Sulfate Source Apportionment for Most Impaired Days at Zion National Park

Figure 40: WRAP States Ammonium Nitrate Source Apportionment for Most Impaired Days at Zion National Park
6.A.2 Utah sources identified by downwind states that are reasonably anticipated to impact CIAs123

Utah has analyzed the WRAP photochemical modeling for OTB 2028 and found that emissions from Utah can impact visibility at CIAs in other states. Table 21 and Table 22 below summarize Utah’s percent contribution to total U.S. anthropogenic nitrate and sulfate light extinction at CIAs in neighboring states. As can be seen, Utah’s highest nitrate impacts occur in Colorado, Idaho, and Wyoming CIAs and mostly stem from mobile source emissions. Utah’s highest sulfate impacts also occur in Colorado, Idaho, and Wyoming (namely at MOZI1, WHRI1, CRMO1, and BRID1) and predominantly stem from EGU emissions and some non-EGU emissions in the case of CRMO1. It should be noted that the WRAP source apportionment results for Utah EGUs include impacts from the Bonanza power plant, which is located in Indian Country and which is not, therefore, a source regulated by UDAQ. A review of the weighted emissions potential (WEP) values for sulfate at the latter CIAs identified one Utah EGU, Kennebec Power Plant, with a top-ten sulfate WEP value for BRID1 (rank 2, 7.4% of total WEP). However, this facility was officially closed in 2020. The facilities with the two highest ranking non-EGU WEP sulfate values at CRMO1 were the Tesoro (now Marathon) refinery (rank 6, 6.8% of total WEP) and the Kennebec Smelter and Refinery (rank 10, 2.2% of total WEP), both of which recently underwent BACT analysis for the Salt Lake PM\textsubscript{2.5} serious area SIP and are well-controlled for SO\textsubscript{2}.

As one might expect, when Utah anthropogenic impacts are compared to total nitrate and sulfate light extinction at the same CIAs, Utah’s shares drop markedly, as shown in Table 23 and Table 24, respectively. And nitrate and sulfate are only two of several contributors to total visibility impairment. As such, Utah’s shares of nitrate and sulfate impacts should be considered in this broader context. That said, the aforementioned source apportionment results were not used to screen out any sources from a requirement to conduct a four-factor analysis. Rather, UDAQ relied upon a preliminary Q/d analysis to identify sources with a Q/d of \textgreater=6. UDAQ then conducted a secondary screening to review the initial pool of Q/d-qualifying sources to account for factors such as recent emissions controls required by other air quality programs, facility closures, federal preemptions on state controls, etc. Finally, UDAQ reviewed WEP results for nitrate and sulfate to ensure that the remaining Q/d pool reasonably captured sources with impacts at Utah and non-Utah CIAs. This screening analysis is detailed in section 7.A.

<table>
<thead>
<tr>
<th>State</th>
<th>Site</th>
<th>EGU</th>
<th>Mobile</th>
<th>Non-EGU</th>
<th>Oil & Gas</th>
<th>Remaining Anthro</th>
<th>Utah Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>AZ</td>
<td>BALD1</td>
<td>0.19%</td>
<td>0.22%</td>
<td>0.10%</td>
<td>0.02%</td>
<td>0.03%</td>
<td>0.55%</td>
</tr>
<tr>
<td>AZ</td>
<td>CHIR1</td>
<td>0.76%</td>
<td>0.68%</td>
<td>0.29%</td>
<td>0.19%</td>
<td>0.13%</td>
<td>2.05%</td>
</tr>
<tr>
<td>AZ</td>
<td>GRC2A</td>
<td>0.64%</td>
<td>0.63%</td>
<td>0.13%</td>
<td>0.22%</td>
<td>0.09%</td>
<td>1.71%</td>
</tr>
<tr>
<td>AZ</td>
<td>IKBA1</td>
<td>0.21%</td>
<td>0.29%</td>
<td>0.10%</td>
<td>0.05%</td>
<td>0.07%</td>
<td>0.73%</td>
</tr>
<tr>
<td>AZ</td>
<td>PEOF1</td>
<td>2.89%</td>
<td>1.95%</td>
<td>0.75%</td>
<td>0.57%</td>
<td>0.56%</td>
<td>6.73%</td>
</tr>
<tr>
<td>AZ</td>
<td>SAGU1</td>
<td>0.35%</td>
<td>0.32%</td>
<td>0.10%</td>
<td>0.08%</td>
<td>0.07%</td>
<td>0.93%</td>
</tr>
</tbody>
</table>

123 40 CFR 51.308 (f)(2)(ii)(A)
<table>
<thead>
<tr>
<th>State</th>
<th>Site</th>
<th>EGU</th>
<th>Mobile</th>
<th>Non-EGU</th>
<th>Oil & Gas</th>
<th>Remaining Anthro</th>
<th>Utah Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>AZ</td>
<td>SIAN1</td>
<td>0.19%</td>
<td>0.19%</td>
<td>0.11%</td>
<td>0.02%</td>
<td>0.03%</td>
<td>0.53%</td>
</tr>
<tr>
<td>AZ</td>
<td>SYCA_RHTS</td>
<td>1.12%</td>
<td>1.45%</td>
<td>0.57%</td>
<td>0.23%</td>
<td>0.26%</td>
<td>3.62%</td>
</tr>
<tr>
<td>AZ</td>
<td>TONT1</td>
<td>0.22%</td>
<td>0.30%</td>
<td>0.09%</td>
<td>0.05%</td>
<td>0.07%</td>
<td>0.74%</td>
</tr>
<tr>
<td>CO</td>
<td>GRSA1</td>
<td>2.39%</td>
<td>1.35%</td>
<td>0.44%</td>
<td>0.59%</td>
<td>0.32%</td>
<td>5.08%</td>
</tr>
<tr>
<td>CO</td>
<td>MEVE1</td>
<td>4.33%</td>
<td>2.76%</td>
<td>0.81%</td>
<td>0.91%</td>
<td>0.68%</td>
<td>9.49%</td>
</tr>
<tr>
<td>CO</td>
<td>MOZI1</td>
<td>4.14%</td>
<td>7.23%</td>
<td>3.00%</td>
<td>3.00%</td>
<td>1.44%</td>
<td>18.81%</td>
</tr>
<tr>
<td>CO</td>
<td>ROMO1</td>
<td>1.95%</td>
<td>3.53%</td>
<td>1.47%</td>
<td>1.27%</td>
<td>0.72%</td>
<td>8.94%</td>
</tr>
<tr>
<td>CO</td>
<td>WEMI1</td>
<td>2.43%</td>
<td>2.20%</td>
<td>0.72%</td>
<td>0.99%</td>
<td>0.25%</td>
<td>6.59%</td>
</tr>
<tr>
<td>CO</td>
<td>WHRI1</td>
<td>5.14%</td>
<td>6.75%</td>
<td>2.23%</td>
<td>2.64%</td>
<td>0.98%</td>
<td>17.74%</td>
</tr>
<tr>
<td>ID</td>
<td>CRM01</td>
<td>0.62%</td>
<td>6.88%</td>
<td>3.42%</td>
<td>0.34%</td>
<td>2.02%</td>
<td>12.97%</td>
</tr>
<tr>
<td>ID</td>
<td>SAWT1</td>
<td>0.05%</td>
<td>0.38%</td>
<td>0.22%</td>
<td>0.01%</td>
<td>0.09%</td>
<td>0.74%</td>
</tr>
<tr>
<td>ID</td>
<td>SULA1</td>
<td>0.09%</td>
<td>0.96%</td>
<td>0.45%</td>
<td>0.01%</td>
<td>0.13%</td>
<td>1.63%</td>
</tr>
<tr>
<td>NM</td>
<td>BAND1</td>
<td>0.58%</td>
<td>0.43%</td>
<td>0.14%</td>
<td>0.14%</td>
<td>0.08%</td>
<td>1.37%</td>
</tr>
<tr>
<td>NM</td>
<td>BOAP1</td>
<td>0.50%</td>
<td>0.47%</td>
<td>0.19%</td>
<td>0.12%</td>
<td>0.12%</td>
<td>1.41%</td>
</tr>
<tr>
<td>NM</td>
<td>GICL1</td>
<td>0.27%</td>
<td>0.38%</td>
<td>0.15%</td>
<td>0.07%</td>
<td>0.06%</td>
<td>0.93%</td>
</tr>
<tr>
<td>NM</td>
<td>GUMO1</td>
<td>0.17%</td>
<td>0.27%</td>
<td>0.09%</td>
<td>0.06%</td>
<td>0.02%</td>
<td>0.60%</td>
</tr>
<tr>
<td>NM</td>
<td>SACR1</td>
<td>0.06%</td>
<td>0.06%</td>
<td>0.02%</td>
<td>0.02%</td>
<td>0.01%</td>
<td>0.17%</td>
</tr>
<tr>
<td>NM</td>
<td>SAPE1</td>
<td>0.84%</td>
<td>0.60%</td>
<td>0.24%</td>
<td>0.24%</td>
<td>0.14%</td>
<td>2.05%</td>
</tr>
<tr>
<td>NM</td>
<td>WHIT1</td>
<td>0.12%</td>
<td>0.14%</td>
<td>0.05%</td>
<td>0.04%</td>
<td>0.03%</td>
<td>0.38%</td>
</tr>
<tr>
<td>NM</td>
<td>WHPE1</td>
<td>0.96%</td>
<td>0.84%</td>
<td>0.29%</td>
<td>0.23%</td>
<td>0.16%</td>
<td>2.48%</td>
</tr>
<tr>
<td>NV</td>
<td>JARB1</td>
<td>0.43%</td>
<td>1.32%</td>
<td>0.54%</td>
<td>0.10%</td>
<td>0.23%</td>
<td>2.63%</td>
</tr>
<tr>
<td>WY</td>
<td>BRID1</td>
<td>2.98%</td>
<td>12.91%</td>
<td>6.56%</td>
<td>1.53%</td>
<td>2.41%</td>
<td>26.39%</td>
</tr>
<tr>
<td>WY</td>
<td>NOAB1</td>
<td>0.49%</td>
<td>3.11%</td>
<td>1.60%</td>
<td>0.07%</td>
<td>0.72%</td>
<td>5.98%</td>
</tr>
<tr>
<td>WY</td>
<td>YELL2</td>
<td>0.63%</td>
<td>5.90%</td>
<td>2.94%</td>
<td>0.07%</td>
<td>1.43%</td>
<td>10.97%</td>
</tr>
</tbody>
</table>

Table 22: Utah Share of U.S. Anthropogenic Sulfate Impacts on Neighboring State CIAs
<table>
<thead>
<tr>
<th>State</th>
<th>Site</th>
<th>EGU</th>
<th>Mobile</th>
<th>Non-EGU</th>
<th>Oil & Gas</th>
<th>Remaining Anthro</th>
<th>Utah Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>WHRI1</td>
<td>22.85%</td>
<td>0.45%</td>
<td>1.91%</td>
<td>2.12%</td>
<td>0.30%</td>
<td>27.62%</td>
</tr>
<tr>
<td>ID</td>
<td>CRMO1</td>
<td>4.17%</td>
<td>0.48%</td>
<td>4.08%</td>
<td>0.01%</td>
<td>0.35%</td>
<td>9.10%</td>
</tr>
<tr>
<td>ID</td>
<td>SAWT1</td>
<td>1.23%</td>
<td>0.06%</td>
<td>0.82%</td>
<td>0.01%</td>
<td>0.04%</td>
<td>2.15%</td>
</tr>
<tr>
<td>ID</td>
<td>SULA1</td>
<td>0.79%</td>
<td>0.11%</td>
<td>0.70%</td>
<td>0.01%</td>
<td>0.08%</td>
<td>1.70%</td>
</tr>
<tr>
<td>NM</td>
<td>BAND1</td>
<td>1.25%</td>
<td>0.04%</td>
<td>0.18%</td>
<td>0.22%</td>
<td>0.02%</td>
<td>1.70%</td>
</tr>
<tr>
<td>NM</td>
<td>BOAP1</td>
<td>0.68%</td>
<td>0.03%</td>
<td>0.14%</td>
<td>0.04%</td>
<td>0.02%</td>
<td>0.91%</td>
</tr>
<tr>
<td>NM</td>
<td>GICL1</td>
<td>0.89%</td>
<td>0.04%</td>
<td>0.26%</td>
<td>0.04%</td>
<td>0.03%</td>
<td>1.25%</td>
</tr>
<tr>
<td>NM</td>
<td>GUMO1</td>
<td>0.49%</td>
<td>0.02%</td>
<td>0.12%</td>
<td>0.03%</td>
<td>0.01%</td>
<td>0.66%</td>
</tr>
<tr>
<td>NM</td>
<td>SACR1</td>
<td>0.21%</td>
<td>0.01%</td>
<td>0.04%</td>
<td>0.01%</td>
<td>0.00%</td>
<td>0.27%</td>
</tr>
<tr>
<td>NM</td>
<td>SAPE1</td>
<td>2.07%</td>
<td>0.06%</td>
<td>0.31%</td>
<td>0.25%</td>
<td>0.05%</td>
<td>2.74%</td>
</tr>
<tr>
<td>NM</td>
<td>WHIT1</td>
<td>0.29%</td>
<td>0.01%</td>
<td>0.06%</td>
<td>0.02%</td>
<td>0.01%</td>
<td>0.38%</td>
</tr>
<tr>
<td>NM</td>
<td>WHPE1</td>
<td>1.55%</td>
<td>0.05%</td>
<td>0.28%</td>
<td>0.13%</td>
<td>0.03%</td>
<td>2.04%</td>
</tr>
<tr>
<td>NV</td>
<td>JARB1</td>
<td>2.05%</td>
<td>0.12%</td>
<td>0.85%</td>
<td>0.03%</td>
<td>0.07%</td>
<td>3.13%</td>
</tr>
<tr>
<td>WY</td>
<td>BRID1</td>
<td>12.26%</td>
<td>0.63%</td>
<td>5.98%</td>
<td>0.30%</td>
<td>0.42%</td>
<td>19.59%</td>
</tr>
<tr>
<td>WY</td>
<td>NOAB1</td>
<td>4.01%</td>
<td>0.15%</td>
<td>1.12%</td>
<td>0.17%</td>
<td>0.12%</td>
<td>5.57%</td>
</tr>
<tr>
<td>WY</td>
<td>YELL2</td>
<td>5.29%</td>
<td>0.35%</td>
<td>3.22%</td>
<td>0.05%</td>
<td>0.24%</td>
<td>9.15%</td>
</tr>
</tbody>
</table>

Table 23: Utah Share of Total Nitrate Impacts on Neighboring State CIAs
<table>
<thead>
<tr>
<th>State</th>
<th>Site</th>
<th>EGU</th>
<th>Mobile</th>
<th>Non-EGU</th>
<th>Oil & Gas</th>
<th>Remaining Anthro</th>
<th>Utah Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>NM</td>
<td>GUMO1</td>
<td>0.06%</td>
<td>0.09%</td>
<td>0.03%</td>
<td>0.02%</td>
<td>0.01%</td>
<td>0.20%</td>
</tr>
<tr>
<td>NM</td>
<td>SACR1</td>
<td>0.04%</td>
<td>0.04%</td>
<td>0.01%</td>
<td>0.01%</td>
<td>0.01%</td>
<td>0.12%</td>
</tr>
<tr>
<td>NM</td>
<td>SAPE1</td>
<td>0.44%</td>
<td>0.31%</td>
<td>0.13%</td>
<td>0.12%</td>
<td>0.07%</td>
<td>1.07%</td>
</tr>
<tr>
<td>NM</td>
<td>WHIT1</td>
<td>0.05%</td>
<td>0.06%</td>
<td>0.02%</td>
<td>0.02%</td>
<td>0.01%</td>
<td>0.17%</td>
</tr>
<tr>
<td>NM</td>
<td>WHPE1</td>
<td>0.42%</td>
<td>0.37%</td>
<td>0.13%</td>
<td>0.10%</td>
<td>0.07%</td>
<td>1.09%</td>
</tr>
<tr>
<td>NV</td>
<td>JARB1</td>
<td>0.11%</td>
<td>0.33%</td>
<td>0.13%</td>
<td>0.03%</td>
<td>0.06%</td>
<td>0.65%</td>
</tr>
<tr>
<td>WY</td>
<td>BRID1</td>
<td>0.97%</td>
<td>4.20%</td>
<td>2.13%</td>
<td>0.50%</td>
<td>0.78%</td>
<td>8.57%</td>
</tr>
<tr>
<td>WY</td>
<td>NOAB1</td>
<td>0.08%</td>
<td>0.49%</td>
<td>0.25%</td>
<td>0.01%</td>
<td>0.11%</td>
<td>0.95%</td>
</tr>
<tr>
<td>WY</td>
<td>YELL2</td>
<td>0.18%</td>
<td>1.69%</td>
<td>0.84%</td>
<td>0.02%</td>
<td>0.41%</td>
<td>3.14%</td>
</tr>
</tbody>
</table>

Table 24: Utah Share of Total Sulfate Impacts on Neighboring State CIAs

<table>
<thead>
<tr>
<th>State</th>
<th>Site</th>
<th>EGU</th>
<th>Mobile</th>
<th>Non-EGU</th>
<th>Oil & Gas</th>
<th>Remaining Anthro</th>
<th>Utah Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>AZ</td>
<td>BALD1</td>
<td>0.06%</td>
<td>0.00%</td>
<td>0.02%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.10%</td>
</tr>
<tr>
<td>AZ</td>
<td>CHIR1</td>
<td>0.13%</td>
<td>0.00%</td>
<td>0.03%</td>
<td>0.01%</td>
<td>0.00%</td>
<td>0.17%</td>
</tr>
<tr>
<td>AZ</td>
<td>GRCA2</td>
<td>0.93%</td>
<td>0.03%</td>
<td>0.08%</td>
<td>0.12%</td>
<td>0.03%</td>
<td>1.19%</td>
</tr>
<tr>
<td>AZ</td>
<td>IKBA1</td>
<td>0.14%</td>
<td>0.01%</td>
<td>0.03%</td>
<td>0.01%</td>
<td>0.01%</td>
<td>0.20%</td>
</tr>
<tr>
<td>AZ</td>
<td>PEFO1</td>
<td>0.46%</td>
<td>0.02%</td>
<td>0.10%</td>
<td>0.03%</td>
<td>0.01%</td>
<td>0.63%</td>
</tr>
<tr>
<td>AZ</td>
<td>SAGU1</td>
<td>0.20%</td>
<td>0.01%</td>
<td>0.05%</td>
<td>0.01%</td>
<td>0.01%</td>
<td>0.27%</td>
</tr>
<tr>
<td>AZ</td>
<td>SIAN1</td>
<td>0.06%</td>
<td>0.00%</td>
<td>0.02%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.09%</td>
</tr>
<tr>
<td>AZ</td>
<td>SYCA_RHTS</td>
<td>0.50%</td>
<td>0.03%</td>
<td>0.17%</td>
<td>0.01%</td>
<td>0.02%</td>
<td>0.72%</td>
</tr>
<tr>
<td>AZ</td>
<td>TONT1</td>
<td>0.15%</td>
<td>0.01%</td>
<td>0.04%</td>
<td>0.01%</td>
<td>0.00%</td>
<td>0.21%</td>
</tr>
<tr>
<td>CO</td>
<td>GRSA1</td>
<td>1.31%</td>
<td>0.02%</td>
<td>0.10%</td>
<td>0.14%</td>
<td>0.02%</td>
<td>1.60%</td>
</tr>
<tr>
<td>CO</td>
<td>MEVE1</td>
<td>1.98%</td>
<td>0.04%</td>
<td>0.21%</td>
<td>0.39%</td>
<td>0.03%</td>
<td>2.66%</td>
</tr>
<tr>
<td>CO</td>
<td>MOZI1</td>
<td>2.68%</td>
<td>0.07%</td>
<td>0.39%</td>
<td>0.18%</td>
<td>0.05%</td>
<td>3.36%</td>
</tr>
<tr>
<td>CO</td>
<td>ROMO1</td>
<td>1.64%</td>
<td>0.08%</td>
<td>0.59%</td>
<td>0.14%</td>
<td>0.05%</td>
<td>2.50%</td>
</tr>
<tr>
<td>CO</td>
<td>WEMI1</td>
<td>1.45%</td>
<td>0.04%</td>
<td>0.20%</td>
<td>0.30%</td>
<td>0.03%</td>
<td>2.02%</td>
</tr>
<tr>
<td>CO</td>
<td>WHRI1</td>
<td>4.16%</td>
<td>0.08%</td>
<td>0.35%</td>
<td>0.39%</td>
<td>0.05%</td>
<td>5.02%</td>
</tr>
<tr>
<td>ID</td>
<td>CRMO1</td>
<td>0.46%</td>
<td>0.05%</td>
<td>0.45%</td>
<td>0.00%</td>
<td>0.04%</td>
<td>1.01%</td>
</tr>
<tr>
<td>ID</td>
<td>SAWT1</td>
<td>0.08%</td>
<td>0.00%</td>
<td>0.05%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.13%</td>
</tr>
<tr>
<td>ID</td>
<td>SULA1</td>
<td>0.05%</td>
<td>0.01%</td>
<td>0.05%</td>
<td>0.00%</td>
<td>0.01%</td>
<td>0.11%</td>
</tr>
<tr>
<td>NM</td>
<td>BAND1</td>
<td>0.41%</td>
<td>0.01%</td>
<td>0.06%</td>
<td>0.07%</td>
<td>0.01%</td>
<td>0.55%</td>
</tr>
<tr>
<td>NM</td>
<td>BOAP1</td>
<td>0.19%</td>
<td>0.01%</td>
<td>0.04%</td>
<td>0.01%</td>
<td>0.00%</td>
<td>0.25%</td>
</tr>
<tr>
<td>NM</td>
<td>GICL1</td>
<td>0.12%</td>
<td>0.01%</td>
<td>0.03%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.17%</td>
</tr>
<tr>
<td>NM</td>
<td>GUMO1</td>
<td>0.11%</td>
<td>0.00%</td>
<td>0.03%</td>
<td>0.01%</td>
<td>0.00%</td>
<td>0.15%</td>
</tr>
<tr>
<td>NM</td>
<td>SACR1</td>
<td>0.06%</td>
<td>0.00%</td>
<td>0.01%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.08%</td>
</tr>
<tr>
<td>NM</td>
<td>SAPE1</td>
<td>0.54%</td>
<td>0.01%</td>
<td>0.08%</td>
<td>0.07%</td>
<td>0.01%</td>
<td>0.71%</td>
</tr>
<tr>
<td>NM</td>
<td>WHIT1</td>
<td>0.07%</td>
<td>0.00%</td>
<td>0.01%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.10%</td>
</tr>
<tr>
<td>NM</td>
<td>WHPE1</td>
<td>0.44%</td>
<td>0.01%</td>
<td>0.08%</td>
<td>0.04%</td>
<td>0.01%</td>
<td>0.58%</td>
</tr>
<tr>
<td>NV</td>
<td>JARB1</td>
<td>0.13%</td>
<td>0.01%</td>
<td>0.05%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.20%</td>
</tr>
<tr>
<td>WY</td>
<td>BRID1</td>
<td>2.01%</td>
<td>0.10%</td>
<td>0.98%</td>
<td>0.05%</td>
<td>0.07%</td>
<td>3.21%</td>
</tr>
</tbody>
</table>
6.A.3 Technical Basis of Reasonable Progress Goals

Please refer to Chapter 4: Utah Visibility Analysis to view Utah’s URP glidepaths and each CIA’s 2028 projections sections 4.A.4 and 4.A.5 to view visibility progress to date and natural baseline comparisons for Utah’s CIAs as well as section 6.A.10 to review UDAQ’s Long-Term Strategy along with its technical basis.

6.A.4 Identify Anthropogenic Sources

Please refer to sections 5.C and 5.E of Chapter 5: Utah Sources of Visibility Impairment for a Utah’s detailed emissions inventory by sector. Please refer to sections 7.A and 7.A.1 of Chapter 7: Emissions Control Analysis for Utah’s source screening processes and Q/d analysis for determining which sources have the highest potential impact on Utah’s CIAs.

6.A.5 Emissions Reductions Due to Ongoing Pollution Control Programs124

RAVI

RAVI refers to a process to identify and control visibility impairment that is caused by the emissions of air pollutants from one, or a small number of sources directly impacting a CIA. The three primary steps in this process are:125

- FLM certification of impairment
- State identification of existing sources causing or contributing to the impairment
- BART analysis to determine what controls, if any, are required on any existing source that meets BART criteria and has been identified as contributing to impairment

In the case that a FLM certifies impairment for any of Utah’s CIAs, RAVI126 will be addressed by the state through the following actions:

- Submittal of an initial RAVI LTS along with periodic revisions every three years
- Submittal of an LTS revision within three years of an FLM certification of impairment
- Consultation with FLMs
- Submittal of a report to the EPA and public on Utah’s progress towards the national goal

UDAQ consulted with NPS who confirmed that none of Utah’s CIAs have been certified as impaired by any FLMs.

124 51.308(d)(3) and (f)(2)
125 The Recommendations for Making Attribution Determinations in the Context of Reasonably Attributable BART can be found at: http://www.westar.org/RA%20BART/final%20RA%20BART%20Report.pdf
126 40 CFR 51.302
National Ambient Air Quality Standards

The CAA requires the EPA to set NAAQS for pollutants considered harmful to public health and the environment. The CAA establishes two types of air quality standards: primary and secondary. Primary standards are set to protect public health, including the health of sensitive populations such as asthmatics, children, and the elderly. Secondary standards are set to protect public welfare, including protection from decreased visibility and damage to animals, crops, vegetation, and buildings.

The EPA has established health-based NAAQS for the six criteria pollutants including CO, NO₂, O₃, PM, SO₂, and lead. The EPA establishes the primary health standards after considering both the concentration level and the duration of exposure that can cause adverse health effects. Pollutant concentrations that exceed the NAAQS are considered unhealthy for some portion of the population. At concentrations between 1.0 and 1.5 times the standard, while the general public is not expected to be adversely affected by the pollutant, the most sensitive portion of the population may be. However, at levels above 1.5 times the standard, even healthy people may see adverse effects. The UDAQ monitors these criteria pollutants, as well as meteorological conditions and several non-criteria pollutants for special studies at various monitoring sites throughout the state.

The CAA has three different designations for areas based on whether they meet the NAAQS for each pollutant. Areas in compliance with the NAAQS are designated as attainment areas. Areas where there is no monitoring data showing compliance or noncompliance with the NAAQS are designated as unclassifiable areas. Areas that are not in compliance with the NAAQS are designated as nonattainment areas. A maintenance area is an attainment area that was once designated as nonattainment for one of the NAAQS and has since been demonstrated as attaining and continuing to attain that standard for a period of a minimum of 10 years. Most of the State of Utah has been designated as either Attainment or Unclassifiable for all the NAAQS.

Utah has never been out of compliance with any NO₂ standard, and has not exceeded the lead standard since the 1970s. Three cities in Utah (Salt Lake City, Ogden, and Provo) were at one time designated as nonattainment areas for carbon monoxide. Due primarily to improvements in motor vehicle technology, Utah has complied with the carbon monoxide standards since 1994. Salt Lake City, Ogden, and Provo were successfully redesignated to attainment status in 1999, 2001, and 2006, respectively.

Ozone (O₃)

In October of 2015, the EPA strengthened the ozone NAAQS from 75 ppb to 70 ppb, based on a three-year average of the annual 4th highest daily eight-hour average concentration. The standard was reviewed again in 2020 and the EPA chose to retain the standard at 70 ppb. Ozone monitors operated by the UDAQ along the Wasatch Front show exceedances of the current standard in Weber, Davis, and Salt Lake counties. There were also exceedances in Uinta County and Duchesne County during the winter. In 2016, the Governor recommended that portions of the Wasatch Front and Uinta Basin be designated non-attainment and that the rest of the State be designated attainment/unclassifiable. The current status of attainment for ozone in the Uintah basin is marginal non-attainment.
The unique wintertime ozone issue in the Uinta Basin is caused by oil and gas extraction. UDAQ is working on rule amendments and potentially new rules for the oil and gas industry to stay in compliance with the ozone NAAQS.

PM$_{10}$
The EPA established the 24-hour NAAQS for PM$_{10}$ in July 1987 as 150 μg/m3. The standard is met when the probability of exceeding the standard is no greater than once per year for a three-year averaging period. Salt Lake County and Utah County had been designated nonattainment for PM$_{10}$ shortly after the standard was promulgated. Ogden City was also designated as a nonattainment area due to one year of high concentrations (1992) but was determined to be attaining the standard in January 2013. State Implementation Plans (SIP) were written and promulgated in 1991 and included control strategies that resulted in the marked decrease in PM$_{10}$ concentrations observed in the early 1990s. Ogden City, and Salt Lake and Utah Counties were officially designated as attainment for PM$_{10}$ effective March 27, 2020. These three former nonattainment areas are now subject to the maintenance plans that were approved by EPA and the areas must continue to attain the standard for the first maintenance period of ten years. High values of monitored PM$_{10}$ sometimes result from exceptional events, such as dust storms and wildfires.

PM$_{2.5}$
The EPA first established standards for PM$_{2.5}$ in 1997. In 2006, the EPA lowered the 24-hour PM$_{2.5}$ standard from 65μg/m3 to 35 μg/m3. The PM$_{2.5}$ NAAQS underwent a review in 2020 and the standards were retained. In 2009, three areas in Utah were designated nonattainment for PM$_{2.5}$. UDAQ wrote a moderate SIP for the Logan, UT-ID nonattainment area, including a vehicle emissions inspection program. Logan attained the standard, and has since been redesignated to attainment status. The Provo and Salt Lake PM$_{2.5}$ nonattainment areas were unable to attain by the moderate attainment date and were reclassified to serious nonattainment. A serious SIP was submitted to EPA for the Salt Lake nonattainment area, and the Provo nonattainment area attained the standard prior to a serious SIP due date. Best Available Control Measures and Technologies were still required in both nonattainment areas, significantly reducing VOCs, NOx, and both primary and secondary PM$_{2.5}$ in the airsheds. Both areas have now attained the standard, and EPA is reviewing SIP elements and maintenance plans for official redesignation to attainment/maintenance.

Sulfur Dioxide (SO$_2$)
In 1971, EPA established a 24-hour average SO$_2$ standard of 0.14 ppm, and an annual arithmetic average standard of 0.030 ppm. In 2010, EPA revised the primary standard for SO$_2$, setting it at 75 ppb for a three-year average of the 99th percentile of the annual distribution of daily maximum one-hour average concentrations for SO$_2$. Throughout the 1970s, the Magna monitor routinely measured violations of the 1971 24-hour standard. Consequently, all of Salt Lake County and parts of eastern Tooele County above 5,600 feet were designated as nonattainment for that standard. Two significant technological upgrades at the Kennecott smelter costing the company nearly one billion dollars resulted in continued compliance with the SO$_2$ standard since 1981. In the mid-1990s, Kennecott, Geneva Steel, the five refineries in Salt Lake City, and
several other large sources of SO$_2$ made dramatic reductions in emissions as part of an effort to curb concentrations of secondary particulates (sulfates) that were contributing to PM$_{10}$ violations. More recently, Kennecott closed Units 1, 2, and 3 of its coal-fired power plants in 2016 and Unit 4 in 2019, resulting in further SO$_2$ emissions reductions.

Utah submitted an SO$_2$ Maintenance Plan and redesignation request for Salt Lake and Tooele Counties to the EPA in April of 2005, but EPA never took formal action on the request. Because of changes in the emissions in subsequent years, and changes in the modeling used to demonstrate attainment of the standard, in November 2019, the State of Utah withdrew its 2005 Maintenance Plan and redesignation request. UDAQ is currently working very closely with EPA to develop a new maintenance plan and redesignation request to address the 1971 standard. UDAQ will conduct modeling and other analyses in 2021 with the goal of submitting an approvable maintenance plan and redesignation request to EPA by the end of that year. On November 1, 2016, Governor Herbert submitted a recommendation to EPA that all areas of the state be designated as attainment for the 2010 SO$_2$ NAAQS based on monitoring and air quality modeling data. On January 9, 2018, EPA formally concurred with this recommendation and designated all areas of the state as attainment/unclassifiable.

The NAAQS program and Utah’s work to stay in compliance with all NAAQS has significantly decreased VOC, NO$_x$, PM$_{2.5}$, PM$_{10}$, and SO$_2$ emissions over time, benefiting the regional haze program.

Air Quality Incentive Programs

In addition to the NAAQS program, UDAQ administers multiple incentive programs created to encourage individuals and businesses to voluntarily reduce emissions. Funding for these programs comes from various sources, including settlement agreements, legislative appropriations, and federal grant programs. The emissions reductions from incentive programs are not included as part of any SIP, but the reductions do make an impact on monitored ambient values.

Targeted Airshed Grants

UDAQ has been a recipient of EPA targeted airshed grants in the past for PM$_{2.5}$ and ozone in Logan, Salt Lake, Provo, and the Uinta Basin nonattainment areas. Programs include woodstove/fireplace conversions, school bus replacements, vehicle repair and replacement assistance programs, and an oil and gas engine replacement program. UDAQ applied for the competitive grants and was awarded a total of $14.5 million for these projects that are still in process.

Utah Clean Diesel Program

The Utah Clean Diesel Program aims to cut emissions from heavy-duty diesel vehicles and equipment that operate in the State’s nonattainment areas. Fleet owners receive a 25% incentive toward the purchase of new vehicles and equipment that meet the cleanest emissions standards. Retiring engine model years 2006 and older diesel trucks that are currently operational and have a minimum of three years remaining in their useful life and replacing them with current model years can achieve approximately 71 to 90% reductions in NO$_x$, 97 to 98%
reductions in PM$_{2.5}$, and 89 to 91% reductions in VOCs, according to the EPA Emissions Standards for Heavy-Duty Highway Engines and Vehicles. Nearly $24 million in federal grants have been awarded through the Utah Clean Diesel Program since 2008, resulting in thousands of tons reduced from diesel emissions.

Legislative Appropriations for Incentive Programs

The woodstove and fireplace conversion funded by the targeted airshed grant was wildly successful, and the Utah State Legislature appropriated UDAQ an additional $9 million to convert wood burning appliance to gas or electric along Utah's Wasatch Front. This program is currently being administered. During the 2019 General Legislative Session, the State Legislature appropriated $4.9 million to be used as an incentive for the installation of electric vehicle supply equipment (EVSE) throughout the State. The EVSE Incentive Program allows businesses, non-profit organizations, and other governmental entities (excluding State Executive Branch agencies) to apply for a grant for reimbursement of up to 50% of the purchase and installation costs for a pre-approved EVSE project. Funds can be used for the purchase and installation of both Level 2 or DC fast charging EVSE. This program continues to be administered. During the 2019 Legislative Session, the Legislature appropriated $500,000 to the UDAQ to administer a Trip Reduction Program. A primary component of the Trip Reduction Program is a Free-Fare Day Pilot Project. The UDAQ has worked closely with the Utah Transit Authority (UTA) to provide free fares during inversion periods when air quality levels are increasing and projected to reach levels that are harmful to human health.

Clean Air Violation Settlement Dollars for Emissions Reduction Incentives

The State of Utah is a beneficiary of over $35 million from the Volkswagen (VW) Environmental Mitigation Trust, part of a settlement with VW for violations of the CAA. UDAQ has developed an environmental mitigation plan to offset the NO$_x$ emissions from the vehicles in the State affected by the automaker’s violations. The plan directs the $35 million settlement funds towards upgrades to government-owned diesel truck and bus fleets as well as the expansion of electric-vehicle (EV) charging equipment. Funding allocations are as follows:

- Class 4-8 Local Freight Trucks and School Bus, Shuttle Bus, and Transit Bus: 73.5%
- Light-Duty, Zero Emissions Vehicle Supply Equipment: 11%
- Administrative Costs: 8.5%
- Diesel Emission Reduction Act (DERA) options: 7%

Projects were prioritized and selected based on their reduction of NO$_x$, cost-per-ton of NO$_x$ reduced, value to the nonattainment areas, and community benefits. Awardees will have three years to complete their projects.

Using settlement money from General Motors, UDAQ runs an electric lawn equipment exchange each year. Participants receive a higher incentive dollar amount if they scrap an old gas-powered piece of equipment.
6.A.6 Measures to Mitigate the Impacts of Construction Activities

Fugitive dust is particles of soil, ash, coal, minerals, etc., which become airborne because of wind or mechanical disturbance. Fugitive dust can be generated from natural causes such as wind or from manmade causes such as unpaved haul roads and operational areas, storage, hauling and handling of aggregate materials, construction activities and demolition activities. Fugitive dust contributes particulate matter (PM) emissions to the atmosphere. PM emissions must be minimized to meet NAAQS. Fugitive dust is limited to an opacity of 20% or less on site, and 10% or less at the property boundary. Opacity is a measurement of how much visibility is obscured by a plume of dust. For example, if a plume of dust obscures 20% of the view in the background, the visible emissions from the dust plume is 20% opacity. The regulations described in this Subsection apply to the following areas of the state:

- all regions of Salt Lake and Davis counties
- all portions of the Cache Valley
- all regions in Weber and Utah counties west of the Wasatch Mountain range
- in Box Elder County, from the Wasatch Mountain range west to the Promontory Mountain range and south of Portage
- in Tooele County, from the northernmost part of the Oquirrh mountain range to the northern most part of the Stansbury Mountain range and north of Route 199.

In addition to opacity limits, any source 0.25 acre or greater in size is required to submit a Fugitive Dust Control Plan (FDCP) to the UDAQ. The FDCP is required to help sources minimize the amount of fugitive dust generated onsite. A source is required to submit a FDCP prior to initial construction or operation and prior to any modifications made on site that effect fugitive dust emissions. Sources are required to maintain records indicating compliance with the conditions of a FDCP. For high wind events (winds over 25 miles per hour) additional records are required. The sources must make these records available for review by the UDAQ upon request.

There are also regulations regarding possible fugitive dust from roadways:

- Any person whose activities result in fugitive dust from a road shall minimize fugitive dust to the maximum extent possible.
- Any person who deposits materials that may create fugitive dust on a public or private paved road shall clean the road promptly.
- Any person responsible for construction or maintenance of any existing road or having a right-of-way easement or possessing the right to use a road shall minimize fugitive dust to the maximum extent possible.
- Any person responsible for construction or maintenance of any new or existing unpaved road shall prevent, to the maximum extent possible, the deposit of material from the unpaved road onto any intersecting paved road during construction or maintenance. This includes site entrances and exits for vehicles.
- Demolition activities including razing homes, buildings, or other structures.
6.A.7 Basic smoke management practices

Subsection 51.309(d)(6) of Title 40 Code of Federal Regulations includes the following requirements for state implementation plans regarding programs related to fire: (1) documentation that all federal, state and private prescribed fire programs in the state evaluate and address the degree of visibility impairment from smoke in their planning and application; (2) a statewide inventory and emissions tracking system for VOCs, NOx, elemental and organic carbon, and fine particle emissions from fire; (3) identification and removal of any administrative barriers to the use of alternatives to burning where possible; (4) inclusion of enhanced smoke management programs considering visibility as well as health and nuisance objectives based on specific criteria; (5) and establishment of annual emission goals for fire in cooperation with states, tribes, federal land managers and private entities to minimize emissions increases from fire to the maximum extent feasible.

Utah implements an EPA-approved Smoke Management Plan (SMP) to regulate open burning and prescribed fire activities. Utah has developed a smoke management regulation (found in Utah Administrative Code r. R307-204) that implements the Western Regional Air Partnership (WRAP) Enhanced Smoke Management Programs for Visibility Policy. The SMP considers smoke management techniques and the visibility impacts of smoke when developing, issuing or conditioning permits, and when making dispersion forecast recommendations. Pursuant to 40 CFR § 51.309(d)(6)(i), the State of Utah has evaluated all federal, state, and private prescribed fire programs in the state, based on the potential to contribute to visibility impairment in the 16 CIAs of the Colorado Plateau, and how visibility protection from smoke is addressed in planning and operation. The State of Utah relied upon the WRAP report Assessing Status of Incorporating Smoke Effects into fire Planning and Operation as a guide for making this evaluation. The State of Utah has also evaluated whether these prescribed fire programs contain the following elements: actions to minimize emissions; evaluation of smoke dispersion; alternatives to fire; public notification; air quality monitoring; surveillance and enforcement; and program evaluation.

The Utah Smoke Management Plan (SMP), revised March 23, 2000, provides operating procedures for federal and state agencies that use prescribed fire, wildfire, and wildland fire on federal, state, and private wildlands in Utah. The SMP includes the program elements listed in 40 CFR § 51.309(d)(6)(i), except for alternatives to fire. In a letter dated November 8, 1999, the EPA certified the Utah SMP under EPA’s April 1998 Interim Air Quality Policy on Wildland and Prescribed Fires (Policy). EPA’s Policy also includes the elements that are listed in 40 CFR § 51.309(d)(6)(i).

In 2001, the Utah SMP requirements were codified through rulemaking and comprise R307-204 of the Utah Administrative Code. R307-204 applies to all persons using prescribed fire or wildland fire on land they own or manage, including federal, state, and private wildlands. The Utah TSD Supplement includes copies of the Utah SMP.

Under R307-204, Land Managers are required to submit pre-burn information including the location of any CIAs within 15 miles of the burn, a map depicting the potential impact of the
smoke from the burn on any CIAs, a description of fuels and acres to be burned, emission reduction techniques to be applied, and monitoring of smoke effects to be conducted. In addition, Land Managers are required to submit a more detailed burn plan that includes, at a minimum, information on the fire prescription or conditions under which a prescribed fire may be ignited.

Under R307-204, prescribed fires requiring a burn plan cannot be ignited and wildland fire used for resource benefits cannot be managed before the UDAQ Director approves the burn request. The burn approval requirement provides for the scheduling of burns to reduce impacts on visibility in CIAs.

After the burn is completed, the Land Manager is required to submit post-burn information (daily emission report) to evaluate the effectiveness of the burn and provide a record of acres treated by the burn, emissions information, public interest, daytime and nighttime smoke behavior, any emission reduction techniques applied, and evaluation of those techniques. The procedures listed above serve as an evaluation of the degree of visibility impairment from smoke from prescribed fires that are conducted on federal, state, and private wildlands.

Information on the types of management alternatives to fire considered by Land Managers are included in programmatic or long-term management plans. These programmatic plans are developed in accordance with the National Environmental Policy Act (NEPA) and are reviewed by the UDAQ on an individual basis. Typically, the Land Manager does not evaluate alternatives to fire once the decision has been made to use fire and the subsequent burn plan developed.

6.A.8 Emissions Limitations and Schedules for Compliance to Achieve the RPG

The 2028OTBa2 modeled visibility projections from WRAP for Utah are based on recent actual emissions and activities of in-state sources. These projections are compared to the URP glidepaths in section 8.C. As shown in Table 26 (section 6.A.10), Utah is making reasonable progress in each of its parks and is projected to continue that progress through 2028 on the assumption that Utah sources continue operating within the confines of these “on-the-books” emissions trends. Section 8.D contains Utah’s reasonable progress determinations detailing emissions limits and controls UDAQ has deemed necessary for Utah to achieve reasonable progress in its CIAs. Emissions limitations and schedules for compliance for the second planning period may be found in SIP Subsection IX.H.23 Part H.23.127

6.A.9 Source retirement and replacement schedules

Table 25 The table below details the planned EGU retirement and replacement schedules for Utah sources used in WRAP’s RepBase2 and 2028OTBa2 modeling projections. Of all of the planned retirements, only the announced retirement of the Intermountain Generation Station in 2025 occurs within the second planning period. Though the IGS coal-fired units are expected to cease operation by mid-2025, Utah is establishing a firm closure date of no later than December

127 See Appendix A of this draft SIP.
31, 2027, to ensure that these units will not continue to operate beyond the end of the second planning period. This date allows flexibility for closing the plant and the rescinding of the permit and approval order.

Table 25: Status of Utah EGU Retirements in RepBase2 and 2028OTBa2 Inventories

<table>
<thead>
<tr>
<th>Facility Name</th>
<th>Unit ID</th>
<th>In-Service Year</th>
<th>Retirement Year</th>
<th>Notes</th>
<th>Operator</th>
<th>Unit Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intermountain</td>
<td>1SGA</td>
<td>1986</td>
<td>2025</td>
<td>Announced retirement</td>
<td>Intermountain Power Service Corporation</td>
<td>Dry bottom wall-fired boiler</td>
</tr>
<tr>
<td>Intermountain</td>
<td>2SGA</td>
<td>1987</td>
<td>2025</td>
<td>Announced retirement</td>
<td>Intermountain Power Service Corporation</td>
<td>Dry bottom wall-fired boiler</td>
</tr>
<tr>
<td>Bonanza</td>
<td>1-Jan</td>
<td>1986</td>
<td>2030</td>
<td>Coal consumption cap from settlement agreement</td>
<td>Deseret Generation & Transmission</td>
<td>Dry bottom wall-fired boiler</td>
</tr>
<tr>
<td>Hunter</td>
<td>1</td>
<td>1978</td>
<td>2042</td>
<td>PAC IRP; Round 1 RH FIP in Litigation</td>
<td>PacifiCorp Energy Generation</td>
<td>Tangentially-fired</td>
</tr>
<tr>
<td>Hunter</td>
<td>2</td>
<td>1980</td>
<td>2042</td>
<td>PAC IRP; Round 1 RH FIP in Litigation</td>
<td>PacifiCorp Energy Generation</td>
<td>Tangentially-fired</td>
</tr>
<tr>
<td>Hunter</td>
<td>3</td>
<td>1983</td>
<td>2042</td>
<td>PAC IRP</td>
<td>PacifiCorp Energy Generation</td>
<td>Dry bottom wall-fired boiler</td>
</tr>
<tr>
<td>Huntington</td>
<td>1</td>
<td>1977</td>
<td>2036</td>
<td>PAC IRP; Round 1 RH FIP in Litigation</td>
<td>PacifiCorp Energy Generation</td>
<td>Tangentially-fired</td>
</tr>
<tr>
<td>Huntington</td>
<td>2</td>
<td>1974</td>
<td>2036</td>
<td>PAC IRP; Round 1 RH FIP in Litigation</td>
<td>PacifiCorp Energy Generation</td>
<td>Tangentially-fired</td>
</tr>
</tbody>
</table>

6.A.10 Anticipated net effect on visibility from projected changes in emissions during this planning period

According to the RHR, the 2028 RPG for the 20 percent most anthropogenically impaired days is to be compared to the 2000-2004 baseline period visibility condition for the same set of days and must provide for visibility improvement since the baseline period. UDAQ has used modeling data from WRAP’s TSS to project the anticipated net effect on visibility progress that will occur in the second planning period based on already adopted controls and “on-the-books” activities and emissions rates. UDAQ has chosen the “2028OTBa2 w/o fire” projection that excludes wildfire to more accurately represent future emissions from sources UDAQ is better able to control. This projection reduces the impact of elemental carbon and organic carbon from

128 40 CFR 51.308(f)(3)(i)
fires from the original 2028 EPA projection to remove additional fire impacts that were not fully eliminated by the move from haziest days metric (used during the first planning period) to most impaired days metric (used during the second planning period). These projections result from in-state emission reductions due to ongoing air pollution control programs, including source measures the state has already adopted to meet RHR requirements and CAA requirements other than for visibility protection.

Long Term Strategy Summary
UDAQ’s long term strategy (LTS) includes an array of existing and new measures as detailed below.

Existing Measures
UDAQ relied upon several existing measures in the development of its LTS, including federal on-road and non-road vehicle and equipment standards and BACM measures and BACT controls included in the recently completed Serious Area PM2.5 SIP for the Salt Lake Nonattainment Area. Utah also relied upon the following existing round 1 regional haze controls:

- Existing NO\textsubscript{x} control rate-based limits and Hunter power plant
- Existing NO\textsubscript{x} control rate-based limits and Huntington power plant
- Existing SO\textsubscript{2} limits for Hunter power plant (Section 309 control added to SIP in round 2)
- Existing SO\textsubscript{2} limits for Huntington power plant (Section 309 control added to SIP in round 2)
- Closure of the Carbon power plant

UDAQ also added existing controls/limits on haze-forming pollutants at screened-in facilities to the round 2 SIP to ensure ongoing enforceability in the regional haze context:

- Graymont
- Ash Grove
- Sunnyside
- US Magnesium
- Intermountain Generation Station

Most of the above measures are already accounted for in the WRAP 2028OTBa2 scenario, which was based on the emission inventories and data sources listed in Section 5.B of this SIP revision. However, two existing measures led to additional emissions reductions that were not accounted for in the WRAP 2028OTBa2 projections:

- PM\textsubscript{2.5} SIP BACT SCR level NO\textsubscript{x} rate-based limit and subsequent closure of the Kennecott Utah Copper power plant
- PM\textsubscript{2.5} SIP BACT annual mass-based SO\textsubscript{2} limit at the Tesoro Refinery

New Measures
As stated previously UDAQ required four-factor analyses on six sources with Q/d values \(\geq 6\) that met additional screening criteria. These analyses informed the reasonable progress
determinations for these sources and led to the inclusion of the following new measures in the LTS:

- A plantwide enforceable mass-based NOx limit on Hunter power plant
- A plantwide enforceable mass-based NOx limit on Huntington power plant
- Installation of FGR on the US Magnesium Rowley Plant Riley Boiler
- An enforceable closure date for Units 1 and 2 of the Intermountain Generation Station

Emissions reductions for one of these new measures, the closure of IGS Units 1 and 2, were already accounted for in the WRAP 2028OTBa2 projections based upon closure plans that had been announced at the time the scenario was developed.

Table 26 below summarizes estimated net changes to the 2028 projection based upon the inclusion of both new and existing measures in the LTS. The emission reductions from the KUC power plant were estimated based on the elimination of the EGU emissions from that facility from the 2028OTBa2 scenario. The SO2 emission reductions for the Tesoro Refinery were estimated by reducing the 2028OTBa2 SO2 emissions for that facility (708 tons) to the SIP Section IX.H source-wide SO2 annual limit of 300 tons per year, resulting in a reduction of 408 tons. The remaining emission reductions stem from the four-factor analyses and reasonable progress determinations for the sources listed.

Table 26: Net Changes in Emissions from New and Existing Measures Relative to 2028OTBa2

<table>
<thead>
<tr>
<th>Source/Facility</th>
<th>New or Existing Measure</th>
<th>Reduction Included in 2028OTBa2</th>
<th>NOX</th>
<th>SO2</th>
<th>PM10-PRI</th>
<th>PM2.5-PRI</th>
<th>VOC</th>
<th>NH3</th>
</tr>
</thead>
<tbody>
<tr>
<td>PacifiCorp- Hunter Power Plant</td>
<td>New</td>
<td>No</td>
<td>-158</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PacifiCorp- Huntington Power Plant</td>
<td>New</td>
<td>No</td>
<td>149</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>US Magnesium Riley Boiler</td>
<td>New</td>
<td>No</td>
<td>-23</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tesoro Refining & Marketing Company LLC</td>
<td>Existing</td>
<td>No</td>
<td>0</td>
<td>-408</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Kennecott Utah Copper LLC- Power Plant</td>
<td>Existing</td>
<td>No</td>
<td>-1,152</td>
<td>-2,152</td>
<td>-135</td>
<td>-99</td>
<td>-6</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>-1,184</td>
<td>-2,560</td>
<td>-135</td>
<td>-99</td>
<td>-6</td>
<td>0</td>
</tr>
</tbody>
</table>

Based upon these changes, UDAQ revised the original 2028OTBa2 projection as summarized in Table 27. The resulting 2028LTS scenario results in emissions reductions of 44% (NOx), 27% (SO2), 2% (PM10), 10% (PM2.5) and 30% (VOC) relative to RepBase2.
Table 27: Statewide Anthropogenic Scenario Totals and LTS Emission Reductions (tpy)

<table>
<thead>
<tr>
<th>Source Category</th>
<th>2014v2</th>
<th>RepBase2</th>
<th>2028OTBa2</th>
<th>Change Due to New and Existing Measures</th>
<th>2028LTS</th>
<th>2028LTS-RepBase2</th>
<th>2028LTS-RepBase2 (%) Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOx</td>
<td>179,639</td>
<td>154,328</td>
<td>87,593</td>
<td>-1,184</td>
<td>86,409</td>
<td>-67,919</td>
<td>-44%</td>
</tr>
<tr>
<td>SO2</td>
<td>27,829</td>
<td>15,253</td>
<td>13,684</td>
<td>-2,560</td>
<td>11,124</td>
<td>-4,129</td>
<td>-27%</td>
</tr>
<tr>
<td>PM10</td>
<td>118,235</td>
<td>120,542</td>
<td>118,117</td>
<td>-135</td>
<td>117,982</td>
<td>-2,560</td>
<td>-2%</td>
</tr>
<tr>
<td>PM2.5</td>
<td>28,547</td>
<td>31,050</td>
<td>28,039</td>
<td>-99</td>
<td>27,940</td>
<td>-3,110</td>
<td>-10%</td>
</tr>
<tr>
<td>VOC</td>
<td>240,496</td>
<td>244,272</td>
<td>171,298</td>
<td>-6</td>
<td>171,292</td>
<td>-72,980</td>
<td>-30%</td>
</tr>
<tr>
<td>NH3</td>
<td>20,523</td>
<td>20,995</td>
<td>21,011</td>
<td>0</td>
<td>21,011</td>
<td>16</td>
<td>0%</td>
</tr>
</tbody>
</table>

Because the LTS was developed after the completion of the WRAP photochemical modeling, the additional reductions from the LTS relative to 2028OTBa2 are not expressly accounted for in the modeled reasonable progress goal. The omission of these emissions reductions in the 2028OTBa2 projection make our glidepath comparisons conservative, as actual 2028 visibility can be expected to improve due to additional emission reductions associated with the LTS.

Please note that a 22.5-ton reduction in NOx resulting from the controls determination for US Magnesium’s Riley Boiler located in section 8.D.6 was not included in these modeled projections. The 2028OTBa2 visibility projection also includes emissions from the now-closed Kennecott Power Plant, which was projected to have 1,152 tons of NOx, 2,152 tons of SO2, and 135 tons of PM10 emissions in 2028. The omission of these emissions reductions in the 2028OTBa2 projection make our glidepath comparisons conservative, as actual 2028 visibility can be expected to improve due to lower emissions levels.

Visibility Comparison

Table 28 The table below compares the baseline visibility data for each of Utah’s CIAs with the 2028 point along the URP glidepath and the 2028 modeled projections and calculates the resulting percentage of progress towards the 2028 URP made in each.

Table 28: Comparison of baseline, 2028 URP, 2028 EPA w/o fire projection for worst and clearest days
The following figures compare the modeled 2002, representative baseline, and 2028 projections with source apportionment for most impaired days to show the visibility progress made in Utah’s CIAs.

Figure 41: Modeled Visibility Progress for MID at Bryce Canyon National Park

Figure 42: Modeled Visibility Progress for MID at Canyonlands and Arches National Park
Figure 43: Modeled Visibility Progress for MID at Capitol Reef National Park

Figure 44: Modeled Visibility Progress for MID at Zion National
The following figures represent the visibility progress made in each CIA based on only US anthropogenic contribution with the same modeling projections for most impaired days.

Figure 45: Modeled Visibility Progress for US Anthropogenic Contributions to MIDs at Bryce Canyon National Park

Figure 46: Modeled Visibility Progress for US Anthropogenic Contributions to MIDs at Canyonlands and Arches National Park
6.A.11 Enforceability of Emissions Limitations

Any emissions limits and operating procedures identified for the implementation of the RHR are listed in SIP Subsection IX.H.21, 22, and 23 Part H. 21., 22., and 23, which are made enforceable through EPA approval and incorporation into the Utah Air Quality Rules. The proposed part H IX.H language can be found in Appendix A. Existing control measures from UDAQ’s PM$_{2.5}$ and PM$_{10}$ SIP revisions deemed necessary for reasonable progress can be found in IX.H.2, 4, and 12.
Chapter 7: Emission Control Analysis

7.A Source Screening

Through modeling done by WRAP with data collected at the IMPROVE sites in Utah’s CIAs, UDAQ was able to assess the source apportionment for the most impaired days in Utah’s National Parks. Figure 49 below shows that, on most impaired days, US anthropogenic, international, and biogenic pollution are the most significant sources of light extinction. Figure 50 and Figure 51 further apportion species contributing to each pollution source. US anthropogenic impairment consists primarily of organic mass carbon, coarse mass, ammonium nitrate, and ammonium sulfate. For this implementation period, Utah has focused on visibility impairing pollutants attributed to anthropogenic sources which can be controlled including ammonium nitrate and ammonium sulfate.

![Figure 49: Average Light Extinction by Sources in Bryce Canyon National Park](image)

129 40 CFR 51.308(f)(2)(i)
The regulated sources included in the map below consist of point sources and oil and gas wells within Utah. There are 37 sources emitting pollutants greater than 100 TPY (major sources) and...
511 other point sources emitting less than 100 TPY. There are 13,853 oil and gas wells in Utah, including all “shut-in” wells which are not currently in use, but could resume production at any time, which would be documented by reports from the Utah Division of Oil, Gas, and Mining (UDOGM).

7.A.1 Q/d Analysis

The RHR130 requires states to consider anthropogenic sources of visibility impairment and should consider evaluating major and minor stationary sources or groups of sources, mobile sources, and area sources. Sources in Utah were selected based on a Q/d analysis. The analysis is a ratio of a source’s emissions in tons per year (Q) in 2014 divided by the distance (d) in kilometers to any Class I area. Emissions in tons per year of SO₂, NOₓ, and PM were

\[\frac{Q}{d} \]

Figure 52: Map of Utah Regulated Sources with Emissions >100 TPY

130 40 C.F.R. § 51.308(f)(2).
WRAP’s analysis suggested using a Q/d value of 10 as the threshold for sources with the most potential to impact CIAs. However, UDAQ used a more conservative threshold of six.131

Table 29: Sources initially selected to perform a Four-Factor analysis

<table>
<thead>
<tr>
<th>Facility Name</th>
<th>Combined Q/d</th>
<th>Total Q tpy(^*)</th>
<th>Distance to Nearest Class I area in km (D)</th>
<th>Class I Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ash Grove Cement Company- Leamington Cement Plant</td>
<td>6.9</td>
<td>930.5</td>
<td>134.0</td>
<td>Capitol Reef</td>
</tr>
<tr>
<td>CCI Paradox Midstream, LLC: Lisbon Natural Gas Processing Plant(^{f})</td>
<td>20.9</td>
<td>747.1</td>
<td>35.8</td>
<td>Canyonlands</td>
</tr>
<tr>
<td>Graymont Western Us Incorporated- Cricket Mountain Plant</td>
<td>9.0</td>
<td>1,180.7</td>
<td>130.8</td>
<td>Bryce Canyon</td>
</tr>
<tr>
<td>Intermountain Power Service Corporation- Intermountain Generation Station(^{f})</td>
<td>193.6</td>
<td>28,945.7</td>
<td>149.5</td>
<td>Capitol Reef</td>
</tr>
<tr>
<td>Kennecott Utah Copper LLC- Mine & Copperton Concentrator(^{f})</td>
<td>22.1</td>
<td>5,234.5</td>
<td>237.2</td>
<td>Capitol Reef</td>
</tr>
<tr>
<td>Kennecott Utah Copper LLC- Power Plant, Lab, and Tailings Impoundment(^{f})</td>
<td>11.8</td>
<td>2,949.7</td>
<td>250.4</td>
<td>Capitol Reef</td>
</tr>
<tr>
<td>PacifiCorp- Hunter Power Plant</td>
<td>216.1</td>
<td>16,177.9</td>
<td>74.9</td>
<td>Capitol Reef</td>
</tr>
<tr>
<td>PacifiCorp- Huntington Power Plant</td>
<td>105.5</td>
<td>10,106.2</td>
<td>95.8</td>
<td>Capitol Reef</td>
</tr>
<tr>
<td>Sunnyside Cogeneration Associates- Sunnyside Cogeneration Facility</td>
<td>15.2</td>
<td>1,477.1</td>
<td>97.0</td>
<td>Canyonlands</td>
</tr>
<tr>
<td>US Magnesium LLC- Rowley Plant</td>
<td>7.4</td>
<td>2,124.2</td>
<td>288.7</td>
<td>Capitol Reef</td>
</tr>
</tbody>
</table>

\(\text{NO}_x\) tons per year (Q) | \(\text{SO}_2\) tons per year (Q) | \(\text{PM}_{10}\) tons per year (Q) |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3</td>
<td>0.04</td>
<td>0.6</td>
</tr>
<tr>
<td>5.3</td>
<td>14.0</td>
<td>1.6</td>
</tr>
<tr>
<td>7.0</td>
<td>0.3</td>
<td>1.7</td>
</tr>
<tr>
<td>153.3</td>
<td>29.2</td>
<td>11.1</td>
</tr>
<tr>
<td>17.7</td>
<td>0.01</td>
<td>4.4</td>
</tr>
<tr>
<td>5.3</td>
<td>6.0</td>
<td>0.5</td>
</tr>
<tr>
<td>153.5</td>
<td>52.6</td>
<td>10.0</td>
</tr>
<tr>
<td>71.7</td>
<td>25.9</td>
<td>7.9</td>
</tr>
<tr>
<td>3.6</td>
<td>10.9</td>
<td>0.8</td>
</tr>
<tr>
<td>3.6</td>
<td>0.1</td>
<td>3.7</td>
</tr>
</tbody>
</table>

\(^*\)Tons per year: Data is from version 2 of the 2014 National Emissions Inventory
\(^{f}\) Additional data from these sources, including 2018 recent emissions, projected 2028 emissions, and planned closure, allowed them to be exempt from a 4-factor analysis

Because the original Q/d analysis used 2014 NEI data, UDAQ also conducted a follow-up Q/d screen using more recently available 2017 NEI data to ensure that the source selection results

131 See Table 27
remained consistent and that no sources with potential impacts were missed. No additional sources were identified with Q/d >=6. One source, CCI Paradox Lisbon Natural Gas Plant, was not selected as the plant was not in operation that year and had no emissions. Also, the 2017 NEI does not include haul truck emissions from the KUC Mine & Copperton Concentrator, resulting in a Q/d of 3.9 for that source. UDAQ elaborates on this source in Section 7.A.2 below.

Table 30: 2017 NEI Q/d Screen

<table>
<thead>
<tr>
<th>Facility Name</th>
<th>Combined Q/d</th>
<th>Total Q/typ*</th>
<th>Distance to Nearest Class I area in km (D)</th>
<th>Class I Area</th>
<th>Q/d NOx</th>
<th>Q/D SO2</th>
<th>Q/D PM10</th>
<th>NOx tons per year (Q)</th>
<th>SO2 tons per year (Q)</th>
<th>PM10 tons per year (Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ash Grove Cement Company- Leamington Cement Plant</td>
<td>9.8</td>
<td>1,319.3</td>
<td>134.0</td>
<td>Capitol Reef</td>
<td>8.8</td>
<td>0.14</td>
<td>0.9</td>
<td>1,183.8</td>
<td>19.0</td>
<td>116.5</td>
</tr>
<tr>
<td>CCI Paradox Midstream, LLC: Lisbon Natural Gas Processing Plant†</td>
<td>NA</td>
<td>NA</td>
<td>35.8</td>
<td>Canyonlands</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Graymont Western US Incorporated- Cricket Mountain Plant</td>
<td>6.3</td>
<td>823.8</td>
<td>130.8</td>
<td>Capitol Reef</td>
<td>4.07</td>
<td>0.13</td>
<td>2.1</td>
<td>532.7</td>
<td>17.5</td>
<td>273.6</td>
</tr>
<tr>
<td>Intermountain Power Service Corporation- Intermountain Generation Station†</td>
<td>85.5</td>
<td>12,785.0</td>
<td>149.5</td>
<td>Capitol Reef</td>
<td>62.3</td>
<td>16.6</td>
<td>6.6</td>
<td>9,318.8</td>
<td>2,483.6</td>
<td>982.6</td>
</tr>
<tr>
<td>Kennecott Utah Copper LLC- Mine & Copperton Concentrator††</td>
<td>3.9</td>
<td>931.6</td>
<td>237.2</td>
<td>Capitol Reef</td>
<td>0.02</td>
<td>0.00</td>
<td>3.9</td>
<td>5.2</td>
<td>0.0</td>
<td>926.4</td>
</tr>
<tr>
<td>Kennecott Utah Copper LLC- Power Plant, Lab, and Tailings Impoundment†</td>
<td>6.3</td>
<td>1,570.1</td>
<td>250.4</td>
<td>Capitol Reef</td>
<td>1.8</td>
<td>4.1</td>
<td>0.3</td>
<td>460.8</td>
<td>1,036.4</td>
<td>73.0</td>
</tr>
<tr>
<td>PacifiCorp- Hunter Power Plant</td>
<td>184.2</td>
<td>13,789.1</td>
<td>74.9</td>
<td>Capitol Reef</td>
<td>130.6</td>
<td>46.9</td>
<td>6.7</td>
<td>9,773.8</td>
<td>3,511.6</td>
<td>503.8</td>
</tr>
<tr>
<td>PacifiCorp- Huntington Power Plant</td>
<td>90.7</td>
<td>8,686.0</td>
<td>95.8</td>
<td>Capitol Reef</td>
<td>61.9</td>
<td>23.8</td>
<td>5.0</td>
<td>5,931.2</td>
<td>2,281.0</td>
<td>473.8</td>
</tr>
<tr>
<td>Sunnyside Cogeneration Associates- Sunnyside Cogeneration Facility</td>
<td>10.0</td>
<td>965.4</td>
<td>97.0</td>
<td>Arches</td>
<td>4.4</td>
<td>4.9</td>
<td>0.6</td>
<td>428.0</td>
<td>477.0</td>
<td>60.3</td>
</tr>
</tbody>
</table>
7.A.2 Secondary Screening of Sources

After performing Q/d analysis, UDAQ further narrowed down the list of sources required to undergo the four-factor analysis based on current emissions, projected emissions in 2028, closure and controls put in place after the 2014 base year inventory. As a result of this secondary screening, the following sources were not required to provide a four-factor analysis:

The CCI Paradox Midstream, LLC - Lisbon Natural Gas Processing Plant

[Regarding the] The CCI Paradox Midstream, LLC: Lisbon Natural Gas Processing Plant’s exclusion from consideration has a complicated regulatory and ownership history which has impacted its emissions performance over the recent past. In 2009 the plant received a permit modification to lower the SO2 emissions from 1,593 tons down to 111 tons. The plant requested a reduction in emissions as it had installed both primary and secondary control systems to limit emissions of SO2. Unfortunately, in 2010 the plant requested a new modification and mistakenly restored the original 1,593 tons of SO2 emissions without explanation. While that PTE value has been carried forward in more recent permitting actions, actual emissions have never reached the 1,593-ton value. Rather, the actual emissions from the facility are more in line with the proper 2009 PTE of 111 tons. During the original Q/d analysis, the combined Q/d (for NOx, SO2, and PM10) for the facility was 13.68 for Arches and 20.87 for Canyonlands, both of which are above the Q/d threshold of 6 used to select significant sources of haze impairing pollutants to Utah’s CIAs. These high Q/d values largely stemmed from anomalously high SO2 emissions in 2014 (and 2015) due to issues with the disposal well at the plant. However, DAQ reviewed Lisbon’s most recent five years of data (2017-2021) and re-calculated the Q/d values shown in Table 31 below, all of which fall below UDAQ’s Q/d threshold of 6. Of note, recent actual SO2 emissions have never reached the 1,593-ton value.

132 In 2009 the plant received a permit modification to lower the SO2 emissions from 1,593 tons down to 111 tons. The plant requested a reduction in emissions as it had installed both primary and secondary control systems to limit emissions of SO2. Unfortunately, in 2010 the plant requested a new modification and mistakenly restored the original 1,593 tons of SO2 emissions without explanation. While that PTE value has been carried forward in more recent permitting actions, actual emissions have never reached the 1,593-ton value. The plant changed ownership in early-2017, which resulted in changes in the operation of the facility and addition of a helium plant in early-2020.
emissions have dropped dramatically to between 0.01 and 0.13 percent of the 2014 levels used in the original screening. Based upon updated 2018 emissions for the plant, the combined Q/d values dropped to 3.30 for Arches and 5.03 for Canyonlands. For this reason, this source was ultimately not required to provide a four-factor analysis. However, UDAQ is continuing to work with this source to evaluate whether reductions in permitted emission limits may be appropriate, particularly for SO2, given recent actual emissions levels. In response to FLM feedback, however, UDAQ has requested additional information from Paradox Resources and will include this information in the final draft of this SIP.

Table 31: Paradox Lisbon Plant Q/d Analysis for nearest CIAs

<table>
<thead>
<tr>
<th>Year</th>
<th>PM10-PRI</th>
<th>SO2</th>
<th>NOx</th>
<th>CIA</th>
<th>Distance (km)</th>
<th>PM10-PRI</th>
<th>SO2</th>
<th>NOx</th>
<th>Total Q/d</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017</td>
<td></td>
<td></td>
<td></td>
<td>Plant was not in operation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td>45.1</td>
<td>0.1</td>
<td>111.6</td>
<td>Canyonlands</td>
<td>35.8</td>
<td>1.3</td>
<td>0.0</td>
<td>3.1</td>
<td>4.4</td>
</tr>
<tr>
<td>2018</td>
<td>45.1</td>
<td>0.1</td>
<td>111.6</td>
<td>Arches</td>
<td>54.6</td>
<td>0.8</td>
<td>0.0</td>
<td>2.0</td>
<td>2.9</td>
</tr>
<tr>
<td>2019</td>
<td>Plant was not in operation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td>61.9</td>
<td>0.6</td>
<td>126.0</td>
<td>Canyonlands</td>
<td>35.8</td>
<td>1.7</td>
<td>0.0</td>
<td>3.5</td>
<td>5.3</td>
</tr>
<tr>
<td>2020</td>
<td>61.9</td>
<td>0.6</td>
<td>126.0</td>
<td>Arches</td>
<td>54.6</td>
<td>1.1</td>
<td>0.0</td>
<td>2.3</td>
<td>3.5</td>
</tr>
<tr>
<td>2021</td>
<td>27.8</td>
<td>0.1</td>
<td>181.4</td>
<td>Canyonlands</td>
<td>35.8</td>
<td>0.8</td>
<td>0.0</td>
<td>5.1</td>
<td>5.8</td>
</tr>
<tr>
<td>2021</td>
<td>27.8</td>
<td>0.1</td>
<td>181.4</td>
<td>Arches</td>
<td>54.6</td>
<td>0.5</td>
<td>0.0</td>
<td>3.3</td>
<td>3.8</td>
</tr>
</tbody>
</table>

Intermountain Power Service Corporation- Intermountain Generation Station

On September 29, 2006, the Governor of California approved California Senate Bill (SB) 1368, which directed the California Energy Commission to establish a greenhouse gas (GHG) emission performance standard (EPS) for electricity generation and which disallowed load-serving entities in California from entering into long-term financial commitments with electrical corporations unless the generation supplied under the financial commitment complies with that standard. Because approximately 98 percent of the power generated at the Intermountain Generation Station (IGS) is consumed by customers of California utilities and because the power generated by the IGS’s two coal-fired units exceeds California’s GHG EPS, the current contract for coal-fired generation, which expires in 2025, will not be renewed for power from those units. Instead, the permittee, Intermountain Power Service Corporation (IPSC), plans to replace the coal-fired units with an EPS-compliant combined-cycle natural gas plant, which will be highly thermally efficient and which will include state-of-the-art emissions controls such as SCR. As a result, regional haze-related pollutants (PM, SO2, and NOx) from the IGS are expected to decrease dramatically. Though the coal-fired units are expected to cease operation by mid-2025, Utah is establishing a firm closure date of no later than December 31, 2027, to ensure that the coal-fired units at IGS will not continue to operate beyond the end of the second planning period. This date allows flexibility for closing the plant and the rescinding of the permit and approval order. UDAQ did approach IPSC about the feasibility of improving the efficiency of existing controls, particularly SO2 scrubbing, at the facility in the three years between mid-2022 and mid-2025, but the company indicated that such improvements are logistically and
economically infeasible over such a short time period. Furthermore, the operator’s engineering and environmental staff and resources are fully engaged in the process of bringing the replacement gas-fired units online, the successful completion of which will bring about dramatic emissions reductions.

Kennecott Utah Copper LLC- Mine & Copperton Concentrator

The Kennecott Mine and Copperton Concentrator recently underwent BACT analysis as part of the Salt Lake PM2.5 SIP. As a result, there are no additional controls that can be applied at this time. The predominant visibility impairing pollutant from the Kennecott Mine and Copperton Concentrator is NOx, the vast majority of which comes from mine haul trucks and other non-road equipment as shown in Table 28 below. Specifically, this equipment was responsible for 4,376.7 tons (82.5%) of the 5,308.3 tons of combined PM10, SO2, and NOx emissions from this facility. Section 209 of the Clean Air Act preempts the State from setting standards for non-road vehicles or engines, leaving UDAQ with few options to control NOx emissions from haul trucks. When non-road emissions are removed from the 2017 inventory for this source, the Q/d drops to 3.9 -- i.e., below UDAQ’s threshold value of 6. That said, as identified by EPA, the anticipated NOx+NHC emissions reduction from replacing a Tier 1 haul truck with a Tier 4 truck is 65.9%, and the NOx+NHC emissions reduction from replacing a Tier 2 haul truck with a Tier 4 truck is 42.3%. This gives UDAQ a degree of comfort that emissions from this source will continue to improve over time as older vehicles are replaced.

Additionally, this source recently underwent a thorough BACT analysis as part of the Salt Lake Serious Nonattainment Area PM 2.5 SIP. As a result, there are no additional controls that can be applied at this time beyond those already included in the SIP as identified in Table 32 in Section 7.A.2 below. Though Section IX.H of the Utah SIP does include in-use requirements capping total mileage per calendar day for this equipment in relation to both PM10 and PM2.5 emissions, UDAQ does not anticipate additional emissions reductions from this equipment until such time as the fleet turns over to more recent Tier 4 standards.

Table 32: 2017 Kennecott Utah Copper LLC – Mine & Concentrator Emissions and Revised Q/d

<table>
<thead>
<tr>
<th>Source/Distance/Q/d</th>
<th>PM10</th>
<th>SO2</th>
<th>NOX</th>
<th>PM10+SO2+NOX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Truck Emissions</td>
<td>926.4</td>
<td>0.0</td>
<td>5.2</td>
<td>931.6</td>
</tr>
<tr>
<td>Haul Truck (non-road) Emissions</td>
<td>170.0</td>
<td>2.7</td>
<td>4,204.0</td>
<td>4,376.7</td>
</tr>
<tr>
<td>Total Emissions</td>
<td>1,096.4</td>
<td>2.7</td>
<td>4,209.2</td>
<td>5,308.3</td>
</tr>
</tbody>
</table>

133 Current requirements relating to the PM2.5 SIP for this facility can be found at: https://documents.deq.utah.gov/air-quality/planning/air-quality-policy/DAQ-2020-014982.pdf

134 See 42 U.S.C. § 7543(e).

135 Source: https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P100OA05.pdf

Kennecott Utah Copper LLC- Power Plant Lab Tailings Impoundment

The coal-fired boilers at the Power Plant Lab Tailings impoundment were decommissioned, and the Approval Order (AO) reflecting this change was updated on February 4, 2020.\(^{137}\) The February 2020 AO removed any ability for Kennecott to operate coal fired boilers as all the coal-fired boilers were removed from the approved equipment list. The AO summarizes the updates in the project description. Units 1-3 were prohibited to operate under the recently approved PM\(_{2.5}\) SIP, and a specific SIP condition set their closure date. Thus, due to that applicable condition, Units 1 – 3 were removed from the permit. Kennecott proposed the removal of Unit 4 from the permit because they planned to decommission the unit. The AO project summarizes that Kennecott made that decision voluntarily, and -- based on that decision -- Unit 4 was removed from the permit. The AO only lists remaining ancillary equipment. It does not list Units 1-3 or Unit 4 as equipment for the facility and -- for this reason -- Kennecott does not have approval to operate any coal-fired boilers. Based on this equipment change, UDAQ also rescinded the Title V permit for the facility on February 12, 2020.\(^{138}\) The vast majority of emissions from this facility were associated with the boilers, and emissions from the remaining equipment (a diesel emergency generator engine, cooling tower, degreasers and two natural gas-fired emergency generators to support the KUC electricity distribution control room). The emissions are small low enough that this source is below the Q/d threshold for the four-factor analysis. Finally, even if had not been decommissioned, this source recently underwent a thorough BACT analysis for the PM\(_{2.5}\) SIP, which resulted in the inclusion of fuel-switching to natural gas and an SCR-derived NO\(_x\) rate-based emission limit for Unit 4 in SIP Section IX.H as summarized in Table 33 below. For these reasons, this source was not required to provide a four-factor analysis for the round 2 regional haze SIP.

<table>
<thead>
<tr>
<th>Company</th>
<th>Facility</th>
<th>Applicable Units</th>
<th>Control Type</th>
<th>Limits</th>
<th>Implementation Date</th>
<th>SIP Reference</th>
<th>Last Revision</th>
<th>EPA Approval</th>
<th>Part H reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>PacifiCorp</td>
<td>Hunter</td>
<td>1 and 2</td>
<td>PM</td>
<td>Emissions of particulate (PM) shall not exceed 0.015 lbs/MMBtu heat input from each boiler based on a 3-run test average. No later than January 1, 2019</td>
<td>Regional Haze</td>
<td>June 24, 2019</td>
<td>Pending</td>
<td></td>
<td>H.22 Source Specific Emission Limitations; Regional Haze Requirements, Best Available Retrofit Technology</td>
</tr>
<tr>
<td>PacifiCorp</td>
<td>Hunter</td>
<td>1 and 2</td>
<td>NO(_x)</td>
<td>Emissions of NO(_x) from each boiler shall not exceed 0.26 lbs/MMBtu heat input for a 3-run test average. No later than January 1, 2019</td>
<td>Regional Haze</td>
<td>June 24, 2019</td>
<td>Pending</td>
<td></td>
<td>H.22 Source Specific Emission Limitations; Regional Haze Requirements, Best Available</td>
</tr>
</tbody>
</table>

\(^{137}\) This Approval Order can be found at: https://daqpermitting.utah.gov/DocViewer?IntDocID=117327&contentType=application/pdf

\(^{138}\) See Appendix G for UDAQ’s letter rescinding the Title V permit.
<table>
<thead>
<tr>
<th>Source</th>
<th>Location</th>
<th>Type</th>
<th>Parameter</th>
<th>Emissions Limit</th>
<th>Date/Timeframe</th>
<th>Enforcement</th>
</tr>
</thead>
<tbody>
<tr>
<td>PacifiCorp</td>
<td>Hunter</td>
<td>NO<sub>x</sub></td>
<td>NO<sub>x</sub> Emissions of NO<sub>x</sub> shall not exceed 0.015 lb/MMBtu heat input from each boiler based on a 30-day rolling average.</td>
<td>No later than January 1, 2019</td>
<td>Regional Haze</td>
<td>June 24, 2019</td>
</tr>
<tr>
<td>PacifiCorp</td>
<td>Huntington</td>
<td>PM</td>
<td>PM</td>
<td>Emissions of particulate (PM) shall not exceed 0.34 lb/MMBtu heat input for a 30-day rolling average.</td>
<td>No later than January 1, 2019</td>
<td>Regional Haze</td>
</tr>
<tr>
<td>PacifiCorp</td>
<td>Huntington</td>
<td>NO<sub>x</sub></td>
<td>NO<sub>x</sub> Emissions of NO<sub>x</sub> shall not exceed 0.26 lb/MMBtu heat input for a 30-day rolling average.</td>
<td>No later than January 1, 2019</td>
<td>Regional Haze</td>
<td>June 24, 2019</td>
</tr>
<tr>
<td>Kenncott Utah Copper LLC</td>
<td>Bingham Canyon Mine</td>
<td>Mileage</td>
<td>PM<sub>2.5</sub> Maximum total mileage per calendar day for diesel-powered ore and waste haul trucks shall not exceed 30,000 miles.</td>
<td>No later than January 1, 2019</td>
<td>PM2.5</td>
<td>Dec 2, 2020</td>
</tr>
<tr>
<td>Kenncott Utah Copper LLC</td>
<td>Bingham Canyon Mine</td>
<td>PM<sub>2.5</sub> The In-pit crusher baghouse shall not exceed a PM<sub>2.5</sub> emission limit of 0.78 lb/MMBtu(0.007 g/dscf). PM<sub>2.5</sub> monitoring shall be performed by stack testing every three years.</td>
<td>No later than January 1, 2019</td>
<td>PM2.5</td>
<td>Dec 2, 2020</td>
<td>Pending</td>
</tr>
<tr>
<td>Kenncott Utah Copper LLC</td>
<td>Copperton Concentrator</td>
<td>PM<sub>2.5</sub> Control emissions from the Product Molybdenite Dryers with a scrubber during operation of the dryers.</td>
<td>No later than January 1, 2019</td>
<td>PM2.5</td>
<td>Dec 2, 2020</td>
<td>Pending</td>
</tr>
<tr>
<td>Kenncott Utah Copper LLC</td>
<td>Copperton Concentrator</td>
<td>NO<sub>x</sub> The remaining heaters shall not operate more than 300 hours per rolling 12-month period unless upgraded so the NO<sub>x</sub> emission rate is no greater than 30 ppm.</td>
<td>No later than January 1, 2019</td>
<td>PM2.5</td>
<td>Dec 2, 2020</td>
<td>Pending</td>
</tr>
<tr>
<td>Kenncott Utah Copper LLC</td>
<td>Utah Power Plant</td>
<td>Fuel</td>
<td>Fuel</td>
<td>Only natural gas shall only be used as a fuel, unless the supplier or transporter of natural gas imposes a curtailment. Unit #4 may then burn coal, only for the duration of the curtailment plus sufficient time to empty the coal bins following the curtailment.</td>
<td>No later than January 1, 2019</td>
<td>PM2.5</td>
</tr>
</tbody>
</table>

109
<table>
<thead>
<tr>
<th>Company</th>
<th>Plant</th>
<th>Source</th>
<th>Emission Type</th>
<th>Limitations</th>
<th>Start Date</th>
<th>End Date</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kennecott Utah Copper LLC</td>
<td>Utah Power Plant 4</td>
<td>PM$_{2.5}$</td>
<td>Filterable $PM_{2.5}$ emissions to the atmosphere when burning natural gas shall not exceed 0.004 grains/dscf. Filterable + condensible $PM_{2.5}$ emissions to the atmosphere when burning natural gas shall not exceed 0.03 grains/dscf.</td>
<td>No later than January 1, 2019</td>
<td>Decemb er 2, 2020</td>
<td>Pending</td>
<td></td>
</tr>
<tr>
<td>Kennecott Utah Copper LLC</td>
<td>Utah Power Plant 4</td>
<td>NO$_x$</td>
<td>NO_x emissions to the atmosphere when burning natural gas shall not exceed 32 lbs/hr or 0.04 lbs/MMBtu</td>
<td>No later than January 1, 2019</td>
<td>Decemb er 2, 2020</td>
<td>Pending</td>
<td></td>
</tr>
<tr>
<td>Kennecott Utah Copper LLC</td>
<td>Utah Power Plant 5</td>
<td>PM$_{2.5}$</td>
<td>PM$_{2.5}$ with duct burning emissions to the atmosphere when burning natural gas shall not exceed 18.8 lbs/hr (filterable + condensible)</td>
<td>No later than January 1, 2019</td>
<td>Decemb er 2, 2020</td>
<td>Pending</td>
<td></td>
</tr>
<tr>
<td>Kennecott Utah Copper LLC</td>
<td>Utah Power Plant 5</td>
<td>VOC</td>
<td>VOC emissions to the atmosphere shall not exceed 2.0 ppmvd</td>
<td>No later than January 1, 2019</td>
<td>Decemb er 2, 2020</td>
<td>Pending</td>
<td></td>
</tr>
<tr>
<td>Chevron Products Co.</td>
<td>Salt Lake Refinery</td>
<td>Source-wide</td>
<td>PM$_{10}$</td>
<td>Combined emissions of PM$_{10}$ shall not exceed 0.715 tons per day (tpd).</td>
<td>No later than January 1, 2019</td>
<td>Decemb er 2, 2020</td>
<td>Pending</td>
</tr>
<tr>
<td>Chevron Products Co.</td>
<td>Salt Lake Refinery</td>
<td>Source-wide</td>
<td>NO$_x$</td>
<td>Combined emissions of NO$_x$ shall not exceed 2.1 tons per day (tpd) and 766.5 tons per rolling 12-month period.</td>
<td>No later than January 1, 2019</td>
<td>Decemb er 2, 2020</td>
<td>Pending</td>
</tr>
<tr>
<td>Chevron Products Co.</td>
<td>Salt Lake Refinery</td>
<td>Source-wide</td>
<td>SO$_2$</td>
<td>Combined emissions of SO$_2$ shall not exceed 1.05 tons per day (tpd) and 383.3 tons per rolling 12-month period.</td>
<td>No later than January 1, 2019</td>
<td>Decemb er 2, 2020</td>
<td>Pending</td>
</tr>
<tr>
<td>Chevron Products Co.</td>
<td>Salt Lake Refinery</td>
<td>Source-wide</td>
<td>PM$_{2.5}$</td>
<td>Combined emissions of PM$_{2.5}$ (filterable + condensible) shall not exceed 0.305 tons per day (tpd) and 110 tons per rolling 12-month period.</td>
<td>No later than January 1, 2019</td>
<td>Decemb er 2, 2020</td>
<td>Pending</td>
</tr>
<tr>
<td>Chevron Products Co.</td>
<td>Salt Lake Refinery</td>
<td>Source-wide</td>
<td>NO$_x$</td>
<td>Combined emissions of NO$_x$ shall not exceed 2.1 tons per day (tpd) and 766.5 tons per rolling 12-month period.</td>
<td>No later than January 1, 2019</td>
<td>Decemb er 2, 2020</td>
<td>Pending</td>
</tr>
</tbody>
</table>
WRAP released a Weighted Emissions Potential (WEP) analysis after UDAQ chose sources to submit a four-factor analysis. The WEP is obtained by overlaying extinction weighted residence time (EWRT) results with 2028OTBa2 emissions of light extinction precursors and shows which sources have the highest potential to impact visibility in CIAs. Table 34 and Table 35 list the point sources with the top ten WEP values for Utah CIAs for nitrate and sulfate, respectively, and summarize whether those sources were captured by Utah’s initial Q/d screen and whether they were ultimately required to submit a four-factor analysis. As can be seen, UDAQ’s initial Q/d screen captured most of the point sources with the highest-ranking WEP values at Utah CIAs. For those sources that were ultimately excluded from submitting a four-factor analysis, the tables provide notes as to the rationale for the exclusion, including plant closures, recent BACT analysis/controls, revised emission inventories, and the predominance of emissions from sources that states are largely preempted from controlling (e.g., non-road). The tables also include information regarding the status of non-Utah point sources with high-ranking WEP values, where available.

Tables 36 and 37 list Utah point sources that were among the top ten WEP values in the CIAs of neighboring states for nitrate and sulfate, respectively. Again, the tables show that UDAQ’s initial and secondary screening largely succeeded in identifying the sources
with the potential to impact CIAs, while excluding some sources that were already well-controlled, closed/closing, or that have few options for state-level controls.

Tesoro and Chevron Refineries

UDAQ's original Q/d screening using 2014 NEI data yielded values below 6 for the Chevron and Tesoro facilities. At EPA’s request, UDAQ re-calculated the Q/d thresholds of its major sources using 2017 NEI data to ensure that additional sources did not exceed a Q/d of 6 and confirmed that no additional sources would be screened-in using the newer data. Specifically, neither the Chevron nor Tesoro refineries had a revised Q/d of 6 or greater. Here it should be noted that UDAQ chose a more stringent Q/d threshold of 6 rather than the Q/d value of 10 recommended by WRAP.

However, both sources had high-ranking weighted emissions potential values for sulfate or nitrate and various in-state and out-of-state CIAs. Specifically, Chevron ranked 9th for nitrate at BRCA1 with a % of total point WEP of 1.4%. Chevron had no high-ranking sulfate impacts. Tesoro ranked 10th at BRCA1 for nitrate at BRCA1 (0.9%) and had the following rankings and % values for sulfate:

- BRCA1: Rank 8 (2.6%)
- CAPI1: Rank 8 (1.6%)
- BRID1: Rank 8 (3.9%)
- YELL2: Rank 8 (3.4%)
- CRMO1: Rank 6 (2.7%)
- SAWT1: Rank 8 (2.7%)

Though “Top 10” ranked, these WEP values represented a relatively small percentage of total point WEP at each CIA, as indicated above.

In addition, the 2019 Guidance states that it "may be reasonable for a state not to select an effectively controlled source" (page 22) and that "the statutory considerations for selection of BACT and LAER are also similar to, if not more stringent than, the four statutory factors for reasonable progress" (See 2019 EPA Guidance at 23). Both Chevron and Tesoro recently underwent a thorough BACT analysis for the Serious Area PM2.5 Salt Lake Nonattainment Area SIP that resulted in additional controls and limits being added to SIP Section IX.H. Specifically, Tesoro installed a wet gas scrubber unit to control SO2 emissions and is now subject to a source-wide annual SO2 limit of 300 tons per year. For comparison, WRAP’s WEP analyses used a 2028OTBa2 projection of 708.3 tons. Tesoro’s actual SO2 emissions for 2019-2021 since the installation of new controls ranged between 22 and 23 tons per year. As a result, the sulfate WEP values for this source – which were already a tiny fraction of total point source sulfate WEP – are not representative of either the enforceable limits or the recent actuals for this facility. Please refer to section 7.A.2 to review the existing controls resulting from the recent PM2.5 and PM10 SIP revisions for Chevron and Tesoro which include both source-wide and equipment limits for NOx, SO2, PM10, and PM2.5. Please refer to section 6.A.10 to review the
projected emissions reductions resulting from Tesoro’s existing controls.

Table 34: Nitrate Point Source WEP Rank for Utah CIAs

<table>
<thead>
<tr>
<th>Utah CIA</th>
<th>Rank</th>
<th>Facility Name</th>
<th>Source State</th>
<th>2028 OTB NOx (tons)</th>
<th>Distance (meters)</th>
<th>NOx Q/d</th>
<th>WEP NOx (% of total)</th>
<th>Selected in Utah Q/d Screen? (Y/N)</th>
<th>Included in UT Four-Factor Analysis? (Y/N)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRCA1</td>
<td>1</td>
<td>PacifiCorp-Hunter Power Plant</td>
<td>UT</td>
<td>10,001.2</td>
<td>198,466.7</td>
<td>50.4</td>
<td>109,484.1 (18.6%)</td>
<td>YES</td>
<td>YES</td>
<td>BACT for PM2.5 Serious SIP; majority of NOx emissions from non-road sources</td>
</tr>
<tr>
<td>BRCA1</td>
<td>2</td>
<td>PacifiCorp-Huntington Power Plant</td>
<td>UT</td>
<td>6,091.4</td>
<td>216,464.4</td>
<td>28.1</td>
<td>61,138.6 (10.4%)</td>
<td>YES</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>BRCA1</td>
<td>3</td>
<td>Kennecott Utah Copper LLC- Mine & Copper Mountain Plant</td>
<td>UT</td>
<td>4,199.6</td>
<td>329,072.0</td>
<td>12.8</td>
<td>52,048.8 (8.8%)</td>
<td>YES</td>
<td>NO</td>
<td>BACT for PM2.5 Serious SIP; majority of NOx emissions from non-road sources</td>
</tr>
<tr>
<td>BRCA1</td>
<td>4</td>
<td>Graymont Western US Incorporated-Cricket Mountain Plant</td>
<td>UT</td>
<td>916.5</td>
<td>155,620.0</td>
<td>5.9</td>
<td>34,304.4 (5.8%)</td>
<td>YES</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>BRCA1</td>
<td>5</td>
<td>Ash Grove Cement Company-Leamington Cement Plant</td>
<td>UT</td>
<td>845.5</td>
<td>214,929.5</td>
<td>3.9</td>
<td>30,091.0 (5.1%)</td>
<td>YES</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>BRCA1</td>
<td>6</td>
<td>Kennecott Utah Copper LLC- Power Plant Lab Tailings Impoundment</td>
<td>UT</td>
<td>1,157.5</td>
<td>342,148.6</td>
<td>3.4</td>
<td>20,954.3 (3.6%)</td>
<td>YES</td>
<td>NO</td>
<td>Power plant closed in 2020</td>
</tr>
<tr>
<td>BRCA1</td>
<td>7</td>
<td>Salt Lake City Intl</td>
<td>UT</td>
<td>784.0</td>
<td>350,666.3</td>
<td>2.2</td>
<td>17,677.6 (3.0%)</td>
<td>NO</td>
<td>NO</td>
<td>Q/d <6; majority of NOx emissions from non-road sources (aircraft take-offs and landings)</td>
</tr>
<tr>
<td>BRCA1</td>
<td>8</td>
<td>US Magnesium LLC- Rowley Plant</td>
<td>UT</td>
<td>1,052.1</td>
<td>367,453.2</td>
<td>2.9</td>
<td>10,062.0 (1.7%)</td>
<td>YES</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>BRCA1</td>
<td>9</td>
<td>Chevron Products Co - Salt Lake Refinery</td>
<td>UT</td>
<td>375.6</td>
<td>355,251.0</td>
<td>1.1</td>
<td>8,359.5 (1.4%)</td>
<td>NO</td>
<td>NO</td>
<td>Q/d <6; BACT for PM2.5 Serious SIP</td>
</tr>
<tr>
<td>BRCA1</td>
<td>10</td>
<td>Tesoro Refining & Marketing Company LLC</td>
<td>UT</td>
<td>358.1</td>
<td>351,572.8</td>
<td>1.0</td>
<td>8,053.0 (0.9%)</td>
<td>NO</td>
<td>NO</td>
<td>Q/d <6; BACT for PM2.5 Serious SIP</td>
</tr>
<tr>
<td>Utah CIA</td>
<td>Rank</td>
<td>Facility Name</td>
<td>Source State</td>
<td>2028 OTB NOx (tons)</td>
<td>Distance (meters)</td>
<td>NOx Q/d</td>
<td>WEP_NO3 (% of total)</td>
<td>Selected in Utah Q/d Screen? (Y/N)</td>
<td>Included in UT Four-Factor Analysis? (Y/N)</td>
<td>Notes</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td>---------------</td>
<td>--------------</td>
<td>---------------------</td>
<td>------------------</td>
<td>---------</td>
<td>---------------------</td>
<td>--------------------------------</td>
<td>--------------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>CANY1</td>
<td>1</td>
<td>PacifiCorp-Hunter Power Plant</td>
<td>UT</td>
<td>10,001.2</td>
<td>130,681.1</td>
<td>76.5</td>
<td>128,112.8 (13.9%)</td>
<td>YES</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>CANY1</td>
<td>2</td>
<td>PacifiCorp-Huntington Power Plant</td>
<td>UT</td>
<td>6,091.4</td>
<td>148,607.2</td>
<td>41.0</td>
<td>68,616.5 (7.4%)</td>
<td>YES</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>CANY1</td>
<td>3</td>
<td>Bonanza</td>
<td>TR</td>
<td>5,721.7</td>
<td>185,722.9</td>
<td>30.8</td>
<td>59,301.8 (6.4%)</td>
<td>NA</td>
<td>NA</td>
<td>Likely closure in 2030 due to settlement</td>
</tr>
<tr>
<td>CANY1</td>
<td>4</td>
<td>PNM - San Juan Generating Station</td>
<td>NM</td>
<td>7,390.8</td>
<td>219,591.9</td>
<td>33.7</td>
<td>47,113.4 (5.1%)</td>
<td>NA</td>
<td>NA</td>
<td>Subject to four-factor analysis in NM’s draft SIP; PNM has announced plant closure in 2022</td>
</tr>
<tr>
<td>CANY1</td>
<td>5</td>
<td>Kennecott Utah Copper LLC- Mine & Copperton Concentrator</td>
<td>UT</td>
<td>4,199.6</td>
<td>307,168.4</td>
<td>13.7</td>
<td>45,956.2 (5.0%)</td>
<td>YES</td>
<td>NO</td>
<td>BACT for PM2.5 Serious SIP; majority of NOx emissions from non-road sources</td>
</tr>
<tr>
<td>CANY1</td>
<td>6</td>
<td>Four Corners Power Plant</td>
<td>TR</td>
<td>4,060.4</td>
<td>228,638.6</td>
<td>17.8</td>
<td>24,859.3 (2.7%)</td>
<td>NA</td>
<td>NA</td>
<td>APS has announced plant closure in 2031</td>
</tr>
<tr>
<td>CANY1</td>
<td>7</td>
<td>Sunnyside Cogeneration Associates-Sunnyside Cogeneration Facility</td>
<td>UT</td>
<td>442.2</td>
<td>129,762.3</td>
<td>3.4</td>
<td>22,940.9 (2.5%)</td>
<td>YES</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>CANY1</td>
<td>8</td>
<td>Chaco Gas Plant</td>
<td>NM</td>
<td>2,053.4</td>
<td>264,690.7</td>
<td>7.8</td>
<td>14,056.2 (1.5%)</td>
<td>NA</td>
<td>NA</td>
<td>Not subject to four-factor analysis in NM’s proposed SIP</td>
</tr>
<tr>
<td>CANY1</td>
<td>9</td>
<td>CCI Paradox Midstream, LLC: Lisbon Natural Gas Processing Plant</td>
<td>UT</td>
<td>201.9</td>
<td>57,532.7</td>
<td>3.5</td>
<td>12,076.0 (1.3%)</td>
<td>YES</td>
<td>NO</td>
<td>2018 emissions Q/d <6</td>
</tr>
<tr>
<td>CANY1</td>
<td>10</td>
<td>RED ROCK GATHERING-PREMIER BAR X C.S.</td>
<td>CO</td>
<td>73.3</td>
<td>118,289.1</td>
<td>0.6</td>
<td>11,567.0 (1.3%)</td>
<td>NA</td>
<td>NA</td>
<td>Not subject to four-factor analysis in CO’s proposed SIP due to low NOx Q/d</td>
</tr>
<tr>
<td>CAPI1</td>
<td>1</td>
<td>PacifiCorp-Hunter Power Plant</td>
<td>UT</td>
<td>10,001.2</td>
<td>98,938.2</td>
<td>101.1</td>
<td>334,329.1 (37.2%)</td>
<td>YES</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>Utah CIA</td>
<td>Rank</td>
<td>Facility Name</td>
<td>Source State</td>
<td>2028 OTB NOx (tons)</td>
<td>Distance (meters)</td>
<td>NOx Q/d</td>
<td>WEP_NO3 (% of total)</td>
<td>Selected in Utah Q/d Screen? (Y/N)</td>
<td>Included in UT Four-Factor Analysis? (Y/N)</td>
<td>Notes</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td>--------------------------------</td>
<td>--------------</td>
<td>---------------------</td>
<td>------------------</td>
<td>---------</td>
<td>----------------------</td>
<td>--------------------------------------</td>
<td>---</td>
<td>-------</td>
</tr>
<tr>
<td>CAPI1</td>
<td>2</td>
<td>PacifiCorp-Huntington Power Plant</td>
<td>UT</td>
<td>6,091.4</td>
<td>120,459.7</td>
<td>50.6</td>
<td>167,247.5 (18.6%)</td>
<td>YES</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>CAPI1</td>
<td>3</td>
<td>Kennecott Utah Copper LLC- Mine & Copperton Concentrator</td>
<td>UT</td>
<td>4,199.6</td>
<td>263,195.8</td>
<td>16.0</td>
<td>42,259.0 (4.7%)</td>
<td>YES</td>
<td>NO</td>
<td>BACT for PM2.5 Serious SIP; majority of NOx emissions from non-road sources</td>
</tr>
<tr>
<td>CAPI1</td>
<td>4</td>
<td>Graymont Western US Incorporated-Cricket Mountain Plant</td>
<td>UT</td>
<td>916.5</td>
<td>148,543.7</td>
<td>6.2</td>
<td>26,049.6 (2.9%)</td>
<td>YES</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>CAPI1</td>
<td>5</td>
<td>Ash Grove Cement Company-Leamington Cement Plant</td>
<td>UT</td>
<td>845.5</td>
<td>159,501.2</td>
<td>5.3</td>
<td>24,633.4 (2.7%)</td>
<td>YES</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>CAPI1</td>
<td>6</td>
<td>Kennecott Utah Copper LLC- Power Plant Lab Tailings Impoundment</td>
<td>UT</td>
<td>1,157.5</td>
<td>275,718.8</td>
<td>4.2</td>
<td>13,860.1 (1.5%)</td>
<td>YES</td>
<td>NO</td>
<td>Power plant closed in 2020</td>
</tr>
<tr>
<td>CAPI1</td>
<td>7</td>
<td>US Magnesium LLC- Rowley Plant</td>
<td>UT</td>
<td>1,052.1</td>
<td>313,659.3</td>
<td>3.4</td>
<td>10,218.3 (1.1%)</td>
<td>YES</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>CAPI1</td>
<td>8</td>
<td>Bonanza</td>
<td>TR</td>
<td>5,721.7</td>
<td>261,713.3</td>
<td>21.9</td>
<td>9,450.1 (1.1%)</td>
<td>NA</td>
<td>NA</td>
<td>Likely closure in 2030 due to settlement</td>
</tr>
<tr>
<td>CAPI1</td>
<td>9</td>
<td>Sunnyside Cogeneration Associates-Sunnyside Cogeneration Facility</td>
<td>UT</td>
<td>442.2</td>
<td>158,414.3</td>
<td>2.8</td>
<td>8,764.7 (1.0%)</td>
<td>YES</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>CAPI1</td>
<td>10</td>
<td>Salt Lake City Intl</td>
<td>UT</td>
<td>784.0</td>
<td>280,646.7</td>
<td>2.8</td>
<td>7,264.8 (0.8%)</td>
<td>NO</td>
<td>NO</td>
<td>Q/d <6; majority of NOx emissions from non-road sources (aircraft take-offs and landings)</td>
</tr>
<tr>
<td>ZICA1</td>
<td>1</td>
<td>St. George City Power- Red Rock Power Generation Station</td>
<td>UT</td>
<td>34.3</td>
<td>38,429.0</td>
<td>0.9</td>
<td>13,108.2 (5.3%)</td>
<td>NO</td>
<td>NO</td>
<td>Q/d <6</td>
</tr>
<tr>
<td>ZICA1</td>
<td>2</td>
<td>PacifiCorp-Hunter Power Plant</td>
<td>UT</td>
<td>10,001.2</td>
<td>285,805.3</td>
<td>35.0</td>
<td>12,364.2 (5.0%)</td>
<td>YES</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>Rank</td>
<td>Facility Name</td>
<td>State</td>
<td>2028 OTB NOx (tons)</td>
<td>Distance (meters)</td>
<td>NOx Q/d</td>
<td>WEP_NOx (%) of total</td>
<td>Selected in UT Q/d Screen? (Y/N)</td>
<td>Included in UT Four-Factor Analysis? (Y/N)</td>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>-------</td>
<td>----------------------</td>
<td>-------------------</td>
<td>----------</td>
<td>----------------------</td>
<td>-------------------------------------</td>
<td>---</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ZICA1 3 McCarran Intl</td>
<td>NV</td>
<td>2,430.2</td>
<td>218,239.9</td>
<td>11.1</td>
<td>9,235.4 (3.7%)</td>
<td>NA</td>
<td>NA</td>
<td>Majority of NOx emissions from non-road sources (aircraft take-offs and landings)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>ZICA1 4 Kern River Gas Transmission Company-Veyo Compressor Station</td>
<td>UT</td>
<td>72.7</td>
<td>56,439.3</td>
<td>1.3</td>
<td>9,185.2 (3.7%)</td>
<td>NO</td>
<td>NO</td>
<td>Q/d <6</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>ZICA1 5 Kennecott Utah Copper LLC-Mine & Copperton Concentrator</td>
<td>UT</td>
<td>4,199.6</td>
<td>385,793.6</td>
<td>10.9</td>
<td>7,998.7 (3.2%)</td>
<td>YES</td>
<td>NO</td>
<td>BACT for PM2.5 Serious SIP; majority of NOx emissions from non-road sources</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>ZICA1 6 Pg&E Topock Compressor Station</td>
<td>CA</td>
<td>968.8</td>
<td>300,092.2</td>
<td>3.2</td>
<td>7,620.0 (3.1%)</td>
<td>NA</td>
<td>NA</td>
<td>Not subject to four-factor analysis in CA’s proposed SIP due to low NOx Q/d</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>ZICA1 7 Mill creek Power</td>
<td>UT</td>
<td>19.4</td>
<td>38,438.7</td>
<td>0.5</td>
<td>7,402.2 (3.0%)</td>
<td>NO</td>
<td>NO</td>
<td>Q/d <6</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>ZICA1 8 PacifiCorp-Huntington Power Plant</td>
<td>UT</td>
<td>6,091.4</td>
<td>300,744.4</td>
<td>20.3</td>
<td>7,156.5 (2.9%)</td>
<td>YES</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>ZICA1 9 Lhoist North America and Granite Const. (Apex)</td>
<td>NV</td>
<td>1,361.8</td>
<td>181,728.8</td>
<td>7.5</td>
<td>7,041.9 (2.8%)</td>
<td>NA</td>
<td>NA</td>
<td>NV’s proposed SIP requires SNCR on Kilns 1, 3, & 4 as well as LNB on Klin 1; Kils 3 & 4 have existing LNBs.</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>ZICA1 10 Kennecott Utah Copper LLC-Power Plant Lab Tailings Impoundment</td>
<td>UT</td>
<td>1,157.5</td>
<td>398,524.3</td>
<td>2.9</td>
<td>6,609.7 (2.7%)</td>
<td>YES</td>
<td>NO</td>
<td>Power plant closed in 2020</td>
<td></td>
</tr>
<tr>
<td>Utah CIA</td>
<td>Rank</td>
<td>Facility Name</td>
<td>Source State</td>
<td>2028 OTB SO2 (tons)</td>
<td>Distance (meters)</td>
<td>SO2 Q/d</td>
<td>WEP SO4 (% of Total)</td>
<td>Selected in Utah Q/d Screen? (Y/N)</td>
<td>Included in UT Four-Factor Analysis? (Y/N)</td>
<td>Notes</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td>---------------</td>
<td>--------------</td>
<td>---------------------</td>
<td>------------------</td>
<td>---------</td>
<td>----------------------</td>
<td>-------------------------------------</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>BRCA1</td>
<td>1</td>
<td>CHEMICAL LIME NELSON PLANT</td>
<td>AZ</td>
<td>2,040.6</td>
<td>253,654.7</td>
<td>8.0</td>
<td>43,684.7 (21.8%)</td>
<td>NA</td>
<td>NA</td>
<td>Not subject to four-factor analysis in AZ's proposed SIP due to Round 1 BART FIP controls</td>
</tr>
<tr>
<td>BRCA1</td>
<td>2</td>
<td>PacifiCorp- Hunter Power Plant</td>
<td>UT</td>
<td>3,498.2</td>
<td>198,466.7</td>
<td>17.6</td>
<td>22,430.8 (11.2%)</td>
<td>YES</td>
<td>YES</td>
<td>Power plant closed in 2020</td>
</tr>
<tr>
<td>BRCA1</td>
<td>3</td>
<td>Kennecott Utah Copper LLC- Power Plant Lab Tailings Impoundment</td>
<td>UT</td>
<td>2,151.9</td>
<td>342,148.6</td>
<td>6.3</td>
<td>17,191.7 (8.6%)</td>
<td>YES</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>BRCA1</td>
<td>4</td>
<td>PacifiCorp- Huntington Power Plant</td>
<td>UT</td>
<td>2,449.0</td>
<td>216,464.4</td>
<td>11.3</td>
<td>14,397.6 (7.2%)</td>
<td>YES</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>BRCA1</td>
<td>5</td>
<td>ASARCO LLC - HAYDEN SMELTER</td>
<td>AZ</td>
<td>3,062.1</td>
<td>527,077.3</td>
<td>5.8</td>
<td>14,391.7 (7.2%)</td>
<td>NA</td>
<td>NA</td>
<td>Not subject to four-factor analysis in AZ's proposed SIP due to Round 1 BART FIP controls</td>
</tr>
<tr>
<td>BRCA1</td>
<td>6</td>
<td>Kennecott Utah Copper LLC- Smelter & Refinery</td>
<td>UT</td>
<td>704.4</td>
<td>342,656.1</td>
<td>2.1</td>
<td>5,618.9 (2.8%)</td>
<td>NO</td>
<td>NO</td>
<td>Q/d <6; BACT for PM2.5 Serious SIP</td>
</tr>
<tr>
<td>BRCA1</td>
<td>7</td>
<td>Four Corners Power Plant</td>
<td>TR</td>
<td>2,537.7</td>
<td>341,751.7</td>
<td>7.4</td>
<td>5,413.2 (2.7%)</td>
<td>NA</td>
<td>NA</td>
<td>APS has announced plant closure in 2031</td>
</tr>
<tr>
<td>BRCA1</td>
<td>8</td>
<td>Tesoro Refining & Marketing Company LLC</td>
<td>UT</td>
<td>708.3</td>
<td>351,572.8</td>
<td>2.0</td>
<td>5,158.3 (2.6%)</td>
<td>NO</td>
<td>NO</td>
<td>Q/d <6; BACT for PM2.5 Serious SIP</td>
</tr>
<tr>
<td>BRCA1</td>
<td>9</td>
<td>TUCSON ELECTRIC POWER CO - SPRINGERVILLE</td>
<td>AZ</td>
<td>6,991.9</td>
<td>455,128.8</td>
<td>15.4</td>
<td>3,654.7 (1.8%)</td>
<td>NA</td>
<td>NA</td>
<td>New SO2 limits for units 1 & 2 included in AZ's proposed SIP</td>
</tr>
<tr>
<td>BRCA1</td>
<td>10</td>
<td>Phoenix Sky Harbor Intl</td>
<td>AZ</td>
<td>275.1</td>
<td>463,195.4</td>
<td>0.6</td>
<td>3,615.9 (1.8%)</td>
<td>NA</td>
<td>NA</td>
<td>Majority of NOx emissions from non-road sources (aircraft take-offs and landings)</td>
</tr>
<tr>
<td>CANY1</td>
<td>1</td>
<td>PacifiCorp- Hunter Power Plant</td>
<td>UT</td>
<td>3,498.2</td>
<td>130,681.1</td>
<td>26.8</td>
<td>78,098.2 (19.1%)</td>
<td>YES</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>Utah CIA</td>
<td>Rank</td>
<td>Facility Name</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td>---------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CANY1</td>
<td>2</td>
<td>PacifiCorp-Huntington Power Plant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CANY1</td>
<td>3</td>
<td>CCI Paradox Midstream, LLC: Lisbon Natural Gas Processing Plant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CANY1</td>
<td>4</td>
<td>Four Corners Power Plant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CANY1</td>
<td>5</td>
<td>Sunnyside Cogeneration Associates-Sunnyside Cogeneration Facility</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CANY1</td>
<td>6</td>
<td>Kennecott Utah Copper LLC: Power Plant Lab Tailings Impoundment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CANY1</td>
<td>7</td>
<td>TUCSON ELECTRIC POWER CO - SPRINGERVILLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CANY1</td>
<td>8</td>
<td>CHEMICAL LIME NELSON PLANT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CANY1</td>
<td>9</td>
<td>Bonanza</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CANY1</td>
<td>10</td>
<td>PNM - San Juan Generating Station</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAPI1</td>
<td>1</td>
<td>PacifiCorp-Hunter Power Plant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAPI1</td>
<td>2</td>
<td>PacifiCorp-Huntington Power Plant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rank</td>
<td>Facility Name</td>
<td>State</td>
<td>Source</td>
<td>2028 OTB SO₂ (tons)</td>
<td>Distance (meters)</td>
<td>WEP SO₂ (% of Total)</td>
<td>Selected in Utah Q/d Screen? (Y/N)</td>
<td>Included in UT Four-Factor Analysis? (Y/N)</td>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---------------</td>
<td>-------</td>
<td>--------</td>
<td>---------------------</td>
<td>------------------</td>
<td>---------------------</td>
<td>-----------------------------------</td>
<td>---</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>CAPI1 3</td>
<td>Kennecott Utah Copper LLC - Power Plant Lab Tailings Impoundment</td>
<td>UT</td>
<td>2,151.9</td>
<td>275,718.8</td>
<td>7.8</td>
<td>31,599.4 (7.9%)</td>
<td>YES</td>
<td>NO</td>
<td>Power plant closed in 2020</td>
<td></td>
</tr>
<tr>
<td>CAPI1 4</td>
<td>CHEMICAL LIME NELSON PLANT</td>
<td>AZ</td>
<td>2,040.6</td>
<td>356,269.4</td>
<td>5.7</td>
<td>25,448.1 (6.4%)</td>
<td>NA</td>
<td>NA</td>
<td>Not subject to four-factor analysis in AZ's proposed SIP due to Round 1 BART FIP controls</td>
<td></td>
</tr>
<tr>
<td>CAPI1 5</td>
<td>Sunnyside Cogeneration Associates - Sunnyside Cogeneration Facility</td>
<td>UT</td>
<td>460.8</td>
<td>158,414.3</td>
<td>2.9</td>
<td>10,823.1 (2.7%)</td>
<td>YES</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAPI1 6</td>
<td>ASARCO LLC - HAYDEN SMELTER</td>
<td>AZ</td>
<td>3,062.1</td>
<td>589,323.9</td>
<td>5.2</td>
<td>10,351.8 (2.6%)</td>
<td>NA</td>
<td>NA</td>
<td>Not subject to four-factor analysis in AZ's proposed SIP due to Round 1 BART FIP controls</td>
<td></td>
</tr>
<tr>
<td>CAPI1 7</td>
<td>Kennecott Utah Copper LLC - Smelter & Refinery</td>
<td>UT</td>
<td>704.4</td>
<td>277,921.4</td>
<td>2.5</td>
<td>10,261.2 (2.6%)</td>
<td>NO</td>
<td>NO</td>
<td>Q/d <6; BACT for PM₂.₅ Serious SIP</td>
<td></td>
</tr>
<tr>
<td>CAPI1 8</td>
<td>Tesoro Refining & Marketing Company LLC</td>
<td>UT</td>
<td>708.3</td>
<td>280,166.8</td>
<td>2.5</td>
<td>6,278.1 (1.6%)</td>
<td>NO</td>
<td>NO</td>
<td>Q/d <6; BACT for PM₂.₅ Serious SIP</td>
<td></td>
</tr>
<tr>
<td>CAPI1 9</td>
<td>NORTH VALMY GENERATING STATION</td>
<td>NV</td>
<td>2,277.3</td>
<td>574,890.7</td>
<td>4.0</td>
<td>5,620.2 (1.4%)</td>
<td>NA</td>
<td>NA</td>
<td>NV's proposed SIP includes a federally enforceable closure date of 12/31/28</td>
<td></td>
</tr>
<tr>
<td>CAPI1 10</td>
<td>Bonanza</td>
<td>TR</td>
<td>1,281.3</td>
<td>261,713.3</td>
<td>4.9</td>
<td>4,809.0 (1.2%)</td>
<td>NA</td>
<td>NA</td>
<td>Likely closure in 2030 due to settlement</td>
<td></td>
</tr>
<tr>
<td>ZICA1 1</td>
<td>CHEMICAL LIME NELSON PLANT</td>
<td>AZ</td>
<td>2,040.6</td>
<td>186,619.3</td>
<td>10.9</td>
<td>38,687.4 (24.8%)</td>
<td>NA</td>
<td>NA</td>
<td>Not subject to four-factor analysis in AZ's proposed SIP due to Round 1 BART FIP controls</td>
<td></td>
</tr>
<tr>
<td>ZICA1 2</td>
<td>Kennecott Utah Copper LLC - Power Plant Lab Tailings Impoundment</td>
<td>UT</td>
<td>2,151.9</td>
<td>398,524.3</td>
<td>5.4</td>
<td>9,186.4 (5.9%)</td>
<td>YES</td>
<td>NO</td>
<td>Power plant closed in 2020</td>
<td></td>
</tr>
<tr>
<td>Rank</td>
<td>State</td>
<td>Facility Name</td>
<td>Source</td>
<td>2028 OTB SO2 (tons)</td>
<td>Distance (meters)</td>
<td>SO2 Q/d</td>
<td>WEP_SO2 (% of Total)</td>
<td>Selected in Utah Q/d Screen? (Y/N)</td>
<td>Included in UT Four-Factor Analysis? (Y/N)</td>
<td>Notes</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>---------------</td>
<td>--------</td>
<td>---------------------</td>
<td>------------------</td>
<td>---------</td>
<td>----------------------</td>
<td>------------------------------------</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>ZICA1 1</td>
<td>UT</td>
<td>PacifiCorp-Huntington Power Plant</td>
<td>UT</td>
<td>3,498.2</td>
<td>285,805.3</td>
<td>12.2</td>
<td>4,557.8 (2.9%)</td>
<td>YES</td>
<td>YES</td>
<td>Majority of NOx emissions from non-road sources (aircraft take-offs and landings)</td>
</tr>
<tr>
<td>ZICA1 2</td>
<td>AZ</td>
<td>ASARCO LLC - HAYDEN SMELTER</td>
<td>AZ</td>
<td>3,062.1</td>
<td>512,466.4</td>
<td>6.0</td>
<td>6,672.2 (4.3%)</td>
<td>NA</td>
<td>NA</td>
<td>Not subject to four-factor analysis in AZ’s proposed SIP due to Round 1 BART FIP controls</td>
</tr>
<tr>
<td>ZICA1 3</td>
<td>NV</td>
<td>McCarran Intl</td>
<td>NV</td>
<td>265.3</td>
<td>218,239.9</td>
<td>1.2</td>
<td>4,713.6 (3.0%)</td>
<td>NA</td>
<td>NA</td>
<td>Majority of NOx emissions from non-road sources (aircraft take-offs and landings)</td>
</tr>
<tr>
<td>ZICA1 4</td>
<td>UT</td>
<td>PacifiCorp-Hunter Power Plant</td>
<td>UT</td>
<td>3,498.2</td>
<td>285,805.3</td>
<td>12.2</td>
<td>4,557.8 (2.9%)</td>
<td>YES</td>
<td>YES</td>
<td>Majority of NOx emissions from non-road sources (aircraft take-offs and landings)</td>
</tr>
<tr>
<td>ZICA1 5</td>
<td>AZ</td>
<td>Phoenix Sky Harbor Intl</td>
<td>AZ</td>
<td>275.1</td>
<td>428,694.4</td>
<td>0.6</td>
<td>4,554.6 (2.9%)</td>
<td>NA</td>
<td>NA</td>
<td>Not subject to four-factor analysis in CA’s proposed SIP due to AB 617</td>
</tr>
<tr>
<td>ZICA1 6</td>
<td>CA</td>
<td>California Portland Cement Co.</td>
<td>CA</td>
<td>1,445.5</td>
<td>520,498.4</td>
<td>2.8</td>
<td>4,038.8 (2.6%)</td>
<td>NA</td>
<td>NA</td>
<td>Not subject to four-factor analysis in CA’s proposed SIP due to AB 617</td>
</tr>
<tr>
<td>ZICA1 7</td>
<td>NV</td>
<td>Republic Services Sunrise</td>
<td>NV</td>
<td>209.5</td>
<td>201,737.4</td>
<td>1.0</td>
<td>4,025.8 (2.6%)</td>
<td>NA</td>
<td>NA</td>
<td>Not subject to four-factor analysis in NV’s proposed SIP due to low Q/d</td>
</tr>
<tr>
<td>ZICA1 8</td>
<td>AZ</td>
<td>TUCSON ELECTRIC POWER CO - SPRINGERVILLE</td>
<td>AZ</td>
<td>6,991.9</td>
<td>480,561.1</td>
<td>14.5</td>
<td>3,447.7 (2.2%)</td>
<td>NA</td>
<td>NA</td>
<td>New SO2 limits for units 1 & 2 included in AZ’s proposed SIP</td>
</tr>
<tr>
<td>ZICA1 9</td>
<td>UT</td>
<td>PacifiCorp-Huntington Power Plant</td>
<td>UT</td>
<td>2,449.0</td>
<td>300,744.4</td>
<td>8.1</td>
<td>3,032.3 (1.9%)</td>
<td>YES</td>
<td>YES</td>
<td></td>
</tr>
</tbody>
</table>

120
Table 36: Nitrate Utah Point Source WEP Rank for Non-Utah CIAs

<table>
<thead>
<tr>
<th>CIA State</th>
<th>CIA</th>
<th>Rank</th>
<th>Facility Name</th>
<th>Source State</th>
<th>2028 OTB NOx (tons)</th>
<th>Distance (meters)</th>
<th>NOx Q/d</th>
<th>WEP_NO3 (% of total)</th>
<th>Selected in Utah Q/d Screen? (Y/N)</th>
<th>Included in Four-Factor Analysis? (Y/N)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>WY</td>
<td>BRID1</td>
<td>5</td>
<td>Kennecott Utah Copper LLC- Mine & Copperton Concentrator</td>
<td>UT</td>
<td>4,199.6</td>
<td>328,062.1</td>
<td>12.8</td>
<td>23,190.1 (3.9%)</td>
<td>YES</td>
<td>NO</td>
<td>BACT for PM2.5; Serious SIP; majority of NOx emissions from non-road sources</td>
</tr>
<tr>
<td>WY</td>
<td>YELL2</td>
<td>9</td>
<td>Kennecott Utah Copper LLC- Mine & Copperton Concentrator</td>
<td>UT</td>
<td>4,199.6</td>
<td>461,954.1</td>
<td>9.1</td>
<td>4,042.4 (1.8%)</td>
<td>YES</td>
<td>NO</td>
<td>BACT for PM2.5; Serious SIP; majority of NOx emissions from non-road sources</td>
</tr>
<tr>
<td>WY</td>
<td>YELL2</td>
<td>10</td>
<td>Salt Lake City Intl</td>
<td>UT</td>
<td>784.0</td>
<td>437,939.4</td>
<td>1.8</td>
<td>3,887.0 (1.7%)</td>
<td>NO</td>
<td>NO</td>
<td>Q/d <6; majority of NOx emissions from non-road sources (aircraft take-offs and landings)</td>
</tr>
<tr>
<td>ID</td>
<td>CRMO1</td>
<td>10</td>
<td>Kennecott Utah Copper LLC- Mine & Copperton Concentrator</td>
<td>UT</td>
<td>4,199.6</td>
<td>338,486.4</td>
<td>12.4</td>
<td>22,912.5 (2.5%)</td>
<td>YES</td>
<td>NO</td>
<td>BACT for PM2.5; Serious SIP; majority of NOx emissions from non-road sources</td>
</tr>
</tbody>
</table>

Table 37: Sulfate Utah Point Source WEP Rank for Non-Utah CIAs

<table>
<thead>
<tr>
<th>CIA State</th>
<th>CIA</th>
<th>Rank</th>
<th>Facility Name</th>
<th>Source State</th>
<th>2028 OTB SO2 (tons)</th>
<th>Distance (meters)</th>
<th>SO2 Q/d</th>
<th>WEP_SO4 (% of total)</th>
<th>Selected in Utah Q/d Screen? (Y/N)</th>
<th>Included in Four-Factor Analysis? (Y/N)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>MEVE1</td>
<td>6</td>
<td>CCI Paradox Midstream, LLC: Lisbon Natural Gas Processing Plant</td>
<td>UT</td>
<td>534.9</td>
<td>126,687.8</td>
<td>4.2</td>
<td>22,144.4 (1.3%)</td>
<td>YES</td>
<td>NO</td>
<td>2018 emissions Q/d <6</td>
</tr>
<tr>
<td>CIA</td>
<td>State</td>
<td>Rank</td>
<td>Facility Name</td>
<td>Source State</td>
<td>2028 OTB SO₂ (tons)</td>
<td>Distance (meters)</td>
<td>SO₂ Q/d</td>
<td>WEP SO₄ (% of total)</td>
<td>Selected in Utah Q/d Screen? (Y/N)</td>
<td>Included in Four-Factor Analysis? (Y/N)</td>
<td>Notes</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>------</td>
<td>---</td>
<td>--------------</td>
<td>---------------------</td>
<td>-------------------</td>
<td>---------</td>
<td>---------------------</td>
<td>-----------------------------------</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>CO</td>
<td>MEVE1</td>
<td>9</td>
<td>PacifiCorp-Hunter Power Plant</td>
<td>UT</td>
<td>3,498.2</td>
<td>310,434.6</td>
<td>11.3</td>
<td>11,845.4 (0.7%)</td>
<td>YES</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>WEMI1</td>
<td>3</td>
<td>CCI Paradox Midstream, LLC: Lisbon Natural Gas Processing Plant</td>
<td>UT</td>
<td>534.9</td>
<td>140,388.0</td>
<td>3.8</td>
<td>24,308.8 (3.8%)</td>
<td>YES</td>
<td>NO</td>
<td>2018 emissions Q/d <6</td>
</tr>
<tr>
<td>CO</td>
<td>WEMI1</td>
<td>6</td>
<td>PacifiCorp-Hunter Power Plant</td>
<td>UT</td>
<td>3,498.2</td>
<td>326,019.1</td>
<td>10.7</td>
<td>12,361.1 (1.9%)</td>
<td>YES</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>WY</td>
<td>BRID1</td>
<td>5</td>
<td>Kennelecot Utah Copper LLC- Power Plant Lab Tailings Impoundment</td>
<td>UT</td>
<td>2,151.9</td>
<td>317,383.8</td>
<td>6.8</td>
<td>53,003.7 (6.3%)</td>
<td>YES</td>
<td>NO</td>
<td>Power plant closed in 2020</td>
</tr>
<tr>
<td>WY</td>
<td>BRID1</td>
<td>8</td>
<td>Tesoro Refining & Marketing Company LLC</td>
<td>UT</td>
<td>708.3</td>
<td>299,746.7</td>
<td>2.4</td>
<td>32,334.3 (3.9%)</td>
<td>NO</td>
<td>NO</td>
<td>Q/d <6; BACT for PM₂.₅ Serious SIP</td>
</tr>
<tr>
<td>WY</td>
<td>NOAB1</td>
<td>8</td>
<td>Kennelecot Utah Copper LLC- Power Plant Lab Tailings Impoundment</td>
<td>UT</td>
<td>2,151.9</td>
<td>499,395.1</td>
<td>4.3</td>
<td>15,792.1 (2.2%)</td>
<td>YES</td>
<td>NO</td>
<td>Power plant closed in 2020</td>
</tr>
<tr>
<td>WY</td>
<td>YELL2</td>
<td>2</td>
<td>Kennelecot Utah Copper LLC- Power Plant Lab Tailings Impoundment</td>
<td>UT</td>
<td>2,151.9</td>
<td>449,396.5</td>
<td>4.8</td>
<td>23,791.3 (7.4%)</td>
<td>YES</td>
<td>NO</td>
<td>Power plant closed in 2020</td>
</tr>
<tr>
<td>WY</td>
<td>YELL2</td>
<td>8</td>
<td>Tesoro Refining & Marketing Company LLC</td>
<td>UT</td>
<td>708.3</td>
<td>435,882.7</td>
<td>1.6</td>
<td>10,963.7 (3.4%)</td>
<td>NO</td>
<td>NO</td>
<td>Q/d <6; BACT for PM₂.₅ Serious SIP</td>
</tr>
<tr>
<td>ID</td>
<td>CRMO1</td>
<td>4</td>
<td>Kennelecot Utah Copper LLC- Power Plant Lab Tailings Impoundment</td>
<td>UT</td>
<td>2,151.9</td>
<td>326,319.5</td>
<td>6.6</td>
<td>18,525.9 (6.8%)</td>
<td>YES</td>
<td>NO</td>
<td>Power plant closed in 2020</td>
</tr>
<tr>
<td>ID</td>
<td>CRMO1</td>
<td>6</td>
<td>Tesoro Refining & Marketing Company LLC</td>
<td>UT</td>
<td>708.3</td>
<td>325,079.4</td>
<td>2.2</td>
<td>7,431.8 (2.7%)</td>
<td>NO</td>
<td>NO</td>
<td>Q/d <6; BACT for PM₂.₅ Serious SIP</td>
</tr>
<tr>
<td>ID</td>
<td>CRMO1</td>
<td>10</td>
<td>Kennelecot Utah Copper LLC- Smelter & Refinery</td>
<td>UT</td>
<td>704.4</td>
<td>323,667.2</td>
<td>2.2</td>
<td>6,113.6 (2.2%)</td>
<td>NO</td>
<td>NO</td>
<td>Q/d <6; BACT for PM₂.₅ Serious SIP</td>
</tr>
</tbody>
</table>
7.A.4 Other Sources

The foregoing Q/d analysis, secondary screening, and WEP analysis sections were used to help identify point sources with potential impacts at Utah and non-Utah CIAs. However, the emissions inventories detailed in section 5.A and the WRAP photochemical source apportionment results provided in section 6.A suggest that non-point sources in Utah may also impact visibility in CIAs. This section discusses the potential impacts of and state of emissions controls for non-point sources in Utah.

Oil and Gas

Utah oil and gas sources are spread over a very large area making a traditional Q/d analysis problematic. Furthermore, in light of updated inventory findings discussed below, UDAQ does not consider the WRAP oil and gas inventories to be adequate for any type of Q/d emissions analysis, derived or otherwise. That said, UDAQ acknowledges that oil and gas sector emissions may affect visibility in CIAs.

Most of Utah’s oil and gas sector emissions occur in the Uinta Basin (UB), where considerable work has already been done to address this sector’s contribution to wintertime ozone pollution. The Uinta Basin (UB), located in northeast Utah, contains the majority of oil and gas extraction in Utah. The UB has been found to have high levels of ozone during the winter months. This phenomenon is associated with the geological basin, cold temperature inversion,
and snow cover albedo in the presence of VOCs and NOx. The majority of emissions for the ozone precursors of VOC and NOx come primarily from the oil and gas exploration and production in the area, not other urban or mobile sources. Since the discovery of these high ozone emissions, Utah has acted to control the oil and gas sources in the UB and the rest of the state. However, the jurisdictional complexity of the UB has led to inconsistency between state-controlled sources and EPA-controlled sources on Indian Country. Emission inventories show that about 80% of the emissions are under EPA regulatory control. The 2017 oil and gas emission inventory compared to the total emission inventory for the UB accounts for about 97% of the total VOC emissions and 68% of the total NOx emissions. The 2017 oil and gas emission inventory showed that 80% of emissions in the UB result from areas under EPA control. Therefore, the state of Utah can only address about 20% of the ozone-forming precursors VOC and NOx and cannot address air quality issues on their own in the UB. Over the past several years, UDAQ has proposed and adopted a series of statewide rules specific to oil and gas operations found in Utah’s state administrative rules R301-500 to 511. Though these rules have been focused on controlling VOC emissions, there is also a state-specific rule for natural gas-powered engines associated with oil and gas production. Since the rule was put in place in 2018, several sources have provided engine stack test data that have led UDAQ, EPA, and the Tribes to initiate further research and compliance studies on engines in the Basin, with a focus on two-stroke smaller horsepower engines that power pump jacks associated with oil-producing wells. The data collected have indicated lower values for NOx emissions than what was reported in the 2017 oil and gas emission inventory for these engines, yet much higher emissions of VOCs. UDAQ will be evaluating this data and will be evaluating future rulemaking for engines associated with oil and gas operations that would be statewide. EPA did follow UDAQ’s lead and has proposed the Uintah and Ouray Federal Implementation Plan that is similar to Utah’s oil and gas rules, and will bring some regulatory consistency to the area. The UDAQ will continue to coordinate with EPA and the Tribe to encourage that rules are consistent across all regulatory jurisdictions, but ultimately any controls under EPA regulatory jurisdiction will be determined by EPA and the Tribe139.

Mobile

As identified in section 6.A above, mobile source emissions are a leading Utah source for nitrate impacts at all Utah CIAs and in some neighboring states, namely Colorado, Idaho, and Wyoming. Under Section 209 of the Clean Air Act, states are largely preempted from setting standards for on-road and non-road mobile sources. Fortunately, federal emission standards for on-road vehicles and engines as well as non-road equipment are projected to result in dramatic reductions in NOx and PM emissions in Utah over the second planning period for regional haze. To help guarantee these emissions reductions, the State of Utah has worked with the petroleum refiners that supply the Utah market to ensure that suppliers produce gasoline that meets the Tier 3 sulfur requirement of 30 ppm and not just comply using credits. In addition, Utah has taken measures as part of other air quality programs to ensure that mobile source emissions are well-controlled. For example, Utah has vehicle inspection and

139 Please refer to sections 5.B and 9.C.2, response 24 for additional information concerning Utah’s area sources.
maintenance programs in place in Utah, Salt Lake, Davis, Weber, and Cache counties, which accounted for 79.3% of the state’s population in 2021\(^1\) and 60.1% of total statewide on-road mobile source OTB2028a2 emissions. These programs also include diesel vehicle inspections which, while not creditable in Utah’s various SIP revisions, help reduce NO\(_x\) emissions that contribute to nitrate formation and CIA impacts.

Remaining Anthropogenic

The remaining anthropogenic category of the WRAP photochemical analysis represents non-oil and gas area source emissions, and specifically includes fugitive dust, agriculture, agricultural fire, residential wood combustion, and all remaining nonpoint sources (e.g., residential and commercial stationary source fuel combustion). As shown in section 6.A, the remaining anthropogenic impacts are relatively small for Utah and non-Utah CIAs. That said, these sources are relatively well-controlled as a result of rulemaking associated with other air quality programs in Utah (e.g., the PM\(_{2.5}\) SIP BACM review and resulting controls). For example, Utah restricts residential wood burning on so-called mandatory action days when conditions are ripe for secondary formation of particulates. Utah has also adopted an ultra-low NO\(_x\) water heater rule that applies statewide and, when fully implemented, will result in a 75% reduction in NO\(_x\) emissions from residential and commercial water heating-related natural gas stationary source fuel combustion. Additional Utah area source rules to reduce NO\(_x\) and/or PM emissions include those governing hydronic heaters, fugitive dust, and pilot lights.

7.A.5 Environmental Justice Considerations

Environmental Justice (EJ) is the fair treatment and meaningful involvement of all people regardless of race, color, national origin, or income, with respect to the development, implementation, and enforcement of environmental laws, regulations, and policies\(^{140}\). Absent further guidance from EPA, UDAQ believes the consideration of EJ is best used in the screening process to ensure sources within disproportionately affected areas are included in the four-factor analysis process. UDAQ has used the EJScreen (version 2.0) tool developed by EPA to analyze the environmental justice indices surrounding the sources selected to conduct four-factor analyses. EJScreen\(^{141}\). For the 10 sources originally screened in this implementation period, UDAQ reviewed all pollution and sources as well as socioeconomic indicators (a total of 19 indices) as percentiles calculated by comparing data from census blocks within the state of Utah. UDAQ notes that the RH program does not have the authority to control the following indexes included in this analysis: lead paint, superfund sites, wastewater discharge, RMP facilities, hazardous waste, or underground storage tanks. Percentiles for all indexes were generated for each source’s location centered within a 20-mile buffer radius. UDAQ recorded all indexes in the 80th percentiles and above at the state level for the screened sources and offers the following information used to consider the co-benefits of the reasonable progress determinations included in this implementation period. UDAQ was not able to draw significant

\(^{140}\) More information on EJ can be found at: https://www.epa.gov/environmentaljustice

\(^{141}\) Technical information on EJScreen can be found at: https://www.epa.gov/sites/default/files/2021-04/documents/ejscreen_technical_document.pdf
conclusions from this analysis affecting the reasonable progress determinations made in this SIP revision.

Table 38: Ash Grove Leamington Cement Plant EJScreen Findings

<table>
<thead>
<tr>
<th>Selected Variables</th>
<th>Value</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Avg.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>%tile</td>
</tr>
<tr>
<td>Pollution and Sources</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No percentiles above 80.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Socioeconomic Indicators</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Under Age 5</td>
<td>12%</td>
<td>8%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>85</td>
</tr>
</tbody>
</table>

Table 39: Graymont Western Cricket Mountain Plant EJScreen Findings

<table>
<thead>
<tr>
<th>Selected Variables</th>
<th>Value</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Avg.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>%tile</td>
</tr>
<tr>
<td>Pollution and Sources</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead Paint (% Pre-1960 Housing)</td>
<td>0.3</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>81</td>
</tr>
<tr>
<td>Socioeconomic Indicators</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No percentiles above 80.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 40: PacifiCorp Hunter Power Plant EJScreen Findings

<table>
<thead>
<tr>
<th>Selected Variables</th>
<th>Value</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Avg.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>%tile</td>
</tr>
<tr>
<td>Pollution and Sources</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No percentiles above 80.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Socioeconomic Indicators</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Over Age 64</td>
<td>16%</td>
<td>11%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>81</td>
</tr>
</tbody>
</table>

Table 41: PacifiCorp Huntington Power Plant EJScreen Findings

<table>
<thead>
<tr>
<th>Selected Variables</th>
<th>Value</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Avg.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>%tile</td>
</tr>
<tr>
<td>Pollution and Sources</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
No percentiles above 80.

Socioeconomic Indicators

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Value</th>
<th>State</th>
<th>Avg</th>
<th>%tile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unemployment Rate</td>
<td>6%</td>
<td>4%</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>Over Age 64</td>
<td>16%</td>
<td>11%</td>
<td>80</td>
<td></td>
</tr>
</tbody>
</table>

Table 42: Sunnyside Cogeneration Power Plant EJScreen Findings

<table>
<thead>
<tr>
<th>Selected Variables</th>
<th>Value</th>
<th>State</th>
<th>Avg</th>
<th>%tile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pollution and Sources</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead Paint (% Pre-1960 Housing)</td>
<td>0.48</td>
<td>0.17</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>Socioeconomic Indicators</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Income</td>
<td>41%</td>
<td>27%</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>Unemployment Rate</td>
<td>8%</td>
<td>4%</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>Over Age 64</td>
<td>17%</td>
<td>11%</td>
<td>83</td>
<td></td>
</tr>
</tbody>
</table>

Table 43: US Magnesium Rowley Plant EJScreen Findings

<table>
<thead>
<tr>
<th>Selected Variables</th>
<th>Value</th>
<th>State</th>
<th>Avg</th>
<th>%tile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pollution and Sources</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017 Air Toxics Respiratory HI</td>
<td>0.62</td>
<td>0.3</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>Wastewater Discharge (toxicity-</td>
<td>11</td>
<td>13</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>weighted concentration/m distance)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Socioeconomic Indicators</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No percentiles above 80.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 44: Intermountain Generation Station EJScreen Findings
Pollution and Sources

| Lead Paint (% Pre-1960 Housing) | 0.29 | 0.17 | 81 |

Socioeconomic Indicators

No percentiles above 80.

Table 45: Kennecott Power Plant EJScreen Findings

<table>
<thead>
<tr>
<th>Selected Variables</th>
<th>Value</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pollution and Sources</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017 Air Toxics Cancer Risk* (lifetime risk per million)</td>
<td>24</td>
<td>21</td>
</tr>
<tr>
<td>2017 Air Toxics Respiratory HI*</td>
<td>0.37</td>
<td>0.3</td>
</tr>
<tr>
<td>Superfund Proximity (site count/km distance)</td>
<td>0.34</td>
<td>0.18</td>
</tr>
<tr>
<td>Hazardous Waste Proximity (facility count/km distance)</td>
<td>1.5</td>
<td>0.89</td>
</tr>
</tbody>
</table>

Socioeconomic Indicators

No percentiles above 80.

Table 46: Kennecott Mine and Copperton Concentrator EJScreen Findings

<table>
<thead>
<tr>
<th>Selected Variables</th>
<th>Value</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pollution and Sources</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017 Air Toxics Cancer Risk* (lifetime risk per million)</td>
<td>24</td>
<td>21</td>
</tr>
<tr>
<td>2017 Air Toxics Respiratory HI*</td>
<td>0.36</td>
<td>0.3</td>
</tr>
<tr>
<td>Selected Variables</td>
<td>Value</td>
<td>State</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Avg.</td>
</tr>
<tr>
<td>Pollution and Sources</td>
<td></td>
<td>%tile</td>
</tr>
<tr>
<td>Superfund Proximity (site count/km distance)</td>
<td>0.36</td>
<td>0.18</td>
</tr>
<tr>
<td>Socioeconomic Indicators</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Over Age 64</td>
<td>18%</td>
<td>11%</td>
</tr>
</tbody>
</table>

Table 47: Paradox Lisbon Plant EJScreen Findings

7.B Four-Factor Analyses for Utah Sources

Each source subject to submitting a four-factor analysis in this second planning period submitted a report on the available control technologies for SO₂ and NOₓ emission reductions and the application of each technology to that facility. UDAQ notes that none of the sources selected to complete a four-factor analysis are within any nonattainment areas under the NAAQS. The information on available controls should include the analysis of the following four factors when determining the possible emission reductions:

1. Factor 1 – The Costs of Compliance
2. Factor 2 – Time Necessary for Compliance
3. Factor 3 – Energy and Non-Air Quality Environmental Impacts of Compliance
4. Factor 4 – Remaining Useful Life of the Source

Although not specifically required, the recommended approach was to follow a step-by-step review of possible emission reduction options in a “top-down” fashion similar to EPA’s guidelines for reviewing BART or Best Available Retrofit Technology (as found in 70 Fed. Reg. 39,104, 39,108-09 (July 6, 2005)). The steps involved are as follows:

142 40 CFR 51.308(f)(2)(i)
143 See 40 C.F.R. § 51.308(f)(2)(i).
1. Identify all available retrofit control technologies
2. Eliminate technically infeasible control technologies
3. Evaluate the control effectiveness of remaining control technologies
4. Evaluate impacts and document results

The process is inherently similar to that used in selecting BACT (Best Available Control Technology) under the NSR/PSD (Title I) permitting program. UDAQ evaluated the submissions from each source following the methodology outlined above. Where a particular submission may have differed from the recommended process, UDAQ makes a note, and provides additional explanation as necessary.

7.B.1 Control Equipment Descriptions

Available NOx Reduction Strategies and Technologies

The sources selected to provide additional analyses consistent with the four factors listed above-evaluated controls primarily for NOx emissions reductions. The following represents proven, available NOx reduction strategies and technologies for four-factor sources. The sources selected to provide additional analyses consistent with the four factors listed above evaluated controls primarily for NOx emissions reductions.

Fuel switching. Fuel switching is the simplest and potentially the most economical way to reduce NOx emissions. Fuel-bound NOx formation is most effectively reduced by switching to a fuel with reduced nitrogen content. No. 6 fuel oil or another residual fuel, having relatively high nitrogen content, can be replaced with No. 2 fuel oil, another distillate oil, or natural gas (which is essentially nitrogen-free) to reduce NOx emissions.

Flue-gas recirculation (FGR). Flue gas recirculation involves extracting some of the flue gas from the stack and recirculating it with the combustion air supplied to the burners. The process reduces both the oxygen concentration at the burners and the temperature by diluting the combustion air with flue gas. Reductions in NOx emissions ranging from 30 to 60% have been achieved with this control technology.

Low NOx burners. Installation of burners especially designed to limit NOx formation can reduce NOx emissions by up to 50%. Greater reduction efficiencies can be achieved by combining a low-NOx burner with FGR—though not additive of each of the reduction efficiencies. Low-NOx burners are designed to reduce the peak flame temperature by inducing recirculation zones, staging combustion zones, and reducing local oxygen concentrations.

Derating. Some industrial boilers can be derated to produce a reduced quantity of steam or hot water. Derating can be accomplished by reducing the firing rate or by installing a permanent restriction, such as an orifice plate, in the fuel line.

144 More information on emission control strategies can be found at: https://www.epa.gov/sites/default/files/2015-07/documents/chapter_5_emission_control_technologies.pdf
Steam or water injection. Injecting a small amount of water or steam into the immediate vicinity of the flame will lower the flame temperature and reduce the local oxygen concentration. The result is to decrease the formation of thermal and fuel-bound NO\textsubscript{x}. Be advised that this process generally lowers the combustion efficiency of the unit by 1 to 2%.

Staged combustion. Either air or fuel injection can be staged, creating either a fuel-rich zone followed by an air-rich zone or an air-rich zone followed by a fuel-rich zone. Staged combustion can be achieved by installing a low-NO\textsubscript{x} staged combustion burner, or the furnace can be retrofitted for staged combustion. NO\textsubscript{x} reductions of more than 40% have been demonstrated with staged combustion.

Fuel reburning. Staged combustion can be achieved through the process of fuel reburning by creating a gas-reburning zone above the primary combustion zone. In the gas-reburning zone, additional natural gas is injected, creating a fuel-rich region where hydrocarbon radicals react with NO\textsubscript{x} to form molecular nitrogen. Field evaluations of natural gas reburning (NGR) on several full-scale utility boilers have yielded NO\textsubscript{x} reductions ranging from 40 to 75%.

Reduced-oxygen concentration. Decreasing the excess air reduces the oxygen available in the combustion zone and lengthens the flame, resulting in a reduced heat-release rate per unit flame volume. NO\textsubscript{x} emissions diminish in an approximately linear fashion with decreasing excess air. However, as excess air falls below a threshold value, combustion efficiency will decrease due to incomplete mixing, and CO emissions will increase. The optimum excess-air value must be determined experimentally and will depend on the fuel and the combustion-system design. A feedback control system can be installed to monitor oxygen or combustibles levels in the flue gas and to adjust the combustion-air flow rate until the desired target is reached. Such a system can reduce NO\textsubscript{x} emissions by up to 50%.

Selective catalytic reduction (SCR). SCR is a post-formation NO\textsubscript{x} control technology that uses a catalyst to facilitate a chemical reaction between NO\textsubscript{x} and ammonia to produce nitrogen and water. An ammonia/air or ammonia/steam mixture is injected into the exhaust gas, which then passes through the catalyst where NO\textsubscript{x} is reduced. To optimize the reaction, the temperature of the exhaust gas must be in a certain range when it passes through the catalyst bed. Typically, removal efficiencies greater than 80% can be achieved, regardless of the combustion process or fuel type used. Among its disadvantages, SCR requires additional space for the catalyst and reactor vessel, as well as an ammonia storage, distribution, and injection system. Also, a Risk Management Plan (RMP) in compliance with Federal Accidental Release Prevention rules may have to be prepared and submitted for ammonia storage. Precise control of ammonia injection is critical. An inadequate amount of ammonia can result in unacceptable high NO\textsubscript{x} emission rates, whereas excess ammonia can lead to ammonia “slip,” or the venting of undesirable ammonia to the atmosphere. As NH\textsubscript{3} is both a visibility impairing air pollutant and a wastewater regulated pollutant, air emissions and water discharges can be impacted. Excess ammonia in the presence of other pollutants still remaining in the flue gas can also form species such as ammonium-sulfate which can create visible plumes downwind of the stack discharge.
Selective non-catalytic reduction (SNCR). Selective non-catalytic NO\textsubscript{x} reduction involves injection of a reducing agent—ammonia or urea—into the flue gas. The optimum injection temperature when using ammonia is 1850°F, at which temperature 60% NO\textsubscript{x} removal can be approached. The optimum temperature range is wider when using urea. Below the optimum temperature range, ammonia forms, and above, NO\textsubscript{x} emissions actually increase. The success of NO\textsubscript{x} removal depends not only on the injection temperature but also on the ability of the agent to mix sufficiently with flue gas.

Available SO\textsubscript{2} Reduction Strategies and Technologies145
The following represents proven, available SO\textsubscript{2} reduction strategies and technologies for four-factor sources.

Choice of Fuel. Since sulfur emissions are proportional to the sulfur content of the fuel, an effective means of reducing SO\textsubscript{2} emissions is to burn low-sulfur fuel such as natural gas, low-sulfur oil, or low-sulfur coal. Natural gas has the added advantage of emitting no PM when burned.

Sorbent Injection. Sorbent injection involves adding an alkali compound to the combustion gases for reaction with the SO\textsubscript{2}. Typical calcium sorbents include lime and variants of lime. Sodium-based compounds are also used. Dry sorbent injection systems are simple systems, and generally require a sorbent storage tank, feeding mechanism, transfer line and blower, and injection device. Sorbent injection processes remove 30–60% of sulfur oxide emissions; however, if the sorbent is hydrated lime, then 80% or greater removal can be achieved. These systems are commonly called lime spray dryers.

Flue Gas Desulfurization (FGD). FGD may be carried out using either of the two basic systems: regenerable or throwaway. Both methods may include wet or dry processes. Currently, more than 90% of utility FGD systems use a wet throwaway system process. Throwaway systems use inexpensive scrubbing mediums that are cheaper to replace than to regenerate. Regenerable systems use expensive sorbents that are recovered by stripping sulfur oxides from the scrubbing medium. These produce useful by-products, including sulfur, sulfuric acid, and gypsum. Regenerable FGDs generally have higher capital costs than throwaway systems but lower waste disposal requirements and costs.

FGD processes can be wet or dry. In wet FGD processes, flue gases are scrubbed in a liquid or liquid/solid slurry of lime or limestone. Wet processes are highly efficient and can achieve SO\textsubscript{2} removal of 90% or more. With dry scrubbing, solid sorbents capture the sulfur oxides. Dry systems have 70–90% sulfur oxide removal efficiencies and often have lower capital and operating costs, lower energy and water requirements, and lower maintenance requirements, in addition to which there is no need to handle sludge. Examples of FGD include:

Dual Alkali Wet Scrubber. Dual-alkali scrubbers use a sodium-based alkali solution to remove SO\textsubscript{2} from the combustion exhaust gas. The process uses both sodium-based and calcium-

145 More information on emission control strategies can be found at: https://www.epa.gov/sites/default/files/2015-07/documents/chapter_5_emission_control_technologies.pdf
based compounds. The sodium-based reagents absorb SO_2 from the exhaust gas, and the calcium-based solution (lime or limestone) regenerates the spent liquor. Calcium sulfites and sulfates are precipitated and discarded as sludge, and the regenerated sodium solution is returned to the absorber loop.

Spray Dry Absorber. The typical spray dry absorber (SDA) uses lime slurry and water injected into a tower to remove SO_2 from the combustion gases. The towers must be designed to provide adequate contact and residence time between the exhaust gas and the slurry to produce a relatively dry by-product. The process equipment associated with an SDA typically includes an alkaline storage tank, mixing and feed tanks, atomizer, spray chamber, particulate control device, and recycle system. The recycle system collects solid reaction products and recycles them back to the spray dryer feed system to reduce alkaline sorbent use. SDAs are the commonly used dry scrubbing method in large industrial and utility boiler applications. SDAs have demonstrated the ability to achieve greater than 95% SO_2 reduction.

Circulating Dry Scrubber. The circulating dry scrubber (CDS) uses a circulating fluidized bed of dry hydrated lime reagent to remove SO_2. Flue gas passes through a venturi at the base of a vertical reactor tower and is humidified by a water mist. The humidified flue gas then enters a fluidized bed of powdered hydrated lime where SO_2 is removed. The dry by-product produced by this system is routed with the flue gas to the particulate removal system.

Hydrated Ash Reinjection. The hydrated ash reinjection (HAR) process is a modified dry FGD process developed to increase utilization of unreacted lime (CaO) in the CFB ash and any free lime left from the furnace burning process. The hydrated ash reinjection process will further reduce the SO_2 concentration in the flue gas. The actual design of a hydrated ash reinjection system is vendor specific. In a hydrated ash reinjection system, a portion of the collected ash and lime is hydrated and re-introduced into a reaction vessel located ahead of the fabric filter inlet. In conventional boiler applications, additional lime may be added to the ash to increase the mixture’s alkalinity. For CFB boiler applications, sufficient residual CaO is available in the ash and additional lime is not required.

7.B.2 Existing Controls on Active EGUs

The following tables summarize existing controls on all active coal and gas facilities in Utah. For more detailed information on control compliance schedules from the first implementation period and retirement dates, refer to section 3.A.1.

Table 48: Existing controls on active coal units in Utah

<table>
<thead>
<tr>
<th>Facility</th>
<th>Unit</th>
<th>Operator</th>
<th>SO_2 Control(s)</th>
<th>NO_x Control(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bonanza</td>
<td>43101</td>
<td>Deseret Generation & Transmission</td>
<td>Wet Limestone</td>
<td>Low NO_x Burner Technology (Dry Bottom only)</td>
</tr>
<tr>
<td>Hunter</td>
<td>1</td>
<td>PacifiCorp Energy Generation</td>
<td>Wet Lime FGD</td>
<td>Low NO_x Burner Technology w/ Closed-coupled OFA</td>
</tr>
<tr>
<td>Facility</td>
<td>Unit</td>
<td>Operator</td>
<td>SO$_2$ Control(s)</td>
<td>NO$_x$ Control(s)</td>
</tr>
<tr>
<td>------------</td>
<td>------</td>
<td>-------------------------------</td>
<td>-------------------</td>
<td>--</td>
</tr>
<tr>
<td>Hunter</td>
<td>2</td>
<td>PacifiCorp Energy Generation</td>
<td>Wet Lime FGD</td>
<td>Low NO$_x$ Burner Technology w/ Separated OFA</td>
</tr>
<tr>
<td>Hunter</td>
<td>3</td>
<td>PacifiCorp Energy Generation</td>
<td>Wet Lime FGD</td>
<td>Low NO$_x$ Burner Technology w/ Overfire Air</td>
</tr>
<tr>
<td>Huntington</td>
<td>1</td>
<td>PacifiCorp Energy Generation</td>
<td>Wet Lime FGD</td>
<td>Low NO$_x$ Burner Technology w/ Closed-coupled OFA</td>
</tr>
<tr>
<td>Huntington</td>
<td>2</td>
<td>PacifiCorp Energy Generation</td>
<td>Wet Lime FGD</td>
<td>Low NO$_x$ Burner Technology w/ Separated OFA</td>
</tr>
</tbody>
</table>

Table 49: Existing controls on active gas units in Utah

<table>
<thead>
<tr>
<th>Facility Name</th>
<th>Unit ID</th>
<th>Owner</th>
<th>NO$_x$ Control(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lake Side Power Plant</td>
<td>CT03</td>
<td>PacifiCorp Energy Generation</td>
<td>Selective Catalytic Reduction</td>
</tr>
<tr>
<td>Lake Side Power Plant</td>
<td>CT04</td>
<td>PacifiCorp Energy Generation</td>
<td>Selective Catalytic Reduction</td>
</tr>
<tr>
<td>Lake Side Power Plant</td>
<td>CT02</td>
<td>PacifiCorp Energy Generation</td>
<td>Selective Catalytic Reduction</td>
</tr>
<tr>
<td>Currant Creek Power Project</td>
<td>CTG1B</td>
<td>PacifiCorp Energy Generation</td>
<td>Selective Catalytic Reduction</td>
</tr>
<tr>
<td>Currant Creek Power Project</td>
<td>CTG1A</td>
<td>PacifiCorp Energy Generation</td>
<td>Selective Catalytic Reduction</td>
</tr>
<tr>
<td>Nebo Power Station</td>
<td>U1</td>
<td>Utah Associated Municipal Power Systems</td>
<td>Dry Low NO$_x$ Burners Selective Catalytic Reduction</td>
</tr>
<tr>
<td>Millcreek Power</td>
<td>MC-1</td>
<td>City of St. George</td>
<td>Dry Low NO$_x$ Burners</td>
</tr>
<tr>
<td>Millcreek Power</td>
<td>MC-2</td>
<td>City of St. George</td>
<td>Dry Low NO$_x$ Burners</td>
</tr>
<tr>
<td>Gadsby</td>
<td>4</td>
<td>PacifiCorp Energy Generation</td>
<td>Water Injection Selective Catalytic Reduction</td>
</tr>
<tr>
<td>West Valley Power Plant</td>
<td>U4</td>
<td>Utah Municipal Power Agency</td>
<td>Water Injection Selective Catalytic Reduction</td>
</tr>
<tr>
<td>West Valley Power Plant</td>
<td>U2</td>
<td>Utah Municipal Power Agency</td>
<td>Water Injection Selective Catalytic Reduction</td>
</tr>
<tr>
<td>West Valley Power Plant</td>
<td>U3</td>
<td>Utah Municipal Power Agency</td>
<td>Water Injection Selective Catalytic Reduction</td>
</tr>
<tr>
<td>Gadsby</td>
<td>5</td>
<td>PacifiCorp Energy Generation</td>
<td>Water Injection Selective Catalytic Reduction</td>
</tr>
<tr>
<td>West Valley Power Plant</td>
<td>U5</td>
<td>Utah Municipal Power Agency</td>
<td>Water Injection Selective Catalytic Reduction</td>
</tr>
<tr>
<td>Gadsby</td>
<td>6</td>
<td>PacifiCorp Energy Generation</td>
<td>Water Injection Selective Catalytic Reduction</td>
</tr>
<tr>
<td>West Valley Power Plant</td>
<td>U1</td>
<td>Utah Municipal Power Agency</td>
<td>Water Injection Selective Catalytic Reduction</td>
</tr>
</tbody>
</table>
7.C Source Consultation

UDAQ has kept regular contact with the sources selected to perform four-factor analyses on their units and offered guidance on developing control cost estimates using EPA’s Air Pollution Control Cost Manual\(^{146}\) and facility-specific data representing current emissions, projected future emissions, and potential control scenarios. UDAQ received and reviewed each source’s initial four-factor analysis and sent an evaluation to each source with recommendations, requests for additional information, and explanations of any issues with calculations or assumptions made by sources in calculations. Refer to Chapter 9 to review detailed information on UDAQ’s meetings with the sources. The following sections contain each source’s four-factor analysis, UDAQ’s evaluation of their initial submittal, and the sources resulting responses and corrections.\(^{147}\)

7.C.1 Ash Grove Cement Company- Leamington Cement Plant Four-Factor Analysis Summary and Evaluation\(^{148}\)

Facility Identification
- **Name:** Ash Grove Cement Company
- **Address:** Hwy. 132, Leamington, Utah 84638
- **Owner/Operator:** Ash Grove Cement Company
- **UTM coordinates:** 4,379,850 m Northing, 397,000 m Easting, Zone 12

Facility Process Summary
Ash Grove Cement Company (Ash Grove) operates the Leamington Cement Plant. This plant has been in operation since 1981. At the Leamington cement plant, cement is produced when inorganic raw materials, primarily limestone (quarried on site), are correctly proportioned, ground and mixed, and then fed into a rotating kiln. The kiln alters the materials and recombines them into small stones called cement clinker. The clinker is cooled and ground with gypsum and additional limestone into a fine powdered cement. The final product is stored on site for later shipping. The major sources of air emissions are from the combustion of fuels for the kiln operation, from the kiln, and from the clinker cooling process.

\(^{146}\) The EPA Air Pollution Control Cost Manual can be found in at: https://www.epa.gov/economic-and-cost-analysis-air-pollution-regulations/cost-reports-and-guidance-air-pollution#cost%20manual

\(^{147}\) Each source’s full four-factor analysis submittals, UDAQ’s four-factor analysis evaluations, and evaluation responses sent by sources can be found at https://deq.utah.gov/air-quality/regional-haze-in-utah in the “Current Regional Haze Planning” section.

\(^{148}\) Ash Grove’s full four-factor analysis submittal can be found in appendix C.1.A or at: https://documents.deq.utah.gov/air-quality/planning/air-quality-policy/regional-haze/DAQ-2020-008930.pdf
Facility Criteria Air Pollutant Emissions Sources
This source consists of the following emission unit:

- Unit Designation: Kiln 1
 Kiln 1 has the following emission controls installed:
 - SNCR for NO\textsubscript{x} control; NO\textsubscript{x}, CO, Total Hydrocarbons (VOC), and Oxygen (O\textsubscript{2}) CEMS on main stack;
 - Mercury (Hg) CEMS or integrated sorbent trap monitoring system on main stack;
 - TSP (PM) Continuous Parametric Monitoring System (CPMS) on main kiln and clinker cooler stack.

Facility Current Potential to Emit
The current PTE values for Ash Grove, as established by the most recent NSR permit issued to the source (DAQE-AN103030029-19) are as follows:

Table 50: Ash Grove Leamington Cement Plant Current Potential to Emit

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential to Emit (tons/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO\textsubscript{2}</td>
<td>192.50</td>
</tr>
<tr>
<td>NO\textsubscript{x}</td>
<td>1347.20</td>
</tr>
</tbody>
</table>

Ash Grove’s Four-Factor Analysis Conclusion
Ash Grove believes that reasonable progress compliant controls are already in place. Ash Grove’s actual NO\textsubscript{x} emission level of 1198 tpy is adequate and the Leamington facility does not propose any change to their current limit of 2.8 lbs./ton clinker on a 30-day rolling average basis.

UDAQ Four-Factor Analysis Evaluation149
Although some additional information should be supplied by the source regarding SNCR efficiency, the Leamington Cement Plant appears to be adequately controlled at this time for purposes of Second Planning Period.

Ash Grove’s Evaluation Response150
AGC provided the actual SO\textsubscript{2} emissions rates for the Leamington Plant’s main kiln which are lower than their PTE. Lowering SO\textsubscript{2} emissions further would require the addition of aluminum and iron which are not readily available to Ash Grove. The efficiency of the Leamington Plant’s SNCR system was designed to be able to achieve 2.8 lb. NO\textsubscript{x}/ton clinker on a 30-day rolling average basis, and the plant typically operates in the 2.5-2.6 lb. NO\textsubscript{x}/ton clinker range. The system uses an Aqua NH\textsubscript{3} solution as a chemical reagent. Adding additional solution is not feasible as the plant already requires reagent delivery by truck every two days and additional

149 UDAQs full evaluation of Ash Grove’s four-factor analysis submittal can be found in appendix C.1.A2 or at: https://documents.deq.utah.gov/air-quality/planning/air-quality-policy/DAQ-2021-009636.pdf

150 Ash Grove’s full evaluation response can be found in appendix C.1.B3 or at: https://documents.deq.utah.gov/air-quality/planning/air-quality-policy/regional-haze/DAQ-2021-011724.pdf
reagent would require the installation of larger nozzles and/or larger storage tanks. The system is also near solution saturation as it currently runs, and additional solution may not increase control efficiency, but rather cause NH₃ to slip from the system and be emitted from the stack. Thus, Ash Grove believes that the current and NOₓ limits reflect a reasonable level of safety margin relative to actual emission rates.

UDAQ Response Conclusion

UDAQ accepts the additional information provided by Ash Grove on their emission rate efficiency and agrees that their units are well controlled. Refer to section 8.D.1. for UDAQ’s reasonable progress determination for Ash Grove.

7.C.2 Graymont Western US Incorporated- Cricket Mountain Plant Four-Factor Analysis Summary and Evaluation

Facility Identification

Name: Cricket Mountain Plant
Address: 32 Miles Southwest of Delta, Utah; Highway 257
Owner/Operator: Graymont Western US Incorporated
UTM coordinates: 4,311,010 m Northing, 343,100 m Easting, Zone 12

Facility Process Summary

Graymont Western US Inc. (Graymont) operates the Cricket Mountain Lime Plant in Millard County. The Cricket Mountain Lime Plant consists of quarries and a lime processing plant, which includes five (5) rotary lime kilns (Kilns 1 through 5). The rotary kilns are used to convert crushed limestone ore into quicklime. The products produced for resale are lime, limestone, and kiln dust. The kilns operate on pet coke and coal. Sources of emissions at this source include mining, limestone processing, rotary lime kilns, post-kiln lime handling, and truck & loadout facilities.

Facility Criteria Air Pollutant Emissions Sources

The source consists of the following emission units:

- Rotary Lime Kiln #1 rated at 600 tons of lime per 24-hour period with a preheater and baghouse emissions control system (D-85) rated at an exhaust gas flow rate 54,000 scfm and an Air to Cloth (A/C) ratio of 3.26:1. NESHAP Applicability: 40 CFR 63 Subpart AAAAA
- Rotary Lime Kiln #2 rated at 600 tons of lime per 24-hour period with a preheater, cyclone and baghouse emissions control system (D-275) rated at an exhaust gas flow rate of 48,000 scfm and an A/C ratio of 2.9:1. NESHAP Applicability: 40 CFR 63 Subpart AAAAA
- Rotary Lime Kiln #3 rated at 840 tons of lime per 24-hour period with a preheater, cyclone and baghouse emissions control system (D-375) rated at an exhaust gas flow

151 Graymont’s full four-factor analysis submittal for the Cricket Mountain Plant can be found in appendix D.1 C.2.A or at: https://documents.deq.utah.gov/air-quality/planning/air-quality-policy/regional-haze/DAQ-2020-008924.pdf
rate of 55,000 scfm and a A/C ratio of 2.49:1. NESHAP Applicability: 40 CFR 63 Subpart
AAAA

- Rotary Lime Kiln #4 rated at 1266 tons of lime per 24-hour period with a preheater, cyclone and baghouse emissions control system (D-485) rated at an exhaust gas flow rate of 100,000 scfm and an A/C ratio of 5:1. NESHAP Applicability: 40 CFR 63 Subpart
AAAA

- Rotary Lime Kiln #5 rated at 1400 tons of lime per 24-hour period with a preheater and baghouse emissions control system (D-585) rated at an exhaust gas flow rate of 103,000 scfm and an A/C ratio of 3.5:1. NESHAP Applicability: 40 CFR 63 Subpart
AAAA

Facility Current Potential to Emit
The current PTE values for Source, as established by the most recent NSR permit issued to the source (DAQE-AN103130044-21) are as follows:

Table 51: Current Potential to Emit - Graymont

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential to Emit (tons/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO\textsubscript{2}</td>
<td>760.29</td>
</tr>
<tr>
<td>NO\textsubscript{x}</td>
<td>3,883.85</td>
</tr>
</tbody>
</table>

Graymont Four-Factor Analysis Conclusion
The facility currently uses low NO\textsubscript{x} burners in its five kilns to minimize NO\textsubscript{x} emissions. The use of low NO\textsubscript{x} burners is a commonly applied technology in current BACT determinations for new rotary preheater lime kilns today. The application of SCR has never been attempted on a lime kiln. SNCR has only one RBLC entry documenting implementation on a lime kiln. The use of these controls does not represent a cost-effective control technology given the limited expected improvements to NO\textsubscript{x} emission rates, high uncertainty of successful implementation, high capital investment, and high cost per ton NO\textsubscript{x} removed. Therefore, the emissions for the 2028 on-the-books modeling scenario are expected to be the same as those used in the “control scenario” for the Graymont Cricket Mountain facility.

UDAQ Four-Factor Analysis Evaluation152
UDAQ disagrees with several points of Graymont’s analysis. Aside from the lack of SO\textsubscript{2} analysis, UDAQ found several errors in the Graymont NO\textsubscript{x} analysis which must be corrected.

1. Two additional control technologies were identified by DAQ as potential ways of reducing NO\textsubscript{x} emissions: fuel switching and alternative production techniques. The Graymont Cricket Mountain Plant is fueled by coal – alternative fuels should be investigated. Secondly, the kilns at this facility are long horizontal rotary

152 UDAQ’s full evaluation of Graymont’s four-factor analysis submittal can be found in appendix C.2.A D.2 or at: https://documents.deq.utah.gov/air-quality/planning/air-quality-policy/DAQ-2021-009634.pdf
preheater/precalciner style kilns. Other types of kiln such as vertical lime kilns should also be investigated.

2. Graymont has claimed that SNCR is not technically feasible for installation on rotary preheater kilns. However, that is not accurate as there have been other SNCR retrofits done at preheater rotary lime kilns. Those lime kilns include the Lhoist North America O’Neal Plant in Alabama, the Unimin Corporation lime plant in Calera, Alabama, and the rotary lime kilns of the Lhoist North America Nelson Lime Plant in Arizona, as well as the Mississippi Lime Company plant in Illinois (specifically mentioned by Graymont as the only source listed on the RBLC).

3. A NOx reduction of 20% for SNCR is too low for use in the analysis, given that Graymont itself quoted the average NOx removal at cement kilns with SNCR was 40%, with the range of NOx removal efficiency between 35%-58%. At a minimum, Graymont should have evaluated the use of SNCR at 35% removal efficiency rather than merely 20%.

4. The current bank prime rate is 3.25% and not 4.75% as stated by Graymont. The economic analysis must be recalculated using the correct interest rate.

5. The cost of an air preheater was included – which appears to be a mistake based on an error (a typographical misprint) found in EPA’s SNCR control cost spreadsheets. In one place the spreadsheet uses a value of 3.0 lb. SO2/ton coal while in another the value is erroneously listed as 0.3 lb. SO2/ton coal. Graymont apparently included the cost of the air preheater when burning coal which does not require such equipment as part of an SNCR installation.

Although DAQ has not fully evaluated these deficiencies, it has analyzed how Graymont’s cost evaluation would change if the correct bank prime interest rate were used, if the cost of the air preheater were not included, and if the removal efficiency of the SNCR were increased to a minimum of 35%. To reflect the increased cost of a more efficient SNCR than that proposed by Graymont, the direct annual costs (energy, cost of ammonia, etc.) were doubled as a conservative estimate. The results of these changes are as follows:

Table 52: Estimated Direct Annual Costs (doubled) Graymont

<table>
<thead>
<tr>
<th>Kiln</th>
<th>Capital Costs ($)</th>
<th>Direct Annual Costs ($)</th>
<th>Total Annual Costs ($)</th>
<th>NOx Removed (tons)</th>
<th>cost-effectiveness ($/ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$3,616,821</td>
<td>$180,574</td>
<td>$328,281</td>
<td>30</td>
<td>$10,943</td>
</tr>
<tr>
<td>2</td>
<td>$3,878,230</td>
<td>$186,204</td>
<td>$343,367</td>
<td>22</td>
<td>$15,608</td>
</tr>
<tr>
<td>3</td>
<td>$4,321,811</td>
<td>$208,776</td>
<td>$377,952</td>
<td>18</td>
<td>$20,997</td>
</tr>
<tr>
<td>4</td>
<td>$5,285,030</td>
<td>$258,458</td>
<td>$461,703</td>
<td>38</td>
<td>$12,150</td>
</tr>
<tr>
<td>5</td>
<td>$5,031,753</td>
<td>$289,720</td>
<td>$485,174</td>
<td>122</td>
<td>$ 3,977</td>
</tr>
</tbody>
</table>

Based on these revised results, the application of SNCR may appear to be feasible, at least for Kiln #5. Additional analysis should be provided by the source to further detail these deficiencies.
Graymont’s Evaluation Response

In order to obtain a more accurate capital and operating cost estimate, Graymont commissioned a Class 4 engineering cost estimate to ascertain capital and operating costs associated with installing and operating Selective Non-Catalytic Reduction (SNCR) Nitrogen Oxides (NOx) abatement systems on Cricket Mountain kilns. The cost estimations performed by a third-party engineer indicate that the total capital cost for installation of SNCR systems at Cricket Mountain exceeds $6.9 MMUSD and operating costs exceed $1.4 MMUSD annually, resulting in a cost of $17,561 per ton of NOx removed based upon a 20% removal efficiency. A factor of 20% was utilized based on the temperature and residence time limitations of the SNCR reaction zone for each Cricket Mountain kiln combined with the Low NOx baseline concentration already achieved through the use of Low NOx Burners (LNB).

Graymont also compared the current NOx emissions from Cricket Mountain to publicly available information for the Lhoist North America (LNA) rotary preheater kilns which utilize SCNR. Graymont offered the following observations:

- The existing LNBs at Cricket Mountain have effectively reduced the NOx emission intensity to a level more than three times less than the pre-control NOx intensity of LNA’s Nelson Plant which utilizes SNCR.
- Any additive efficiency that might be gained from Cricket Mountain’s use of SNCR would be marginal, at best, as SNCR NOx removal efficiency is highly dependent upon the inlet NOx concentration, reaction zone temperature and residence time, all of these factors reduce the anticipated efficiency that can reasonably be assumed for the Cricket Mountain Kilns.
- The LNA SNCR technology for rotary lime kilns is proprietary and not unconditionally commercially available to Graymont. The technology appears to be patented, adding to its cost and the uncertainty as to its technical feasibility.
- SNCR addition at Cricket Mountain would have unintended negative environmental impacts and visibility disbenefits, including the generation of condensable particulate, an identified regional haze primary pollutant.
- The Cricket Mountain facility operates 5 rotary preheat lime kilns, each of which are substantially different technology than mid-fired cement kilns (more conducive reaction zone temperatures, higher NOx concentrations, and longer residence times). As such, it is not appropriate to draw direct comparisons with application of SNCR between cement kilns and lime kilns as referenced in your letter.

Based on Graymont’s findings, requiring the installation of SNCR at Cricket Mountain would be unreasonable because it would be infeasible, unnecessary and counterproductive to making

153 Graymont’s full evaluation response can be found in appendix C.2.C D.3 or at: https://documents.deq.utah.gov/air-quality/planning/air-quality-policy/regional-haze/DAQ-2021-011722.pdf

154 Lhoist North America indicated in a November 2020 4-factor analysis that Kilns 1, 2 & 3 would be capable of a maximum NOx control of 20%.
reasonable progress towards the goal of preventing future, and remedying any existing, anthropogenic impairment of visibility in mandatory Class I Federal areas in the context of Utah’s pending Round 2 Regional Haze State Implementation Plan (RH SIP). Cricket Mountain’s successful implementation of LNBs effectively controls NOx at the point of generation in kilns.

These NOx rates are sufficient for inclusion in the UDAQ RH SIP since they are already some of the lowest achieved in the industry and far exceed what has been deemed BART at other kilns (such as the SNCR controlled kilns at the LNA Nelson Facility).

UDAQ Response Conclusion

UDAQ accepts Graymont’s four-factor analysis amendments and additional justification on the unfeasibility of additional controls on the Cricket Mountain Facility’s kilns. Refer to section 8.D.2 for UDAQ’s controls for reasonable progress determination.

7.C.3 PacifiCorp’s Hunter and Huntington Power Plants Four-Factor Analysis Summary and Evaluation155

Facility Identification

Name: Hunter Power Plant
Address: P.O. Box 569, Castle Dale, UT 84513
Owner/Operator: PacifiCorp
UTM coordinates: 497,800 m Easting, 4,335,800 m Northing, UTM Zone 12

Facility Process Summary

The Hunter Power Plant is located near Castle Dale in Emery County. The plant is classified as a PSD source and is a Phase II Acid Rain source. The source is PSD major for SO₂, NOx, PM₁₀, and CO and also major for VOC and HAPs. The source is subject to the provisions of 40 CFR 52.21(aa); 40 CFR 60 Subparts A, D, Da, Y, and HHHH; and 40 CFR 63 Subparts A, ZZZZ, and UUUUU.

Facility Criteria Air Pollutant Emissions Sources

The source consists of the following emission units:

- Steam Generating Unit #1 - Nominal 480 MW gross capacity dry bottom, tangentially-fired boiler fired on subbituminous and bituminous coal using distillate fuel oil during start-up and flame stabilization. System is equipped with a low-NOx burner/overfire air system (OFA), baghouse, and SO₂ Wet FGD (WFGD) scrubber with no scrubber bypass.
- Steam Generating Unit #2 - Nominal 480 MW gross capacity dry bottom, tangentially-fired boiler fired on subbituminous and bituminous coal using distillate fuel oil during

155 PacifiCorp’s full four-factor analysis submittal for the Hunter and Huntington power plants can be found in appendix C.3.A E-4 or at: https://documents.deq.utah.gov/air-quality/planning/air-quality-policy/regional-haze/DAQ-2020-008926.pdf
start-up and flame stabilization. System is equipped with a low-NO\textsubscript{x} burner/OFA, baghouse, and SO\textsubscript{2} WFGD scrubber with no scrubber bypass.

- Steam Generating Unit #3 - Nominal 495 MW gross capacity dry bottom, wall-fired boiler fired on subbituminous and bituminous coal using distillate fuel oil during start-up and flame stabilization. System is equipped with baghouse, a low NO\textsubscript{x} burner/OFA, and SO\textsubscript{2} FGD scrubber.

Facility Current Potential to Emit

The current PTE values for the Hunter Power Plant, as established by the most recent NSR permit issued to the source (DAQE-AN102370028-18) are as follows:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential to Emit (Tons/Year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO\textsubscript{2}</td>
<td>5,537.5</td>
</tr>
<tr>
<td>NO\textsubscript{x}</td>
<td>15,095</td>
</tr>
</tbody>
</table>

PacifiCorp Four Factor Analysis Conclusion

When balanced for Hunter Units 1, 2, and 3 the four factors demonstrate that the RPEL is the best option for making reasonable progress during the second planning period. First, installation of SNCR or SCR are not cost effective (even with the skewed depreciable life assumptions) and would result in hundreds of millions of dollars in costs for PacifiCorp customers, and tens of millions in additional operating costs for PacifiCorp. Implementation of the Hunter RPEL would not result in any significant additional costs for customers and would result in minimal additional operating costs. Second, installation of SNCR or SCR would involve long-lead times for permitting, design, procurement, and installation before reductions and compliance can be achieved. The Hunter RPEL requires negligible time for compliance, and could be implemented as soon as the State’s implementation plan is finalized and achieves federal approval. Third, SCR requires more energy to implement, and SNCR and SCR result in additional non-air environmental impacts over the Hunter RPEL. As documented, the Hunter RPEL has less potential consumption of natural resources, less GHG emissions, and less generation of CCR.

Fourth and finally, a requirement to install SCR or SNCR on Hunter Units 1, 2, and 3 would create uncertainty about the facility’s remaining useful life. Many coal-fired power plants across the country have been forced to shut down due to the increased costs associated with SNCR and SCR. Implementing the Hunter RPEL would not be expected to either increase or decrease the remaining useful life of the facility. Based on this analysis, Utah should determine that the Hunter RPEL is the best option for achieving reasonable progress during the second planning period.

The Utah Division of Air Quality has indicated that photochemical grid modeling and analysis of visibility impacts will be performed by WRAP as part of the state’s second planning period analysis. PacifiCorp anticipates that visibility modeling which incorporates the Hunter RPEL (and is compared to modeling of Hunter’s current, permitted potential to emit) would assist the
state in demonstrating reasonable progress at the CIAs impacted by emissions from the Hunter plant, supporting a conclusion that no additional installation of retrofit pollution control equipment is required at Hunter. However, if the State were to determine that the Hunter RPEL, as proposed, would not contribute to reasonable progress, PacifiCorp respectfully requests that the State propose an alternative RPEL (NO\textsubscript{x} +SO\textsubscript{2} limit) for Hunter (allowing time for PacifiCorp to analyze the feasibility of the alternative RPEL proposal) as opposed to pursuing a requirement to install SNCR or SCR retrofits. This reasonable progress analysis demonstrates that implementing a RPEL is a better option than installing SNCR or SCR retrofits under each of the four statutory factors.

UDAQ Four-Factor Analysis Evaluation156

At this time, UDAQ is unable to proceed with its review and requests additional information as follows:

1. The source needs to resubmit the Four-factor analysis correcting the errors mentioned above.
2. Additional information must be provided regarding the infeasibility of SCR.
 a. This information can include additional details on economics as well as technical limitations.
3. Additional information must be provided regarding the infeasibility of SNCR.
 a. As with SCR, this information can include additional details on economics as well as technical limitations.
4. Supplemental details regarding the RPEL approach, including the selection of allowable limits should be provided. The methodology used for setting the allowable limits should be discussed in detail.
5. Any other pertinent information PacifiCorp feels is warranted should also be provided in order to assist UDAQ in the review process.

Huntington Power Plant

Facility Identification

Name: Huntington Power Plant
Address: P.O. Box 680, Huntington, UT 84528
Owner/Operator: PacifiCorp
UTM coordinates: 493,130 Easting 4,358,840 Northing, UTM Zone 12

Facility Process Summary

The PacifiCorp Huntington Power Plant is a coal-fired steam electric generating facility consisting of two (2) boilers. Unit #1 is a 480 MW unit constructed in October 1973; Unit #2 is a 480 MW unit that commenced construction in April 1970. Bituminous and sub-bituminous coal is the primary fuel source for the dry bottom, tangentially-fired boilers. Fuel oil is used to start up the boilers from a cold start and for boiler flame stabilization. The Huntington Power Plant uses

156 UDAQ’s full four-factor analysis evaluation for the Hunter and Huntington power plants can be found in appendix C.3.B.E.2 or at: https://documents.deq.utah.gov/air-quality/planning/air-quality-policy/regional-haze/DAQ-2020-008926.pdf
low-NOₓ burners, separated overfire air system, SO₂ FGD scrubber system, and pulse jet fabric filters for both units.

Facility Criteria Air Pollutant Emissions Sources
The source consists of the following emission units:

- **Boiler Unit #1** – Nominal 480 MW gross capacity dry bottom, tangentially-fired utility boiler fired on subbituminous and bituminous coal using fuel oil during startup and flame stabilization. Equipped with a fabric filter baghouse, low NOₓ burners with overfire air system, and a SO₂ FGD scrubber. NSPS Subpart D.
- **Boiler Unit #2** – Nominal 480 MW gross capacity dry bottom tangentially-fired utility boiler fired on subbituminous and bituminous coal using fuel oil during startup and flame stabilization. Equipped with a fabric filter baghouse, low-NOₓ burners with overfire air system, and a SO₂ FGD scrubber.

Facility Current Potential to Emit
The current PTE values for the Huntington Power Plant, as established by the most recent NSR permit issued to the source (DAQE-AN102370028-18) are as follows:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential to Emit (Tons/Year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO₂</td>
<td>3,105</td>
</tr>
<tr>
<td>NOₓ</td>
<td>7,971</td>
</tr>
</tbody>
</table>

PacifiCorp Four Factor Analysis Conclusion
When balanced for Huntington Units 1 and 2, the four factors demonstrate that the RPEL is the best option for making reasonable progress during the second planning period. First, installation of SNCR or SCR are not cost effective (even with the skewed depreciable life assumptions) and would result in hundreds of millions of dollars in costs for PacifiCorp customers, and tens of millions in additional operating costs for PacifiCorp. Implementation of the Huntington RPEL would not result in any significant additional costs for customers and would result in minimal additional operating costs. Second, installation of SNCR or SCR would involve long-lead times for permitting, design, procurement, and installation before reductions and compliance can be achieved. The Huntington RPEL requires negligible time for compliance, and could be implemented as soon as the State’s implementation plan is finalized and achieves federal approval. Third, SCR requires more energy to implement, and SNCR and SCR result in additional non-air environmental impacts over the Huntington RPEL. As documented, the Huntington RPEL has less potential consumption of natural resources, less GHG emissions, and less generation of CCR. Fourth and finally, a requirement to install SCR or SNCR on Huntington Units 1 and 2 would create uncertainty about the facility’s remaining useful life. Many coal-fired power plants across the country have been forced to shut down due to the increased costs associated with SNCR and SCR. Implementing the Huntington RPEL would not be expected to either increase or decrease the remaining useful life of the facility. Based on this
analysis, Utah should determine that the Huntington RPEL is the best option for achieving reasonable progress during the second planning period.

The Utah Division of Air Quality has indicated that photochemical grid modeling and analysis of visibility impacts will be performed by the Western Regional Air Partnership (“WRAP”) as part of the state’s second planning period analysis. PacifiCorp anticipates that visibility modeling which incorporates the Huntington RPEL (and is compared to modeling of Huntington’s current, permitted potential to emit) would assist the state in demonstrating reasonable progress at the CIAs impacted by emissions from the Huntington plant, supporting a conclusion that no additional installation of retrofit pollution control equipment is required at Huntington. However, if the State were to determine that the Huntington RPEL, as proposed, would not contribute to reasonable progress, PacifiCorp respectfully requests that the State propose an alternative RPEL (NO\textsubscript{x} +SO\textsubscript{2} limit) for Huntington (allowing time for PacifiCorp to analyze the feasibility of the alternative RPEL proposal) as opposed to pursuing a requirement to install SNCR or SCR retrofits. This reasonable progress analysis demonstrates that implementing a RPEL is a better option than installing SNCR or SCR retrofits under each of the four statutory factors.

UDAQ’s Four Factor Analysis Conclusion

At this time, UDAQ is unable to proceed with its review and requests additional information as follows:

1. The source needs to resubmit the Four-factor analysis correcting the errors mentioned above.
2. Additional information must be provided regarding the infeasibility of SCR.
 a. This information can include additional details on economics as well as technical limitations.
3. Additional information must be provided regarding the infeasibility of SNCR.
 a. As with SCR, this information can include additional details on economics as well as technical limitations.
4. Supplemental details regarding the RPEL approach, including the selection of allowable limits should be provided. The methodology used for setting the allowable limits should be discussed in detail.
5. Any other pertinent information PacifiCorp feels is warranted should also be provided in order to assist UDAQ in the review process.

PacifiCorp’s Four-Factor Analysis Evaluation Response for Hunter and Huntington157

PacifiCorp proposed that UDAQ make the following adjustments to obtain a more representative cost effectiveness value for the installation of SNCR at the Hunter and Huntington plants:

• Utilize an SNCR NOx control efficiency of 20% for the Hunter and Huntington boilers, which is expected to be achievable based on unit size and firing configuration;

157 PacifiCorp’s full evaluation response for the Hunter and Huntington Power Plants can be found in appendix C.3.C E-3 or at: https://documents.deq.utah.gov/air-quality/planning/air-quality-policy/regional-haze/DAQ-2021-011726.pdf
• Utilize capital and O&M costs provided by S&L which are site specific and more accurate than the generalized costs provided by the CCM model;

• Utilize PacifiCorp’s actual weighted average cost of capital of 7.303% as the interest rate in the model instead of the 3.25% rate originally used by UDAQ;

• Utilize the current and accurate net MW generation rates and net unit heat rate provided in Table 158 to calculate boiler heat input; and lastly;

• Utilize the actual 2015-2019 average annual capacity factors in Table 340 instead of the rates included in Table 239, which are inaccurate.

PacifiCorp believed that use of the S&L capital and O&M cost data when combined with an SNCR 20% control efficiency and 7.303% interest rate will provide an accurate representation of unit-specific cost effectiveness. This is demonstrated by UDAQ’s and PacifiCorp’s SCR cost effectiveness determinations which provide essentially equivalent dollar-per-ton values. The following tables provide a summary of PacifiCorp’s revised SNCR cost effectiveness values for the Hunter and Huntington plants applying these adjustments. The estimates are based on a systemwide SNCR control efficiency of 20% and an interest rate of 7.303%. Note that the provided values do not incorporate minor changes in annualized capital and O&M costs which will occur when the April 9, 2020, S&L studies are updated to incorporate the current 7.303% interest rate and use of the 20% SNCR NOx control efficiency versus the studies’ original use of a 7% interest rate and anticipated SNCR-controlled permit limit emission rates.

Table 55: PacifiCorp Updated Hunter SNCR Cost Effectiveness

<table>
<thead>
<tr>
<th>Cost Effectiveness</th>
<th>Hunter 1</th>
<th>Hunter 2</th>
<th>Hunter 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline Heat Input (MMBtu/year)</td>
<td>28,482,643</td>
<td>30,101,030</td>
<td>31,182,279</td>
</tr>
<tr>
<td>NOx Emissions Rate (lb/MMBtu)</td>
<td>0.200</td>
<td>0.280</td>
<td>0.280</td>
</tr>
<tr>
<td>NOx Emissions (tons/year)</td>
<td>2,842</td>
<td>4,359-2,902</td>
<td>4,359</td>
</tr>
<tr>
<td>NOx Emissions w/ SNCR (20% efficiency)</td>
<td>0.160</td>
<td>0.154</td>
<td>0.224</td>
</tr>
<tr>
<td>Controlled NOx Emissions Rate (lb/MMBtu)</td>
<td>0.273</td>
<td>2,322</td>
<td>3,487</td>
</tr>
<tr>
<td>Controlled NOx Emissions (tons/year)</td>
<td>0.160</td>
<td>0.154</td>
<td>0.224</td>
</tr>
<tr>
<td>SNCR Annual NOx Removal (tons/year)</td>
<td>568</td>
<td>580</td>
<td>872</td>
</tr>
<tr>
<td>SNCR Cost Effectiveness (7.303% interest rate)</td>
<td>$1,546,424</td>
<td>$1,546,424</td>
<td>$1,546,424</td>
</tr>
<tr>
<td>Annualized Capitalized Costs (20-yr life)</td>
<td>$2,168,400</td>
<td>$2,208,800</td>
<td>$3,176,600</td>
</tr>
<tr>
<td>Total Annualized O&M Costs</td>
<td>$1,546,424</td>
<td>$1,546,424</td>
<td>$1,546,424</td>
</tr>
<tr>
<td>Total Annual Cost ($/year)</td>
<td>$3,714,824</td>
<td>$3,755,224</td>
<td>$4,723,024</td>
</tr>
<tr>
<td>Cost effectiveness ($/ton)</td>
<td>$6,536</td>
<td>$6,469</td>
<td>$5,417</td>
</tr>
</tbody>
</table>

158 Located on page 4 of appendix C in PacifiCorp’s Four Factor Analysis Evaluation Response
159 Located on page 5 of appendix C in PacifiCorp’s Four Factor Analysis Evaluation Response
Table 56: PacifiCorp Updated Huntington SNCR Cost Effectiveness

<table>
<thead>
<tr>
<th>Cost Effectiveness</th>
<th>Huntington 1</th>
<th>Huntington 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heat Input (MMBtu/year)</td>
<td>28,063,728</td>
<td>27,150,145</td>
</tr>
<tr>
<td>NOx Emissions Rate (lb/MMBtu)</td>
<td>0.212</td>
<td>0.208</td>
</tr>
<tr>
<td>NOx Emissions (tons/year)</td>
<td>2,968</td>
<td>2,825</td>
</tr>
<tr>
<td>NOx Emissions w/ SNCR (20% efficiency)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controlled NOx Emissions Rate (lb/MMBtu)</td>
<td>0.169</td>
<td>0.166</td>
</tr>
<tr>
<td>Controlled NOx Emissions (tons/year)</td>
<td>2,374</td>
<td>2,260</td>
</tr>
<tr>
<td>SNCR Annual NOx Removal (tons/year)</td>
<td>594</td>
<td>565</td>
</tr>
<tr>
<td>SNCR Cost Effectiveness (7.303% interest rate)</td>
<td>$1,560,724</td>
<td>$1,560,724</td>
</tr>
<tr>
<td>Annualized Capitalized Costs (20-yr life)</td>
<td>$2,256,200</td>
<td>$2,156,000</td>
</tr>
<tr>
<td>Total Annualized O&M Costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Annual Cost ($/year)</td>
<td>$3,816,924</td>
<td>$3,716,724</td>
</tr>
<tr>
<td>Cost effectiveness ($/ton)</td>
<td>$6,431</td>
<td>$6,579</td>
</tr>
</tbody>
</table>

In conclusion, PacifiCorp submitted that the above table’s use of accurate annualized capital and O&M costs when combined with an appropriate SNCR NOx control efficiency of 20% provide reasonable SNCR cost effectiveness determinations for the Hunter and Huntington units. PacifiCorp has requested that S&L update their April 9, 2020, studies to utilize the current interest rate of 7.303% and the more conservative SNCR NOx control efficiency of 20% for all Hunter and Huntington units. These updates are currently being finalized and are not anticipated to materially impact the data provided here. PacifiCorp will notify UDAQ if any material changes occur.

UDAQ Response Conclusion

Interest Rate

Upon consulting with the Control Cost Manual and EPA staff, UDAQ has found that it is preferable for a source’s four-factor analysis to use a source-specific interest rate. After further discussion with the Utah Department of Public Utilities, UDAQ has confirmed that 7.34% is PacifiCorp’s most recently approved interest rate in Utah. However, as noted in the company’s Four-Factor Analysis Evaluation Response for Hunter and Huntington above, “The actual weighted average cost of capital is calculated using the rates approved by the six state regulatory authorities where PacifiCorp conducts business and the percentage of energy delivered by PacifiCorp to each of those states.” UDAQ accepts the resulting 7.303% interest rate as an appropriate source-specific rate across the company’s service territory and notes that this rate is more conservative than the Utah Public Service Commission approved 7.34% with regard to control-cost assessment.

160 See email correspondence with Larry Sorrels (EPA) in Appendix D.2.H.
SO₂

As noted above, all five units at both plants have FGD in place to control SO₂ emissions, and all units have SO₂ emission limits (generally 0.12 lb/MMBtu 30-day rolling average) that correspond to these controls as included in the approval orders for both plants. Since controls were installed/ upgraded, all five units at both plants have operated at levels below the 0.12 lb/MMBtu SO₂ emission limits, ranging between approximately 0.6 and 0.10 lb/MMBtu as shown in Figure 53 below. UDAQ does not believe it is possible for the Hunter and Huntington units to scrub to the SO₂ emissions level of 0.03 lb/MMBtu specified in the original four-factor submittal RPEL proposal with the existing FGD controls. As PacifiCorp states in their comments:

The Utah Units’ SO₂ pollution control equipment (scrubbers) have design rates from 0.08 to 0.10 lb/MMBtu, and the costs indicated in the 2020 RP Analysis are to optimize these rates. The design parameters were necessary to ensure compliance with the Units’ 0.12 lb/MMBtu emission limits. The existing Utah Units’ scrubbers cannot control to lower SO₂ emission rates. To achieve a 0.03 lb/MMBtu SO₂ rate, new scrubbers would have to be constructed at an estimated capital cost of $180 million for each unit.

UDAQ views the 0.03 lb/MMBtu rate as an artifact of the way the RPELs were calculated, and—as discussed in the NOₓ section below—UDAQ does not concur with this methodology or the RPELs that result from it.

![Figure 53: Hunter and Huntington SO₂ Rate](image-url)
The 2019 Guidance states that it “may be reasonable for a state not to select an effectively controlled source. A source may already have effective controls in place as a result of a previous regional haze SIP or to meet another CAA requirement.” The guidance goes on to provide “scenarios in which EPA believes it may be reasonable for a state not to select a particular source for further analysis,” including the following example:

For the purpose of SO₂ control measures, an EGU that has add-on flue gas desulfurization (FGD) and that meets the applicable alternative SO₂ emission limit of the 2012 Mercury Air Toxics Standards (MATS) rule47 for power plants. The two limits in the rule (0.2 lb/MMBtu for coal-fired EGUs or 0.3 lb/MMBtu for EGUs fired with oil-derived solid fuel) are low enough that it is unlikely that an analysis of control measures for a source already equipped with a scrubber and meeting one of these limits would conclude that even more stringent control of SO₂ is necessary to make reasonable progress.

As previously stated, all of PacifiCorp’s Utah units have permitted SO₂ limits of 0.12 lb/MMBtu, which is well below the 0.2 lb/MMBtu limit provided in the 2019 Guidance.

For the foregoing reasons, UDAQ concludes that SO₂ emissions are well-controlled at all five Hunter and Huntington units. These units have operated at rates between 0.06 and 0.10 lb/MMBtu in recent years, and this range is consistent with the design parameters of the existing scrubbers. UDAQ also acknowledges that potential variations in the sulfur content of coal impact the ability of the existing controls to consistently scrub to lower levels in rejecting lower limits for these units.

Because Utah participated in the Section 309 compliance pathway for SO₂ in its round one SIP, the existing SO₂ emission limits were not included among the Section IX.H controls for regional haze. Since the continued operation of these controls is essential to making reasonable progress as demonstrated by the WRAP photochemical modeling and helps eliminate the possibility of backsliding on past emissions reductions, UDAQ is adding the existing SO₂ emission limits for all five units to SIP Section IX.H.23 to ensure federal enforceability in the regional haze context. However, UDAQ is eliminating the startup, shutdown, maintenance/planned outage or malfunction exemptions found in the approval order for Huntington Units 1 and 2 to ensure that the limits are applicable to these sources continuously to be consistent with CAA requirements.

NOₓ

Four-factor Analyses
For NOₓ controls, specifically SNCR and SCR, UDAQ concurs with PacifiCorp’s calculations supporting their four-factor analyses (as amended or further justified in the company’s follow-up submittals). However, UDAQ does not concur with the company’s four-factor analysis calculations for the proposed RPELs. First, the emissions reductions ascribed to the RPELs were based upon the application of SNCR controls -- a technology the company claimed not to be cost-effective -- to each plant’s plantwide applicability limit (PAL). Furthermore, the control costs associated with the RPELs were estimated based solely on the cost of additional
scrubbing of SO₂, while the estimated emissions reductions included both NOₓ and SO₂, and the RPEL cost-effectiveness analysis used an unrealistic baseline emissions scenario (i.e., 100% of the PAL). As a result, the RPEL cost-effectiveness estimates cannot be meaningfully compared to those for physical controls. For these reasons, UDAQ rejects the proposed RPELs.

Regarding SNCR and SCR cost-effectiveness, the company’s analysis was based upon applying recent (2015-2019 average) heat inputs (in MMBtu/year) and emissions rates (in lb/MMBtu) to calculate emissions (MMBtu/year X lb/MMBtu = lb/year) compared to using the same heat inputs at the control emissions rates for SNCR and SCR. The delta between the recent actual emissions versus emissions with new controls represented the emissions reductions associated with each control. The total annual cost of each control was then divided by tons reduced per year to establish a cost-effectiveness metric of dollars per ton ($/ton) of emissions reduced.

PacifiCorp’s analysis yielded cost-effectiveness values ranging from $5,417/ton to $6,579/ton for SNCR and $4,401/ton to $6,533/ton for SCR, as summarized in Table 57 below.

Table 57: Cost-effectiveness of SNCR and SCR and Hunter and Huntington Power Plants

<table>
<thead>
<tr>
<th>Unit</th>
<th>SNCR $/ton</th>
<th>SCR $/ton</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hunter 1</td>
<td>$6,536</td>
<td>$6,533</td>
</tr>
<tr>
<td>Hunter 2</td>
<td>$6,469</td>
<td>$6,488</td>
</tr>
<tr>
<td>Hunter 3</td>
<td>$5,417</td>
<td>$4,401</td>
</tr>
<tr>
<td>Huntington 1</td>
<td>$6,431</td>
<td>$5,979</td>
</tr>
<tr>
<td>Huntington 2</td>
<td>$6,579</td>
<td>$6,294</td>
</tr>
</tbody>
</table>

As noted above, PacifiCorp’s cost-effectiveness estimates were calculated using a baseline of recent actual emission levels. However, as EPA notes in its 2019 Guidance:

A state may choose a different emission control scenario as the analytical baseline scenario. Generally, the estimate of a source’s 2028 emissions is based at least in part on information on the source’s operation and emissions during a representative historical period. However, there may be circumstances under which it is reasonable to project that 2028 operations will differ significantly from historical emissions. Enforceable requirements are one reasonable basis for projecting a change in operating parameters and thus emissions; energy efficiency, renewable energy, or other such programs where there is a documented commitment to participate and a verifiable basis for quantifying any change in future emissions due to operational changes may be another.¹⁶²

In its July 2021 clarifications memo, EPA adds that there may be instances in which state projections of changes in future utilization are unenforceable, leading to the need to establish utilization or production limits to ensure reasonable progress at existing emission rates:

'. . . in some cases, states may have projected significantly lower total emissions due to unenforceable utilization or production assumptions and those projections are dispositive of the four-factor analysis. For example, a state that rejected new controls solely based on cost effectiveness values that were higher due to low utilization assumptions. In this circumstance, an emission limit that requires compliance with only an emission rate may not be able to reasonably ensure that the source’s future emissions will be consistent with the assumptions relied upon for the reasonable progress determination. EPA anticipates these circumstances will be rare. One option a state may consider in this case is to incorporate a utilization or production limit corresponding to the assumption in the four-factor analysis into the SIP. Although not required, this approach is one way for states to address circumstances in which a specific emission rate does not, by itself, represent the reasonable progress determination.163

Furthermore, EPA recognized that in instances in which control costs are dominated by a relatively high proportion of fixed capital costs, actual cost-effectiveness will be highly dependent on the future utilization levels of the facility. In instances where utilization is lower than initially projected, controls will be less cost-effective, while higher future utilization will result in improved cost-effectiveness, since there will be more tons reduced by a given control but for the same fixed costs when utilization increases. In such instances, EPA notes that a mass-based emission limit may be appropriate to demonstrate reasonable progress:

'. . . if the annualized cost for a measure is dominated by fixed capital costs, the state may have determined that the measure is necessary to make reasonable progress if the operating level is high (making cost/ton and cost/Mm-1 relatively low) but not if the operating level is low (making cost/ton and cost/Mm-1 relatively high). In this case, a mass-based emission limit may be reasonable because it could relieve the source of the requirement to install the control if it manages its operating level strategically.

'. . . in addition to considering technology-based emission control measures, a state may consider restrictions on hours of operation, fuel input, or product output. Such restrictions could be implemented directly or by a time-based limit on mass emissions.164

To further assess the appropriateness of installing physical controls at these facilities, UDAQ developed a plant utilization sensitivity analysis for installing SCR at all five units at both plants. In this analysis, UDAQ assumed a baseline emission scenario using historical utilization levels

(based on 2015-2019 actual emissions), and then varied potential future utilization relative to that baseline to create four alternative emissions scenarios:

- 125% of baseline utilization
- 75% of baseline utilization
- 50% of baseline utilization

UDAQ also scaled O&M costs by the same factors in an attempt to account for changes in variable costs but kept fixed capital costs constant. Figure 54 below summarizes this sensitivity analysis.

![SCR Cost-effectiveness by Utilization Level](image)

Figure 54: SCR Cost-effectiveness by utilization level at Hunter and Huntington Power Plants

As can be seen, higher unit and plant utilization yields lower $/ton estimates (more cost-effective), while lower utilization yields higher $/ton estimates (less cost-effective).

This sensitivity analysis raises the question of how the units at both plants are likely to be utilized throughout the second regional haze planning period. In its attempt to address this question, WRAP relied on the Center for the New Energy Economy (CNEE) at Colorado State University to project 2028 emissions for coal- and gas-fired EGUs throughout the West for use in modeling to support WRAP states in their SIP development. For coal-fired units, these estimates were based on 2016-2018 utilization (i.e., gross load), heat rates, and emissions rates, but were adjusted for certain known or “on-the-books” (OTB) changes in emissions.

controls, fuel switching, and unit closures. For example, in Utah, CNEE accounted for the previously announced closure of Intermountain Power Plant (IPP) Units 1 and 2 in 2025 by reducing emissions accordingly.

Using this OTB methodology, WRAP projected 2028 NOx emissions of 10,001 tons/year for Hunter and 6,091 tons/year for Huntington. These emissions estimates are similar though not identical to PacifiCorp’s recent actual emissions used in its four-factor analyses, with the differences stemming from the use of different averaging periods and methodologies.

Anticipated Changes in Utilization

The electricity generation industry is experiencing significant change with the introduction of cheap natural gas and renewable sources such as wind and solar altering previous operating practices. Other factors affecting change include increased grid coordination (e.g., the Energy Imbalance Market (EIM), the potential establishment of a new Western regional transmission organization (RTO), new transmission capacity, etc.), dramatic improvements in lighting and other equipment efficiency, uncertainty regarding the future of climate regulation, and increased customer preference for cleaner energy resources. Low-cost renewable electricity in particular has forced operators to switch “baseload” EGUs, such as Utah’s coal-fired plants, to “follow” load between periods when renewables are available and unavailable. This trend is reflected in the utilization of the Hunter and Huntington power plants as shown in Figure 55 and Figure 56 below.

166 CNEE originally estimated 9,992 tons/year for Hunter and 6,083 for Huntington, but the final WRAP projections included additional non-EGU sources at each plant to arrive at the values above.

These changes in utilization, coupled with existing emission reduction controls, have led to decreases in NO\textsubscript{x} emissions from Utah’s coal-fueled EGUs, as shown in Figure 57 below.

Figure 56: Hunter and Huntington Utilization (based on Net Summer Capability)

Figure 57: Hunter and Huntington NO\textsubscript{x} Emissions by Unit
While there is always uncertainty regarding the future utilization of a facility, PacifiCorp’s 2021 Integrated Resource Plan (IRP) helps shed light on the likely future operation of Hunter and Huntington Power Plants. Indeed, it provides the company’s most recent and robust assessment of the projected future resource utilization.

As shown in Figure 58 (2021 IRP Figures 1.4-1.7), the 2021 IRP preferred portfolio includes approximately 6,000 MW of new solar capacity, over 3,500 MW of new wind capacity, over 6,000 MW of new storage capacity, and over 2,500 MW of new non-emitting resources (e.g., hydrogen, nuclear, etc.) through 2040. Over the same period, it anticipates over 4,000 MW of coal retirements or conversion of coal units to natural gas, as shown in Figure 59 (2021 IRP Figure 1.12) below.

Figure 58: PacifiCorp 2021 IRP Cumulative Resource Additions

Figure 60 compares PacifiCorp’s remaining coal capacity (MW) to both the coal share of total energy (% of total MWh) and total capacity (% of total MW) over the 2021 IRP planning window. In 2021, coal-fired units are responsible for 49% of total energy, but only 31% of total capacity. Over time the coal energy share declines at a steeper rate than the coal capacity share as renewables and non-emitting resources enter PacifiCorp’s system, with the metrics crossing each other in 2031 at 11%. By the end of the IRP planning window in 2040 when the Hunter power plant is the only coal-fired unit remaining in PacifiCorp’s system, the coal capacity share is only 3% and the coal energy share is only 1% of the total system. Importantly, it is energy generation, not capacity, that correlates with emissions levels for a given emission rate. Of particular interest is the period from 2029 through 2036 during which both in- and out-of-state coal capacity remains flat. Yet over the same period, the coal-fired share of total energy declines from 18% to just 6%. This chart helps illustrate that PacifiCorp’s coal-fired units switch
from being energy resource to capacity resources over time, as they transition to their new role of supporting zero-emission resources.

While the 2021 IRP projected plant-level and unit-level capacity factors for Hunter and Huntington are confidential and, therefore, not available to include in the SIP, the redacted comments of interveners before the Utah Public Service Commission (PSC) who have been granted access to these projections provide an additional degree of confidence that the utilization of these plants is likely to change. For example, excerpts from the redacted comments by Western Resource Advocates (WRA) shed light on the projected future utilization of PacifiCorp’s coal-fired plants:

With the planned new resources in PacifiCorp’s Preferred Portfolio, the transformation of PacifiCorp’s coal fleet is projected to accelerate significantly over the coming decade from the provision of round-the-clock energy to seasonal dispatch with limited annual hours of operation. (page 10)

Confidential Exhibit 4 is comprised of six pages, and displays monthly capacity factors for PacifiCorp’s long-lived coal plants: Jim Bridger, Wyodak, Hunter, and Huntington. A review of the exhibit makes clear that once take-or-pay contracts expire, the units at Hunter and Huntington operate only seasonally… (pages 15-16)

Affordability

In addition to concerns that reduced future plant utilization will erode the cost-effectiveness of physical controls at Hunter and Huntington, it is important to note that PacifiCorp believes that these controls are unaffordable under the current constraints the company faces as a regulated public utility and in the face of post-pandemic supply chain issues and rising inflation. As PacifiCorp states:

…the dollar-per-ton cost-effectiveness value for SCR does not represent all of the considerations necessary to determine whether SCR is a reasonable control that should be required at the Utah Units. As the Affordability Analysis shows, a demonstration that SCR is the least-cost, least-risk option for PacifiCorp’s customers faces likely insurmountable obstacles. In addition, over the past decade, the requirement to install SCR has led to early retirement or refueling of numerous other coal-fueled generating plants in the region and across the country. External factors including increased regulatory scrutiny of investments in coal-fueled resources, state laws limiting the market for coal-fueled power and increasing competition from renewable and storage resources add to the pressures making SCR unaffordable, especially for a regulated utility. The decision to retire a coal-fueled unit rather than install SCR is not merely “a voluntary business decision[] that the benefits of continuing to generate electricity at the affected units were outweighed” by other factors. Instead, an early retirement decision is a regulatory necessity as continued plant operation becomes unfeasible because “the costs of [SCR] . . . [are] so onerous that the source[] simply could not afford them” making “the sources’ decisions to cease operations . . . in essence involuntary.”
In the Wyodak Facility SCR Affordability Analysis (August 25, 2020) supplied with their public comments on the proposed SIP, PacifiCorp identifies several coal units across the country that have either been retired or repowered rather than installing SCR to meet regulatory requirements, including:

- Cholla Plant, Arizona
- Craig Unit 1, Colorado
- San Juan Generating Station (retirement of two of four units), New Mexico
- Progress Energy and Duke have shut down 22 units subject to BART instead of installing controls, North Carolina
- Boardman Plant elected to cease burning coal instead of installing SCR, Oregon
- Dave Johnson Plan will retire Unit 3 by 2027 rather than installing SCR, Wyoming

More recently, PacifiCorp has announced that it will convert Jim Bridger 1 and 2 to natural gas rather than installing SCR.

Affordability concerns have led some 2021 IRP commenters to opine that SCR might be considered an imprudent investment relative to unit closures in the economic regulatory arena, including parties who in their round two proposed SIP comments to UDAQ claim SCR to be a cost-effective control. For example, in redacted comments before the Utah PSC, the Sierra Club states, “SCR requirements will at some point be required under the Clean Air Act. At that time, the early retirement case becomes roughly equivalent from an economic standpoint to the current preferred case, depending on the price-policy scenario.” Here it is important to note that EPA has historically held that it does not have the authority to force the retirement of a unit under the regional haze rule: “Generally, EPA does not interpret the regional haze rule to provide us with authority to make a BART determination that requires the shutdown of a source.”

Additional affordability concerns were raised in public comments from Deseret Power, which owns an undivided 25.108% of Hunter Unit 2. Deseret states:

> For over 20 years, Deseret has operated as a financially distressed company under the terms of a troubled debt forbearance (the “Debt Forbearance”) with its principal creditor. Under the terms of the Debt Forbearance, Deseret essentially pledged all of its available net cashflow toward partial payment of long-term indebtedness which Deseret has been unable to pay in full. A key provision of the Debt Forbearance is that Deseret cannot incur any added indebtedness without prior express consent of the existing creditor. The creditor understandably does not allow Deseret to take on new debt without first scrutinizing whether and to what extent the new debt would result in increased net cashflows to help repay the outstanding arrearage on existing debt held by the creditor.

> In its present condition, Deseret is not certain it would be able to raise capital necessary to finance its portion of costs to install any additional and costly post-combustion controls

at Hunter II. It would be left to the decision of Deseret’s creditor to refuse to allow Deseret to solicit or draw on any new source of financing for such controls.

These affordability concerns and the potential for forced unit closures weigh in favor of considering reasonable alternatives to requiring the installation of physical controls.

Balancing the Four Statutory Factors

Given the likely reduction in utilization of Hunter and Huntington in future years and the erosion of the cost-effectiveness of physical controls that would accompany such a reduction, UDAQ is establishing enforceable mass-based limits on future emissions from these facilities to reduce uncertainty and ensure that the plants operate at or below emissions levels at which physical controls are not cost-effective. To identify these limits, UDAQ calculated the utilization and resulting emissions levels that would result in a $5,750/ton level for SNCR and SCR for all units at both plants, as shown in Table 58 and Table 59 below. UDAQ then used the more stringent of the two scenarios (based on SCR) to set limits at which both SNCR and SCR are not cost-effective.

Table 58: 2028 Mass-based NOx Limit - SNCR Cost-effectiveness

<table>
<thead>
<tr>
<th>Item (unit)</th>
<th>Hunter 1</th>
<th>Hunter 2</th>
<th>Hunter 3</th>
<th>Huntington 1</th>
<th>Huntington 2</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2028 Utilization (% of 2015-2019 Average)</td>
<td>144.6%</td>
<td>134.2%</td>
<td>85.6%</td>
<td>133.0%</td>
<td>138.3%</td>
<td></td>
</tr>
<tr>
<td>2028 Limit Heat Input (MMBTU)</td>
<td>41,183,800</td>
<td>40,400,840</td>
<td>26,683,091</td>
<td>37,329,312</td>
<td>37,542,964</td>
<td></td>
</tr>
<tr>
<td>Existing Control Rate (lb/MMBTU)</td>
<td>0.200</td>
<td>0.193</td>
<td>0.280</td>
<td>0.212</td>
<td>0.208</td>
<td></td>
</tr>
<tr>
<td>Proposed Control Rate (lb/MMBTU)</td>
<td>0.160</td>
<td>0.154</td>
<td>0.224</td>
<td>0.169</td>
<td>0.166</td>
<td></td>
</tr>
<tr>
<td>Emissions w/ Existing Controls (tons/year)</td>
<td>4,109</td>
<td>3,895</td>
<td>3,730</td>
<td>3,948</td>
<td>3,906</td>
<td></td>
</tr>
<tr>
<td>Emissions w/ Control (tons/year)</td>
<td>3,295</td>
<td>3,111</td>
<td>2,989</td>
<td>3,154</td>
<td>3,116</td>
<td></td>
</tr>
<tr>
<td>Emissions Reduction (tons/year)</td>
<td>814</td>
<td>785</td>
<td>742</td>
<td>793</td>
<td>790</td>
<td></td>
</tr>
<tr>
<td>Annualized Capital Costs</td>
<td>$1,546,424</td>
<td>$1,546,424</td>
<td>$1,546,424</td>
<td>$1,560,724</td>
<td>$1,560,724</td>
<td></td>
</tr>
<tr>
<td>Total Annual O&M Costs</td>
<td>$3,135,346</td>
<td>$2,964,595</td>
<td>$2,718,259</td>
<td>$3,001,112</td>
<td>$2,981,296</td>
<td></td>
</tr>
<tr>
<td>Total Annual Cost</td>
<td>$4,681,770</td>
<td>$4,511,019</td>
<td>$4,264,683</td>
<td>$4,561,836</td>
<td>$4,542,020</td>
<td></td>
</tr>
<tr>
<td>$/ton</td>
<td>$5.750</td>
<td>$5.750</td>
<td>$5.750</td>
<td>$5.750</td>
<td>$5.750</td>
<td></td>
</tr>
<tr>
<td>2028 Emission Limit (tons)</td>
<td>Hunter Plantwide: 11,735</td>
<td>Huntington Plantwide: 7,854</td>
<td></td>
<td>19,588</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 59: 2028 Mass-based NOx Limit – SCR Cost-effectiveness

<table>
<thead>
<tr>
<th>Item (unit)</th>
<th>Hunter 1</th>
<th>Hunter 2</th>
<th>Hunter 3</th>
<th>Huntington 1</th>
<th>Huntington 2</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2028 Utilization (% of 2015-2019 Average)</td>
<td>115.9%</td>
<td>115.0%</td>
<td>73.6%</td>
<td>104.6%</td>
<td>111.0%</td>
<td></td>
</tr>
<tr>
<td>2028 Limit Heat Input (MMBTU)</td>
<td>33,016,004</td>
<td>34,628,669</td>
<td>22,963,607</td>
<td>29,357,153</td>
<td>30,136,124</td>
<td></td>
</tr>
<tr>
<td>Existing Control Rate (lb/MMBTU)</td>
<td>0.1995</td>
<td>0.1928</td>
<td>0.2796</td>
<td>0.2115</td>
<td>0.2081</td>
<td></td>
</tr>
<tr>
<td>Proposed Control Rate (lb/MMBTU)</td>
<td>0.0500</td>
<td>0.0500</td>
<td>0.0500</td>
<td>0.0500</td>
<td>0.0500</td>
<td></td>
</tr>
</tbody>
</table>
While UDAQ is not establishing a cost-effectiveness threshold per se, the agency believes that a level of $5,750/ton for physical controls, when balanced against the remaining three statutory factors, is not cost-effective. As a result, UDAQ concludes that physical controls are not necessary to demonstrate reasonable progress. What follows is a brief summary of the remaining factors, beyond cost-effectiveness, that help in leading UDAQ to this conclusion:

Time Necessary for Compliance
Due to the delayed nature of the round 2 regional haze SIPs (cite reference) there is only a short window available for control installation of approximately five years, depending the final approval date. This is likely not enough time for the potential installation of SNCR or SCR at up to five units. In contrast, enforceable annual mass-based limits can begin to be implemented immediately upon approval of the round 2 regional haze SIP.

Energy and non-air quality environmental impacts
According to PacifiCorp’s four-factor analysis, the installation of SCR on Hunter and Huntington would result in a large parasitic load of 12.5 MW at Hunter and 8.6 MW at Huntington, which equates to 115,687 and 79,743 more tons of CO₂, respectively. In addition, the installation of SNCR or SCR could potentially lead to increases in water use, coal consumption, coal combustion residuals, and other consumables and waste products associated with coal combustion (e.g., water treatment chemicals, anhydrous ammonia reagent, urea reagent, mercury control system reagent, and diesel fuel), since physical controls would enable the plants to operate more under the existing PALs relative to mass-based limits. In addition, these plants are currently projected to assist in the transition towards intermittent renewable resources. Should the cost of physical controls lead to early plant closures, alternative resources will be required to provide such support.

Remaining Useful Life
The currently anticipated economic life of Huntington is approximately 14 years (16 years fewer than EPA’s 30-year control life of SCR). The economic life of Hunter is approximately 20 years (10 years fewer than EPA’s 30-year control life of SCR). While the respective closure years of 2036 and 2042 are not currently enforceable, closure of...
these facilities at or before the end of their economic life would further erode the cost-effectiveness of physical controls by shortening the amortization period for control costs. Ongoing scrutiny of expenditures associated with coal-fired power plants by state public service commissions and the establishment of clean energy requirements in California, Oregon, and Washington increase the risk that these facilities may face early closure.

Mass-based Limits and Flexible Compliance
While Table 59 above shows the emissions levels that would result from constraining cost-effectiveness at $5,750/ton for SCR at the unit level, UDAQ is summing these estimated unit-level emissions at each plant to develop plantwide emission limits to provide compliance flexibility. In particular, UDAQ is establishing a 2028 plantwide NOx limit of 9,843 tons per year for Hunter and a 2028 plantwide NOx limit of 6,240 tons per year for Huntington. In addition, UDAQ is establishing an initial plantwide NOx limit for Hunter of 11,041 tons per year and an initial plantwide NOx limit for Huntington of 6,604 tons per year, both effective upon SIP approval. These initial levels are based on each plant’s highest emission value over the past five years (2017-2021). Finally, UDAQ is establishing an interim 2025 plantwide limit of 10,442 tons per year for Hunter and an interim 2025 plantwide limit of 6,422 tons per year for Huntington, to create a compliance glidepath to aid in the transition from recent actual utilization levels to the final 2028 limits. The interim limits for each plant were calculated as the average of (i.e., the midpoint between) the initial and 2028 plantwide limits for each plant. The limits are compared to recent actual emissions and the outgoing PAL in Table 60 and Table 61 below. UDAQ notes that flexible compliance mechanisms such as plantwide limits and glidepaths are commonly used in environmental regulation (e.g., plantwide applicability limits; Tier 3 fuel averaging, banking, and trading; the Tier 3 vehicle fleet averaging glidepath from 2017-2025; cap and trade programs, etc.) and are appropriate in this application.

Table 60: Hunter Actuals and Limits

<table>
<thead>
<tr>
<th>Year or Limit</th>
<th>Unit 1</th>
<th>Unit 2</th>
<th>Unit 3</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>3,274</td>
<td>3,210</td>
<td>5,107</td>
<td>11,591</td>
</tr>
<tr>
<td>2016</td>
<td>2,806</td>
<td>2,556</td>
<td>3,506</td>
<td>8,869</td>
</tr>
<tr>
<td>2017</td>
<td>2,518</td>
<td>2,789</td>
<td>4,466</td>
<td>9,773</td>
</tr>
<tr>
<td>2018</td>
<td>2,422</td>
<td>2,975</td>
<td>4,372</td>
<td>9,770</td>
</tr>
<tr>
<td>2019</td>
<td>3,188</td>
<td>2,981</td>
<td>4,344</td>
<td>10,514</td>
</tr>
<tr>
<td>2020</td>
<td>2,996</td>
<td>2,955</td>
<td>3,336</td>
<td>9,287</td>
</tr>
<tr>
<td>2021</td>
<td>3,032</td>
<td>2,905</td>
<td>5,103</td>
<td>11,041</td>
</tr>
<tr>
<td>2022 Initial Limit</td>
<td></td>
<td></td>
<td></td>
<td>11,041</td>
</tr>
<tr>
<td>2025 Interim Limit</td>
<td></td>
<td></td>
<td></td>
<td>10,442</td>
</tr>
<tr>
<td>2028 Final Limit</td>
<td></td>
<td></td>
<td></td>
<td>9,843</td>
</tr>
<tr>
<td>Outgoing PAL</td>
<td></td>
<td></td>
<td></td>
<td>15,095</td>
</tr>
</tbody>
</table>

Table 61: Huntington Actuals and Limits

<table>
<thead>
<tr>
<th>Year or Limit</th>
<th>Unit 1</th>
<th>Unit 2</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>3,563</td>
<td>2,899</td>
<td>6,462</td>
</tr>
<tr>
<td>2016</td>
<td>2,810</td>
<td>3,400</td>
<td>6,210</td>
</tr>
<tr>
<td>2017</td>
<td>2,990</td>
<td>2,940</td>
<td>5,931</td>
</tr>
<tr>
<td>2018</td>
<td>2,462</td>
<td>2,692</td>
<td>5,153</td>
</tr>
<tr>
<td>2019</td>
<td>3,013</td>
<td>2,193</td>
<td>5,206</td>
</tr>
</tbody>
</table>
As discussed previously, UDAQ has historically used plantwide limits (i.e., PALs) to limit emissions from Hunter and Huntington power plants while providing PacifiCorp operational flexibility. According to EPA’s 2020 “Guidance on Plantwide Applicability Limitation Provisions Under the New Source Review Regulations”:\footnote{https://www.epa.gov/sites/default/files/2020-08/documents/pal_guidance_final__signed.pdf}

A PAL is an optional flexible permitting mechanism available to major stationary sources that involves the establishment of a plantwide emissions limit, in tons per year, for a regulated NSR pollutant. A PAL represents a simplified NSR applicability approach that provides a source with the ability to manage physical and operational changes, and the impacts of those changes on facility-wide emissions, without triggering major NSR or the need to conduct project-by-project major NSR applicability analyses. The added flexibility of a PAL allows a source to respond rapidly to market changes with reduced permitting burden and greater regulatory certainty.

While sources may favor such regulatory flexibility, the ability for emissions to vary from unit to unit under a plantwide limit raises the question of how such variations might impact visibility at CIAs. On this point, UDAQ notes that the distance between the outermost stacks at Hunter is approximately 596 feet, and the distance between the stacks for units 1 and 2 at Huntington is 265 feet. In contrast, the distance between each plant and the CANY1 IMPROVE monitor for Arches and Canyonlands is 431,589 feet (Hunter) and 490,433 feet (Huntington). While distances from these facilities to each IMPROVE site vary, the CANY1 example illustrates that differences in visibility impairment that stem from the proximity effects associated with plantwide limits are likely to be negligible. Visibility impacts related to using plantwide limits are more likely to stem from other factors that might favor or constrain the utilization of one unit relative to other units than from differences in proximity to CIAs among units.

Cost-effectiveness Thresholds
On the subject of decision thresholds, the 2019 Guidance notes that states “may” use thresholds, but the use of such thresholds must be justified with respect to consideration for other relevant factors:

A state may find it useful to develop thresholds for single metrics to organize and guide its decision-making. As the Ninth Circuit explained in NPCA v. EPA, 788 F.3d at 1142, the Regional Haze Rule does not prevent states from implementing “bright line” rules, such as thresholds, when considering costs and visibility benefits. However, the state

\begin{tabular}{|c|c|c|c|}
\hline
Year & 2020 & 2021 & 2022 Initial Limit & 2025 Interim Limit & 2028 Final Limit & Outgoing PAL \\
\hline
2020 & 2,476 & 2,337 & - & 4,814 & - & - \\
2021 & 3,111 & 3,493 & - & 6,604 & - & - \\
2022 Initial Limit & - & - & - & 6,604 & - & - \\
2025 Interim Limit & - & - & - & 6,422 & - & - \\
2028 Final Limit & - & - & - & 6,240 & - & - \\
Outgoing PAL & - & - & - & 7,971 & - & - \\
\hline
\end{tabular}
must explain the basis for any thresholds or other rules (see 40 CFR 51.308(f)(2)). If a state applies a threshold for any particular metric to remove control measures from further consideration before all other relevant factors are considered, it should explain why its selected threshold is appropriate for that purpose, i.e., why its application is consistent with the requirement to make reasonable progress.

In general, UDAQ believes that such “bright line” thresholds are neither required nor appropriate for determining reasonable progress. As discussed in Section 7.A.1 regarding the selection of sources for controls determination, UDAQ’s Q/d threshold value of 6 is only the starting point for screening sources for further evaluation. UDAQ augments this threshold with both a secondary screening and a WEP analysis to ensure that it has accurately captured sources in need of evaluation. Similarly, a bright line cost-effectiveness threshold (i.e., cost/ton) is not required and may be of limited utility. In fact, the 2019 Guidance states that such cost/ton thresholds must be justified, and comparisons among various cost/ton estimates may or may not be useful for assessing compliance costs:

If a state applies a threshold for cost/ton to evaluate control measures, we recommend that the SIP explain why the selected threshold is appropriate for that purpose and consistent with the requirement to make reasonable progress.

… a cost/ton metric and comparisons to the cost/ton values for measures that have been previously implemented may or may not be useful in determining the reasonableness of compliance costs.

Historically, UDAQ has not utilized cost-effectiveness thresholds for compliance cost assessment, whether for RACT, BACT, or other air quality program control measures. Selecting a cost-effectiveness threshold provides a “target” that sources could potentially exploit to adjust their compliance cost analyses to avoid control requirements. In the round 2 regional haze context, the selection of a bright line $/ton threshold would inappropriately limit UDAQ’s ability to consider the remaining three statutory factors and related considerations. That said, a review of cost-effectiveness thresholds and ranges in various states -- either incorporated directly into regional haze SIPs, used internally by staff and shared via the interstate coordination process, or shared by commenters on the proposed SIP -- reveals that UDAQ’s determination that physical controls are not cost-effective at a $5,750/ton level is in line with the range considered by other states as shown in Figure 61 below.
Annual Limits vs. Short-term Limits or Emission Rates

Given concerns that the use of an annual limit might not be sufficiently short to limit visibility impairment on Most Impaired Days (MIDs), UDAQ evaluated the seasonality of nitrate impairment on MIDs at Utah’s CIAs using the last five available years of visibility data. As shown in Figure 62, nitrate impairment is largely seasonal with the MIDs with the highest light extinction happening during the winter months. This result is consistent with the secondary formation of particulates that UDAQ sees along the Wasatch Front and is not unexpected.

Figure 61: State Control Cost-effectiveness Ranges

Source: “TSS Ambient Species Composition of Daily Light Extinction by Percentile Days - Product #XATP_ECSB_GDYR.” WRAP Technical Support System (TSS); The Western Regional Air Partnership (WRAP) and the Cooperative Institute for Research in the Atmosphere (CIRA), 20 Jun 2022
While nitrate light extinction has a single annual peak in the wintertime, the Hunter and Huntington power plants have two gross load (and associated NOx emissions) peaks each year, one in the summer and one in the winter, as shown in Figure 64 below. As a result, UDAQ believes that the company is unlikely to utilize the majority of its annual mass-based NOx limit for each plant during the wintertime gross load and MID nitrate impairment peaks, since it must retain enough headroom to accommodate the summer gross load peak. Thus, UDAQ
concludes that an annual mass-based limit is a sufficient to reduce the likelihood of excess emissions impact CIAs during periods of high electricity demand.

Other Considerations
UDAQ finds it additionally compelling to incorporate these enforceable mass-based emission limits to ensure that the EGU nitrate contribution to light extinction at Utah (and other states) CIAs does not exceed the emissions levels utilized in WRAP’s photochemical modeling. Such mass-based emission limits would help ensure that Utah is making reasonable progress as demonstrated by the WRAP modeling, while eliminating the possibility of backsliding on past emissions reductions. Importantly, the mass-based emissions limits outlined above result in combined emissions that are generally consistent with WRAP’s 2028 OTB projections that are explicitly accounted for in Utah’s projected 2028 RPGs, such as the example shown for Canyonlands in Figure 64.

172 See Appendix A for UDAQ’s proposed Part H language for emission limits and controls enforcement.
Finally, this approach provides regulatory flexibility for PacifiCorp, which can meet the mass-based emission limits either by limiting or otherwise modifying operation, installing controls, switching fuels, closing units, or some combination of these options. Refer to section 8.D.3 for UDAQ’s reasonable progress determinations for the Hunter and Huntington power plants.

UDAQ Response Conclusion

SO₂

As noted above, all five units at both plants have FGD in place to control SO₂ emissions and all units have SO₂ emission limits (generally 12 lb./mmbtu over various averaging periods) that correspond to these controls as included in the approval orders for both plants. Because Utah participated in the Section 309 compliance pathway for SO₂ in its round one SIP, SO₂ emissions limits were not included among the Section IX.H controls for regional haze. However, because the continued operation of these controls is essential to making reasonable progress as demonstrated by the WRAP photochemical modeling and helps eliminate the possibility of backsliding on past emissions reductions, UDAQ is adding the existing SO₂ emission limits for all five units to SIP Section IX.H23, Source Specific Emission Limitations: Regional Haze Requirements, Reasonable Progress Controls, to ensure federal enforceability in the regional haze context.

NOₓ

Upon consulting with EPA staff and the control cost manual, UDAQ has found that it is preferable for a source’s four-factor analysis to use a source-specific interest rate. After further discussion with the Utah Department of Public Utilities, UDAQ has confirmed that 7.34% is
PacifiCorp’s most recently approved interest rate in Utah. However, as noted in the company’s Four-Factor Analysis Evaluation Response for Hunter and Huntington above, “The actual weighted average cost of capital is calculated using the rates approved by the six state regulatory authorities where PacifiCorp conducts business and the percentage of energy delivered by PacifiCorp to each of those states.” UDAQ accepts the resulting 7.303% interest rate as an appropriate source-specific rate across the company’s service territory.

For SNCR and SCR, UDAQ concurs with PacifiCorp’s remaining calculations supporting their four-factor analyses (as amended or further justified in the company’s follow-up submittals). However, UDAQ does not concur with the company’s four-factor analysis calculations for the proposed RPELs. First, the emissions reductions ascribed to the RPELs were based upon the application of SNCR controls—a technology the company claimed not to be cost-effective—to each plant’s PAL. Furthermore, the control costs associated with the RPELs were estimated based solely on the cost of additional scrubbing of SO₂, while the estimated emissions reductions included both NOₓ and SO₂, and the RPEL cost-effectiveness analysis used a different baseline emissions scenario (i.e. the PAL) [than that used for SNCR and SCR (2015-2019 actuals)]. As a result, the RPEL cost-effectiveness estimates cannot be meaningfully compared to those for physical controls. For these reasons, UDAQ rejects the proposed RPELs.

Regarding SNCR and SCR cost-effectiveness, the company’s analysis was based upon applying recent (2015-2019) average heat inputs (in MMBtu/year) and emissions rates (in lb./MMBtu) to calculate emissions (MMBtu/year X lb./MMBtu = lb./year) compared to using the same heat inputs at the control emissions rates for SNCR and SCR. The delta between the recent actual emissions versus emissions with controls represented the emissions reductions associated with each control. The total annual cost of each control was then divided by tons reduced per year to establish a cost-effectiveness metric of dollars per ton ($/ton) of emissions reduced.

PacifiCorp’s analysis yielded cost-effectiveness values ranging from $5,417/ton to $6,579/ton for SNCR and $4,401/ton to $6,533/ton for SCR, as summarized in Table 54 below.

<table>
<thead>
<tr>
<th>Unit</th>
<th>SNCR $/ton</th>
<th>SCR $/ton</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hunter 1</td>
<td>$6,536</td>
<td>$6,533</td>
</tr>
<tr>
<td>Hunter 2</td>
<td>$6,469</td>
<td>$6,488</td>
</tr>
<tr>
<td>Hunter 3</td>
<td>$5,417</td>
<td>$4,401</td>
</tr>
<tr>
<td>Huntington 1</td>
<td>$6,431</td>
<td>$5,979</td>
</tr>
<tr>
<td>Huntington 2</td>
<td>$6,579</td>
<td>$6,294</td>
</tr>
</tbody>
</table>

Due to the relatively high $/ton estimates for SNCR, that control was deemed not to be cost-effective. UDAQ’s remaining cost-effectiveness evaluation centers around the potential application of SCR at one or more units at the Hunter and Huntington power plants. In
particular, the relatively lower estimated $/ton for SCR for Hunter 3 merits further evaluation of
whether this control could be cost-effective.

As noted above, PacifiCorp’s cost-effectiveness estimates were calculated using a baseline of
recent actual emission[s] levels. However, as EPA notes in its 2019 [g]Guidance:

A state may choose a different emission control scenario as the analytical baseline
scenario. Generally, the estimate of a source’s 2028 emissions is based at least in part
on information on the source’s operation and emissions during a representative historical
period. However, there may be circumstances under which it is reasonable to project
that 2028 operations will differ significantly from historical emissions. Enforceable
requirements are one reasonable basis for projecting a change in operating parameters
and thus emissions; energy efficiency, renewable energy, or other such programs where
there is a documented commitment to participate and a verifiable basis for quantifying
any change in future emissions due to operational changes may be another.

In its July 2021 clarifications memo, EPA adds that there may be instances in which state
projections of changes in future utilization are unenforceable, leading to the need to establish
utilization or production limits to ensure reasonable progress at existing emissions rates:

in some cases, states may have projected significantly lower total emissions due to
unenforceable utilization or production assumptions and those projections are dispositive
of the four-factor analysis. For example, a state that rejected new controls solely based
on cost-effectiveness values that were higher due to low utilization assumptions. In this
circumstance, an emission limit that requires compliance with only an emission rate may
not be able to reasonably ensure that the source’s future emissions will be consistent
with the assumptions relied upon for the reasonable progress determination. EPA
anticipates these circumstances will be rare. One option a state may consider in this
case is to incorporate a utilization or production limit corresponding to the assumption in
the four-factor analysis into the SIP. Although not required, this approach is one way for
states to address circumstances in which a specific emission rate does not, by itself,
represent the reasonable progress determination.

Furthermore, EPA recognized that in instances in which control costs are dominated by a
relatively high proportion of fixed capital costs, actual cost-effectiveness will be highly
dependent on the future utilization levels of the facility. In instances where utilization is lower
than initially projected, controls will be less cost-effective, while higher future utilization will result
in improved cost-effectiveness, since there will be more tons reduced by a given control but for
the same fixed costs when utilization increases. In such instances, EPA notes that a mass-
based emissions limit may be appropriate to demonstrate reasonable progress:

... if the annualized cost for a measure is dominated by fixed capital costs, the state
may have determined that the measure is necessary to make reasonable progress if the
operating level is high (making cost/ton and cost/Mm-1 relatively low) but not if the
operating level is low (making cost/ton and cost/Mm-1 relatively high). In this case, a
mass-based emission limit may be reasonable because it could relieve the source of the requirement to install the control if it manages its operating level strategically.

In addition to considering technology-based emission control measures, a state may consider restrictions on hours of operation, fuel input, or product output. Such restrictions could be implemented directly or by a time-based limit on mass emissions.

To further assess the appropriateness of installing SCR at these facilities, UDAQ developed a plant utilization sensitivity analysis for all five units at both plants. In this analysis, UDAQ assumed a baseline emission scenario using historical utilization levels (based on 2015-2019 actual emissions), and then varied potential future utilization relative to that baseline to create four alternative emissions scenarios:

- 125% of baseline utilization
- 75% of baseline utilization
- 50% of baseline utilization

UDAQ also scaled O&M costs by the same factors in an attempt to account for changes in variable costs but kept fixed capital costs constant. The figure below summarizes this sensitivity analysis.

As can be seen, higher unit and plant utilization yields lower $/ton estimates (more cost-effective), while lower utilization yields higher $/ton estimates (less cost-effective).

Figure 54: SCR Cost-effectiveness by utilization level at Hunter and Huntington Power Plants
This sensitivity analysis raises the question of how the units at both plants are likely to be utilized throughout the second regional haze planning period. In its attempt to address this question, WRAP relied on the Center for the New Energy Economy (CNEE) at Colorado State University to project 2028 emissions for coal- and gas-fired EGUs throughout the West for use in modeling to support WRAP states in their SIP development. For coal-fired units, these estimates were based on 2016-2018 utilization (i.e., gross load), heat rates, and emissions rates, but were adjusted for certain known or “on-the-books” (OTB) changes in emissions controls, fuel switching, and unit closures. For example, in Utah, CNEE accounted for the previously announced closure of Intermountain Power Plant (IPP) Units 1 and 2 in 2025 by reducing emissions accordingly.

Using this OTB methodology, WRAP projected 2028 NOx emissions of 10,001 tons/year for Hunter and 6,091 tons/year for Huntington. These emissions estimates are similar though not identical to PacifiCorp’s recent actual emissions used in its four-factor analyses, with the differences stemming from the use of different averaging periods and methodologies. Arguably, PacifiCorp’s cost-effectiveness estimates would apply should future emissions (and thus, utilization) conform to these 2028 OTB estimates. However, the electricity generation industry is experiencing significant change with the introduction of cheap natural gas and renewable sources such as wind and solar altering previous operating practices. Other factors affecting change include increased grid coordination (e.g., the Energy Imbalance Market (EIM), the potential establishment of a new Western regional transmission organization (RTO), new transmission capacity, etc.), dramatic improvements in lighting and other equipment efficiency, uncertainty regarding the future of climate regulation, and increased customer preference for cleaner energy resources. Low-cost renewable electricity in particular has forced operators to switch “baseload” EGUs, such as Utah’s coal-fired plants, to “follow” load between periods when renewables are available and unavailable. For these reasons, recent actual emissions from fossil-fueled EGUs are down from the levels of previous decades, and there is great uncertainty regarding near- and medium-term operation of these units. This trend is reflected in the utilization of the Hunter and Huntington power plants as shown in figures 54 and 55 below.
Given this uncertainty and the wide variability in cost-effectiveness estimates at various utilization levels, UDAQ finds installation of SCR not to be cost-effective at any of the five units at Hunter and Huntington at this time. However, because WRAP’s photochemical modeling to demonstrate reasonable progress used projections based, in part, upon recent actual EGU emissions and because SCR appears to be more cost-effective at higher than recent utilization/emissions levels, UDAQ finds it compelling to incorporate enforceable mass-based
utilization levels, UDAQ finds installation of SCR not to be cost-effective at any of the five units at Hunter and Huntington at this time. However, because WRAP's photochemical modeling to demonstrate reasonable progress used projections based, in part, upon recent actual EGU emissions and because SCR appears to be more cost-effective at higher than recent utilization/emissions levels, UDAQ finds it compelling to incorporate enforceable mass-based emission limits at both plants to ensure that the EGU nitrate contribution to light extinction at Utah (and other states) CIAs does not exceed modeled or recent actual emissions levels. Such mass-based emission limits would ensure that Utah is making reasonable progress as demonstrated by the WRAP modeling, while eliminating the possibility of backsliding on past emissions reductions. Specifically, mass-based emissions limits based on WRAP's 2028 OTB projections are explicitly accounted for in Utah’s projected 2028 RPGs, such as the example shown for Canyonlands in Figure 56.

Figure 57: Example of projected RPGs for Canyonlands and Arches CIAs

Establishing enforceable mass-based limits also keeps the plants from operating at higher utilization levels at which SCR controls might become cost-effective and, therefore, reasonable. Finally, this approach provides regulatory flexibility for PacifiCorp, which can meet the mass-based emission limits either by limiting or otherwise modifying operation, installing controls, switching fuels, closing units, or some combination of these options. Refer to section 8.D.3 for UDAQ's reasonable progress determinations for the Hunter and Huntington power plants.
7.C.4 Sunnyside Cogeneration Associates- Sunnyside Cogeneration Facility
Four-Factor Analysis Summary and Evaluation

Facility Identification
Name: Sunnyside Cogeneration Facility
Address: State Road 123, #1 Power Plant Road, Sunnyside, Utah
Owner/Operator: Sunnyside Cogeneration Associates
UTM coordinates: 552,984 m Easting, 4,377,786 m Northing, UTM Zone 12

Facility Process Summary
The Sunnyside Cogeneration Facility (Sunnyside) is in Sunnyside, Carbon County, Utah
(approximately 25 miles southeast of Price). The nearest Class I areas and their respective
distance from the facility are Canyonlands National Park, (91 miles), Capitol Reef National Park
(95 miles), Bryce Canyon National Park (171 miles) and Zion National Park (217 miles). The
Sunnyside power plant began operations in May of 1993. The electricity it produces is sold to
PacifiCorp, operating as Utah Power and Light [UPLC). The plant qualifies as a small power
production facility and qualifying cogeneration facility (“QF”) under the Public Utility Regulatory
Policy Act of 1997 (“PURPA”). The facility operates a coal-fired combustion boiler that features
circulating fluidized bed (CFB), a baghouse and a limestone injection system. The facility also
operates an emergency diesel engine and emergency generator. All process units are currently
permitted in its UDAQ Title V air operating permit (Permit # 700030004) which was renewed on
April 30, 2018. The CFB boiler is subject to the NESHAPS Part 63, Subpart UUUUU Mercury
and Air Toxics Standards [MATSI Rule. As a result, Sunnyside is required to meet a standard of
0.2 lb./MMBtu of SO2.

This standard requires continuous monitoring with a continuous emission monitor system
(CEMS). The plant’s CFB boiler, designed by Tampella Power, produces steam that drives a
Dresser Rand turbine generator. The CFB boiler and baghouse uses limestone injection.
Historically, CFB boilers have been one of the primary low emission combustion technologies
for commercial and small utility installations using low grade fuels. This trend continues with
CFB technology being considered for smaller coal fired units as a means to effectively utilize
lower quality fuels and meet environmental requirements. The current boiler produces
emissions from one stack at Sunnyside’s cogeneration facility. For the purposes of a control
technology review, only the emissions from the boiler stack itself are considered as well as the
operations from the emergency diesel engine and emergency generator.

Facility Criteria Air Pollutant Emissions Sources
The source consists of the following emission units:

- Circulating Fluidized Bed Combustion Boiler – Rated at 700 MMBtu/hr and fueled by
coal, coal refuse or alternative fuels, and fueled by diesel fuel during startup,
shutdown, upset condition and flame stabilization. This boiler is equipped with a

173 Sunnyside’s full four-factor analysis can be found in appendix C.4.A F.4 or at:
https://documents.deq.utah.gov/air-quality/planning/air-quality-policy/regional-haze/DAQ-2020-
008928.pdf
limestone injection system to the fluidized bed and a baghouse. This boiler is subject to 40 CFR 60, Subpart Da and CAM.

- One diesel engine, approximately 201 HP, used to power the emergency backup fire pump, and various portable I/C engines to power air compressors, generators, welders and pumps.
- A 500-kW emergency standby diesel generator, used in the event of disruption of normal electrical power and testing/maintenance.

1.4 Facility Current Potential to Emit

The current PTE values for Sunnyside, as established by the most recent NSR permit issued to the source (DAQE-AN100960029-13) are as follows (in tons/year):

- \(\text{SO}_2 \) 1,289.26
- \(\text{NO}_x \) 771.2

Facility Current Potential to Emit

The current PTE values for Sunnyside, as established by the most recent NSR permit issued to the source (DAQE-AN100960029-13) are as follows:

Table 62: Sunnyside: Current Potential to Emit (Tons/Year)

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential to Emit (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{SO}_2)</td>
<td>1,289.26</td>
</tr>
<tr>
<td>(\text{NO}_x)</td>
<td>771.2</td>
</tr>
</tbody>
</table>

Sunnyside Four Factor Analysis Conclusion

The facility currently uses CFB technology to lower \(\text{NO}_x \) emissions and achieves Title V permitting \(\text{NO}_x \) limits as currently operated. SCR is a technically feasible control option for this boiler but is not cost effective with a control cost greater than $10,000 per ton of \(\text{NO}_x \) removed. While SNCR may represent a cost-effective option for \(\text{NO}_x \) emissions reduction, the introduction of substantial ammonia slip has the potential to cause adverse environmental impacts. The ammonia and \(\text{PM}_{2.5} \) emissions have the potential to cause direct health impacts for those in the area, and present additional safety concerns for the storage and transportation of ammonia. Despite not having SNCR or SCR installed, the Sunnyside boiler is achieving a \(\text{NO}_x \) emission rate on a lb./MMBtu basis that is comparable to PSD BACT levels set on CFB boilers. Therefore, additional add-on controls for \(\text{NO}_x \) emissions reductions are not necessary on the Sunnyside CFB boiler.

UDAQ Evaluation Summary and Conclusion

UDAQ noted several potential errors in Sunnyside’s analysis:

174 UDAQ’s full evaluation of Sunnyside’s four-factor analysis submittal can be found in appendix C.4.B E.2 or at: https://documents.deq.utah.gov/air-quality/planning/air-quality-policy/DAQ-2021-009630.pdf
1. The Sunnyside four-factor analysis for SO$_2$ eliminated both wet scrubbers and spray dry scrubbers from consideration as an SO$_2$ control because it does not have the water rights that would be needed for operation of the wet scrubber or a spray dry absorber.

2. Sunnyside Cogen did not provide justification for including the cost for a new replacement baghouse with a dry scrubbing option.

3. Sunnyside’s analysis was inconsistent regarding the amount of sorbent required and the possible resulting efficiency.

4. The Sunnyside dry sorbent injection analysis assumed too high of a cost for auxiliary power.

5. The Sunnyside dry scrubbing cost analysis improperly included annual costs for taxes and insurance and assumed unreasonably high annual costs for administrative charges.

6. The Sunnyside dry scrubbing cost analysis improperly assumed a 30% increase in cost as a retrofit factor.

7. The Sunnyside dry sorbent injection cost analysis used too high of an interest rate and too short expected life when amortizing costs.

8. Sunnyside assumed too high of an interest rate and too short of a life of controls in determining the annualized capital costs of SNCR and SCR. The Sunnyside SCR and SNCR cost effectiveness analyses assumed a 4.75% interest rate and a 20-year life of both SCR and SNCR.

9. Sunnyside assumed a very high cost for aqueous ammonia that was not justified. In its SNCR and SCR cost analyses, Sunnyside Cogen assumed a cost for 29.4% aqueous ammonia of $2.50 per gallon.

10. Sunnyside assumed a higher cost for electricity than it assumed in its dry sorbent injection analysis in its SCR and SNCR cost analysis.

At this time, UDAQ is unable to proceed with its review and requests additional information as follows:

1. The source needs to resubmit the Four Factor analysis correcting the errors mentioned above.

2. Additional information must be provided regarding the infeasibility of SCR. A. This information can include additional details on economics as well as technical limitations.

3. Additional information must be provided regarding the infeasibility of SNCR. A. As with SCR, this information can include additional details on economics as well as technical limitations.

4. Any other pertinent information Sunnyside feels is warranted should also be provided in order to assist UDAQ in the review process.
Sunnyside’s Evaluation Response

1. HAR technology is not feasible as flue gas exiting the CFB boiler at Sunnyside typically contains approximately 10% unreacted calcium oxide in the fly ash and even less in the bottom ash. Additionally, there is a significant amount of ash already entrained in the CFB boiler which would make additional ash infeasible. SDA technology requires significant amounts of water that Sunnyside is unable to adequately source, thus they find it infeasible. Given the configuration of existing units, there is not enough space between the CFB boiler and existing baghouse for the addition of a further CDS/CFBS unit without significant reconfiguration of existing equipment. Of all the on control technologies considered, CDS/CFBS is the only potentially feasible option. Existing controls for SO₂ as defined in Sunnyside’s Title V air operation permit (#700030004) Condition II.A.2 currently provide SO₂ controls to the circulating fluidized bed (CFB) boiler, which involves limestone injection.

2. Sunnyside included a cost analysis for a CDS/CFBS as per UDAQ request as it is the only technically feasible add-on unit. However, the average estimated cost for a CDS/CFBS able to achieve 90% SO₂ control ranges from $81 to $400 million plus another $1.7 million for a new baghouse required with this technology. Ash Grove does not consider this device economically feasible.

3. Sunnyside has updated this formula in the revised cost analysis to utilize the Sargent & Lundy formula for estimating the amount of lime needed for the Sunnyside CFB boiler. This formula now assumes that use of lime could achieve 74% SO₂ reduction resulting in a lime injection rate of 0.0921 tons per hour or 184 lb/hour.

4. Sunnyside has revised the cost for auxiliary power to be consistent with the UDAQ comments. Specifically, the busbar cost for electricity has now been calculated based on 2018 operating data. The resulting rate is $49.45 per MW. Additionally, the electrical usage rate has been updated to match the UDAQ comments and as displayed below:

 \[0.028\% \times 58.33 \text{ MW} \times 8031 \text{ hours/yr} \times \$49.45/\text{MW-hr} = \$6,486 \text{ per year.}\]

 The analysis provided under Question 2, 3, and 4 along with the attached cost analysis should replace information found in Sections 5.4 and 5.5 of the Four Factor Analysis.

5. The UDAQ suggested that there are tax exemptions in Utah for control equipment. UAC R307-120 exempts the purchase of control equipment from sales/use tax. As a result, sales tax is no longer included in CDS/CFBS cost analysis provided. Sales tax rates and property taxes are not used in either the SCR or SNCR cost analyses due to the equation format provided by EPA. Insurance rate was based on a 1% of the Total capital investment (TCI) which is documented in the EPA Cost Control Manual, Section 1, Chapter 2 Cost Estimation: Concepts and Methodology, Subsection 2.6.5.8 Property Taxes, Insurance, Administrative Charges and Permitting Costs. The administrative cost calculation has been updated to be consistent with SCR as suggested by the UDAQ.

175 Sunnyside’s full evaluation response can be found in appendix C.4.C F.3 or at: https://documents.deq.utah.gov/air-quality/pm25-serious-sip/DAQ-2021-017202.pdf

176 Based on fly ash characterization results conducted at Sunnyside Cogeneration Associates.
6. The UDAQ questioned the retrofit factor (RF) of 1.3 used all cost analyses, as a result Sunnyside reevaluated the use of this factor on a technology specific basis. Referencing the EPA Control Cost Manual, Sunnyside believes the 1.3 retrofit factor is justified for use in their cost calculations for CDS/CFBS and SCR. They reconsidered their SNCR calculations and instead used a 1.0 retrofit factor.

7. A 20-year life span and 7% interest rate has been applied to the cost control analyses provided by Sunnyside.

8. The equipment life and interest rate explanations provided in Question 7 are not control technology specific. Thus, the same conclusions are applicable, namely, a 20-year life span and 7% interest rate are appropriate for the cost analyses provided.

9. In response to the UDAQ’s request, Sunnyside obtained a cost estimate for 19% aqua ammonia from Thatcher Group, Inc (Thatcher). Thatcher quoted $0.18 per lb. of solution. Based on this value, if we assume a density of 19% ammonia is estimated to be 7.46 lbs/gal to 7.99 lbs/gal. This results in a cost per gallon ranges from 1.34 $/gal to 1.438 $/gal. This cost is significantly higher than the EPA estimate of $0.293, which is acceptable as it states, “User should enter actual value if known”. Furthermore, it should be noted that the cost for ammonia based on the most recent U.S. Geological Survey, Minerals Commodity Summaries, which was quoted in the original Four Factor Analysis is also significantly higher and based on a density of 29% ammonia. Since the $1.438 is still less than the originally used $2.5 per gallon, these calculations have been updated to include the vendor quote.

10. As discussed in Question 4, Sunnyside has revised the cost for auxiliary power to be consistent with the UDAQ’s comments. Please see section 4 for additional information. A revised cost analysis for SCR and SNCR have been provided in Attachment A to replace the cost analysis in the original Four Factor Analysis.

UDAQ Response Conclusion

UDAQ agrees with the amendments included in Sunnyside’s evaluation response and finds the answer’s provided in the facility’s response satisfactory. Refer to section 8.D.5 for UDAQ’s reasonable progress determinations for the Sunnyside Cogeneration Facility.

7.C.5 US Magnesium LLC- Rowley Plant

Facility Identification

- **Name:** Rowley Plant
- **Address:** 12819 North Skull Valley Road 15 Miles North Exit 77, I-80, Rowley, Utah
- **Owner/Operator:** US Magnesium LLC
- **UTM coordinates:** 4,530,490 m Northing, 354,141 m Easting, Zone 12

177 US Magnesium’s full four-factor analysis submittal for the Rowley Plant can be found in appendix C.5.A G.4 or at: https://documents.deq.utah.gov/air-quality/planning/air-quality-policy/DAQ-2020-014024.pdf
Facility Process Summary
US Magnesium LLC (USM) operates a primary magnesium production facility at its Rowley Plant, located in Tooele County, Utah. USM produces magnesium metal from the waters of the Great Salt Lake. Some of the water is evaporated in a system of solar evaporation ponds and the resulting brine solution is purified and dried to a powder in spray dryers. The powder is then melted and further purified in the melt reactor before going through an electrolytic process to separate magnesium metal from chlorine. The metal is then refined and/or alloyed and cast into molds. The chlorine from the melt reactor is combusted with natural gas in the chlorine reduction burner (CRB) and converted into hydrochloric acid (HCl). The HCl is removed from the gas stream through a scrubber train. The chlorine that is generated at the electrolytic cells is collected and piped to the chlorine plant where it is liquefied for reuse or sale. USM Rowley Plant is a PSD source for CO, NOx, PM10, PM2.5, and VOCs.

Facility Criteria Air Pollutant Emissions Sources
The source consists of the following emission units:

- Three (3) gas turbines/generators and duct/process burners (natural gas/fuel oil)
- Chlorine reduction burner (CRB), and associated equipment
- Riley Boiler, 60 MMBtu/hr (natural gas)
- Solar pond diesel engines, 30 engines rated between 90 and 420 hp
- Fire pump engine, one additional diesel engine rated at 292 hp

Facility Current Potential to Emit
The current PTE values for the Rowley Plant, as established by the most recent NSR permit issued to the source (DAQE-AN107160050-20) are as follows:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential to Emit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO2</td>
<td>24.10</td>
</tr>
<tr>
<td>NOx</td>
<td>1,260.99</td>
</tr>
</tbody>
</table>

US Magnesium Four-Factor Analysis Conclusion
This outlines USM's evaluation of possible retrofit options for all NOx emitting units onsite at their Rowley Plant located in Tooele County, Utah, in an attempt at reducing their NOx emissions facility wide and reducing their impact on visibility impairment issues. The results of this report found that it is potentially technologically and economically feasible to install a flue gas recirculation unit on the Riley boiler, reducing their NOx emissions by an estimated 22.6 tons annually. Aside from this change, there were currently no other technically or economically feasible options available for USM's Rowley Plant. Pending further technological and cost refinement, the implementation schedule for the installation of the FGR unit may be installed prior to the end of 2028. Therefore, the emissions for the 2028 modeling scenario could be an estimated 22.6 tons less than the 2018 baseline year NOx emissions.
UDAQ Evaluation

Several errors were made during the analysis of the various control options outlined in this document. While the errors ultimately do not change the outcome or results of the analysis, they should be corrected prior to final acceptance by DAQ. The following lists the errors noticed by DAQ and the resulting effect each error leads to in the final result:

Incorrect interest rate used for control cost calculation – rather than using the current bank prime rate of 3.25%, the source calculated all control costs with either an interest rate of 7% (used as the default in the control cost manual) or 5.5% (used as the default in the SCR control cost spreadsheet). Both calculations result in a higher control cost in $/ton. Second, the source used only a 20-year expected life for application of an SCR, which is lower than the standard 30-year lifespan. Again, this would artificially inflate the control cost by increasing the annualized cost. However, the overall cost of the SCR system as estimated by the source was lower than expected, with an initial cost of just $87,000. The low initial cost serves to lower the resulting control cost. DAQ reanalyzed the use of SCR on the Riley Boiler under two different scenarios. Under PTE, assuming full load, the application of SCR might be expected to remove as much as 188 tons of NOx at a control cost of $4,073/ton of NOx removed – assuming the same 90% removal efficiency as did the source. However, the Riley Boiler did not operate at that high an output level – reporting just 45.25 tons of actual emissions in 2018. Adjusting the emission reduction for 90% of the actual emissions gives a removal of 40.7 tons of NOx (as opposed to the 38 tons suggested by the source), at a control cost of $18,800/ton of NOx removed. Similar errors were made with respect to the FGR calculations on the Riley Boiler. The incorrect interest rate was used – 7% vs 3.25%. FGR systems typically have a potential lifespan of 15 years rather than the 20 years suggested by the source. DAQ recalculated the control costs correcting for these errors and obtained a modified value of 22.5 tons of NOx removed at a control cost of $1,880/ton of NOx removed. None of the other equipment requires additional evaluation, as each is currently well controlled. While the same types of errors were made in the source’s analysis, the resulting outcomes and conclusions remain unchanged. DAQ recommends that FGR be considered for retrofit control application on the Riley boiler. Should the source increase utilization of the Riley boiler, then the application of SCR should be considered.

US Magnesium’s Evaluation Response

US Magnesium re-evaluated the status of the Riley boiler and the Riley boiler NOx emission factor utilized in US Magnesium’s 2018 air emission inventory (AEI) that was the basis for the 4-factor analysis of that unit. In summary, the US Magnesium 2018 AEI grossly overstated the

178 UDAQ’s full evaluation of US Magnesium’s four-factor analysis submittal can be found in appendix C.5.B.G.2 or at: https://documents.deq.utah.gov/air-quality/planning/air-quality-policy/DAQ-2021-009628.pdf
179 US Magnesium’s full evaluation response can be found in appendix C.5.C.G.3 or at: https://documents.deq.utah.gov/air-quality/planning/air-quality-policy/regional-haze/DAQ-2021-011902.pdf
NOx emissions associated with the Riley boiler in two ways: 1) the Riley boiler is a 60 MMBTU boiler but the AP42 emission factor in the 2018 AEI is for a >100 MMBTU boiler, and 2) the Riley boiler, from the time of its installation, is outfitted with a low NOx burner, but the AP42 emission factor in the 2018 AEI is for an “uncontrolled burner.” The implications are summarized in the table below:

Table 64: US Magnesium’s Reevaluation of Riley Boiler Controls

<table>
<thead>
<tr>
<th>Riley Boiler 2018</th>
<th>NOx emission factor</th>
<th>AP 42 Table 1.4-1. Emission Factors for NOx and CO from Natural Gas Combustion</th>
<th>Estimated NOx emissions (TPY)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEI as submitted</td>
<td>190 lbs./MMscf</td>
<td>>100MMBTU (Large)</td>
<td>45.2499</td>
</tr>
<tr>
<td>AEI corrected for actual status of Riley boiler</td>
<td>50 lbs./MMscf</td>
<td><100MMBTU (Small)</td>
<td>Controlled - Low NOx burner</td>
</tr>
</tbody>
</table>

Corrected 2018 NOx emissions for the Riley boiler, implications on the 4-factor analysis:

- Using the same reductions assumed for FGR (up to 50% NOx), the estimated reduction would be about 6 tons/year.
- Using the same reductions assumed for SCR (up to 90% NOx), the estimated reduction would be about 10.7 tons/year.
- Using DAQ’s modified calculation for FGR: $1,880/ton * 22.5 tons = $42,000/yr. Correcting to 6 ton/yr reduction = $7,050/ton.
- Using DAQ’s modified calculation for SCR: $18,800/ton * 40.7 tons = $765,160/yr. Correcting to 11.9 ton/yr reduction = $64,300/ton.

UDAQ Response Conclusion

UDAQ does not agree with US Magnesium’s evaluation response. We do not possess any records of an LNB control on the Riley boiler. Using the original four-factor analysis submittal, FGR on the Riley boiler remains a cost-effective and viable control option. UDAQ would require proof of the existence of the LNB and its NOx removal efficacy before agreeing it is a satisfactory justification for altering the control cost calculations. Refer to section 8.D.6 to review UDAQ’s reasonable progress and controls determination for the Rowley Plant.

7.D UDAQ Four-Factor Analysis Summary

Add 4-factor analysis summary matrix to show that each have been addressed for all sources.
Chapter 8: Determination of Reasonable Progress Goals

8.A Reasonable Progress Requirements

The RHR requires Utah to submit a long-term strategy (LTS) that includes measures necessary to achieve the Reasonable Progress Goals (RPGs) in each CIA. This strategy must consider major and minor stationary sources, mobile sources, and area sources. Section 169A (a)(4) and other subsections of the Clean Air Act call for reasonable progress "toward meeting the national goal" of eliminating anthropogenic (manmade) impairment of visibility. Utah is required under the RHR to establish visibility deciview goals for each of its five CIAs that allow them to meet the RPGs towards natural visibility by 2064. RPGs are interim goals that represent incremental visibility improvement over time toward the goal of natural background conditions and are developed in consultation with FLMs and nearby affected states. In determining the criteria for reasonable progress, Utah was required under Section 169A(g) of the CAA to consider four factors: cost of compliance, the time necessary for compliance, energy and non-air environmental impacts of compliance, and the remaining useful life of existing sources that contribute to visibility impairment.180

8.B. Regional Modeling of the LTS to set RPGs

The RHR requires states to demonstrate progress every ten years toward the CAA goal of no manmade visibility impairment. WRAP conducted the modeling necessary to track this progress for Utah. EPA guidance for tracking visibility progress181 defines a visibility impairment tracking metric (measured in deciviews) using observations from the IMPROVE monitoring network sites that represent CIAs. EPA defined in the RHR and guidance a Uniform Rate of Progress (URP) glidepath for the 20% most impaired days as the straight line from the 2000-2004 IMPROVE 5-year average baseline to EPA estimates of future natural visibility conditions, plotted for 2064. In the first regional haze planning period, 2000-2018, EPA guidance182 defined most impaired days as those days with highest total haze. States were required to demonstrate visibility progress by 2018 compared to the URP glidepath for the haziest days and no degradation of visibility on the clearest days from the 2000-2004 IMPROVE 5-year average baseline. Visibility on the clearest days improved between 2000 and 2018 across the Class I areas in the western U.S. However, smoke from wildfire and wildland prescribed fire events and dust events on the haziest days made tracking the visibility benefits due to reducing U.S. anthropogenic emissions more difficult.

180 See 42 USC § 7492(g)(1).
182 The EPA Technical Guidance on Tracking Visibility Progress for the Second Implementation Period of the Regional Haze Program can be found at: https://www.epa.gov/sites/default/files/2018-12/documents/technical_guidance_tracking_visibility_progress.pdf
For the second regional haze implementation period, 2018-2028, states are required to demonstrate visibility progress by 2028 for the most impaired days and no visibility degradation for the clearest days. EPA guidance defined most impaired days as those days with the highest fractional contribution to aerosol light extinction from anthropogenic sources. EPA statistical methods use IMPROVE measurements of carbon and crustal materials to separate contributions from episodic extreme natural events (e.g., wildfire or dust) from routine natural and anthropogenic contributions. Ammonium sulfate and ammonium nitrate are assigned primarily to anthropogenic emissions with smaller contributions from routine natural sources. This statistical approach does not separate contributions due to U.S. anthropogenic emissions from those of international anthropogenic emissions. Since states do not have authority to reduce international emissions, WRAP conducted source apportionment modeling analyses to evaluate U.S. anthropogenic contributions to haze and progress in reducing U.S. anthropogenic contributions to haze over time.

8.C URP Glidepath Checks

These charts illustrate the Uniform Rate of Progress (URP) Glidepath, as defined by EPA guidance, compared to IMPROVE measurements for the period 2000-2018. The URP glidepath is constructed (in deciviews) for the 20% most impaired days (MID) or clearest days using observations from the IMPROVE monitoring site representing a Class I area. The URP glidepath starts with the IMPROVE MID for the 2000-2004 5-year baseline and draws a straight line to estimated natural conditions in 2064. For clearest days, the goal is no degradation of visibility from the 2000-2004 5-year baseline, therefore glidepath for clearest days is a straight line from the 2000-2004 baseline to 2064. In the second regional haze planning period, 2064 natural conditions estimates are the same as the 15-year average of natural conditions on most impaired days or clearest days in each year 2000-2014. IMPROVE annual average values are presented as points. IMPROVE 5-year average values are presented as solid lines covering the periods 2000-2004 and 2014-2018.

The 2028 On the Books (2028OTBa2) visibility projection in deciviews is illustrated as a point that can be compared to the Uniform Rate of Progress glidepath. UDAQ has chosen the “2028OTBa2 w/o fire” projection that excludes wildfire from MID to more accurately represent future emissions from sources. UDAQ is better able to control. This projection reduces the impact of elemental carbon and organic carbon from fires from the original 2028 EPA projection to remove additional fire impacts that were not fully eliminated by the move from haziest days metric (used during the first planning period) to most impaired days metric (used during the second planning period). The 2028OTBa2 visibility projection reflects Utah’s LTS, including the results of the reasonable progress determinations found in 8.D, with the exception of the anticipated 22.5 tons of NOx emissions reductions associated with the installation of FGRs.

184 40 C.F.R. § 51.308(f)(3)(i)
185 The EPA Guidance for Tracking Progress Under the Regional Haze Rule can be found at https://www.epa.gov/sites/default/files/2021-03/documents/tracking.pdf
controls on the Riley Boiler at U.S. Magnesium’s Rowley Plant. However, the resulting reduction in NO\textsubscript{x} emissions is a small percentage of Utah’s total 2028 NO\textsubscript{x} emissions. The 2028OTBa2 visibility projection also includes emissions from the now-closed Kennecott Power Plant, which was projected to have 1,152 tons of NO\textsubscript{x}, 2,152 tons of SO\textsubscript{2}, and 135 tons of PM\textsubscript{2.5} emissions in 2028. The omission of these emissions reductions in the 2028OTBa2 projection make our glidepath comparisons conservative, as actual 2028 visibility can be expected to improve due to lower emissions levels.

8.C.1 Bryce Canyon National Park

The 2000-2004 URP baseline in Bryce Canyon for MID is 8.4 dv. The 2014-2018 average observations for MID is 6.6, meaning visual range on the most impaired days has increased from 104.62 miles to 125.26 miles, an improvement of 20.64 miles. The projected visibility in 2028 without fire impacts is 6 dv, which, represented by the orange triangle on the graph, is below the URP glidepath. For clearest days, the 2000-2004 baseline for Bryce Canyon is 2.8 dv. The 2014-2018 average observations for clearest days are 1.5 dv meaning that visual range on the clearest days has increased from 183.16 miles to 208.59 miles, an increase of 25.43 miles. The projected 2028 visibility on clearest days is 1.2 dv, which, represented by the blue triangle, is below the no degradation limit for clearest days.

Figure 65: Projected 2028 RPG Bryce Canyon National Park
8.C.2 Canyonlands and Arches National Park

The 2000-2004 URP baseline in Canyonlands and Arches National Park for MID is 8.8 dv. The 2014-2018 average observations for MID is 6.8, meaning visual range on the most impaired days has increased from 100.52 miles to 122.78 miles, an improvement of 22.26 miles. The projected visibility for MID in 2028 without fire impacts is 6.2 dv, which is below the URP glidepath. For clearest days, the 2000-2004 baseline for Canyonlands and Arches is 3.7 dv. The 2014-2018 average observations for clearest days are 2.2 dv meaning that visual range on the clearest days has increased from 167.40 miles to 194.49 miles, an increase of 27.09 miles. The projected 2028 visibility on clearest days is 1.9 dv, which is also below the no degradation limit for clearest days.

Figure 66: Projected 2028 RPG Canyonlands and Arches National Parks
8.C.3 Capitol Reef National Park

The 2000-2004 URP baseline in Capitol Reef for MID is 8.8 dv. The 2014-2018 average observations for MID is 7.2, meaning visual range on the most impaired days has increased from 100.52 miles to 117.96 miles, an improvement of 17.44 miles. The projected visibility for MID in 2028 without fire impacts is 6.6 dv, which is below the URP glidepath. For clearest days, the 2000-2004 baseline for Capitol Reef is 4.1 dv. The 2014-2018 average observations for clearest days are 2.4 dv meaning that visual range on the clearest days has increased from 160.83 miles to 190.64 miles, an increase of 29.81 miles. The projected 2028 visibility on clearest days is 2.1 dv, which is below Capitol Reef’s no degradation limit for clearest days.

Figure 67: Projected 2028 RPG Capitol Reef National Park
8.C.4 Zion National Park

The 2000-2004 URP baseline in Zion National Park for MID is 10.4 dv. The 2014-2018 average observations for MID is 8.7, meaning visual range on the most impaired days has increased from 85.66 miles to 101.53 miles, an improvement of 15.87 miles. The projected visibility for MID in 2028 without fire impacts is 8.3 dv, which is below the URP glidepath. For Zion’s clearest days, the 2000-2004 baseline for is 4.5 dv. The 2014-2018 average observations for clearest days are 3.9 dv meaning that visual range on the clearest days has increased from 154.53 miles to 164.08 miles, an increase of 9.55 miles. The projected 2028 visibility on clearest days is 3.5 dv, which is below the no degradation limit for clearest days in Zion.

![Projected 2028 RPG Zion National Park](image)

Figure 68: Projected 2028 RPG Zion National Park
8.C.5 Summary of URP Glidepaths

The table below summarizes the information from Figures 65-68 above, comparing visibility on the most impaired and clearest days for the baseline, 2028 URP, and 2028 EPA w/o fire projection values for each of Utah’s CIAs in addition to stating whether the CIA is below the URP glidepath and no degradation line.

Table 65: Comparison of baseline, 2028 URP, 2028 EPA w/o fire projection for worst and clearest days

<table>
<thead>
<tr>
<th>CIA IMPROVE Site</th>
<th>WORST DAYS</th>
<th>CLEAREST DAYS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline (dv)</td>
<td>2028 URP (dv)</td>
</tr>
<tr>
<td>BRCA1</td>
<td>8.42</td>
<td>6.68</td>
</tr>
<tr>
<td>CANY1</td>
<td>8.79</td>
<td>6.92</td>
</tr>
<tr>
<td>CAPI1</td>
<td>8.78</td>
<td>6.87</td>
</tr>
<tr>
<td>ZICA1</td>
<td>10.40</td>
<td>8.35</td>
</tr>
</tbody>
</table>

8.D Reasonable Progress Determinations

The following sections contain UDAQ’s determinations on what controls are necessary for Utah’s CIAs to make reasonable progress in this implementation period. UDAQ believes these determinations will help protect reasonable further progress demonstration and visibility in Utah. All emissions limits, operating procedures, and compliance strategies for the following reasonable progress determinations which limit NOx, SO2, and PM are identified in SIP Subsection IX.H.21 and 23, which are made enforceable through EPA approval and incorporation into the Utah Air Quality Rules.

8.D.1 Reasonable Progress Determination for Ash Grove Cement Company – Leamington Cement Plant

Upon reviewing Ash Grove’s four-factor analysis for the Leamington Cement Plant and their evaluation response, UDAQ finds that it is adequately controlled for the purposes of the Second Implementation Period. UDAQ has determined that the existing SCNR control and emissions limits for the Leamington Cement Plant are effective measures necessary for reasonable progress in Utah’s Second Implementation Period of regional haze planning. The Leamington Cement Plant’s existing controls and emissions limits will be implemented and enforced through SIP Subsection IX.H.23 to ensure the plant will continue to implement existing measures and will not increase its emission rate. The plant already has SNCR installed and has provided this control’s efficiency data, which adheres to the plant’s current emissions limit. Refer to section 7.B.3 to review the four-factor analysis and evaluation response results for the Leamington Cement Plant.
8.D.2 Reasonable Progress Determination for Graymont Western US Incorporated – Cricket Mountain Plant

Upon reviewing the Graymont Western US Inc. four-factor analysis for their Cricket Mountain Plant and their evaluation response, UDAQ finds that additional controls are not required for reasonable progress in this implementation period based on their cost/ton and the potential proprietary costs of SNCR technology for the kilns. UDAQ has determined that the existing controls and emissions limits for the Cricket Mountain Plant are effective measures necessary for reasonable progress in Utah’s Second Implementation Period of regional haze planning. The Cricket Mountain Plant’s controls and emissions limits will be implemented and enforced through SIP Subsection IX.H.23 to ensure the plant will continue to implement existing measures and will not increase its emission rate. Refer to section 7.B.4 to review the four-factor analysis and evaluation response results for the Cricket Mountain Plant.

8.D.3 Reasonable Progress Determination for PacifiCorp: Hunter and Huntington Power Plants

Upon reviewing PacifiCorp’s four-factor analysis and evaluation response, UDAQ is establishing plantwide annual mass-based NOx emission limits. At the resulting utilization and emissions levels, UDAQ finds SNCR and SCR not to be cost-effective at this time due to the uncertainty associated with future utilization of both plants. Instead, UDAQ is establishing mass-based emissions limits that reflect recent actual emissions and the 2028 “on-the-books” emissions projections modeled by WRAP and used in Utah’s URP glidepath checks. UDAQ is also adding PacifiCorp’s existing SO2 emission limits from their Title V permit for all five units to ensure federal enforceability in the regional haze context. These emission limits are to be implemented and enforced through SIP Subsection IX.H.23 Part H.23 (d) and (e). Please refer to section 7.C.3 to view PacifiCorp’s and UDAQ’s complete analysis and conclusions.

8.D.4 Reasonable Progress Determination for Sunnyside Cogeneration Associated – Sunnyside Cogeneration Facility

Upon reviewing the Sunnyside Cogeneration Associated four-factor analysis and evaluation response containing corrections to their analysis of the Sunnyside Cogeneration Facility, UDAQ has found no cost-efficient control options for the facility for the purposes of the Second Implementation Period. UDAQ has determined that the existing controls and emissions limits for the Sunnyside Cogeneration Facility are effective measures necessary for reasonable progress in Utah’s Second Implementation Period of regional haze planning. The Sunnyside Cogeneration Facility’s controls and emissions limits will be implemented and enforced through SIP Subsection IX.H.23 to ensure the facility will continue to implement existing measures and will not increase its emission rate. Refer to section 7.B.6 to review the four-factor analysis and evaluation response results for the Sunnyside Power Plant.

8.D.5 Reasonable Progress Determination for US Magnesium LLC – Rowley Plant

Upon reviewing US Magnesium LLC’s four factor analysis for their Rowley Plant, UDAQ does not agree with its assessment of an LNB on the Riley Boiler. UDAQ has no record of the
existence of an LNB on this unit or it’s NOx reducing efficacy. UDAQ therefore refers to US Magnesium’s original four-factor analysis submittal information suggesting that FGR is a cost-effective and viable control option for the Riley Boiler. UDAQ recommends the installation of FGR on the Riley Boiler to ensure that Utah makes reasonable progress in this implementation period. UDAQ has also determined that the existing controls and emissions limits for the Rowley Plant are measures necessary for reasonable progress in Utah’s Second Implementation Period of regional haze planning to ensure the plant will continue to implement existing measures and will not increase its emission rate. Implementation of these control determinations is to be enforced through SIP Subsection IX.H.23 Part H.23 (d). Refer to section 7.B.7 to review the four-factor analysis and evaluation response results for the Rowley Plant.

8.D.6 Intermountain Power Service Corporation – Intermountain Generation Station

As discussed in section 7.A.2, the planned replacement of the IGS coal-fired units with an EPS-compliant combined-cycle natural gas plant is expected to dramatically decrease regional haze-causing pollutants (PM, SO2, and NOx). Though the coal-fire units are expected to cease operation by mid-2025, UDAQ has established a firm closure date of no later than December 31, 2027 to ensure that the coal-fired units at IGS will not continue operation beyond the conclusion of the second implementation period while allowing flexibility for closing the plant in addition to rescinding its permit and approval order. UDAQ has also determined that the existing controls and emissions limits for IGS are measures necessary for reasonable progress in Utah’s Second Implementation Period of regional haze planning to ensure the plant will continue to implement existing measures and will not increase its emission rate. The implementation of this IGS closure and its existing control measures are to be enforced through SIP Subsection IX.H.23 Part H.23 (a).
Chapter 9: Consultation, Public Review, Commitment to further Planning

9.A Federal requirements

In developing each reasonable progress goal, Utah must consult with those States which may reasonably be anticipated to cause or contribute to visibility impairment in CIAs within Utah.\(^{186}\) Where the State has emissions that are reasonably anticipated to contribute to visibility impairment in any mandatory Class I Federal area located in another State, Utah must consult with the other State(s) in order to develop coordinated emission management strategies.\(^{187}\) Utah must demonstrate that it has included in its implementation plan all measures agreed to during state-to-state consultations or a regional planning process, or measures that will provide equivalent visibility improvement and document all substantive interstate consultations.\(^{188}\) Utah must also provide the FLMs with an opportunity for consultation no less than 60 days prior to the SIP public hearing or public commenting opportunity.\(^{189}\) This consultation must include the opportunity for FLMs to discuss their assessment of the visibility impairment at CIAs and their recommendations on the development and implementation of strategies to address visibility impairment.\(^{190}\) Utah must include a description in their implementation period of how it addressed any comment provided by FLMs.\(^{191}\)

9.B Interstate Consultation

Throughout the second implementation period, Utah has met regularly with its surrounding states. Utah also participates in WESTAR Planning Committee and Four Corners meetings for state RH planning coordination. Table 66 includes a summary of interstate meetings UDAQ took part of. See Appendix B for further documentation of interstate consultation and agreements. UDAQ conducted further consultation and SIP review of the second implementation period status of the non-Utah sources identified in UDAQ’s WEP analysis and included this information in Table 67 to Table 68. As shown, all out-of-state sources identified by UDAQ’s WEP analysis of Utah’s CIAs are either:

- outside state jurisdiction,
- have Q/d values too low to be screened in by the state,
- were screened out due to effective Round 1 BACT controls, or
- are subject to controls or closure in this implementation period.

\(^{186}\) See 40 CFR § 51.308 (d)(1)(iv)
\(^{187}\) See id., § 51.308 (d)(3)(i)
\(^{188}\) See id., § 51.308 (f)(2)(ii)(C)
\(^{189}\) See id., § 51.308 (i)(ii)(2)
\(^{190}\) See id., § 51.308 (i)(ii)(2)
\(^{191}\) See id., § 51.308 (i)(4)
Table 66: Summary of Interstate Meetings with UDAQ

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Entity</th>
<th>Topic</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/28/2021</td>
<td>10-11a</td>
<td>Wyoming</td>
<td>Wyoming and Utah Regional Haze Second Planning Period Update</td>
<td>Debrief after PacifiCorp meeting. Shared draft Montana SIP with Wyoming. They shared their draft SIP with us. We offered ours as soon as it is more complete.</td>
</tr>
<tr>
<td>4/30/2021</td>
<td>1-2:30p</td>
<td>Four Corners’ States</td>
<td>Regional Haze Consultations</td>
<td>Four corners states do not expect to require other states to enforce controls for emissions affecting their Class I Areas. NM discussed in length where they are in their SIP writing process.</td>
</tr>
<tr>
<td>5/5/2021</td>
<td>9-9:30a</td>
<td>Wyoming</td>
<td>WY-UT RH Coordination Call</td>
<td>Discussion emissions affecting the other state.</td>
</tr>
<tr>
<td>5/5/2021</td>
<td>2-4p</td>
<td>WESTAR</td>
<td>Regional Haze Results Meeting #9</td>
<td>Discussion of different modeling resources available and uses.</td>
</tr>
<tr>
<td>5/6/2021</td>
<td>2-3p</td>
<td>WESTAR</td>
<td>WESTAR Planning Committee Call</td>
<td>RH updates and deadline considerations.</td>
</tr>
<tr>
<td>5/12/2021</td>
<td>2:30-3:30p</td>
<td>New Mexico</td>
<td>NM-UT DEQ Regional Haze Consultation</td>
<td>NM described their SIP writing process and showed us the modeling tools they plan to use for the out of state emissions section. We offered to exchange draft SIPs.</td>
</tr>
<tr>
<td>6/1/2021</td>
<td>1:30-2p</td>
<td>Colorado</td>
<td>CO-UT Regional Haze Consultation</td>
<td>Discussed controls implementation.</td>
</tr>
<tr>
<td>9/9/2021</td>
<td>12-12:30p</td>
<td>Arizona</td>
<td>UT-AZ RH Consultation</td>
<td>Neither state is looking for additional controls in the other. Consulted about interest rates and control cost thresholds.</td>
</tr>
<tr>
<td>10/15/2021</td>
<td>10-11a</td>
<td>New Mexico</td>
<td>Control Cost Consultation</td>
<td>Discussed control cost thresholds and justification.</td>
</tr>
<tr>
<td>11/04/2021</td>
<td>2-3p</td>
<td>WESTAR</td>
<td>Planning Committee Meeting</td>
<td>Discussed RH updates and interstate consultation documentation emails.</td>
</tr>
<tr>
<td>11/08/2021</td>
<td>1-2p</td>
<td>Wyoming</td>
<td>RH Controls Implementation Consultation</td>
<td>Discussed sources and controls implementation.</td>
</tr>
<tr>
<td>11/15-16/2021</td>
<td>10a-4p</td>
<td>4 Corners</td>
<td>Annual AQ Meeting</td>
<td>Participated in giving RH updates with other 4 corners states.</td>
</tr>
<tr>
<td>1/7/22</td>
<td>10-11a</td>
<td>New Mexico</td>
<td>WEP Analysis Consultation</td>
<td>Discussed WEP analysis methodologies and CAMx photochemical low-level source apportionment.</td>
</tr>
<tr>
<td>1/13/22</td>
<td>1:30-3p</td>
<td>WVPPI</td>
<td>Western Visibility Protection and</td>
<td>Discussion of the key components of Section 169a of the CAA.</td>
</tr>
<tr>
<td>Date</td>
<td>Time</td>
<td>Group/Meeting</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-------</td>
<td>---------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>2/10/22</td>
<td>1:30-3p</td>
<td>WVPPI</td>
<td>Western Visibility Protection and Planning Initiative discussed, RH history, the relationship between reasonable progress and long-term strategies. Utah volunteered to help plan an in-person meeting between states, FLMs, and EPA.</td>
<td></td>
</tr>
<tr>
<td>2/24/22</td>
<td>1-2p</td>
<td>RHPWG</td>
<td>Regional Haze Planning Work Group Discussed the NGO actions letter submitted to EPA and 60-day notice to file suit.</td>
<td></td>
</tr>
<tr>
<td>3/3/22</td>
<td>2-3p</td>
<td>WESTAR</td>
<td>Planning Committee Discussed RH updates.</td>
<td></td>
</tr>
<tr>
<td>3/10/22</td>
<td>1:30-3p</td>
<td>WVPPI</td>
<td>Western Visibility Protection and Planning Initiative States discussed reasonable progress and long-term strategies.</td>
<td></td>
</tr>
<tr>
<td>4/5-4/7/22</td>
<td>8a-5p</td>
<td>WESTAR/WRAP</td>
<td>Spring Meeting States presented on air quality, visibility, and wildfire modeling and updates.</td>
<td></td>
</tr>
<tr>
<td>4/13/22</td>
<td>1:30-3p</td>
<td>WVPPI</td>
<td>Western Visibility Protection and Planning Initiative States discussed how reasonable progress can be determined and challenges faced by states whose largest sources of impairment are not anthropogenic sources.</td>
<td></td>
</tr>
<tr>
<td>4/14/22</td>
<td>2-3p</td>
<td>WESTAR</td>
<td>Planning Committee States gave RH updates.</td>
<td></td>
</tr>
<tr>
<td>5/5/22</td>
<td>2-3p</td>
<td>WESTAR</td>
<td>Planning Committee States discussed visibility modeling strategies</td>
<td></td>
</tr>
<tr>
<td>5/12/22</td>
<td>1:30-3p</td>
<td>WVPPI</td>
<td>Western Visibility Protection and Planning Initiative States discussed how to incorporate EJ into RH planning.</td>
<td></td>
</tr>
<tr>
<td>6/9/22</td>
<td>2-3p</td>
<td>WESTAR</td>
<td>Planning Committee States were updated by the WRAP work groups.</td>
<td></td>
</tr>
<tr>
<td>6/16/22</td>
<td>2-3:30p</td>
<td>WVPPI</td>
<td>Western Visibility Protection and Planning Initiative States discussed challenges with incorporating EJ into RH planning due to a lack of guidance on how to address or make decisions considering EJ in visibility standards for CIAs.</td>
<td></td>
</tr>
<tr>
<td>6/21/22</td>
<td>Various</td>
<td>CA, CO, NM, and NV</td>
<td>RH SIP Controls UDAQ corresponded with neighbor states inquiring the controls status of non-UT sources ranking in WEP analysis for UT CIAs.</td>
<td></td>
</tr>
</tbody>
</table>
Table 67: Second Implementation Period Status of Non-Utah Sources Identified in NOx WEP Analysis

<table>
<thead>
<tr>
<th>Facility Name</th>
<th>Source State</th>
<th>Utah CIA</th>
<th>WEP Nox Rank</th>
<th>NOx Q/d</th>
<th>WEP_NO3 (% of total)</th>
<th>Four-Factor Analysis? (Y/N)</th>
<th>Proposed Controls</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bonanza</td>
<td>TR</td>
<td>CANY1</td>
<td>3</td>
<td>30.8</td>
<td>59,301.8 (6.4%)</td>
<td>N</td>
<td></td>
<td>Likely closure in 2030 due to settlement</td>
</tr>
<tr>
<td>McCarran Intl</td>
<td>NV</td>
<td>ZICA1</td>
<td>3</td>
<td>11.1</td>
<td>9,235.4 (3.7%)</td>
<td>N</td>
<td></td>
<td>Majority of NOx emissions from non-road sources (aircraft take-offs and landings)</td>
</tr>
<tr>
<td>PNM - San Juan Generating Station</td>
<td>NM</td>
<td>CANY1</td>
<td>4</td>
<td>33.7</td>
<td>47,113.4 (5.1%)</td>
<td>Y</td>
<td>TBD, NM has not finalized their second implementation period draft</td>
<td>Subject to four-factor analysis in NM’s draft SIP. PNM has announced plant closure in 2022</td>
</tr>
<tr>
<td>Four Corners Power Plant</td>
<td>TR</td>
<td>CANY1</td>
<td>6</td>
<td>17.8</td>
<td>24,859.3 (2.2%)</td>
<td>N</td>
<td></td>
<td>APS has announced plant closure in 2031</td>
</tr>
<tr>
<td>Pg&E Topock Compressor Station</td>
<td>CA</td>
<td>ZICA1</td>
<td>6</td>
<td>3.2</td>
<td>7,620.0 (3.1%)</td>
<td>N</td>
<td></td>
<td>Not subject to four-factor analysis in CA’s proposed SIP due to low NOx Q/d</td>
</tr>
<tr>
<td>Chaco Gas Plant</td>
<td>NM</td>
<td>CANY1</td>
<td>8</td>
<td>7.8</td>
<td>14,056.2 (1.5%)</td>
<td>N</td>
<td></td>
<td>Not subject to four-factor analysis in NM’s proposed SIP</td>
</tr>
<tr>
<td>Bonanza</td>
<td>TR</td>
<td>CAPI1</td>
<td>8</td>
<td>21.9</td>
<td>9,450.1 (1.1%)</td>
<td>N</td>
<td></td>
<td>Likely closure in 2030 due to settlement</td>
</tr>
<tr>
<td>Lhoist North America and Granite Const. (Apex)</td>
<td>NV</td>
<td>ZICA1</td>
<td>9</td>
<td>7.5</td>
<td>7,041.9 (2.8%)</td>
<td>Y</td>
<td></td>
<td>Not subject to four-factor analysis in AZ’s proposed SIP due to Round 1 BART FIP controls</td>
</tr>
<tr>
<td>RED ROCK GATHERING-PREMIE BAR X C.S.</td>
<td>CO</td>
<td>CANY1</td>
<td>10</td>
<td>0.6</td>
<td>11,567.0 (1.3%)</td>
<td>N</td>
<td></td>
<td>Not subject to four-factor analysis in CO’s proposed SIP due to low NOx Q/d</td>
</tr>
</tbody>
</table>

Table 68: Second Implementation Period Status of Non-Utah Sources Identified in SO2 WEP Analysis

<table>
<thead>
<tr>
<th>Facility Name</th>
<th>Source State</th>
<th>Utah CIA</th>
<th>Rank</th>
<th>SO2 Q/d</th>
<th>WEP_SO2 (% of Total)</th>
<th>Four-Factor Analysis Y/N</th>
<th>Proposed New Controls</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEMICAL LIME NELSON PLANT</td>
<td>AZ</td>
<td>BRCA1</td>
<td>1</td>
<td>8</td>
<td>43,684.7 (21.8%)</td>
<td>N</td>
<td></td>
<td>Not subject to four-factor analysis in AZ’s proposed SIP due to Round 1 BART FIP controls</td>
</tr>
<tr>
<td>CHEMICAL LIME NELSON PLANT</td>
<td>AZ</td>
<td>ZICA1</td>
<td>1</td>
<td>10.9</td>
<td>38,687.4 (24.8%)</td>
<td>N</td>
<td></td>
<td>Not subject to four-factor analysis in AZ’s proposed SIP due to Round 1 BART FIP controls</td>
</tr>
<tr>
<td>ASARCO LLC - HAYDEN SMELTER</td>
<td>AZ</td>
<td>ZICA1</td>
<td>3</td>
<td>6</td>
<td>6,672.2 (4.3%)</td>
<td>N</td>
<td></td>
<td>Not subject to four-factor analysis in AZ’s proposed SIP due to Round 1 BART FIP controls</td>
</tr>
<tr>
<td>Four Corners Power Plant</td>
<td>TR</td>
<td>CANY1</td>
<td>4</td>
<td>11.1</td>
<td>32,557.0 (8.0%)</td>
<td>N</td>
<td></td>
<td>APS has announced plant closure in 2031</td>
</tr>
<tr>
<td>CHEMICAL LIME NELSON PLANT</td>
<td>AZ</td>
<td>CAPI1</td>
<td>4</td>
<td>5.7</td>
<td>25,448.1 (6.4%)</td>
<td>N</td>
<td></td>
<td>Not subject to four-factor analysis in AZ’s proposed SIP due to Round 1 BART FIP controls</td>
</tr>
<tr>
<td>McCarran Intl</td>
<td>NV</td>
<td>ZICA1</td>
<td>4</td>
<td>1.2</td>
<td>4,713.6 (3.0%)</td>
<td>N</td>
<td></td>
<td>Majority of NOx emissions from non-road sources</td>
</tr>
<tr>
<td>Location</td>
<td>Source</td>
<td>Location</td>
<td>Location</td>
<td>Source</td>
<td>Limits</td>
<td>Violation</td>
<td>N / Y</td>
<td>Notes</td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>----------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>------------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>ASARCO LLC - HAYDEN SMELTER</td>
<td>AZ</td>
<td>BRCA1</td>
<td>5</td>
<td>5.8</td>
<td>14,391.7 (7.2%)</td>
<td>N</td>
<td>Not subject to four-factor analysis in AZ’s proposed SIP due to Round 1 BART FIP controls</td>
<td></td>
</tr>
<tr>
<td>ASARCO LLC - HAYDEN SMELTER</td>
<td>AZ</td>
<td>CAPI1</td>
<td>6</td>
<td>5.2</td>
<td>10,351.8 (2.6%)</td>
<td>N</td>
<td>Not subject to four-factor analysis in AZ’s proposed SIP due to Round 1 BART FIP controls</td>
<td></td>
</tr>
<tr>
<td>Phoenix Sky Harbor Intl</td>
<td>AZ</td>
<td>ZICA1</td>
<td>6</td>
<td>0.6</td>
<td>4,554.6 (2.9%)</td>
<td>N</td>
<td>Majority of NOx emissions from non-road sources (aircraft take-offs and landings)</td>
<td></td>
</tr>
<tr>
<td>Four Corners Power Plant</td>
<td>TR</td>
<td>BRCA1</td>
<td>7</td>
<td>7.4</td>
<td>5,413.2 (2.7%)</td>
<td>N</td>
<td>APS has announced plant closure in 2031</td>
<td></td>
</tr>
<tr>
<td>TUCSON ELECTRIC POWER CO - SPRINGERVILLE</td>
<td>AZ</td>
<td>CANY1</td>
<td>7</td>
<td>15.1</td>
<td>13,923.7 (3.4%)</td>
<td>Y</td>
<td>SO2 Limits for Units 1 & 2: a) 16.1 tons SO2/day based on a daily rolling 20-calendar day average. b) 3,729 tons SO2/12-month rolling total</td>
<td>New SO2 limits for units 1 & 2 included in AZ’s proposed SIP [CC2]</td>
</tr>
<tr>
<td>California Portland Cement Co.</td>
<td>CA</td>
<td>ZICA1</td>
<td>7</td>
<td>2.8</td>
<td>4,038.8 (2.6%)</td>
<td>N</td>
<td>Not subject to four-factor analysis in CA’s proposed SIP not required because it is subject to AB 617 which requires local air districts to evaluate large stationary sources to ensure reasonable controls are installed.</td>
<td></td>
</tr>
<tr>
<td>CHEMICAL LIME NELSON PLANT</td>
<td>AZ</td>
<td>CANY1</td>
<td>8</td>
<td>4.6</td>
<td>13,409.0 (3.3%)</td>
<td>N</td>
<td>Not subject to four-factor analysis in AZ’s proposed SIP due to Round 1 BART FIP controls</td>
<td></td>
</tr>
<tr>
<td>Republic Services Sunrise</td>
<td>NV</td>
<td>ZICA1</td>
<td>8</td>
<td>1</td>
<td>4,025.8 (2.6%)</td>
<td>N</td>
<td>Not subject to four-factor analysis in NV’s proposed SIP due to low Q/d</td>
<td></td>
</tr>
<tr>
<td>TUCSON ELECTRIC POWER CO - SPRINGERVILLE</td>
<td>AZ</td>
<td>BRCA1</td>
<td>9</td>
<td>15.4</td>
<td>3,654.7 (1.8%)</td>
<td>Y</td>
<td>SO2 Limits for Units 1 & 2: a) 16.1 tons SO2/day based on a daily rolling 20-calendar day average. b) 3,729 tons SO2/12-month rolling total</td>
<td>New SO2 limits for units 1 & 2 included in AZ’s proposed SIP [CC1]</td>
</tr>
<tr>
<td>Bonanza</td>
<td>TR</td>
<td>CANY1</td>
<td>9</td>
<td>6.9</td>
<td>11,908.4 (2.9%)</td>
<td>N</td>
<td>Likely closure in 2030 due to settlement</td>
<td></td>
</tr>
<tr>
<td>NORTH VALMY GENERATING STATION</td>
<td>NV</td>
<td>CAPI1</td>
<td>9</td>
<td>4</td>
<td>5,620.2 (1.4%)</td>
<td>Y</td>
<td>Permanent closure of units 1 and 2 by 12/31/28</td>
<td>NV’s proposed SIP includes a federally enforceable closure date of 12/31/28</td>
</tr>
<tr>
<td>TUCSON ELECTRIC POWER CO - SPRINGERVILLE</td>
<td>AZ</td>
<td>ZICA1</td>
<td>9</td>
<td>14.5</td>
<td>3,447.7 (2.2%)</td>
<td>Y</td>
<td>SO2 Limits for Units 1 & 2: a) 16.1 tons SO2/day based on a daily rolling 20-calendar day average. b) 3,729 tons SO2/12-month rolling total</td>
<td>New SO2 limits for units 1 & 2 included in AZ’s proposed SIP</td>
</tr>
</tbody>
</table>
Phoenix Sky Harbor Int'l

<table>
<thead>
<tr>
<th>Entity</th>
<th>AZ</th>
<th>BRCA1</th>
<th>10</th>
<th>0.6</th>
<th>3,615.9 (1.8%)</th>
<th>Majority of NOX emissions from non-road sources (aircraft take-offs and landings)</th>
</tr>
</thead>
</table>

PNM - San Juan Generating Station

<table>
<thead>
<tr>
<th>Entity</th>
<th>NM</th>
<th>CANY1</th>
<th>10</th>
<th>3.7</th>
<th>10,995.1 (2.7%)</th>
<th>Y</th>
<th>Subject to four-factor analysis in NM’s draft SIP. PNM has announced plant closure in 2022</th>
</tr>
</thead>
</table>

Bonanza

<table>
<thead>
<tr>
<th>Entity</th>
<th>TR</th>
<th>CAPI1</th>
<th>10</th>
<th>4.9</th>
<th>4,809.0 (1.2%)</th>
<th>Likely closure in 2030 due to settlement</th>
</tr>
</thead>
</table>

9.C Documentation of Federal Land Manager consultation and commitment to continuing consultation

UDAQ continuously met with the FLMs throughout the second implementation period planning process. A summary of the meetings UDAQ held with the FLMs is outlined in the table below. UDAQ will continue to consult and collaborate with the FLMs in its future regional haze planning efforts.

Table 69: Summary of FLM Meetings with UDAQ

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Entity</th>
<th>Topic</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/5/21</td>
<td>8-9a</td>
<td>Utah DEQ/US Forest Service</td>
<td>Prescribed Fire and Regional Haze</td>
<td>Brief history of Utah’s smoke management program and policy regarding it.</td>
</tr>
<tr>
<td>5/6/21</td>
<td>1-1:30p</td>
<td>FLM</td>
<td>FLM/UT – Regional Haze Check-In</td>
<td>Updated FLMs on timeline and current RH SIP progress. They informed us on their view that visibility should not be main focus of 2nd planning period and to follow the rule more than the guidance document. They are primarily concerned about 4-factor analyses.</td>
</tr>
<tr>
<td>6/22/21</td>
<td>12-12:30p</td>
<td>US Forestry Service - Ples Mcneel</td>
<td>RH update, introductions</td>
<td>Introduction to Ples Mcneel. Wants to be included in updates to FLMs and Paul Corrigan.</td>
</tr>
<tr>
<td>10/12/21</td>
<td>12-11a</td>
<td>NPS</td>
<td>Regional Haze Update/Timeline change</td>
<td>Discussed RH SIP draft submittal.</td>
</tr>
<tr>
<td>2/9/22</td>
<td>11:30a-1p</td>
<td>NPS</td>
<td>NPS UT Regional Haze Consultation</td>
<td>NPS presented UDAQ with the results of their 60-day review period</td>
</tr>
<tr>
<td>2/23/22</td>
<td>11a-12p</td>
<td>USFS – Ples Mcneel and Paul Corrigan</td>
<td>Rx Fire Endpoint Adjustments</td>
<td>Discussed the Rx fire endpoint adjustments available to Utah.</td>
</tr>
<tr>
<td>3/13/22</td>
<td>1:04p</td>
<td>NPS</td>
<td>RH Public Comment Schedule</td>
<td>Corresponded via email on the public comment process for UT’s RH SIP.</td>
</tr>
<tr>
<td>5/2/22</td>
<td>9:56a</td>
<td>NPS</td>
<td>Appendix D.2.C</td>
<td>Provided PDF version of appendix D.2.C via email.</td>
</tr>
</tbody>
</table>
9.C.1 FLM SIP Review\(^{192}\)

UDAQ submitted its draft RH SIP for the second implementation period to the NPS on December 7\(^{th}\), 2021 and the USFS on December 15\(^{th}\), 2021. On February 14\(^{th}\), NPS and USFS provided UDAQ with their respective SIP reviews which can be found in Appendix D. Documentation of the public notice published by UDAQ on its website from April 25\(^{th}\) to June 2\(^{nd}\), 2022 can be found in Appendix F.

9.C.2 NPS Feedback Summary and UDAQ Responses\(^{193}\)

1. In general, NPS agrees that Utah’s source selection process resulted in a reasonable subset of sources to evaluate in the draft SIP. Utah’s recommendation to use a lower emission over distance threshold of six versus ten—as recommended by the WRAP—is more rigorous and resulted in a reasonable selection of facilities for evaluation.

2. UDAQ has not identified a cost threshold under which the evaluated controls would be considered reasonable. Many of the controls identified in the four-factor analyses for Utah sources are cost-effective based on cost criteria/thresholds identified by other states. NPS also feels that PacifiCorp should be subject to a higher cost threshold due to their plant’s proximity to Utah’s CIAs. The SIP should document the full rationale upon which the reasonable progress decisions are based.

UDAQ Response: UDAQ will not be establishing a control cost threshold at this time. Please refer to chapter 8 for Utah’s reasonable progress determinations for the second implementation period and the accompanying justifications, which UDAQ believes are sufficient.

192 See Appendix D for all FLM RH SIP review documents
193 See Appendix D.1 and D.2 to view the full NPS review of Utah’s RH SIP and supporting cost analyses
3. NPS recommends that UDAQ require all technically feasible, cost-effective controls identified through four-factor analysis in this planning period.

UDAQ Response: UDAQ has required all controls it has deemed technically feasible and cost effective. Please refer to the updated part H language in Appendix A to view the enforceable actions resulting from UDAQ's reasonable progress determinations for the purposes of the second implementation period.

4. In the draft SIP UDAQ writes that “Utah has analyzed the WRAP photochemical modeling for OTB 2028 and found that emissions from Utah do not significantly impact visibility at CIAs in other states.” While it does not appear that this conclusion impacted the source selection process, it is not clear how Utah used this conclusion or whether it influenced their control technology determinations. NPS believes UDAQ’s conclusion is not compatible with their findings regarding the impact of Utah sources in Class I areas of neighboring states, and NPS recommends that UDAQ revise this section of the draft SIP by using a 1% threshold for determining significant impacts.

UDAQ Response: Section 6.A.2 has been revised in response to this comment.

5. Utah requested more information regarding where Utah stands in terms of RAVI for Class I areas. RAVI is a separate process from periodic SIP revisions. This avenue is rarely used by the FLMs to address specific sources causing visibility impairment at Class I areas. The NPS will not likely pursue RAVI certification unless the approaches identified in the periodic SIP revisions do not adequately address documented impairment.

6. UDAQ asked for feedback on using prescribed fire data from USFS to adjust projections. NPS does not take a position on the adjustment of glidepath end points for prescribed fire. We support UDAQ’s determination to not use glidepath adjustments for estimated contributions from international emissions.

7. In Table 27: Sources initially selected to perform a Four-Factor analysis in draft SIP, section 7.A.1, NPS recommends identifying the nearest Class I area referenced in the “distance to nearest Class I area” column.

UDAQ Response: A column identifying the nearest CIA has been added to Table 27 in section 7.A.1.
8. In section 8.D.6 there appears to be a typographical error listing Intermountain Generation Station closing in 2017.

UDAQ Response: The typographical error in section 8.D.6 has been fixed and the closing year for IGS now reads as 2027.

9. NPS recommends UDAQ revise the permit limits for the Paradox Resources Lisbon Natural Gas Processing Plant to reflect the assumptions used to exclude this facility from four-factor analysis. NPS also recommends including the plant’s recent actual emissions data in the SIP.

UDAQ Response: UDAQ has contacted Paradox Resources and is in the process of obtaining information from them that will be available for review in this SIP after the public commenting period when the SIP is brought to the AQB again. UDAQ has received 2021 inventory data for the Lisbon Plant and created an emissions summary with resulting Q/d values in section 7.A.2.

10. NPS recommends that UDAQ conducts or requires a four-factor analysis for the Intermountain Power Intermountain Generation Station exploring opportunities to improve the efficiency of the existing SO2 scrubbers considering NOx emissions for the remaining useful life of the facility.

UDAQ Response: UDAQ has been in contact with IGS concerning this matter. UDAQ believes the station’s existing SO2 scrubbers are sufficient and that the plant is well controlled. UDAQ has also included IGS’s 2028 closure in the proposed part H language for this SIP located in Appendix A, which would make the closure federally enforceable.

11. NPS requests that UDAQ provide a breakdown of emissions from the Kennecott units the state can regulate versus those it cannot regulate. UDAQ should explain how its PM2.5 SIP includes in-use requirements for this equipment.

UDAQ Response: Section 7.A.2 was revised and a breakdown of Kennecott’s emissions was included in response to this comment.

12. NPS recommends that UDAQ reduce haze causing SO2 emissions from Hunter and Huntington facilities by requiring an evaluation of SO2 scrubber optimization and potential efficiency improvements and implement any technically feasible and cost-effective options identified.

UDAQ Response: PacifiCorp has provided additional information concerning their existing SO2 scrubbing. The existing FGD SO2 controls at the Hunter and Huntington

194 Please refer to Appendix D.2.C to view PacifiCorp’s document on Regional Haze Second Planning Period Issues Regarding SO2 Controls for PacifiCorp’s Power Plants
power plants all have control efficiencies of at least 90% and each unit at these plants are subject to an SO₂ emissions limit of 0.12 lb/mmBtu through their respective Title V permits. It is PacifiCorp’s stance that these controls are running as efficiently as possible and there are no cost-efficient upgrades available. The “RPELs” proposed in PacifiCorp’s original four-factor analysis “combined operational adjustments (such as reduced until utilization) with incremental capital and O&M costs”. Additionally, PacifiCorp cited EPA’s 2019 “Guidance on Regional Haze State Implementation Plans for the Second Implementation Period” (“2019 Guidance”) which recognizes that it “may be reasonable for a state not to select an effectively controlled source. A source may already have effective controls in place as a result of a previous regional haze SIP or to meet another CAA requirement.”

UDAQ is adding the existing SO₂ emission limits for all five units to SIP Section IX.H23, Source Specific Emission Limitations: Regional Haze Requirements, Reasonable Progress Controls, to ensure federal enforceability of PacifiCorp’s SO₂ limits in the regional haze context. Section 7.C.3 has been revised to include this information and additional discussion in response to this NPS comment.

13. NPS generally agrees with UDAQ’s revisions to PacifiCorp’s NOₓ control technology cost analyses and used similar adjustments in their cost assessments. NPS also agrees with UDAQ that PacifiCorp’s demonstration that the interest rate of 7.303% is their site-specific value and appropriate for use in their four-factor analyses.

14. NPS shares UDAQ’s concerns with PacifiCorp’s RPEL recommendation and support UDAQ’s rejection of this proposal. RPEL would essentially be a “paper” reduction in emissions that would not reduce haze-causing emissions affecting visibility in Utah’s CIAs.

15. NPS suggest that UDAQ could consider environmental co-benefits of NOₓ emission reduction as part of this factor. NOₓ is an ozone pre-cursor emission and ozone is known to affect both human and ecosystem health.

UDAQ Response: UDAQ recognizes the co-benefits associated with pollutant emissions reductions and may highlight these benefits in the final draft of this SIP. However, UDAQ also recognizes the four-factor analysis being the primary decision-making tool in this second implementation period and other benefits do not necessarily impact UDAQ’s reasonable progress determinations.

196 Please refer to section 7.B to view the four factors used to determine control feasibility in this implementation period.
16. NPS believes the cost of controls for the Sunnyside Cogeneration Facility are more economical than the company’s estimates based on their calculations derived from the EPA Control Cost Manual. NPS disagrees with Sunnyside’s use of a 7% interest rate and recommends UDAQ consider their control costs using the bank prime interest rate of 3.25%.

UDAQ Response: Sunnyside Cogeneration provided additional justification found in Appendix D.2.A for the 7% interest rate they used in their control cost analysis. This rate was supported by a variety of institutions and most closely matched the financial indicators known by Sunnyside. UDAQ agrees with the final iterations of Sunnyside’s estimated control costs.

17. NPS does not believe that Sunnyside has provided sufficient justification to exclude dry sorbent injection technology as technically feasible.

UDAQ Response: UDAQ has requested additional information regarding the feasibility and cost-effectiveness of dry sorbent injection technology from Sunnyside which has been included in Appendix D.2.G. and will include their response in the final draft of this SIP.

18. NPS’s review of the Ash Grove Leamington Cement Plant suggests potential improvements may be available for their existing SNCR system. NPS recommends UDAQ request further evaluation of this opportunity to reduce NOx emissions from the facility.

UDAQ’s Response: In response to UDAQ’s four-factor analysis evaluation, Ash Grove provided additional information on the efficiency of their SNCR system. Based on this information, UDAQ believes this facility is well controlled for the purposes of this implementation period.

19. NPS’s review of the Graymont Cricket Mountain Plant finds that their permitted emissions levels are significantly higher than their recent emissions levels. NPS believes the costs of controls would be more cost effective if emissions increased to permitted levels. NPS recommends UDAQ consider tightening permitted emissions limits for NOx and SO2 to reflect future potential emissions and prevent backsliding.

UDAQ Response: UDAQ contacted Graymont concerning their permitted emissions levels. The Cricket Mountain facility has seen a decrease in production over the past few years with special emphasis on the impacts of the COVID-19 pandemic. Graymont views this as a temporary decrease as the market is currently in the midst of recovery while they anticipate growth in their market. As this decrease is temporary, Graymont does not

197 Located in section 7.C.1 in Ash Grove’s Evaluation Response
foresee the need to reduce its limits at this facility as it could reduce their flexibility to meet the market recovery and growth.

20. NPS recommends that numerical NOx and SO2 emissions limits be incorporated into US Magnesium’s current permit for the turbines/duct burners, chlorine reduction burner, melt/reactor, riley boiler, and the diesel engines would ensure that reasonable progress assumptions and determinations for the facility are adhered to.

UDAQ Response: UDAQ has issued an order to US Magnesium to obtain the information required to respond to these comments. US Magnesium has been given a response deadline of April 11th, 2022 and the information they provide will be included in the final draft of this SIP. USM provided responses on April 26th and May 11th, 2022 which can be found in Appendix D.2.E and F.

21. NPS recommends UDAQ re-evaluate the feasibility and costs of US Magnesium installing SCR on their turbines.

UDAQ Response: See response to comment 20.

22. NPS recommends UDAQ reconsider requiring implementation of SCR on US Magnesium’s riley boiler as part of this implementation period. Additionally, actual emission assumptions relied on to eliminate SCR from consideration be reflected in permit limitations for this unit.

UDAQ Response: See response to comment 20.

23. NPS requests additional information and emissions verification on US Magnesium’s diesel engines and engine replacement and/or electrification be included as additional emission control options in their four-factor analysis.

UDAQ Response: See response to comment 20.

24. NPS recognizes the jurisdictional complexity of the Uintah and Paradox basins with 80% of the land being under tribal and EPA control. However, NPS recommends that air quality improvement will require cooperative and commensurate efforts from all agencies involved in air quality management in the basin and suggests UDAQ implement statewide rules to address oil and gas emission sources throughout Utah.

UDAQ Response: Over the past several years, UDAQ has proposed and adopted a series of statewide rules specific to oil and gas operations found in Utah’s state administrative rules R307-500 to 511. Though these rules have been focused on controlling VOC emissions, there is also a state-specific rule for natural gas-powered engines associated with oil and gas production. Since the rule was put in place in 2018,
several sources have provided engine stack test data that have led UDAQ, EPA, and the Tribes to initiate further research and compliance studies on engines in the Basin, with a focus on two-stroke smaller horsepower engines that power pump jacks associated with oil-producing wells. The data collected have indicated lower values for NOx emissions than what was reported in the 2017 oil and gas emission inventory for these engines, yet much higher emissions of VOCs. UDAQ will be evaluating this data and will be evaluating future rulemaking for engines associated with oil and gas operations that would be statewide. UDAQ will coordinate with EPA and the Tribe to encourage that rules are consistent across all regulatory jurisdictions, but ultimately any controls under EPA jurisdiction on sources in Indian Country will be determined by EPA and the Tribe.

The main pollutant of concern in the Uinta Basin is ozone, with VOCs and NOx being the actual precursor emissions that create ozone. Photochemical modeling has been a challenge in this area due to the complexity of the chemical reactions and unique geography and wintertime conditions. Therefore, it has not yet been determined what emission reductions will be the most effective to lower ozone values. However, initial thoughts are that the area is NOx limited. If this is shown to be the case, then NOx reductions will have a greater impact and as about 80% of NOx emissions in the Basin are associated with engines, UDAQ will definitely evaluate the reduction in NOx limits. As part of this evaluation, UDAQ will also keep in mind the NPS comments regarding the potential positive impacts on regional haze management. In summary, the evaluation of potentially lower VOC and NOx limits for engines associated with oil and gas production is actively in progress and Utah is working on further controlling NOx from engines for separate health standards.

9.C.3 USFS Feedback Summary and UDAQ Responses

The USFS recognizes the emission reductions made in Utah over the past decade that have resulted in improvements in visibility at the Forest Service Class I Wilderness Areas and appreciates the working relationship among our respective staff. Overall, the USDA Forest Service found that the draft RH SIP is well organized and comprehensive. The Long-Term Strategies for this planning period appear to indicate that Forest Service Class I Wilderness Areas will continue to show visibility improvements better than the Uniform Rate of Progress (URP) through 2028, and USFS appreciates the commitment by UDEQ to evaluate progress in meeting the visibility goals during the 5-year progress reports.

40 CFR 51.308(f)(1)(vi)(B) allows states to adjust the glidepath to account for prescribed fire. The draft SIP states that no glidepath adjustment was made to account for prescribed fire emissions. The USFS encourages Utah DEQ to use the adjustment of glidepaths for the increased prescribed fire projections reflected in the “Future Fire Scenario 2” available in Product 18 of Modeling Express Tools of the WRAP TSS.

198 See Appendix D.3 to view the full USFS RH SIP review document
When considering the R_x fire end-point adjustment, the USFS is concerned that industry or other groups could improperly argue that additional controls are not necessary to make further progress if modeling demonstrates that the Class I Area in Utah is below adjusted glidepaths, essentially arguing that the glidepath provides safe harbor from additional control requirements. The USFS believes this “safe harbor” argument is erroneous and is not supported by the Regional Haze Rule.

UDAQ Response: UDAQ appreciates the feedback from USFS as well as their work on the wildland prescribed fire adjustment. UDAQ acknowledges the visibility impacts expected future increases in wildland prescribed fire may have on Utah as well as the importance of prescribed fire for conservation. However, the impact of USFS’s glidepath adjustment is less significant for Utah’s CIAs than for those in other states. While the international and wildland prescribed fire adjustments are available for Utah’s CIA glidepaths, UDAQ is choosing to remain conservative for the purposes of this implementation period by not using them. However, this choice does not preclude the use of glidepath adjustments in future planning periods, since international and wildland prescribed fire emissions do impact Utah CIAs and are largely beyond the control of individual states and since prescribed fires are seen to be an increasingly important tool for land managers in the future.

![Figure 69: USFS Fire Glidepath Adjustment for Bryce Canyon](image)

9.D **Coordination with Indian tribes**

Utah has five major tribes: the Ute, Dine’ (Navajo), Paiute, Goshute, and Shoshone. There is one source in Northeast Utah where the Bonanza Power Plant is situated, but it resides in EPA jurisdiction. UDAQ sent the regional haze SIP draft to the tribes in Utah on December 89th.
2021, concurrently with submission to EPA and FLMs for a 60-day review. UDAQ has received no feedback from the tribes as of the submittal of this SIP. Documentation of this outreach can be found in Appendix E.

9.E Stakeholder Outreach and Communication

In the process of developing this SIP, Utah has been in contact with the five major sources subject to a four-factor analysis for controls feasibility. Upon evaluation of the five source’s original four-factor analysis submittals, Utah evaluated and requested responses from each of the sources. This correspondence is summarized in Chapter 7. Utah has had several meetings with PacifiCorp concerning the implementation of controls in its Hunter and Huntington facilities. Utah also holds regular industry stakeholder meetings and environmental advocate meetings to update these groups on Utah’s regional haze planning progress and address any questions or concerns they have regarding regional haze. Throughout the second implementation period, Utah also met with other state departments for coordination including the Department of Public Utilities and the Office of Energy Development.

Table 70: Summary of Stakeholder Meetings with UDAQ

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Entity</th>
<th>Topic</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/27/21</td>
<td>4-5p</td>
<td>PacifiCorp and Wyoming</td>
<td>Regional Haze Pre-Meeting</td>
<td>Discussed possible controls and power plant planning.</td>
</tr>
<tr>
<td>5/19/21</td>
<td>2-3p</td>
<td>Air Quality Advocates</td>
<td>DAQ-Utah Advocates Regional Haze Catch Up</td>
<td>Introduction to members of HEAL Utah, Sierra Club, and NPCA. They expect requirements for additional controls at power plants, especially Hunter and Huntington.</td>
</tr>
<tr>
<td>6/23/21</td>
<td>12-</td>
<td>PacifiCorp</td>
<td>Presentation on legal risks and 4-factor evaluation</td>
<td>Discussed possible controls and issues with 4-factor analysis.</td>
</tr>
<tr>
<td></td>
<td>1:05p</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/7/21</td>
<td>10:30a-</td>
<td>RH Advocates Meeting</td>
<td>RH Update</td>
<td>Gave RH updates and discussed guidance vs rule issue.</td>
</tr>
<tr>
<td></td>
<td>12p</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/15/21</td>
<td>3:30-</td>
<td>DAQ, OED, DPU</td>
<td>RH and Power Plant Planning</td>
<td>Gave RH overview/update, informed them of PacifiCorp 4-factor eval, control options, and rule vs. guidance.</td>
</tr>
<tr>
<td></td>
<td>4:30p</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/19/21</td>
<td>9a</td>
<td>PacifiCorp</td>
<td>RH primer scheduling</td>
<td>Kirsten Merrit called about times for RH backgrounder.</td>
</tr>
<tr>
<td>7/20/21</td>
<td>9:15a</td>
<td>PacifiCorp</td>
<td>RH primer scheduling</td>
<td>Kirsten Merrit called about invitees for RH backgrounder.</td>
</tr>
<tr>
<td>10/27/21</td>
<td>8-9a</td>
<td>PacifiCorp</td>
<td>RH Follow-Up/Update</td>
<td>We discussed implementing new PALs for Hunter based on the emissions reductions installing SCR on Hunter 3 would have and Huntington based on their recent actuals in the 2028OTB modeling.</td>
</tr>
<tr>
<td>11/3/21</td>
<td>10:30-</td>
<td>Air Quality Advocates</td>
<td>RH Update</td>
<td>Gave presentation with RH overview, Utah’s RH history, current planning, and</td>
</tr>
<tr>
<td>Date</td>
<td>Time</td>
<td>Organization</td>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>-------</td>
<td>-----------------------</td>
<td>-----------------------</td>
<td>--</td>
</tr>
<tr>
<td>11/10/21</td>
<td>11a-12p</td>
<td>NPCA, Western Resources, & Sierra Club</td>
<td>RH Presentation Follow-Up</td>
<td>UDAQ addressed additional question resulting from the presentation given at the Air Quality Advocates Meeting.</td>
</tr>
<tr>
<td>12/3/21</td>
<td>11a-12p</td>
<td>PacifiCorp</td>
<td>RH Update</td>
<td>Discussed control options for Hunter and Huntington.</td>
</tr>
<tr>
<td>1/5/22</td>
<td>10:30-11:30a</td>
<td>Air Quality Advocates</td>
<td>RH Update</td>
<td>Offered to send the draft UT RH SIP to those who requested it via email.</td>
</tr>
<tr>
<td>1/26/22</td>
<td>11:49a</td>
<td>Sunnyside</td>
<td>Information Submission</td>
<td>Sunnyside provided control cost spreadsheets via email by NPS request.</td>
</tr>
<tr>
<td>3/2/22</td>
<td>10-11:30a</td>
<td>Air Quality Advocates</td>
<td>RH Update</td>
<td>Offered to send the FLM comment documents to those who requested it via email.</td>
</tr>
<tr>
<td>3/4/22</td>
<td>10-10:15a</td>
<td>PacifiCorp – Kirsten Merrit</td>
<td>RH Information</td>
<td>Offered technical responses to FLM comments concerning the Hunter and Huntington power plants.</td>
</tr>
<tr>
<td>3/14/22</td>
<td>2-3p</td>
<td>Paradox Resources</td>
<td>RH Planning</td>
<td>Met with Paradox Resources to discuss FLM comments regarding their source, updating their permit for the Lisbon Plant, and obtaining 2021 inventory data.</td>
</tr>
<tr>
<td>3/17/22</td>
<td>3-4p</td>
<td>PacifiCorp</td>
<td>RH Planning</td>
<td>Discussed PacifiCorp’s SO2 scrubbing equipment and efficiency as well as the possibility of optimization.</td>
</tr>
<tr>
<td>3/14/22</td>
<td>2-3p</td>
<td>Paradox</td>
<td>Information Request</td>
<td>Discussed emissions inventory data.</td>
</tr>
<tr>
<td>3/14/22</td>
<td>1:12p</td>
<td>Sunnyside</td>
<td>Interest Rates</td>
<td>Sunnyside provided interest rate justification via email.</td>
</tr>
<tr>
<td>3/17/22</td>
<td>4:12p</td>
<td>PacifiCorp</td>
<td>SO2 Scrubbing</td>
<td>PacifiCorp provided additional justification for SO2 scrubbing.</td>
</tr>
<tr>
<td>3/21/22</td>
<td>1-2p</td>
<td>Sunnyside</td>
<td>Information Request</td>
<td>Discussed DSI feasibility.</td>
</tr>
<tr>
<td>4/18/22</td>
<td>1-2p</td>
<td>PacifiCorp</td>
<td>RH Discussion</td>
<td>Discussed future utilization.</td>
</tr>
<tr>
<td>4/20/22</td>
<td>4:42p</td>
<td>PacifiCorp</td>
<td>EPA Comments</td>
<td>UDAQ provided EPA public comments.</td>
</tr>
<tr>
<td>5/4/22</td>
<td>10-11:30a</td>
<td>Air Quality Advocates</td>
<td>RH Update</td>
<td>UDAQ provided the advocates with a RH update.</td>
</tr>
<tr>
<td>5/24/22</td>
<td>1:30-2:30p</td>
<td>Sunnyside</td>
<td>NPS Comment Questions</td>
<td>Sunnyside requested clarification on NPS comments.</td>
</tr>
<tr>
<td>5/24/22</td>
<td>2p</td>
<td>PacifiCorp</td>
<td>Public Hearing</td>
<td>Discussed public hearing logistics.</td>
</tr>
<tr>
<td>5/27/22</td>
<td>11:58a</td>
<td>Sunnyside</td>
<td>Public Comment Submittal</td>
<td>Sunnyside submitted public comments.</td>
</tr>
<tr>
<td>5/31/22</td>
<td>4:25p</td>
<td>PacifiCorp</td>
<td>Public Comment Submittal</td>
<td>PacifiCorp provided public comments on the RH SIP.</td>
</tr>
<tr>
<td>6/10/22</td>
<td>1-2p</td>
<td>PacifiCorp</td>
<td>RH Information</td>
<td>Discussed SO2 scrubbing.</td>
</tr>
</tbody>
</table>
9.F Public Comment Period

Utah’s RH SIP for the second implementation period was presented to the Air Quality Board at their April 6th, 2022 meeting. The Board approved a 30-day public comment period beginning on May 1st, 2022 and ending on May 31st, 2022. Notices regarding the public comment period and availability of the SIP draft will be published in the State Bulletin, posted on the UDAQ webpage, published in the Salt Lake Tribune (04/26/2022), Deseret News (04/27/2022) and the Spectrum (05/01/2022), sent electronically through the RH listserv and the AQ board actions update. UDAQ held a public hearing on May 26th, 2022 for the submission of verbal comments. UDAQ’s public notice was published on UDAQ’s webpage from April 30th to June 2nd, 2022. Documentation of this notice can be found in Appendix F.

9.G Comment Conclusions

Section to be completed once the commenting period has ended and all comments are addressed.

During the public comment period, UDAQ received written and verbal comments from the following:

- EPA
- Sunnyside Cogeneration
- NPS
- Intermountain Power Service Corporation
- The Conservation Organizations\(^\text{199}\)
- Utah Associated Municipal Power Systems
- Utah Petroleum Association
- City of Moab
- Utah Mining Association
- Grand County Commission
- PacifiCorp
- 657 individuals
- US Magnesium
- 657 individuals

\(^{199}\) Comments submitted jointly by the National Parks Conservation Association, Sierra Club, Utah Physicians for a Healthy Environment, The Coalition to Protect America’s National Parks, the Healthy Environmental Alliance of Utah, and O2 Utah
UDAQ reviewed all comments which are summarized by topic and responded to in Appendix H. Some comments resulted in SIP revisions which include:

- Updated inventory graphs in Section 3.A.4 upon request from the Air Quality Board.
- Section 6.A.10 was updated with a table detailing emission reduction quantification for the long-term strategy. Strategies were not changed; the table was added for clarification.
- A new table in Section 7.A.2 to show existing controls in Utah’s SIP for screened sources that have resulted from other SIP revisions, including PM$_{2.5}$.
- Part of section 7.A.3 was struck out and rewritten for clarity and improved justification for emission limits at Hunter and Huntington power plants.
- An environmental justice analysis and writeup was added to section 7.A.5.
- Additions to appendices to include additional information that sources have submitted.
- Multiple minor additions or deletions due to oversights, or for clarifications.
- SIP Subsection IX.H.23 changes include:
 - emission limits for screened-in sources’ existing limits that were not already in IX.H,
 - annual stack testing at US Magnesium,
 - SO$_2$ limit exemptions were removed for startup, shutdown, and malfunction for Huntington, and
 - minor adjustments to Hunter and Huntington limits based on the improved justification.

9.H Commitment to Further Planning

Utah will continue its regional haze planning efforts through consultation efforts, participation in regional haze work groups, and SIP development.

9.H.1 Process for conducting future emissions inventories and future monitoring strategy

Utah will continue to triennially update its statewide emissions inventory as dictated by the Air Emissions Reporting Requirements (AERR) and Utah’s Continuous Emissions Monitoring Program to track regional haze progress, participate in regional haze modeling efforts, and track emissions trends.

200 All public comments received by UDAQ on this SIP revision can be found on UDAQ’s Current Regional Haze Planning web page here: https://deq.utah.gov/air-quality/regional-haze-in-utah#planning

201 73 Fed. Reg. 76539, 76552 (Dec. 17 2008). The AERR rule can be found at https://www.epa.gov/air-emissions-inventories/air-emissions-reporting-requirements-aerr

9.H.2 Commitment to provide other elements necessary to report on visibility, including reporting, recordkeeping, and other measures

Utah will provide any additional reporting, recordkeeping, and other measures necessary to continue its regional haze progress deemed necessary by the EPA or the regional haze work groups Utah participates in. At this time, no such additional efforts have been identified.

9.H.3 Commitment to submit January 31, 2025 progress report

Under the RHR, states must submit periodic progress reports to EPA evaluating their progress towards their RPGs. The 2017 RHR amendments adjusted the next progress report due date to be submitted by January 31, 2025. Utah commits to submitting this progress report and confirms that it will contain the following elements pursuant to the RHR:203

- Status of implementation of SIP measures for RPGs in Utah’s CIAs and those outside the State identified as being impacted by emissions from within the state.
- Summary of emissions reductions in Utah adopted or identified as part of the RPG strategy.
- A five-year annual average assessment of the most and least impaired days for each CIA in Utah including the current visibility conditions, difference between current conditions and baseline, and change in visibility impairment over the five-year period.

Utah State Implementation Plan

Emission Limits and Operating Practices

Section IX, Part H.21 and Part H.23

Adopted by the Air Quality Board July 6, 2022
H.21. General Requirements: Control Measures for Area and Point Sources, Emission Limits and Operating Practices, Regional Haze Requirements

a. Except as otherwise outlined in individual conditions of this Subsection IX.H.21 listed below, the terms and conditions of this Subsection IX.H.21 shall apply to all sources subsequently addressed in Subsection IX.H.22. Should any inconsistencies exist between these two subsections, the source specific conditions listed in IX.H.22 shall take precedence.

b. The definitions contained in R307-101-2, Definitions and R307-170-4, Definitions, apply to Section IX, Part H. In addition, the following definition also applies to Section IX, Part H.21 and 22:

Boiler operating day means a 24-hour period between 12 midnight and the following midnight during which any fuel is combusted at any time in the boiler. It is not necessary for fuel to be combusted for the entire 24-hour period.

c. The terms and conditions of R307-107-1 and R307-107-2 shall apply to all sources subsequently addressed in Subsection IX.H.22.

d. Any information used to determine compliance shall be recorded for all periods when the source is in operation, and such records shall be kept for a minimum of five years. All records required by IX.H.21.c shall be kept for a minimum of five years. Any or all of these records shall be made available to the Director upon request.

e. All emission limitations listed in Subsections IX.H.22 shall apply at all times, unless otherwise specified in the source specific conditions listed in IX.H.22. Each source shall submit a report of any deviation from the applicable requirements of Subsection IX.H, including those attributable to upset conditions, the probable cause of such deviations, and any corrective actions or preventive measures taken. The report shall be submitted in accordance with the requirements of R307-170, Continuous Emission Monitoring Program. Deviations due to breakdowns shall be reported according to the breakdown provisions of R307-107.

f. Stack Testing:

i. As applicable, stack testing to show compliance with the emission limitations for the sources in Subsection IX.H.22 and IX.H.23 shall be performed in accordance with the following:

A. Sample Location: The testing point shall be designed to conform to the requirements of CFR 60, Appendix A, Method 1, or the most recent version of the EPA-approved test method if approved by the Director.
B. Volumetric Flow Rate: 40 CFR 60, Appendix A, Method 2, or the most recent version of the other EPA-approved testing methods if approved by acceptable to the Director.

C. Particulate (PM): 40 CFR 60, Appendix A, Method 5B, or the most recent version of the other EPA-approved testing methods if approved by acceptable to the Director. A test shall consist of three runs, with each run at least 120 minutes in duration and each run collecting a minimum sample of 60 dry standard cubic feet. The back half condensables shall also be tested using Method 202. The back half condensables shall not be used for compliance demonstration but shall be used for inventory purposes.

D. Nitrogen Oxides (NOx): 40 CFR 60, Appendix A, Method 7E, or other EPA approved testing methods acceptable to the Director.

E. Calculations: To determine mass emission rates (lb/hr, etc.) the pollutant concentration as determined by the appropriate methods above shall be multiplied by the volumetric flow rate and any necessary conversion factors to give the results in the specified units of the emission limitation.

F. A stack test protocol shall be provided at least 30 days prior to the test. A pretest conference shall be held if directed by the Director. Notification: The Director shall be notified at least 30 days prior to conducting any required emission testing. A source test protocol shall be submitted to DAQ when the testing notification is submitted to the Director.

G. The source test protocol shall be approved by the Director prior to performing the tests. The source test protocol shall outline the proposed test methodologies, stack to be tested, and procedures to be used. A pretest conference shall be held, if directed by the Director.

H. Source Operation and Testing Frequency: The production rate during all compliance testing shall be no less than 90% of the maximum production achieved in the previous three (3) years.

 g. Continuous Emission and Opacity Monitoring.

 i. For all continuous monitoring devices, the following shall apply:

 A. Except for system breakdown, repairs, calibration checks, and zero and span adjustments required under paragraph (d) 40 CFR 60.13, the owner/operator of an affected source shall continuously operate all required continuous monitoring systems and shall meet minimum frequency of operation requirements as outlined in R307-170 and 40 CFR 60.13.

 B. The monitoring system shall comply with all applicable sections of R307-170; 40 CFR 13; and 40 CFR 60, Appendix B – Performance Specifications.

 C. For any hour in which fuel is combusted in the unit, the owner/operator of each unit shall calculate the hourly average NOx concentration in lb/MMBtu.
D. At the end of each boiler operating day, the owner/operator shall calculate and record a new 30-day rolling average emission rate in lb/MMBtu from the arithmetic average of all valid hourly emission rates from the CEMS for the current boiler operating day and the previous 29 successive boiler operating days.

E. An hourly average NOx emission rate in lb/MMBtu is valid only if the minimum number of data points, as specified in R307-170, is acquired by the owner/operator for both the pollutant concentration monitor (NOx) and the diluent monitor (O2 or CO2).

H.23. Source Specific Emission Limitations: Regional Haze Requirements, Reasonable Progress Controls

a. Ash Grove Cement Company – Leamington Cement Plant

 i. Emissions from the Kiln 1/Raw Mill Stack shall not exceed the following:

 A. 0.07 lbs filterable PM per ton of clinker
 B. 2.8 lbs NOx per ton clinker based upon a 30-day rolling average, and 1,347.2 tons per rolling 12-month period

 ii. The PM emission rate from the Kiln 1/Raw Mill Stack shall be determined by stack test. Stack testing shall be performed at least once annually.

 iii. Emissions of NOx shall be determined by CEM as outlined in IX.H.21.g.

b. Graymont Western US Incorporated - Cricket Mountain Plant

 i. Emissions of PM_{10} from the listed emission points shall not exceed the following limits:

 A. Kiln #1 Baghouse Stack: 6.0 lb/hr
 B. Kiln #2 Baghouse Stack: 6.58 lb/hr
 C. Kiln #3 Baghouse Stack: 7.54 lb/hr
 D. Kiln #4 Baghouse Stack: 13.7 lb/hr
 E. Kiln #5 Baghouse Stack: 11.7 lb/hr
 F. Briquetter and Crusher Baghouse (D-488) Stack: 0.15 lb PM10 (filterable)/hr

ac. Intermountain Power Service Corporation – Intermountain Generation Station

 i. Conditions on Units #1 and #2.

 A. The owner/operator shall permanently close and cease operation of Intermountain Generation Station units #1 and #2 by December 31, 2027. The owner/operator shall
notify the Director of the permanent closure of units #1 and #2 by no later than January 31, 2028.

B. Until such time as units #1 and #2 are shut down as outlined above, the following shall apply:

 I. Emissions of PM$_{10}$ from either the unit #1 or unit #2 stack shall not exceed 0.0184 lb/MBtu heat input.

 II. Emissions of NO$_x$ from either the unit #1 or unit #2 stack shall not exceed 0.138 lb/MBtu heat input (based on a 30-day rolling average).

 III Emissions of SO$_2$ from either the unit #1 or unit #2 stack shall not exceed 0.461 lb/MBtu heat input (based on a 30-day rolling average).

 IV. These limits apply at all times except for periods of startup, shutdown, malfunction (NO$_x$ or PM$_{10}$ only), or emergency conditions (SO$_2$ only).

bd. PacifiCorp – Hunter Plant

 i. The annual NO$_x$ emissions for the entire Hunter Plant from all point and fugitive sources shall not exceed 10,54411,041 tons/year based on a 12-month rolling total.

 ii. As of January 1, 2025, the annual NO$_x$ emissions for the entire Hunter Plant from all point and fugitive sources shall not exceed 10,25710,442 tons/year based on a 12-month rolling total.

 iii. As of January 1, 2028, the annual NO$_x$ emissions for the entire Hunter Plant from all point and fugitive sources shall not exceed 10,0019,843 tons/year based on a 12-month rolling total.

 iv. The above NO$_x$ limits shall be monitored in accordance with the procedures outlined in 40 CFR Part 52.21(aa)(12) and at a minimum shall be done by summing up emissions as follows:

 A. For Units #1, #2 and #3 main boiler stacks, PacifiCorp’s reporting to EPA’s Acid Rain Emissions data base for NO$_x$ in pounds per hour obtained from the boilers’ CEM data shall be used to calculate NO$_x$ emission rates.

 B. For Units #1, #2 and #3 emergency diesel-fired equipment, emissions shall be calculated by multiplying the NO$_x$ emission factor from the latest edition of EPA’s emission factors compilation AP-42 and hours of operation. Records documenting equipment usage shall be kept in a log, and they shall show the date the equipment was used and the duration in hours of operation.

 C. For the record keeping requirements of each limit, PacifiCorp shall comply with 40 CFR Subpart 52.21(aa)(13).
D. For record submittal, PacifiCorp shall comply with 40 CFR Subpart 52.21(aa)(14).

v. To determine compliance with the 12-month rolling NOx limits, the owner/operator shall calculate new 12-month total NOx emissions by the 20th day of each month using data from the previous 12 months. Records of emissions shall be kept for all periods when the plant is in operation.

vi. Emissions of SO2 from Unit #1 and Unit #2 shall not exceed the following limits:

A. 1.2 lb/MMBtu heat input for any 3-hour period

B. 0.12 lb/MMBtu heat input based on a 30-day rolling average

vii. Emissions of SO2 from Unit #3 shall not exceed 1.2 lb/MMBtu heat input for any 3-hour period

viii. The SO2 emissions shall be determined by CEM as outlined in IX.H.21.g.

e. PacifiCorp – Huntington Plant

i. The annual NOx emissions for the entire Huntington Plant from all point and fugitive sources shall not exceed 6,2106,604 tons/year based on a 12-month rolling total.

ii. As of January 1, 2025, the annual NOx emissions for the entire Huntington Plant from all point and fugitive sources shall not exceed 6,1516,422 tons/year based on a 12-month rolling total

iii. As of January 1, 2028, the annual NOx emissions for the entire Huntington Plant from all point and fugitive sources shall not exceed 6,0916,240 tons/year based on a 12-month rolling total.

iv. The above NOx limits shall be monitored in accordance with the procedures outlined in 40 CFR Part 52.21(aa)(12) and at a minimum shall be done by summing up emissions as follows:

A. For Units #1 and #2 main boiler stacks, PacifiCorp’s reporting to EPA’s Acid Rain Emissions database for NOx in pounds per hour obtained from the boilers’ CEM data shall be used to calculate NOx emission rates.

B. For Units #1 and #2 emergency diesel-fired equipment, emissions shall be calculated by multiplying the NOx emission factor from the latest edition of EPA’s emission factors compilation AP-42 and hours of operation. Records documenting equipment usage shall be kept in a log, and they shall show the date the equipment was used and the duration in hours of operation.

C. For the record keeping requirements of each limit, PacifiCorp shall comply with 40 CFR Subpart 52.21(aa)(13).
D. For record submittal, PacifiCorp shall comply with 40 CFR Subpart 52.21(aa)(14).

v. To determine compliance with the 12-month rolling NOx limits, the owner/operator shall calculate new 12-month total NOx emissions by the 20th day of each month using data from the previous 12 months. Records of emissions shall be kept for all periods when the plant is in operation.

vi. Emissions of SO2 from Unit #1 shall not exceed 0.12 lb/MMBtu heat input (595 lb/hr) on a 30-day rolling average except during periods of startup, shutdown, maintenance/planned outage or malfunction.

vii. Emissions of SO2 from Unit #2 shall not exceed 0.12 lb/MMBtu heat input for any 24-hour block average except during periods of startup, shutdown, maintenance/planned outage, or malfunction.

viii. The SO2 emissions shall be determined by CEM as outlined in IX.H.21.g.

f. Sunnyside Cogeneration Facility

i. Emissions of NOx (during normal boiler operation not including startup, shutdown and malfunction) shall not exceed 0.25 lb per MMBtu heat input on a 30-day rolling average.

ii. Emissions of NOx (including startup, shutdown and malfunction) shall not exceed 0.6 lb per 10^6 BTU heat input on a 30-day rolling average.

iii. Emissions of SO2 (during normal boiler operation not including startup, shutdown and malfunction) shall not exceed 0.42 lb per MMBtu heat input on a 30-day rolling average and 462 lb per hour on a 3-hour block average.

iv. Emissions of SO2 (including startup, shutdown and malfunction) shall not exceed 1.2 lb per 10^6 BTU heat input on a 30-day rolling average.

v. The NOx and SO2 emissions shall be determined by CEM as outlined in IX.H.21.g.

dg. US Magnesium US Magnesium LLC - Rowley Plant

i. The owner/operator shall install and operate a flue gas recirculation (FGR) system on the 60 MMBtu/hr (Riley) boiler no later than January 1, 2028.

ii. Following installation of the FGR system, total annual NOx emissions from the Riley boiler shall not exceed 22.6 tons per rolling 12-month period.

iii. The emission rate from the Riley boiler shall be determined by stack test. Stack testing shall be performed at least once every three years annually.

iv. To determine compliance with the 12-month rolling NOx limit, the owner/operator shall calculate new 12-month total NOx emissions by the 20th day of each month using data from the previous 12 months. Records of emissions shall be kept for all periods when the plant is in operation.
in operation. To calculate the monthly NO\textsubscript{x} emissions, the owner/operator shall multiply the lb/hr NO\textsubscript{x} emission rate from the most recent stack test by the hours of operation of the Riley boiler for each month.

v. Emissions of NO\textsubscript{x} from the following Lithium Plant emission points shall not exceed the listed limits:

A. Boilers: 0.012 lb/MMBtu

B. Burners: 0.037 lb/MMBtu

vi. Stack testing to demonstrate compliance with the Lithium Plant NO\textsubscript{x} limits shall be performed at least once every five years.
NOTICE OF PROPOSED RULE

TYPE OF RULE: New ___; Amendment X; Repeal ___; Repeal and Reenact ___

Title No. - Rule No. - Section No.
Utah Admin. Code Ref (R no.): R307-110
Changed to Admin. Code Ref. (R no.): R

Agency Information
1. Department: Department of Environmental Quality
Agency: Division of Air Quality
Room no.:
Building: MASOB
Street address: 195 North 1950 West
City, state and zip: Salt Lake City, Utah 84116
Mailing address: P.O. Box 144820
City, state and zip: Salt Lake City, Utah 84114-4820
Contact person(s):
Name: Phone: Email:
Bo Wood 385-499-3416 rwood@utah.gov
Chelsea Cancino 801-536-4015 ccancino@utah.gov
Glade Sowards 801-536-4020 gladesowards@utah.gov

Please address questions regarding information on this notice to the agency.

General Information
2. Rule or section catchline:
R307-110. General Requirements: State Implementation Plan

3. Purpose of the new rule or reason for the change (Why is the agency submitting this filing?):
EPA’s Regional Haze Rule (RHR) requires states to submit a State Implementation Plan (SIP) demonstrating reasonable progress towards achieving natural visibility by 2064 in Utah’s five Class I Areas (CIAs), which include all five of the national parks in the State. As part of this SIP, the state must conduct an emissions controls determination to identify its long-term strategy (LTS) to achieving the 2064 natural conditions goal. This rule is being amended incorporate by reference Section XX.A: Regional Haze Second Implementation Period and amendments to Amend SIP Section IX Control Measures for Area and Point Sources, Part H, Emission Limits into the Utah State Implementation Plan (SIP).

4. Summary of the new rule or change (What does this filing do? If this is a repeal and reenact, explain the substantive differences between the repealed rule and the reenacted rule):
This amendment changes the "most recently amended" date in R307-110-17 and R307-110-28 to July 6, 2022, incorporating by reference the requirements of Section XX.A: Regional Haze Second Implementation Period and Section IX: Control Measures for Area and Point Sources, Part H, Emission Limits into the Utah State Implementation Plan. The reasonable progress determination of these Sections requires the following measures to meet the State’s LTS:

1. Establishing mass-based annual NOx and SO2 emissions limits for Hunter Power Plant based upon recent actual emissions and plant utilization levels,
2. Establishing mass-based annual NOx and SO2 emissions limits for the Huntington Power Plant based upon recent actual emissions and plant utilization levels,
3. Establishing a federally enforceable closure date for the coal-fired boilers at the Intermountain Generation Station (IGS) based on the Intermountain Power Agency’s (IPA’s) 2021 notice of intent (NOI) to replace the coal-fired boilers with combined cycle natural gas turbines, and
4. Requiring the retrofit of U.S. Magnesium’s Rowley Plant’s Riley boiler with flue gas recirculation (FGR)

Fiscal Information
5. Provide an estimate and written explanation of the aggregate anticipated cost or savings to:
Because IPA has submitted an NOI to replace the coal-fired boilers at the IGS, the proposed closure date for the IGS coal-fired boilers does not, in itself, result in the closure of the facility, but rather establishes federal enforceability of the already planned boiler closures as required by the RHR and the Clean Air Act. As a result, we anticipate no fiscal impacts to the State budget associated with the IGS. The requirement to install FGR at the Riley Boiler of U.S. Magnesium’s Rowley Plant may result in small fiscal impacts to the State budget resulting from economic activity associated with FGR installation. The direction of such impacts could be positive or negative depending on the extent to which installation of FGR could increase economic activity within the State, with a potential increase in State revenue, and/or decrease economic activity while the unit is down for installation. While it is difficult to estimate the net effect of such impacts, we anticipate that it is likely small due to the relative cost of FGR installation relative to overall economic activity in Utah.

B) Local governments:

Because the Hunter and Huntington Power Plants are already operating at approximately at the emissions and utilization levels required by the proposed SIP limits, we anticipate no fiscal impacts to local governments associated with these facilities. Because IPA has submitted an NOI to replace the coal-fired boilers at the IGS, the proposed closure date for the IGS coal-fired boilers does not, in itself, result in the closure of the facility, but rather establishes federal enforceability of the already planned boiler closures as required by the RHR and the Clean Air Act. As a result, we anticipate no fiscal impacts to local governments associated with the IGS (e.g., City of Delta, Millard County, etc.). The requirement to install FGR at the Riley Boiler of U.S. Magnesium’s Rowley Plant may result in small fiscal impacts to local governments resulting from economic activity associated with FGR installation. The direction of such impacts could be positive or negative depending on the extent to which installation of FGR could increase economic activity in local government jurisdictions, with a potential increase local government revenue, and/or decrease economic activity while the unit is down for installation. While it is difficult to estimate the net effect of such impacts, we anticipate that it is likely small.

C) Small businesses ("small business" means a business employing 1-49 persons):

Some small businesses may see small increases or decreases in economic activity associated with the installation of FGR on the Riley Boiler at the U.S. Magnesium Rowley Plant. For example, the service industry near the Rowley plant may see increased patronage during the period of FGR installation, or may see small decreases in patronage if the installation process leads to traffic impacts or short-term changes to labor patterns while the boiler is being retrofitted. It is difficult to estimate the net impact to small businesses, but we anticipate that it is likely small unless those businesses are directly involved with the FGR installation.

D) Non-small businesses ("non-small business" means a business employing 50 or more persons):

The installation of FGR on the Riley Boiler at the U.S. Magnesium Rowley Plant is anticipated to require a one-time cost of $615,300 and approximately $3,100 per year thereafter. However, since the installation of these controls is not mandatory until January, 2028, the fiscal impact in FY2022, FY2023, and FY2024 is unknown. Companies that provide the equipment and installation of FGR at the facility will likely see an increase in revenue.

E) Persons other than small businesses, non-small businesses, state, or local government entities ("person" means any individual, partnership, corporation, association, governmental entity, or public or private organization of any character other than an agency):

Some individuals working for U.S. Magnesium or for firms providing FGR installation equipment and services could see positive or negative impacts associated with the retrofit of the Riley Boiler. Such impacts are likely to affect a relatively small number of individuals and are likely to be short in duration.

F) Compliance costs for affected persons (How much will it cost an impacted entity to adhere to this rule or its changes?):

The installation of FGR on the Riley Boiler at the U.S. Magnesium Rowley Plant is anticipated to cost the company $615,300 for initial installation and an additional $3,100 per year in ongoing maintenance over the life of the boiler.

G) Comments by the department head on the fiscal impact this rule may have on businesses (Include the name and title of the department head):

After a thorough analysis and engagement with impacted parties, the Division of Air Quality has determined that the amendments to Regional Haze Second Implementation Period and Emission Limits of the Utah State Implementation Plan will have fiscal impacts on businesses. The analysis shows that some small businesses and at least one non-small businesses will be impacted by the proposed changes. However, the proposed amendments are appropriate and necessary to comply with the requirements of EPA’s Regional Haze Rule.

Kimberly D. Shelley, Executive Director of the Utah Department of Environmental Quality

6. A) Regulatory Impact Summary Table (This table only includes fiscal impacts that could be measured. If there are inestimable fiscal impacts, they will not be included in this table. Inestimable impacts will be included in narratives above.)

<table>
<thead>
<tr>
<th>Regulatory Impact Table</th>
<th>FY2022</th>
<th>FY2023</th>
<th>FY2024</th>
</tr>
</thead>
<tbody>
<tr>
<td>State Government</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>Local Governments</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>Category</td>
<td>Small Businesses</td>
<td>Non-Small Businesses</td>
<td>Other Persons</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------------------</td>
<td>----------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Fiscal Cost</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>Fiscal Benefits</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>Total Fiscal Benefits</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
</tr>
</tbody>
</table>

B) Department head approval of regulatory impact analysis:

The Executive Director of the Department of Environmental Quality, Kim Shelley, has reviewed and approved this fiscal analysis.

Citation Information

7. Provide citations to the statutory authority for the rule. If there is also a federal requirement for the rule, provide a citation to that requirement:

- 19-2-104
- 40 CFR 51.308(f)

Incorporations by Reference Information

(If this rule incorporates more than two items by reference, please include additional tables.)

8. **A) This rule adds, updates, or removes the following title of materials incorporated by references** (a copy of materials incorporated by reference must be submitted to the Office of Administrative Rules; if none, leave blank):

<table>
<thead>
<tr>
<th>Official Title of Materials Incorporated (from title page)</th>
<th>First Incorporation</th>
<th>Publisher</th>
<th>Date Issued</th>
<th>Issue, or version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utah Regional Haze State Implementation Plan</td>
<td>Division of Air Quality, Utah Dept. of Environmental Quality</td>
<td>April, 2022</td>
<td>Second Implementation Period</td>
<td></td>
</tr>
</tbody>
</table>

8. **B) This rule adds, updates, or removes the following title of materials incorporated by references** (a copy of materials incorporated by reference must be submitted to the Office of Administrative Rules; if none, leave blank):

Public Notice Information

9. The public may submit written or oral comments to the agency identified in box 1. (The public may also request a hearing by submitting a written request to the agency. See Section 63G-3-302 and Rule R15-1 for more information.)

A) Comments will be accepted until (mm/dd/yyyy): 5/31/2022

B) A public hearing (optional) will be held:

- **On (mm/dd/yyyy):** May 26, 2022
- **At (hh:mm AM/PM):** 10:30AM
- **At (place):** https://meet.google.com/thd-ffia-etf?hs=122&authuser=0
10. This rule change MAY become effective on (mm/dd/yyyy): 07/07/2022

NOTE: The date above is the date the agency anticipates making the rule or its changes effective. It is NOT the effective date. To make this rule effective, the agency must submit a Notice of Effective Date to the Office of Administrative Rules on or before the date designated in Box 10.

Agency Authorization Information

To the agency: Information requested on this form is required by Sections 63G-3-301, 302, 303, and 402. Incomplete forms will be returned to the agency for completion, possibly delaying publication in the *Utah State Bulletin* and delaying the first possible effective date.

| Agency head or designee, and title: | Bryce C. Bird, Director | Date (mm/dd/yyyy): | 04/06/2022 |

The Utah State Implementation Plan, Section IX, Control Measures for Area and Point Sources, Part H, Emission Limits and Operating Practices, as most recently amended by the Utah Air Quality Board on [December 2, 2020]July 6, 2022, pursuant to Section 19-2-104, is hereby incorporated by reference and made a part of these rules.

The Utah State Implementation Plan, Section XX, Regional Haze, as most recently amended by the Utah Air Quality Board on [June 24, 2019]July 6, 2022, pursuant to Section 19-2-104, is hereby incorporated by reference and made a part of these rules.

KEY: air pollution, PM10, PM2.5, ozone

Date of Last Change: 2022[December 3, 2020]

Notice of Continuation: December 1, 2021

Authorizing, and Implemented or Interpreted Law: 19-2-104
ITEM 7
Air Toxics
MEMORANDUM

TO: Air Quality Board
FROM: Bryce C. Bird, Executive Secretary
DATE: May 9, 2022
SUBJECT: Air Toxics, Lead-Based Paint, and Asbestos (ATLAS) Section Compliance Activities – April 2022

<table>
<thead>
<tr>
<th>Description</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asbestos Demolition/Renovation NESHAP Inspections</td>
<td>14</td>
</tr>
<tr>
<td>Asbestos AHERA Inspections</td>
<td>12</td>
</tr>
<tr>
<td>Asbestos State Rules Only Inspections</td>
<td>3</td>
</tr>
<tr>
<td>Asbestos Notification Forms Accepted</td>
<td>117</td>
</tr>
<tr>
<td>Asbestos Telephone Calls</td>
<td>376</td>
</tr>
<tr>
<td>Asbestos Individuals Certifications Approved</td>
<td>52</td>
</tr>
<tr>
<td>Asbestos Company Certifications/Re-Certifications</td>
<td>2/4</td>
</tr>
<tr>
<td>Asbestos Alternate Work Practices Approved</td>
<td>3</td>
</tr>
<tr>
<td>Lead-Based Paint (LBP) Inspections</td>
<td>0</td>
</tr>
<tr>
<td>LBP Notification Forms Approved</td>
<td>0</td>
</tr>
<tr>
<td>LBP Telephone Calls</td>
<td>43</td>
</tr>
<tr>
<td>LBP Letters Prepared and Mailed</td>
<td>0</td>
</tr>
<tr>
<td>LBP Courses Reviewed/Approved</td>
<td>0</td>
</tr>
<tr>
<td>LBP Course Audits</td>
<td>0</td>
</tr>
<tr>
<td>LBP Individual Certifications Approved</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-----</td>
</tr>
<tr>
<td>LBP Firm Certifications</td>
<td>6</td>
</tr>
<tr>
<td>Notices of Violation Sent</td>
<td>0</td>
</tr>
<tr>
<td>Compliance Advisories Sent</td>
<td>4</td>
</tr>
<tr>
<td>Warning Letters Sent</td>
<td>2</td>
</tr>
<tr>
<td>Settlement Agreements Finalized</td>
<td>1</td>
</tr>
<tr>
<td>Penalties Agreed to:</td>
<td></td>
</tr>
<tr>
<td>Red Rock Demolition/Quinn Chivers</td>
<td>$2,100.00</td>
</tr>
</tbody>
</table>
MEMORANDUM

TO: Air Quality Board

FROM: Bryce C. Bird, Executive Secretary

DATE: June 14, 2022

SUBJECT: Air Toxics, Lead-Based Paint, and Asbestos (ATLAS) Section Compliance Activities – May 2022

Asbestos Demolition/Renovation NESHAP Inspections 12
Asbestos AHERA Inspections 13
Asbestos State Rules Only Inspections 4
Asbestos Notification Forms Accepted 163
Asbestos Telephone Calls 339
Asbestos Individuals Certifications Approved 59
Asbestos Company Certifications/Re-Certifications 0/7
Asbestos Alternate Work Practices Approved 9
Lead-Based Paint (LBP) Inspections 3
LBP Notification Forms Approved 1
LBP Telephone Calls 21
LBP Letters Prepared and Mailed 13
LBP Courses Reviewed/Approved 0
LBP Course Audits 1
LBP Individual Certifications Approved 18
<table>
<thead>
<tr>
<th>Category</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>LBP Firm Certifications</td>
<td>9</td>
</tr>
<tr>
<td>Notices of Violation Sent</td>
<td>0</td>
</tr>
<tr>
<td>Compliance Advisories Sent</td>
<td>1</td>
</tr>
<tr>
<td>Warning Letters Sent</td>
<td>2</td>
</tr>
<tr>
<td>Settlement Agreements Finalized</td>
<td>1</td>
</tr>
</tbody>
</table>

Penalties Agreed to:

- Harrison Oilfield Services, Inc/Ashley Wareham $1,000.00
Compliance
MEMORANDUM

TO: Air Quality Board
FROM: Bryce C. Bird, Executive Secretary
DATE: May 11, 2022
SUBJECT: Compliance Activities – April 2022

ACTIVITIES:

<table>
<thead>
<tr>
<th>Activity</th>
<th>Monthly Total</th>
<th>36-Month Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inspections</td>
<td>76</td>
<td>52</td>
</tr>
<tr>
<td>On-Site Stack Test & CEM Audits</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Stack Test & RATA Report Reviews</td>
<td>25</td>
<td>32</td>
</tr>
<tr>
<td>Emission Report Reviews</td>
<td>14</td>
<td>13</td>
</tr>
<tr>
<td>Temporary Relocation Request Reviews</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>Fugitive Dust Control Plan Reviews</td>
<td>151</td>
<td>145</td>
</tr>
<tr>
<td>Soil Remediation Report Reviews</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Open Burn Permits Issued</td>
<td>3,881</td>
<td>112</td>
</tr>
<tr>
<td>Miscellaneous Inspections(^1)</td>
<td>25</td>
<td>20</td>
</tr>
<tr>
<td>Complaints Received</td>
<td>34</td>
<td>14</td>
</tr>
<tr>
<td>Wood Burning Complaints Received</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Breakdown Reports Received</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Compliance Actions Resulting from a Breakdown</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>VOC Inspections</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Warning Letters Issued</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Notices of Violation Issued</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Compliance Advisories Issued</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>No Further Action Letters Issued</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Settlement Agreements Reached</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Penalties Assessed</td>
<td>$9,001.50</td>
<td>$128,681.59</td>
</tr>
</tbody>
</table>

\(^1\)Miscellaneous inspections include, e.g., surveillance, complaint, on-site training, dust patrol, smoke patrol, open burning, etc.
SETTLEMENT AGREEMENTS:

<table>
<thead>
<tr>
<th>Party</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kilgore</td>
<td>$4,720.00</td>
</tr>
<tr>
<td>CKC Field Services LLC</td>
<td>$4,381.50</td>
</tr>
</tbody>
</table>

UNRESOLVED NOTICES OF VIOLATION:

<table>
<thead>
<tr>
<th>Party</th>
<th>Date Issued</th>
</tr>
</thead>
<tbody>
<tr>
<td>US Magnesium (in litigation)</td>
<td>08/27/2015</td>
</tr>
<tr>
<td>US Magnesium (in litigation)</td>
<td>03/02/2018</td>
</tr>
<tr>
<td>CH4 Finley</td>
<td>07/24/2020</td>
</tr>
<tr>
<td>Ovintiv</td>
<td>07/14/2020</td>
</tr>
<tr>
<td>Big West Oil</td>
<td>10/22/2021</td>
</tr>
<tr>
<td>Paradox Resources/Four Corners Pipeline (tolled)</td>
<td>11/05/2021</td>
</tr>
<tr>
<td>US Magnesium (hearing requested)</td>
<td>11/16/2021</td>
</tr>
</tbody>
</table>
MEMORANDUM

TO: Air Quality Board
FROM: Bryce C. Bird, Executive Secretary
DATE: June 16, 2022
SUBJECT: Compliance Activities – May 2022

<table>
<thead>
<tr>
<th>Activity</th>
<th>Monthly Total</th>
<th>36-Month Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inspections</td>
<td>71</td>
<td>54</td>
</tr>
<tr>
<td>On-Site Stack Test & CEM Audits</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Stack Test & RATA Report Reviews</td>
<td>9</td>
<td>32</td>
</tr>
<tr>
<td>Emission Report Reviews</td>
<td>24</td>
<td>14</td>
</tr>
<tr>
<td>Temporary Relocation Request Reviews</td>
<td>16</td>
<td>7</td>
</tr>
<tr>
<td>Fugitive Dust Control Plan Reviews</td>
<td>188</td>
<td>143</td>
</tr>
<tr>
<td>Soil Remediation Report Reviews</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Open Burn Permits Issued</td>
<td>2,107</td>
<td>120</td>
</tr>
<tr>
<td>Miscellaneous Inspections¹</td>
<td>27</td>
<td>20</td>
</tr>
<tr>
<td>Complaints Received</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Wood Burning Complaints Received</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Breakdown Reports Received</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Compliance Actions Resulting from a Breakdown</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>VOC Inspections</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Warning Letters Issued</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>Notices of Violation Issued</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Compliance Advisories Issued</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>No Further Action Letters Issued</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Settlement Agreements Reached</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Penalties Assessed</td>
<td>$807.00</td>
<td>$128,938.78</td>
</tr>
</tbody>
</table>

¹Miscellaneous inspections include, e.g., surveillance, complaint, on-site training, dust patrol, smoke patrol, open burning, etc.
SETTLEMENT AGREEMENTS:

<table>
<thead>
<tr>
<th>Party</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICU Medical</td>
<td>$807.00</td>
</tr>
</tbody>
</table>

UNRESOLVED NOTICES OF VIOLATION:

<table>
<thead>
<tr>
<th>Party</th>
<th>Date Issued</th>
</tr>
</thead>
<tbody>
<tr>
<td>US Magnesium (in litigation)</td>
<td>08/27/2015</td>
</tr>
<tr>
<td>US Magnesium (in litigation)</td>
<td>03/02/2018</td>
</tr>
<tr>
<td>CH4 Finley</td>
<td>07/24/2020</td>
</tr>
<tr>
<td>Ovintiv</td>
<td>07/14/2020</td>
</tr>
<tr>
<td>Paradox Resources/Four Corners Pipeline (tolled)</td>
<td>11/05/2021</td>
</tr>
<tr>
<td>US Magnesium (hearing requested)</td>
<td>11/16/2021</td>
</tr>
</tbody>
</table>
Air Monitoring
Utah 24-Hr PM$_{2.5}$ Data April 2022

<table>
<thead>
<tr>
<th></th>
<th>BV</th>
<th>CV</th>
<th>ED</th>
<th>HV</th>
<th>HW</th>
<th>LN</th>
<th>NR</th>
<th>RS</th>
<th>RP</th>
<th>SM</th>
<th>SF</th>
<th>EQ</th>
<th>V4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arith Mean</td>
<td>4</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Max 24-hr Avg</td>
<td>16</td>
<td>21</td>
<td>21</td>
<td>12</td>
<td>19</td>
<td>23</td>
<td>19</td>
<td>13</td>
<td>19</td>
<td>8</td>
<td>21</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>98th percentile</td>
<td>11</td>
<td>19</td>
<td>21</td>
<td>9</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>11</td>
<td>14</td>
<td>7</td>
<td>17</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>Days of Data</td>
<td>30</td>
<td>29</td>
<td>29</td>
<td>27</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>29</td>
<td>30</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Days >35 µg/m3</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Exceedence Value is 35 µg/m³

* Environmental Quality (EQ) previously named Technical Support Center (TSC)
Utah 24-Hr PM$_{2.5}$ Data May 2022

<table>
<thead>
<tr>
<th>Location</th>
<th>BV</th>
<th>CV</th>
<th>ED</th>
<th>HV</th>
<th>HW</th>
<th>LN</th>
<th>NR</th>
<th>RS</th>
<th>RP</th>
<th>SM</th>
<th>SF</th>
<th>EQ</th>
<th>V4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arith Mean</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Max 24-hr Avg</td>
<td>16</td>
<td>18</td>
<td>19</td>
<td>16</td>
<td>21</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>21</td>
<td>7</td>
<td>25</td>
<td>19</td>
<td>13</td>
</tr>
<tr>
<td>98th percentile</td>
<td>12</td>
<td>16</td>
<td>15</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>15</td>
<td>15</td>
<td>19</td>
<td>7</td>
<td>22</td>
<td>14</td>
<td>10</td>
</tr>
<tr>
<td>Days of Data</td>
<td>30</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>29</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Days >35 µg/m3</td>
<td>0</td>
</tr>
</tbody>
</table>

Exceedence Value is 35 µg/m3

Environmental Quality (EQ) previously named Technical Support Center (TSC)
Utah Division of Air Quality

Utah 24-Hr PM$_{2.5}$ Data June 2022

<table>
<thead>
<tr>
<th></th>
<th>BV</th>
<th>CV</th>
<th>ED</th>
<th>HV</th>
<th>HW</th>
<th>LN</th>
<th>NR</th>
<th>RS</th>
<th>RP</th>
<th>SM</th>
<th>SF</th>
<th>EQ</th>
<th>V4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arith Mean</td>
<td>7</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>6</td>
<td>9</td>
<td>7</td>
<td>8</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>Max 24-hr Avg</td>
<td>24</td>
<td>23</td>
<td>27</td>
<td>30</td>
<td>24</td>
<td>18</td>
<td>23</td>
<td>16</td>
<td>29</td>
<td>27</td>
<td>16</td>
<td>27</td>
<td>12</td>
</tr>
<tr>
<td>98th percentile</td>
<td>21</td>
<td>22</td>
<td>26</td>
<td>27</td>
<td>30</td>
<td>24</td>
<td>23</td>
<td>16</td>
<td>29</td>
<td>27</td>
<td>16</td>
<td>27</td>
<td>11</td>
</tr>
<tr>
<td>Days of Data</td>
<td>20</td>
</tr>
<tr>
<td>Days >35 µg/m³</td>
<td>0</td>
</tr>
</tbody>
</table>

Exceedence Value is 35 µg/m³

Environmental Quality (EQ) previously named Technical Support Center (TSC)

* Environmental Quality (EQ) previously named Technical Support Center (TSC)
Utah 24-hr PM$_{10}$ Data April 2022

<table>
<thead>
<tr>
<th></th>
<th>HV</th>
<th>HW</th>
<th>H3</th>
<th>LN</th>
<th>RS</th>
<th>EQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arith Mean</td>
<td>16</td>
<td>21</td>
<td>24</td>
<td>24</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>Max 24-hr Avg</td>
<td>57</td>
<td>98</td>
<td>148</td>
<td>103</td>
<td>269</td>
<td>129</td>
</tr>
<tr>
<td>Days of Data</td>
<td>29</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Days >150 µg/m3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Exceedance Value is 150 µg/m3

* Environmental Quality (EQ) previously named Technical Support Center (TSC)
Utah 24-hr PM$_{10}$ Data May 2022

<table>
<thead>
<tr>
<th></th>
<th>HV</th>
<th>HW</th>
<th>H3</th>
<th>LN</th>
<th>RS</th>
<th>EQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arith Mean</td>
<td>17</td>
<td>19</td>
<td>21</td>
<td>27</td>
<td>23</td>
<td>21</td>
</tr>
<tr>
<td>Max 24-hr Avg</td>
<td>69</td>
<td>80</td>
<td>65</td>
<td>83</td>
<td>98</td>
<td>69</td>
</tr>
<tr>
<td>Days of Data</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>Days >150 µg/m3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Exceedance Value is 150 µg/m3

Environmental Quality (EQ) previously named Technical Support Center (TSC)

Utah Division of Air Quality
Utah 24-hr PM$_{10}$ Data June 2022

Exceedance Value is 150 µg/m3

<table>
<thead>
<tr>
<th></th>
<th>HV</th>
<th>HW</th>
<th>H3</th>
<th>LN</th>
<th>RS</th>
<th>EQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arith Mean</td>
<td>29</td>
<td>32</td>
<td>42</td>
<td>35</td>
<td>25</td>
<td>41</td>
</tr>
<tr>
<td>Max 24-hr Avg</td>
<td>125</td>
<td>109</td>
<td>173</td>
<td>89</td>
<td>82</td>
<td>150</td>
</tr>
<tr>
<td>Days of Data</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>19</td>
</tr>
<tr>
<td>Days >150 µg/m3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

* Environmental Quality (EQ) previously named Technical Support Center (TSC)
Highest 8-hr Ozone Concentration & Daily Maximum Temperature April 2022

<table>
<thead>
<tr>
<th></th>
<th>P2</th>
<th>RS</th>
<th>V4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arith Mean</td>
<td>.051</td>
<td>.053</td>
<td>.051</td>
</tr>
<tr>
<td>8-hr. Ozone 4th Max</td>
<td>.057</td>
<td>.058</td>
<td>.057</td>
</tr>
<tr>
<td>Days of Data</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Days > 0.070</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Days</th>
<th>Ozone (ppm)</th>
<th>Daily Maximum Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16.1</td>
<td>24.2</td>
</tr>
<tr>
<td>2</td>
<td>16.2</td>
<td>31.5</td>
</tr>
<tr>
<td>3</td>
<td>12.6</td>
<td>20.8</td>
</tr>
<tr>
<td>4</td>
<td>16.9</td>
<td>21.3</td>
</tr>
<tr>
<td>5</td>
<td>20.8</td>
<td>16.1</td>
</tr>
<tr>
<td>6</td>
<td>16.1</td>
<td>16.9</td>
</tr>
<tr>
<td>7</td>
<td>16.9</td>
<td>19.8</td>
</tr>
<tr>
<td>8</td>
<td>23.0</td>
<td>20.3</td>
</tr>
<tr>
<td>9</td>
<td>23.9</td>
<td>13.0</td>
</tr>
<tr>
<td>10</td>
<td>20.3</td>
<td>12.5</td>
</tr>
<tr>
<td>11</td>
<td>21.3</td>
<td>15.7</td>
</tr>
<tr>
<td>12</td>
<td>21.8</td>
<td>13.5</td>
</tr>
<tr>
<td>13</td>
<td>20.8</td>
<td>15.7</td>
</tr>
<tr>
<td>14</td>
<td>24.2</td>
<td>12.5</td>
</tr>
<tr>
<td>15</td>
<td>24.2</td>
<td>15.7</td>
</tr>
<tr>
<td>16</td>
<td>21.8</td>
<td>13.5</td>
</tr>
<tr>
<td>17</td>
<td>20.3</td>
<td>15.7</td>
</tr>
<tr>
<td>18</td>
<td>21.3</td>
<td>12.5</td>
</tr>
<tr>
<td>19</td>
<td>21.3</td>
<td>15.7</td>
</tr>
<tr>
<td>20</td>
<td>23.9</td>
<td>13.0</td>
</tr>
<tr>
<td>21</td>
<td>20.3</td>
<td>12.5</td>
</tr>
<tr>
<td>22</td>
<td>21.3</td>
<td>15.7</td>
</tr>
<tr>
<td>23</td>
<td>20.3</td>
<td>12.5</td>
</tr>
<tr>
<td>24</td>
<td>21.3</td>
<td>15.7</td>
</tr>
<tr>
<td>25</td>
<td>20.3</td>
<td>12.5</td>
</tr>
<tr>
<td>26</td>
<td>21.3</td>
<td>15.7</td>
</tr>
<tr>
<td>27</td>
<td>20.3</td>
<td>12.5</td>
</tr>
<tr>
<td>28</td>
<td>21.3</td>
<td>15.7</td>
</tr>
<tr>
<td>29</td>
<td>20.3</td>
<td>12.5</td>
</tr>
<tr>
<td>30</td>
<td>21.3</td>
<td>15.7</td>
</tr>
</tbody>
</table>

- Price #2
- Roosevelt
- Vernal #4
- Exceed.
- TM
Highest 8-hr Ozone Concentration & Daily Maximum Temperature April 2022

<table>
<thead>
<tr>
<th></th>
<th>SM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arith Mean</td>
<td>.044</td>
</tr>
<tr>
<td>8-hr. Ozone 4th Max</td>
<td>.048</td>
</tr>
<tr>
<td>Days of Data</td>
<td>30</td>
</tr>
<tr>
<td>Days > 0.070</td>
<td>0</td>
</tr>
</tbody>
</table>

Daily Maximum Temperature (°C) [Smithfield]

Ozone (ppm)

Days

1. Smithfield
2. Exceed.
3. TM
Highest 8-hr Ozone Concentration & Daily Maximum Temperature April 2022

Summary Table

<table>
<thead>
<tr>
<th></th>
<th>LN</th>
<th>SF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arith Mean</td>
<td>.048</td>
<td>.048</td>
</tr>
<tr>
<td>8-hr. Ozone 4th Max</td>
<td>.053</td>
<td>.053</td>
</tr>
<tr>
<td>Days of Data</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Days > 0.070</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Graph

- **Ozone (ppm)**
- **Daily Maximum Temperature (°C) (Lindon)**

Details

- **Highest 8-hr Ozone Concentration**
- **Days of Data**
- **Days > 0.070**

Notes:

- Exceed.
- TM
Highest 8-hr Ozone Concentration & Daily Maximum Temperature April 2022

<table>
<thead>
<tr>
<th></th>
<th>EN</th>
<th>ES</th>
<th>HC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arith Mean</td>
<td>.050</td>
<td>.051</td>
<td>.051</td>
</tr>
<tr>
<td>8-hr. Ozone 4th Max</td>
<td>.057</td>
<td>.057</td>
<td>.058</td>
</tr>
<tr>
<td>Days of Data</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Days > 0.070</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Enoch, Escalante, Hurricane

Days > 0.070
Highest 8-hr Ozone Concentration & Daily Maximum Temperature April 2022
Stations monitoring the Inland Port development

<table>
<thead>
<tr>
<th>Duration</th>
<th>ZZ</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arith Mean</td>
<td>.046</td>
<td>.049</td>
</tr>
<tr>
<td>8-hr. Ozone 4th Max</td>
<td>.051</td>
<td>.055</td>
</tr>
<tr>
<td>Days of Data</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Days > 0.070</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

* ZZ is located at the New Utah State Prison (1480 North 8000 West, SLC).
This site was previously named IP.
Highest 8-hr Ozone Concentration & Daily Maximum Temperature May 2022

<table>
<thead>
<tr>
<th></th>
<th>BV</th>
<th>CV</th>
<th>ED</th>
<th>H3</th>
<th>HV</th>
<th>HW</th>
<th>NR</th>
<th>RP</th>
<th>EQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arith Mean</td>
<td>.048</td>
<td>.048</td>
<td>.047</td>
<td>.046</td>
<td>.049</td>
<td>.048</td>
<td>.042</td>
<td>.046</td>
<td>.048</td>
</tr>
<tr>
<td>8-hr. Ozone 4th Max</td>
<td>.053</td>
<td>.054</td>
<td>.052</td>
<td>.050</td>
<td>.055</td>
<td>.053</td>
<td>.048</td>
<td>.050</td>
<td>.053</td>
</tr>
<tr>
<td>Days of Data</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>Days > 0.070</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

* Environmental Quality (EQ) previously named Technical Support Center (TSC)
** Controlling Monitor
Highest 8-hr Ozone Concentration & Daily Maximum Temperature May 2022

<table>
<thead>
<tr>
<th></th>
<th>P2</th>
<th>RS</th>
<th>V4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arith Mean</td>
<td>.051</td>
<td>.052</td>
<td>.050</td>
</tr>
<tr>
<td>8-hr. Ozone 4th Max</td>
<td>.056</td>
<td>.057</td>
<td>.056</td>
</tr>
<tr>
<td>Days of Data</td>
<td>31</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>Days > 0.070</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Days > 0.070:
- Price #2: 0
- Roosevelt: 0
- Vernal #4: 0
Highest 8-hr Ozone Concentration & Daily Maximum Temperature May 2022

<table>
<thead>
<tr>
<th>SM</th>
<th>Arith Mean</th>
<th>8-hr. Ozone 4th Max</th>
<th>Days of Data</th>
<th>Days > 0.070</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.046</td>
<td>.051</td>
<td>31</td>
<td>0</td>
</tr>
</tbody>
</table>

Chart Details
- **Days**
- **Daily Maximum Temperature (°C)** (Smithfield)
- **Ozone (ppm)**
- **Days**
 - **Arith Mean**: 0.046
 - **8-hr. Ozone 4th Max**: 0.051
 - **Days of Data**: 31
 - **Days > 0.070**: 0

Smithfield

Exceed.

TM
Highest 8-hr Ozone Concentration & Daily Maximum Temperature May 2022

<table>
<thead>
<tr>
<th>LN</th>
<th>SF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arith Mean</td>
<td>.047</td>
</tr>
<tr>
<td>8-hr. Ozone 4th Max</td>
<td>.052</td>
</tr>
<tr>
<td>Days of Data</td>
<td>31</td>
</tr>
<tr>
<td>Days > 0.070</td>
<td>0</td>
</tr>
</tbody>
</table>

- **Daily Maximum Temperature (°C) (Lindon)**
- **Ozone (ppm)**
- **Days**

Legend:
- **Lindon**
- **Spanish Fork**
- **Exceed.**
- **TM**
Highest 8-hr Ozone Concentration & Daily Maximum Temperature May 2022

<table>
<thead>
<tr>
<th></th>
<th>EN</th>
<th>ES</th>
<th>HC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arith Mean</td>
<td>0.051</td>
<td>0.053</td>
<td>0.055</td>
</tr>
<tr>
<td>8-hr. Ozone 4th Max</td>
<td>0.055</td>
<td>0.059</td>
<td>0.058</td>
</tr>
<tr>
<td>Days of Data</td>
<td>31</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>Days > 0.070</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- **Hurricane**
- **Days > 0.070**

<table>
<thead>
<tr>
<th>Days</th>
<th>Daily Maximum Temperature (°C)</th>
<th>Ozone (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>35.0</td>
<td>0.055</td>
</tr>
<tr>
<td>2</td>
<td>33.2</td>
<td>0.059</td>
</tr>
<tr>
<td>3</td>
<td>32.7</td>
<td>0.058</td>
</tr>
<tr>
<td>4</td>
<td>32.3</td>
<td>0.055</td>
</tr>
<tr>
<td>5</td>
<td>31.7</td>
<td>0.053</td>
</tr>
<tr>
<td>6</td>
<td>30.0</td>
<td>0.051</td>
</tr>
<tr>
<td>7</td>
<td>28.2</td>
<td>0.049</td>
</tr>
<tr>
<td>8</td>
<td>27.9</td>
<td>0.048</td>
</tr>
<tr>
<td>9</td>
<td>27.3</td>
<td>0.047</td>
</tr>
<tr>
<td>10</td>
<td>26.0</td>
<td>0.046</td>
</tr>
<tr>
<td>11</td>
<td>25.3</td>
<td>0.045</td>
</tr>
<tr>
<td>12</td>
<td>24.7</td>
<td>0.044</td>
</tr>
<tr>
<td>13</td>
<td>24.0</td>
<td>0.043</td>
</tr>
<tr>
<td>14</td>
<td>23.5</td>
<td>0.042</td>
</tr>
<tr>
<td>15</td>
<td>23.0</td>
<td>0.041</td>
</tr>
<tr>
<td>16</td>
<td>22.5</td>
<td>0.040</td>
</tr>
<tr>
<td>17</td>
<td>22.0</td>
<td>0.039</td>
</tr>
<tr>
<td>18</td>
<td>21.5</td>
<td>0.038</td>
</tr>
<tr>
<td>19</td>
<td>21.0</td>
<td>0.037</td>
</tr>
<tr>
<td>20</td>
<td>20.5</td>
<td>0.036</td>
</tr>
<tr>
<td>21</td>
<td>20.0</td>
<td>0.035</td>
</tr>
<tr>
<td>22</td>
<td>19.5</td>
<td>0.034</td>
</tr>
<tr>
<td>23</td>
<td>19.0</td>
<td>0.033</td>
</tr>
<tr>
<td>24</td>
<td>18.5</td>
<td>0.032</td>
</tr>
<tr>
<td>25</td>
<td>18.0</td>
<td>0.031</td>
</tr>
<tr>
<td>26</td>
<td>17.5</td>
<td>0.030</td>
</tr>
<tr>
<td>27</td>
<td>17.0</td>
<td>0.029</td>
</tr>
<tr>
<td>28</td>
<td>16.5</td>
<td>0.028</td>
</tr>
<tr>
<td>29</td>
<td>16.0</td>
<td>0.027</td>
</tr>
<tr>
<td>30</td>
<td>15.5</td>
<td>0.026</td>
</tr>
<tr>
<td>31</td>
<td>15.0</td>
<td>0.025</td>
</tr>
</tbody>
</table>

- **Days of Data**: 31
- **8-hr. Ozone 4th Max**: 0.055
- **Arith Mean**: 0.051
Highest 8-hr Ozone Concentration & Daily Maximum Temperature May 2022
Stations monitoring the Inland Port development

<table>
<thead>
<tr>
<th></th>
<th>ZZ</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arith Mean</td>
<td>.046</td>
<td>.050</td>
</tr>
<tr>
<td>8-hr. Ozone 4th Max</td>
<td>.050</td>
<td>.054</td>
</tr>
<tr>
<td>Days of Data</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>Days > 0.070</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

* ZZ is located at the New Utah State Prison (1480 North 8000 West, SLC).
This site was previously named IP.
Highest 8-hr Ozone Concentration & Daily Maximum Temperature June 2022

<table>
<thead>
<tr>
<th></th>
<th>BV</th>
<th>CV</th>
<th>ED</th>
<th>H3</th>
<th>HV</th>
<th>HW</th>
<th>NR</th>
<th>RP</th>
<th>EQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arith Mean</td>
<td>.056</td>
<td>.053</td>
<td>.051</td>
<td>.054</td>
<td>.054</td>
<td>.054</td>
<td>.049</td>
<td>.053</td>
<td>.054</td>
</tr>
<tr>
<td>8-hr. Ozone 4th Max</td>
<td>.065</td>
<td>.061</td>
<td>.057</td>
<td>.060</td>
<td>.061</td>
<td>.064</td>
<td>.056</td>
<td>.059</td>
<td>.060</td>
</tr>
<tr>
<td>Days of Data</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Days > 0.070</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Environmental Quality (EQ) previously named Technical Support Center (TSC)

Controlling Monitor
Highest 8-hr Ozone Concentration & Daily Maximum Temperature June 2022

<table>
<thead>
<tr>
<th></th>
<th>P2</th>
<th>RS</th>
<th>V4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arith Mean</td>
<td>.053</td>
<td>.056</td>
<td>.054</td>
</tr>
<tr>
<td>8-hr. Ozone 4th Max</td>
<td>.059</td>
<td>.061</td>
<td>.058</td>
</tr>
<tr>
<td>Days of Data</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Days > 0.070</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Highest 8-hr Ozone Concentration & Daily Maximum Temperature June 2022

<table>
<thead>
<tr>
<th></th>
<th>SM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arith Mean</td>
<td>.049</td>
</tr>
<tr>
<td>8-hr. Ozone 4th Max</td>
<td>.056</td>
</tr>
<tr>
<td>Days of Data</td>
<td>20</td>
</tr>
<tr>
<td>Days > 0.070</td>
<td>0</td>
</tr>
</tbody>
</table>

Days of Data: 20

Days > 0.070: 0
Highest 8-hr Ozone Concentration & Daily Maximum Temperature June 2022

<table>
<thead>
<tr>
<th></th>
<th>LN</th>
<th>SF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arith Mean</td>
<td>.054</td>
<td>.053</td>
</tr>
<tr>
<td>8-hr. Ozone 4th Max</td>
<td>.059</td>
<td>.060</td>
</tr>
<tr>
<td>Days of Data</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>Days > 0.070</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Highest 8-hr Ozone Concentration & Daily Maximum Temperature June 2022

<table>
<thead>
<tr>
<th></th>
<th>EN</th>
<th>ES</th>
<th>HC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arith Mean</td>
<td>0.054</td>
<td>0.055</td>
<td>0.056</td>
</tr>
<tr>
<td>8-hr. Ozone 4th Max</td>
<td>0.060</td>
<td>0.060</td>
<td>0.062</td>
</tr>
<tr>
<td>Days of Data</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Days > 0.070</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- **Daily Maximum Temperature (°C)**
 - **Hurricane**

Means & **Exceed**

- **Enoch**
- **Escalante**
- **Hurricane**
- **Exceed.**
- **TM**
Highest 8-hr Ozone Concentration & Daily Maximum Temperature June 2022
Stations monitoring the Inland Port development

<table>
<thead>
<tr>
<th></th>
<th>ZZ</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arith Mean</td>
<td>.053</td>
<td>.057</td>
</tr>
<tr>
<td>8-hr. Ozone 4th Max</td>
<td>.058</td>
<td>.063</td>
</tr>
<tr>
<td>Days of Data</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Days > 0.070</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

* ZZ is located at the New Utah State Prison (1480 North 8000 West, SLC).
This site was previously named IP.